
AN

N
A
L
E
S
D
E

L’INSTI
T

U
T
F
O
U
R

IE
R

ANNALES
DE

L’INSTITUT FOURIER

Étienne TAKOU & Fidèle L. CIAKE CIAKE

Inhomogeneous relativistic Boltzmann equation near vacuum in the
Robertson–Walker space-time
Tome 67, no 3 (2017), p. 947-967.

<http://aif.cedram.org/item?id=AIF_2017__67_3_947_0>

© Association des Annales de l’institut Fourier, 2017,
Certains droits réservés.

Cet article est mis à disposition selon les termes de la licence
CREATIVE COMMONS ATTRIBUTION – PAS DE MODIFICATION 3.0 FRANCE.
http://creativecommons.org/licenses/by-nd/3.0/fr/

L’accès aux articles de la revue « Annales de l’institut Fourier »
(http://aif.cedram.org/), implique l’accord avec les conditions générales
d’utilisation (http://aif.cedram.org/legal/).

cedram
Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/

http://aif.cedram.org/item?id=AIF_2017__67_3_947_0
http://creativecommons.org/licenses/by-nd/3.0/fr/
http://aif.cedram.org/
http://aif.cedram.org/legal/
http://www.cedram.org/
http://www.cedram.org/


Ann. Inst. Fourier, Grenoble
67, 3 (2017) 947-967

INHOMOGENEOUS RELATIVISTIC BOLTZMANN
EQUATION NEAR VACUUM IN THE
ROBERTSON–WALKER SPACE-TIME

by Étienne TAKOU & Fidèle L. CIAKE CIAKE

Abstract. — In this paper, we consider the Cauchy problem for the relativistic
Boltzmann equation with near vacuum initial data where the distribution function
depends on the time, the position and the impulsion. The collision kernel considered
here is for the hard potentials case and the background space-time in which the
study is done is the Robertson–Walker space-time. Unique global (in time) mild
solution is obtained in a suitable weighted space.
Résumé. — Dans cet article, nous considérons le problème de Cauchy pour

l’équation de Boltzmann relativiste avec des données initiales petites. Nous sup-
posons que la fonction de distribution dépend du temps, de la position et de l’im-
pulsion. Le noyau de collision considéré ici est pour le cas des potentiels durs et
l’espace-temps dans lequel l’étude est faite est celui de Robertson–Walker. Nous
prouvons un théorème d’existence et d’unicité globale (dans le temps) d’une solu-
tion généralisée dans un espace à poids approprié.

1. Introduction

One of the most important equations in relativistic kinetic theory of gas
is the Boltzmann equation. The main interest of the Boltzmann equation
is the description of the one-particle distribution function associated to
the gas. This function is physically interpreted as the probability of the
presence density of a particle in a given volume. This equation describes
the time evolution of the system where collisions between particles can no
longer be neglected. One should consider effects of collisions by introducing
in the right hand side of the Vlasov equation a term of collision called col-
lision operator. In this work, we assume that the particles interact only via

Keywords: Relativistic Boltzmann equation, Robertson–Walker, inhomogeneous, mild
solution.
Math. classification: 76P05, 35Q20.
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binary and elastic collisions. This occurs when the mean free time is much
shorter than the characteristic length time associated with the system.
Therefore, between collisions for the case of uncharged particles considered
in this paper, the particles move along future directed time-like geodesic of
the space-time (R4, ds2). From the tangent bundle point of view, the gas
particles follow segments of integral curves of the vector field which will be
specified later.
We consider as background in this paper the Robertson–Walker(RW)

space-time (R4, ds2) where the metric tensor ds2 with signature (−,+,+,+)
can be written as:

(1.1) ds2 = −dt2 +R2(t)[(dx1)2 + (dx2)2 + (dx3)2]

in (1.1), R(t) is given and is called the cosmological expansion factor. In
fact, the RW metric is an exact solution of Einstein’s field equations of
General Relativity; it describes a homogeneous, isotropic expanding or con-
tracting universe. The general form of the metric follows from the geometric
properties of homogeneity and isotropy; Einstein’s field equations are only
needed to derive the scale factor of the universe as a function of time.
We consider in this work particles with the same rest-mass m that can

be rescaled to m = 1. The particles are then required to move on the future
sheet of the mass-shell whose equation is −(p0)2 + R2(t)[(p1)2 + (p2)2 +
(p3)2] = −1.

The main difficulty while studying the Boltzmann equation lays in the
collision kernel. Glassey derived the collision kernel in [6] for the Newto-
nian case, but for the relativistic case for a more detail description of the
scattering kernel, we refer to [3].

Choquet-Bruhat, Y. [2] defined the µ − N regularity of the collision
operator, which appears in the r.h.s of the Boltzmann equation. Under
the condition of µ − N regularity, several authors studied and proved
some existence theorems for the relativistic Boltzmann equation. Takou,
E., Noutchegueme, N. and Dongo, D. [13, 14, 15] proved some global re-
sults in the homogeneous cases under assumptions close to µ−N regularity.
Bancel, D. [1] also proved one local result under the µ−N regularity con-
dition. Glassey, R. [7] proved a global existence theorem with near vacuum
initial data in the Minkowski space-time.
The use of µ−N regularity doesn’t allow a very good physical description

of the collision operator. In fact, this operator depends on several terms
including the collision kernel, the relative momentum and the energy in
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INHOMOGENEOUS RELATIVISTIC BOLTZMANN EQUATION 949

the center of momentum. Furthermore, one of the main terms in the col-
lision kernel is the scattering kernel which measures interactions between
particles.
In the Newtonian Boltzmann equation, scattering kernels are usually

classified into soft and hard potentials. This classification was originally
adapted in the relativistic case by Dudyński, M. and Ekiel-Jerżewska, M. [4]
and recently reformulated by Strain, R. in [16]. This reformulation increases
the importance and the interest of the relativistic Boltzmann equation.
With this reformulation, Strain, R. op.cit. proved one global result in the
Minkowski space-time. Lee, H. and Rendall, A., D. proved in [10] the pos-
itivity of a possible solution of the coupled Einstein–Boltzmann equation
and also proved global solution in certain homogeneous cases in [9, 11].
In this paper, we consider the relativistic Boltzmann equation with scat-

tering kernel as in [16], in RW space-time as indicated earlier. More pre-
cisely, we consider a relativistic gas of massive, uncharged particles in the
RW space-time. In such case we look at short-range interactions between
particles, which are usually modeled by a scattering kernel called hard
sphere satisfying (2.9). For more details about the relativistic hard sphere
interactions and their physical motivations we refer to [5] and the references
therein.

The paper is organized as follows: In Section 2, we introduce a change
of variable to write the mild form of Boltzmann equation, we also specify
the functions spaces in which we will seek the solution and then we make
the main assumptions of the paper. Some preliminary results are given in
Section 3, whereas Section 4 is devoted to the existence theorem of the
relativistic Boltzmann equation.

2. The inhomogeneous Boltzmann equation and
Functional spaces

2.1. The equation and collision operator

We recall that we consider as background the RW space-time where the
metric tensor with signature (−,+,+,+) can be written as:

(2.1) ds2 = −dt2 +R2(t)[(dx1)2 + (dx2)2 + (dx3)2]

in which R(t) is a strictly positive function of t.

TOME 67 (2017), FASCICULE 3
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Let’s also recall the general form of the Boltzmann equation on the curve
space-time

(2.2) pα
∂f

∂xα
− Γiαβpαpβ

∂f

∂pi
= Q̃(f, f).

In (2.2), Γiαβ denote the Christoffel symbols of the metric considered, Q̃ is
a non-linear operator called “collision operator” and it will be specified in
detail shortly.
Greek indices will be assumed to run from 0 to 3, while latin indices

run from 1 to 3, in (2.2) unless otherwise specified. We adopt the Einstein
summation convention aαbα =

∑
aαb

α. Note that pα = (p0, p1, p2, p3) and
p = (p1, p2, p3).

After some computations, the relativistic Boltzmann equation in the RW
space-time can be written as follows

(2.3) ∂tf + p̂.∇xf − 2 Ṙ
R
p.∇pf = Q(f, f)

where p̂ is defined by p̂ = p
p0 .

Let’s now give the precise form of the collision operator. In instanta-
neous, binary and elastic scheme due to Lichnerowicz and Chernikov [12],
we consider that at a given position x, two particles (or two beans of par-
ticles) of momenta pα and qα collide without destroying each other. The
collision affecting only their momenta that change after the collision. Let
p′α and q′α be their momenta after the collision. By conservation of the
energy-momentum principle, one has:

(2.4) pα + qα = p′α + q′α.

The collision operator Q is then defined by the relation

Q(f, g) = Qg(f, g)−Ql(f, g)

where:

Qg(f, g)(t, x, p) =
∫
R3

∫
S2

g
√
s

p0q0σ(g, ω)f(t, x, p′)g(t, x, q′)dωdq(2.5)

Ql(f, g)(t, x, p) =
∫
R3

∫
S2

g
√
s

p0q0σ(g, ω)f(t, x, p)g(t, x, q)dωdq(2.6)

correspond to the gain term and the lost term respectively. For simplicity,
we abbreviate f(t, x, p), f(t, x, q), f(t, x, p′) and f(t, x, q′) by f(p), f(q),
f(p′) and f(q′) respectively. The quantity vφ = g

√
s

p0q0 is called Møller veloc-
ity.
In this paper (p, q) and (p′, q′) are pre-collisional and post-collisional

momentum respectively, satisfying (2.14).
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The quantities g and s defined as follows:

(2.7) s = −(pα + qα)(pα + qα), g =
√

(pα − qα)(pα − qα)

are called respectively the square of the energy in the “center of momen-
tum” system p+ q = 0 and g the relative momentum.
σ is called the differential cross-section or scattering kernel; it depends

on the relative momentum and the scattering angle θ defined by the rela-
tion (3.3). Note that the parameter ω over the unit sphere and the scat-
tering angle θ are linked by (3.6); that is why it is just written as σ(g, ω).
σ(g, ω) measures interaction’s effects between particles during the collision
process. The scattering kernel in relativistic kinetic theory is classified into
soft and hard potentials.

• For soft potentials, one assumes that there exists γ > −2 and
0 < b < min{4, 4+γ} such that the scattering kernel σ(g, ω) satisfies
the following growth/decay estimates:

(2.8) g√
s
g−bσ0(ω) . σ(g, ω) . g−bσ0(ω), σ0(ω) . sinγθ.

• For hard potentials, one assumes that there exists γ > −2, 0 6 a 6
γ + 2 and 0 < b < min{4, 4 + γ} such that the scattering kernel
σ(g, ω) satisfies the following growth/decay estimates:

(2.9) g√
s
gaσ0(ω) . σ(g, ω) . (ga + g−b)σ0(ω), σ0(ω) . sinγθ.

The notation a . b means that a positive constant C exists such that
a 6 Cb holds uniformly over the range of parameters which are present in
the inequality and moreover that the precise magnitude of the constant is
unimportant. The notation a ≈ b means that both a . b and b . a hold.

In the sequel, we let sometimes C and c denote generic and positive
inessential constants whose values may change from line to line.

2.2. Hypothesis on the scattering kernel and the cosmological
expansion factor

In the present work, we suppose that the scattering kernel σ(g, ω) is for
hard potentials case with a = 0. So, We assume that there exists b ∈ ]0, 4[
such that the scattering kernel σ(g, ω) satisfies the following growth/decay
estimates:

(2.10) g√
s
σ0(ω) . σ(g, ω) . (1 + g−b)σ0(ω)

TOME 67 (2017), FASCICULE 3
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where σ0(ω) is non-negative, bounded, continuous and satisfies the follow-
ing relation

(2.11)
∫
S2
σ0(ω)e−|w.y|

2
. e−|y|

2
, ∀y ∈ R3 such that |y| > 1.

About the cosmological expansion factor, we also assume that

(2.12)
R(0) = 1, R′(t) > 0, lim

n→+∞
R(t) = +∞,∫

R+

(R−3(t) +Rb−4(t))dt < +∞.

Remark 2.1. — A scattering kernel enjoying (2.10)–(2.11) falls into the
hard potential case.

Remark 2.2. — In [8, Section 4], the post-collisional momenta were
parametrized as follows: suppose that two particles having momenta V α
and Uα collide, and let V ′α and U ′α be their momenta after the collision.
Under the energy-momentum conservation principle V α+Uα = V ′α+U ′α,
the following relations hold for ω ∈ S2.

(2.13)
{
V ′ = V −A(V,U, ω)ω
U ′ = U +A(V,U, ω)ω

withA=
2U0V 0(V 0 +U0)ω.( VV 0 − U

U0 )
(V 0 +U0)2 − (ω.(V + U))2 .

Remark 2.3. — In (2.13), if we set V = Rp, U = Rq, V ′ = Rp′ and
U ′ = Rq′, from (2.4), we have V α + Uα = V ′α + U ′α. Then (2.13) holds
for U and V . from this we obtain the following relation between (p, q) and
(p′, q′)

(2.14)
{
p′ = p− ã(p, q, ω)ω
q′ = q + ã(p, q, ω)ω ;

ω ∈ S2

in which, setting e = p0 + q0, ã(p, q, ω) is a real-valued function given by:

(2.15) ã(p, q, ω) = 2 p0q0e ω.(p̂− q̂)
e2 −R2(ω.(p+ q))2 .

As parametrization of the post-collisional momenta, we adopt (2.14)–(2.15).

2.3. Mild form of the Boltzmann equation and functional space

In the sequel, we consider (2.3) with covariant variables. To be explicit,
the distribution function f will be considered as a function of t, x and

ANNALES DE L’INSTITUT FOURIER



INHOMOGENEOUS RELATIVISTIC BOLTZMANN EQUATION 953

pk = gkβp
β = R2pk, with k = 1, 2, 3. This change of variable was previously

used in [11, 9]. In what follows, for simplicity, we set

(2.16) v = (v1, v2, v3) where vk = R2pk and v0 =
√

1 +R−2|v|2.

With these new variables, setting v′k = R2p′k and u′k = R2q′k, the
post-collisional momentum are parametrized as follows.

(2.17)
{
v′ = v − a(v, u, ω)ω
u′ = u+ a(v, u, ω)ω ;

ω ∈ S2

where setting v̂ = v
v0 and û = u

u0 , the real valued function a is given by

(2.18) a(v, u, ω) = 2 v0u0e ω.(v̂ − û)
e2 −R−2(ω.(v + u))2 .

With these variables we can now rewrite (2.3). Let’s set f̃(t, x, v) = f(t, x, p).
We have

∂tf̃ = ∂tf − 2 Ṙ
R3 v.∇pf = ∂tf − 2 Ṙ

R
p.∇pf(2.19)

∂xi f̃ = ∂xif(2.20)

Straightforward computation leads to dp = R−6dv. In what follows, we will
write f instead of f̃ . So, with the new variables, the collision operator reads

Q(f, f)(t, x, v) = R−3(t)
∫
S2
dω

∫
R3
duvφσ(g, ω)[f(v′)f(u′)− f(v)f(u)]

= Qg(f, f)(t, x, v)−Ql(f, f)(t, x, v).(2.21)

Taking into account (2.19) and (2.20), the Boltzmann equation (2.3) be-
comes

(2.22) ∂tf + 1
R2 v̂.∇xf = Qg(f, f)(t, x, v)−Ql(f, f)(t, x, v).

2.3.1. Characteristic’s equation

Let’s consider the equation (2.22) which is the first order partial differ-
ential equation. For any fixed (x, v) ∈ Rx×Rv, the characteristics Xt(x, v)
are defined by the following relations

d

dt
Xt(x, v) = R−2(t) v̂(2.23)

Xt(x, v)|t=0 = x.(2.24)

From (2.23) and (2.24), we have

(2.25) Xt(x, v) = x+
∫ t

0
R−2(s)v̂ds = x+

(∫ t

0

R−2(s)ds√
1 +R−2(s)|v|2

)
v.

TOME 67 (2017), FASCICULE 3
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Let’s now introduce the standard notation in the Boltzmann equation

(2.26) f#(t, x, v) = f(t,Xt(x, v), v)

Using the notation (2.26), we have
d

dt
f#(t, x, v) = ∂tf + ∂Xit

∂t

∂f

∂xi

= ∂tf + R−2(t)√
1 +R−2(t)|v|2

v.∇xf

= ∂tf +R−2(t) v̂.∇xf.(2.27)

From (2.27), the equation (2.22) becomes

(2.28) d

dt
f#(t, x, v) = Q#(f, f)(t, x, v)

where Q#(f, f) is given by:

Q#(f, f)(s, x, v) = Q(f, f)(s,Xs(x, v), v).

(2.28) leads to the following equation

(2.29) f#(t, x, v) = f0(x, v) +
∫ t

0
Q#(f, f)(s, x, v)ds

(2.29) is called the mild form of the Boltzmann equation. In what follows,
we will focus on (2.29).

2.3.2. Functional space

In the integral form of (2.29) for which we now look for a continuous
bounded non-negative solution, we allow f to decay exponentially in v

and x. For this reason, we consider the weight function ρ defined by

(2.30) ρ(x, v) = e(|v|2+|x×v|2).

The function space in which we will seek the solution is defined as

(2.31) M =
{
f ∈ C0([0,+∞[× R3

x × R3
v),

‖f‖ := Sup
t,x,v

[ρ(x, v)|f(t, x, v)|] < +∞
}
.

We can now state our main result.

Theorem 2.4. — Define the operator Γ on M by

(2.32) Γf# = f0(x, v) +
∫ t

0
Q#(f, f)(τ, x, v)dτ

ANNALES DE L’INSTITUT FOURIER
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and let Mr = {f ∈ M, ‖f#‖ 6 r}, under the assumptions (2.10)–(2.11)
on the collision kernel and (2.12) on the cosmological expansion factor,
there exists a constant r0 such that if ‖f0‖ is sufficiently small, the integral
equation Γf# = f# has a unique solution f# ∈Mr0 .

Before giving the proof of our main result, we are going to collect some
fundamental estimates.

3. Preliminaries results

Lemma 3.1. — The relative momentum enjoys the following estimates:

(3.1) g 6 2
√
p0q0, and

R4|p× q|2 +R2|p− q|2

p0q0 6 g2 6 R2|p− q|2.

Proof. — It’s obvious to prove the relation s = g2 +4. As a consequence,
s > 4. On the another hand, for s, we have:

s = −pαpα − qαqα − 2pαqα = 2 + 2p0q0 − 2gijpiqj = 2p0q0 + 2− 2R2p.q.

Since 1−R2p.q 6
√

1 +R2|p|2 +R2|q|2 +R4|p|2|q|2 = p0q0, it follows that
s 6 4p0q0 and then g =

√
s− 4 6 2

√
p0q0.

For proving the first part of the second inequality, we use the elementary
estimate 1 +R2p.q 6 p0q0. We then have

g2 = −2 + 2p0q0 − 2R2p.q

= 2(p0q0)2 − (1 +R2p.q)2

p0q0 + 1 +R2p.q

= 2(1 +R2|p|2)(1 +R2|q|2)− 1−R4(p.q)2 − 2R2p.q

p0q0 + 1 +R2p.q

= 2R
2|p|2 +R2|q|2 −R4(|p|2|q|2 − (p.q)2)− 2R2p.q

p0q0 + 1 +R2p.q

= 2R
4|p× q|2 +R2|p− q|2

p0q0 + 1 +R2p.q

> 2R
4|p× q|2 +R2|p− q|2

2p0q0 .

TOME 67 (2017), FASCICULE 3
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About the last inequality, let θ0 be the angle between p − q and p + q.
We have (p0)2 − (q0)2 = R2|p− q||p+ q|cosθ0. On the other hand

g2 = −(p0 − q0)2 + (p0)2 + (q0)2 − 2(1 +R2p.q)

= −(p0 − q0)2 +R2(|p|2 + |q|2 − 2p.q)

= R2|p− q|2 −R4
[

(p− q)(p+ q)cosθ0

p0 + q0

]2

= R2|p− q|2
[
1− R2|p+ q|2cos2θ0

(p0 + q0)2

]
6 R2|p− q|2. �

Lemma 3.2. — The function ã(p, q, ω) enjoys the estimates

(3.2) 2p0q0|ω.(p̂− q̂)|
e

6 |ã(p, q, ω)| 6 e|p− q|√
e2 −R2|p+ q|2

= e|p− q|√
s

.

Proof. — The lower bound is trivial since e2 −R2(ω.(p+ q))2 6 e2. The
scattering angle θ such that

(3.3) cos θ = (pα − qα)(p′α − q′α)
g2

is well defined under the energy-momentum conservation principle; see [6,
Lemma 3.15.3]. Let’s compute the numerator N of cos θ.

(pα − qα)(p′α − q′α) = −(p0 − q0)(p′0 − q′0) +R2(p− q)(p′ − q′)

= −(p0 − q0)(p′0 − q′0) +R2(p− q)(p− q − 2ãω)

The term p′0 − q′0 is given by

p′0 − q′0 = (p′0)2 − (q′0)2

e
= R2(|p′|2 − |q′|2)

e

= R2(|p|2 − |q|2 − 2ãω(p+ q))
e

= (p0)2 − (q0)2 − 2R2ãω.(p+ q)
e

(p0 − q0)(p′0 − q′0) = (p0 − q0)[(p0)2 − (q0)2 − 2R2ãω.(p+ q)]
e

= (p0 + q0)(p0 − q0)2 − 2R2ã(p0 − q0)ω.(p+ q)
e

.

The numerator of cos θ becomes

ANNALES DE L’INSTITUT FOURIER
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N = −(p0 − q0)2 + 2R2ã(p0 − q0)ω.(p+ q)
e

+R2|p− q|2 − 2R2ãω.(p− q)

= g2 − 2R2ãω

e
[(p0 + q0)(p− q)− (p0 − q0)(p+ q)]

= g2 − 2R2ãω

e
[2q0p− 2p0q]

= g2 − 4p0q0R2ãω.(p̂− q̂)
e

= g2 − 2ãR2 2p0q0eω.(p̂− q̂)
e2 −R2(ω.(p+ q))2 ×

e2 −R2(ω.(p+ q))2

e2

= g2 − 2R2ã2 e
2 −R2(ω.(p+ q))2

e2 .

From the relation cos θ = 1− 2 sin2 θ
2 , and the relation |ω.(p+ q)| 6 |p+ q|

it follows that

sin2 θ

2 = R2ã2 e
2 −R2(ω.(p+ q))2

g2e2 ⇒ |ã(p, q, ω)| 6 R−1ge√
e2 −R2|p+ q|2

6
e|p− q|√

s
. �

Corollary 3.3. — The function a(v, u, ω) and ω.(v̂ − û) enjoy the
following estimates:

|a(v, u, ω)| 6 R−2e|v − u|√
e2 −R−2|v + u|2

,(3.4)

|ω.(v̂ − û)| . Rge

v0u0 .
e|v − u|
v0u0 .(3.5)

Proof. — (3.4) is a direct consequence of (2.15), (2.18) and (3.2).
To prove (3.5), in the expression above of sin2 θ

2 , we replace ã(p, q, ω) by
its expression (2.15). We then obtain

sin2 θ

2 = R2
(

2p0q0eω.(p̂− q̂)
e2 −R2(ω.(p+ q))2

)2
e2 −R2(ω.(p+ q))2

g2e2

= 4R2(p0q0)2(ω.(p̂− q̂))2

g2(e2 −R2(ω.(p+ q))2) .(3.6)

This is the precise relationship between the parameter ω over the sphere
and scattering angle θ. We then deduce that

|ω.(p̂− q̂)| = R−1 g sin θ
2
√
e2 −R2(ω.(p+ q))2

2p0q0 .
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Returning to the variables v and u, this leads to

|ω.(v̂ − û)| =
Rg sin θ

2
√
e2 −R−2(ω.(v + u))2

2v0u0 6
Rge

v0u0 6
e|v − u|
v0u0 . �

Lemma 3.4. — Given a positive constant B, for fixed v and u, there
exists t0 ∈ R+ such that in [t0,+∞[, Ω(t) = aω.(v − u) is bounded from
above by B.

Proof. — Direct computation leads to

(3.7) aω.(v − u) = av0ω.(v̂ − û) + a(v0 − u0)ω.û.

From (3.4)–(3.5), the first term in the right hand side of (3.7) is controlled
as follows

|av0ω.(v̂ − û)| 6 R−2e2|v − u|2

2
√
e2 −R−2|v + u|2

= R−2e2|v − u|2

2
√
s

.

Let’s recall that e =
√

1 + |v|2
R2 +

√
1 + |u|2

R2 and lim
t→+∞

R(t) = +∞. So, e2

goes to 4 as t goes to +∞. Since
√
s > 2, av0ω.(v̂ − û) tends to zero as t

goes to +∞.
About the second term in the right hand side of (3.7), let’s observe that

|a(v0 − u0)ω.û| 6 |a(v0 − u0)||u|. The relation (3.4) together with the
equality v0 − u0 = R−2(|v|2 − |u|2) and the fact that limt→+∞R(t) = +∞
allow us to claim that a(v0 − u0)ω.û goes to zero as t goes to +∞.

Thus, for a given positive constant B, there exists t0 ∈ R+ such that
beyond t0, one has Ω(t) = aω.(v − u) 6 B. �

With the parametrization (2.17) we can prove the following inequality
for ω ∈ S2

+ where S2
+ = {ω ∈ S2, aω.(v − u) 6 B} is a restriction of S2.

Lemma 3.5. — Let v and u be given. Suppose that v′ and u′ are para-
metrized as indicated in (2.17), (2.18) with an unit vector ω ∈ S2

+. Then,
we have the following estimate.

(3.8) |v|2 + |u|2 − |v′|2 − |u′|2 6 B.

Proof. — Straightforward computation leads to

|v|2 + |u|2 − |v′|2 − |u′|2 = −2a2 + 2aω.(v − u) 6 2aω.(v − u) 6 B. �
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Remark 3.6. — The restriction of the type S2
+ on the set S2 was pre-

viously used by Strain, R. [17] and Lee, H. [9]. Note that S2
+ depends on

v, u and t. From lemma 3.3, we can find a finite t0 such that S2
+ = S2 for

t > t0. This means that the restriction on S2 disappears for large t. In the
sequel, we consider the collision operator with the restriction S2

+.

Lemma 3.7. — Suppose that σ0(ω) satisfies the boundedness assump-
tion (2.10), then we have the following inequalities:∫

R3
vφg
−be−|u|

2
du 6 C for 0 6 b 6 1,(3.9) ∫

R3
vφg
−be−|u|

2
du 6 CRb−1 for 1 6 b < 4.(3.10)

Proof. — This lemma was proved in [9] and we just present it for the
reader convenience. Let’s recall that R satisfies assumptions (2.12).

About the inequality (3.9), we have

∫
R3
vφg
−be−|u|

2
du =

∫
R3

g1−b√s
v0u0 e−|u|

2
du 6 C

∫
R3

(v0u0)− b2 e−|u|
2
du 6 C

Let’s now prove the second inequality. We start with the case 1 6 b 6 2

∫
R3
vφg
−be−|u|

2
du =

∫
R3

g1−b√s
v0u0 e−|u|

2
du

6 C
∫
R3

1√
v0u0

Rb−1(v0u0) b−1
2

|v − u|b−1 e−|u|
2
du

6 CRb−1
∫
R3

1
(v0u0) 2−b

2

1
|v − u|b−1 e

−|u|2du

6 CRb−1
∫
R3

1
|v − u|b−1 e

−|u|2du

6 CRb−1(1 + |v|2)
1−b

2 6 CRb−1

where the last inequality is obtained by using the inequality∫
R3
|v − u|−αe−|u|

2
6 Cα(1 + |v|2)

−α
2

given in [9]
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Now, we consider the case 2 6 b < 4. We have∫
R3
vφg
−be−|u|

2
du =

∫
R3

g1−b√s
v0u0 e−|u|

2
du

6 C
∫
R3

1√
v0u0

Rb−1(v0u0) b−1
2

|v − u|b−1 e−|u|
2
du

6 CRb−1
∫
R3

(v0u0) b−2
2

|v − u|b−1 e
−|u|2du

6 CRb−1
∫
R3

(1 + |v|2) b−2
4 (1 + |u|2) b−2

4

|v − u|b−1 e−|u|
2
du

6 CRb−1(1 + |v|2)
b−2

4 −
b−1

2

6 CRb−1(1 + |v|2)− b4 6 CRb−1. �

With this preliminaries results in hand, we look for the existence theorem
which is the main result of this paper.

4. Estimates on the collision operator

First of all, we will try to control the loss term and the gain term.
In order to control the loss term, let’s observe that

(4.1) Q#
l (f, f)(t, x, v)

= R−3(t)f#(t, x, v)
∫
S2

+

dω

∫
R3
duvφσ(g, ω)f(t,Xt(x, v), u).

We look for an element y ∈ R3
x satisfying the relation f(t,Xt(x, v), u) =

f#(t, y, u). This holds if y = x + b(t, u, v) where the function b is defined
as:

(4.2) b(t, u, v) =
∫ t

0

(
R−2(s)v√

1 +R−2(s)|v|2
− R−2(s)u√

1 +R−2(s)|u|2

)
ds.

Lemma 4.1. — Under hypotheses (2.10) and (2.11) on the collisional
cross section σ(g, ω) and the assumption (2.12) on the scalar factor R(t),
for any t > 0 and f# ∈M , there is a constant c independent on t, x, v for
which

(4.3)
∫ t

0
|Q#

l (f, f)(τ, x, v)|dτ 6 cρ(x, v)−1‖f#‖2.
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Proof. — We have∫ t

0
|Q#

l (f, f)(τ, x, v)|dτ

=
∫ t

0

∣∣∣∣∣R−3(τ)dτf#(τ, x, v)
∫
S2

+

dω

×
∫
R3
du
g
√
s

v0u0 f
#(τ, x+

∫ τ

0
R−2(s)(v̂ − û)ds, u)

∣∣∣∣
6 ρ−1(x, v)‖f#‖2

∫ t

0
R−3(τ)dτ

∫
S2

+

∫
R3

vφσ(g, ω)dudω

e
|u|2+|(x+

∫ τ
0
R−2(s) v̂ds)×u|2

6 ρ−1(x, v)‖f#‖2
∫ t

0
R−3(τ)dτ

∫
S2

+

∫
R3
vφσ(g, ω)e−|u|

2
dudω.(4.4)

Consider the term It =
∫
S2

+

∫
R3 dωduvφσ(g, ω)e−|u|2 . Using the fact that

√
s 6 2

√
v0u0 and g 6 2

√
v0u0, we have

It 6
∫
S2

+

∫
R3

g
√
s

v0u0 (1 + g−b)σ0(ω)e−|u|
2
dudω

.
∫
S2

+

∫
R3
σ0(ω)e−|u|

2
dudω +

∫
S2

+

∫
R3

g
√
s

v0u0 g
−bσ0(ω)e−|u|

2
dudω

.
∫
R3
e−|u|

2
du+

∫
R3

g
√
s

v0u0 g
−be−|u|

2
du.

It follows that

(4.5) It 6 C if 0 6 b 6 1 and It 6 C(1 +Rb−1) if 1 6 b 6 3.

Under the assumptions (2.12) stating that R−3 and Rb−4 are integrable
over [0,+∞[, we obtain the desired result. �

Lemma 4.2. — Under hypotheses (2.10) and (2.11) on the collisional
cross section σ(g, ω) and the assumption (2.12) on the scalar factor R(t),
for any t > 0 and f# ∈ M , there is a constant c independent of t, x, v for
which

(4.6)
∫ t

0
|Q#

g (f, f)(τ, x, v)|dτ 6 cρ(x, v)−1‖f#‖2.

Proof. — About the gain term, using the function b(t, u, v) defined
in (4.2), it follows that

(4.7)
{
f(t,Xt(x, v), v′) = f#(t, x+ b(t, v′, v), v′)
f(t,Xt(x, v), u′) = f#(t, x+ b(t, u′, v), u′).
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From (4.7), one has∫ t

0
|Q#

g (f, f)(τ, x, v)|dτ

=
∫ t

0

∣∣∣∣∣R−3(τ)dτ
∫
S2

+

dω(4.8)

×
∫
R3
du
g
√
s

v0u0 f(τ,Xτ (x, v), v′)f(τ,Xτ (x, v), u′′)
∣∣∣∣

=
∫ t

0
dτ

∣∣∣∣ ∫
S2

+

dω

∫
R3
du
R−3(τ)g

√
s

v0u0 f#(τ, x+
∫ τ

0
R−2(s)(v̂−v̂′)ds, v′)

× f#(τ, x+
∫ τ

0
R−2(s)(v̂−û′)ds, u′)

∣∣∣∣
6‖f#‖2

∫ t

0
dτ

∫
S2

+

∫
R3

R−3(τ)vφσ(g, ω)

e
|v′|2+|(x+

∫ τ
0
R−2(s) v̂ds)×v′|2

× dωdu

e
|u′|2+|(x+

∫ τ
0
R−2(s) v̂ds)×u′|2

6‖f#‖2
∫ t

0
dτ

∫
S2

+

∫
R3

R−3(τ)vφσ(g, ω)
e|v′|2+|u′|2(4.9)

× dωdu

e
|(x+

∫ τ
0
R−2(s) v̂ds)×v′|2+|(x+

∫ τ
0
R−2(s) v̂ds)×u′|2

.

From (3.8), we have e|v′|2+|u′|2 6 ce|v|
2+|u|2 . So (4.8) leads to

(4.10)
∫ t

0
|Q#

g (f, f)(τ, x, v)|dτ

6 ce−|v|
2
‖f#‖2

∫ t

0
R−3dτ

∫
dωduvφσ(g, ω)e−|u|2

e
|(x+

∫ τ
0
R−2(s) v̂ds)×v′|2+|(x+

∫ τ
0
R−2(s) v̂ds)×u′|2

.

We now try to control the term D defined by

(4.11) D =
∣∣∣∣(x+

∫ τ

0
R−2(s) v̂ds

)
× v′

∣∣∣∣2 +
∣∣∣∣(x+

∫ τ

0
R−2(s) v̂ds

)
× u′

∣∣∣∣2.
Let’s define the following vectors and scalars.

av = x× v′; bv = v × v′; νv = bv
|bv|

; cv = av.bv,(4.12)

au = x× u′; bu = v × u′; νu = bu
|bu|

; cu = au.bu.(4.13)
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If we set χ(τ) =
∫ τ

0
R−2(s)ds√

1+R−2(s)|v|2
, we have

D = (au + χ(τ)bu)2 + (av + χ(τ)bv|)2

= (|bv|2 + |bu|2)χ(τ)2 + 2(cv + cu)χ(τ) + (|av|2 + |au|2).

So, D is a polynomial of second order in χ(τ). Let’s prove that the opposite
of its discriminant ∆ is bounded from below. We have

−∆ = (|bv|2 + |bu|2)(|av|2 + |au|2)− (cv + cu)2

= |bv|2|av|2 − (av.bv)2 + |bv|2|au|2 + |bu|2|au|2

− (au.bu)2 + |bu|2|av|2 − 2cucv
= |av × bv|2 + |au × bu|2 + |bv|2|au|2 + |bu|2|av|2 − 2cucv
= |av × bv|2 + |au × bu|2 + |bv|2[|au × νu|2 + (au.νu)2]

+ |bu|2[|av × νv|2 + (av.νv)2]− 2cucv

= |av × bv|2 + |au × bu|2 + |bv|2
(cu)2

|bu|2
+ |bv|2|av × νv|2

+ |bu|2
(cv)2

|bv|2
+ |bu|2|au × νu|2 − 2cu|

bv
bu
|cv|

bu
bv
|

= |av × bv|2 + |au × bu|2 + |bv|2|au × νu|2 + |bu|2|av × νv|2

+
(
|bv|cu
|bu|

− |bu|cv
|bv|

)2

> |av × bv|2 + |au × bu|2 + |bv|2|au × νu|2 + |bu|2|av × νv|2.

From the above inequality, we have

D = (|bu|2 + |bv|2)
[(
χ(τ) + cv + cu

|bu|2 + |bv|2

)2

+ (|bv|2 + |bu|2)(|av|2 + |au|2)− (cv + cu)2

(|bu|2 + |bv|2)2

]
>

(|bv|2 + |bu|2)(|av|2 + |au|2)− (cv + cu)2

|bv|2 + |bu|2

>
|av × bv|2 + |au × bu|2 + |bv|2|au × νu|2 + |bu|2|av × νv|2

|bv|2 + |bu|2

= |av × νv|2 + |au × νu|2.
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We try to bound from below the terms |av × νv|2 and |au × νu|2.

|bu| = |v × u′|
> |ω.v × u′|
= |ω.v × (u+ aω)|
= |ω.v × (u+ aω)| = |ω.pu|.(4.14)

Where for a given x, px is defined by px = v × x.
Let’s recall the following vector identity for three vectors u, v and w

(4.15) u× (v × w) = (u.w)v − (u.v)w

Using (4.15), we have

av × bv = (x× v′)× (v × v′)
= −(v.x× v′)v′ = v′.(v × x)v′ = (v′.px)v′.(4.16)

The same arguments as above yields to

(4.17) au × bu = (u′.px)u′

In another hand, we have

(4.18) bv = v × v′ = v × (v − aω) = apω.

This implies

|av × νv| =
|av × bv|
|bv|

= |(v
′.px)v′|
|bv|

= |v
′.px||v′|
|a||pω|

.

In another hand, we have

|v′| > |ω × v′| = |ω × (v − aω)| = |ω × v| = |pω|.

(4.19) |av × νv| >
|v′.px|
|a|

= |(v − aω).x× v|
|a|

= |ω.px|.

Concerning au × νu, using the relation au × bu = (u′.px)u′ we have

(4.20) |au × νu| >
|u′.px|
|v|

.

(4.17) and (4.20) lead to

D > |av × νv|2 + |au × νu|2 > |ω.px|2 + |u
′.px|2

|v|2
> |ω.px|2.(4.21)
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Let’s now return to the estimate of the gain term.
∫ t

0 |Q
#
g (f, f)(τ, x, v)|dτ

enjoys∫ t

0
|Q#

g (f, f)(τ, x, v)|dτ

6 ce−|v|
2
‖f#‖2

∫ t

0
R−3dτ

∫
S2

+×R3
dωduvφσ(g, ω)e−|u|

2
e−|ω.px|

2

6 ce−|v|
2
‖f#‖2

∫ t

0
R−3dτ

∫
R3
du(4.22)

× g
√
s

v0u0 (1 + g−b)e−|u|
2
∫
S2

+

σ0(ω)e−|ω.px|
2
dω.

If |px| = |x× v| > 1, under assumption (2.11), the integral with respect
to ω is controlled as follows

(4.23)
∫
S2

+

σ0(ω)e−|ω.px|
2
dω 6 e−|px|

2
= e−|v×x|

2
.

If |px| = |x× v| < 1, we have

(4.24)
∫
S2

+

σ0(ω)e−|ω.px|
2
dω 6 c

∫
S2

+

dω 6 ce−|v×x|
2
.

(4.23) and (2.24) yield to

(4.25)
∫ t

0
|Q#

g (f, f)(τ, x, v)|dτ

6 cρ(x, v)−1‖f#‖
∫
R3

g
√
s

v0u0 (1 + g−b)e−|u|
2
du.

The last term is controlled following the same arguments as for the loss
term. �

We can now give the proof of our main result.
Proof. — If ‖f0‖ 6 r/2 and f ∈Mr, then

|Γf#| 6 ρ(x, v)−1‖f0‖+ cρ(x, v)−1‖f#‖2 6 ρ(x, v)−1[ r2 + cr2].(4.26)

Thus, if r2 + cr2 6 r, i.e r 6 1
2c , Γ maps Mr into itself.

On the other hand, using the bilinearity of Q, we prove that Γ is a
contraction. In fact, if ‖f0‖ 6 r/2 and f ∈Mr, then

(4.27) |Γf#−Γg#| 6 cρ(x, v)−1(‖f‖+‖g‖)‖f−g‖ 6 2crρ(x, v)−1‖f−g‖.

The desired result is obtained if r 6 1
2c . �
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Conclusion

We have studied the inhomogeneous relativistic Boltzmann equation in
RW space-time, previous studies were carried out for the spatially homoge-
neous case (see [9, 11, 14]). We prove the global existence of mild solutions
in a suitable weighted space.
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