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FIXED-POINT SPECTRUM FOR GROUP ACTIONS BY
AFFINE ISOMETRIES ON Lp-SPACES

by Omer LAVY & Baptiste OLIVIER (*)

Abstract. — The fixed-point spectrum of a locally compact second countable
group G on `p is defined to be the set of p > 1 such that every action by affine
isometries of G on `p admits a fixed-point. We show that this set is either empty,
or is equal to a set of one of the following forms: [1, pc[, [1, pc[\{2} for some 1 6
pc 6∞, or [1, pc], [1, pc]\{2} for some 1 6 pc < ∞. This result is closely related to
a conjecture of C. Drutu which asserts that the fixed-point spectrum is connected
for isometric actions on Lp(0, 1).

More generally, we study the topological properties of the fixed-point spectrum
on Lp(X,µ) for general measure spaces (X,µ), and show partial results toward
the conjecture for actions on Lp(0, 1). In particular, we prove that the spectrum
associated with actions with linear part π is either empty, or an interval of the form
[1, pc] (pc > 1) or [1,∞[, whenever π is an orthogonal representation associated to
a measure-preserving ergodic action on a finite measure space (X,µ).

Résumé. — Le spectre des points fixes d’un groupe localement compact à base
dénombrable G est défini comme l’ensemble des p > 1 tels que chaque action par
isométries affines de G sur `p admet un point fixe. Nous montrons que cet ensemble
est soit vide, soit peut s’écrire sous une des formes suivantes: [1, pc[, [1, pc[\{2}
pour un certain 1 6 pc 6∞, ou [1, pc], [1, pc]\{2} pour un certain 1 6 pc < ∞. Ce
résultat est en lien étroit avec la conjecture de C. Drutu affirmant que le spectre
des points fixes est un ensemble connexe pour les actions isométriques sur Lp(0, 1).

Plus généralement, nous étudions les propriétés topologiques du spectre des
points fixes sur Lp(X,µ) pour des espaces mesurés arbitraires (X,µ), et nous mon-
trons des résultats partiels dans le sens de la conjecture pour les actions sur Lp(0, 1).
En particulier, nous prouvons que le spectre associé aux actions dont la partie li-
néaire est π est soit vide, soit un intervalle de la forme [1, pc] (pc > 1) ou [1,∞[, dès
que π est une représentation orthogonale associée à une action ergodique préservant
la mesure sur un espace mesuré (X,µ) de mesure finie.

Keywords: Groups with property (T ), orthogonal representations on Lp-spaces.
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1. Introduction

Group actions on Banach spaces is a large topic related to many areas
of mathematics: group cohomology, Kazhdan’s property (T ), and fixed-
point properties. In [1], Bader, Furman, Gelander and Monod studied group
actions by isometries on Banach spaces. The authors of [1] provide several
results concerning property (FLp(0,1)), the fixed-point property for group
actions by affine isometries on the space Lp([0, 1], λ) (abbreviated Lp(0, 1)),
where p > 1 and λ denotes the Lebesgue measure. In particular, they
show that a locally compact second countable group with the fixed-point
property (FLp(0,1)) has the Kazhdan’s property (T ) when p > 1, and that
these properties are equivalent when 1 < p 6 2 (see [1, Theorem A and
Theorem 1.3]). Later the main result of [2] was that these properties are
equivalent when 1 6 p 6 2.

Some groups have property (FLp(X,µ)) for all p > 1 and all standard
measure space (X,µ): a more general result states that higher rank groups
have property (FLp(M)) for all p > 1 and all von Neumann algebra M
(see [1, Theorem B], [21, Theorem 1.6], and [14] for a stronger result).
See also [16] and [17] where analogous results are established for universal
lattices SLn(Z[x1, . . . , xk]) (n > 4).
On the other hand, there exist Kazhdan groups which do not have prop-

erty (FLp(0,1)) for some p > 2. For instance, hyperbolic groups (and among
them co-compact lattices in Sp(n, 1) have property (T )) admit a metrically
proper action by affine isometries on `p, as well as on Lp(0, 1), for p large
enough (see [19] and [24]).
The main motivation of this article is the following conjecture of C.Drutu:

for every topological group G, there exists pc > 1 (pc can be also infinite),
such that G has property (FLp(0,1)) for 1 6 p < pc, and G does not have
property (FLp(0,1)) for p > pc. further more, if pc > 1, then pc > 2 (see
Question 1.8 in the introduction of [9]). It seems that this question has its
root in an older question raised by M. Gromov (see [12, D.6 p. 158]). We
introduce the following set and we use a similar terminology as in [20].

Definition 1.1. — Let (X,µ) be a standard Borel measure space, and
let G be a topological group. The set

FL∞(X,µ)(G) = {p > 1 |G has property (FLp(X,µ))}

is called the fixed-point spectrum of G (for affine isometric actions) on
Lp(X,µ)-spaces.

We use the notation FL∞(X,µ)(G) since it makes sense in a more general
context, that is for actions on non-commutative Lp-spaces; in that case
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L∞(X,µ) is replaced by a general von Neumann algebraM, and the fixed-
point spectrum is denoted by FM(G).
The conjecture of C. Drutu can be rephrased as follows: the set

FL∞(0,1)(G) is connected for all group G. Our first main result is an answer
to the same question, when replacing ([0, 1], λ) by a discrete measure space.
We denote by `∞ the space of all bounded infinite sequences of complex
numbers, and `p the space of p-summable sequences in `∞, equipped with
the p norm.

Theorem 1.2. — Let G be a locally compact second countable group.
Then one of the following equalities holds:

• F`∞(G) = ∅;
• F`∞(G) = [1, pc[ for some 1 < pc 6∞;
• F`∞(G) = [1, pc] for some 1 6 pc <∞;
• F`∞(G) = [1, pc[\{2} and 2 < pc 6∞;
• F`∞(G) = [1, pc]\{2} and 2 < pc <∞.

Hence the spectrum F`∞(G) can be the empty set, an interval, or the
union of two disjoint intervals: we will show that these three situations can
occur, depending on the group G considered.

In the special case of countable groups, a similar result as Theorem 1.2
was also proved independently of our work in [11], for the case of discrete
countable groups and real `p-spaces. Although some ideas in our proof are
similar to the ones in [11] (see Section 4.1 for further precisions), our overall
approach is different: Theorem 1.2 is obtained by studying the topological
properties of the fixed-point spectrum, while the approach in [11] proves
relationships with expander graphs theory. As shown by our Theorem 1.3
and results from Section 5 discussed below, the approach of the current
paper permits to go beyond `p-spaces, and generalizes to other Lp-spaces.

Let us now discuss the fixed-point spectrum of actions on general
Lp(X,µ)-spaces. We refer to Section 2 for basic facts and definitions related
to isometric group representations on Lp-spaces. Let 1 6 p < ∞, p 6= 2.
Let πp : G→ O(Lp(X,µ)) be an orthogonal representation. There is a nat-
ural family (πq)q>1 of orthogonal representations πq : G → O(Lq(X,µ))
associated to πp, namely the conjugate representations of πp by the Mazur
maps Mp,q. Referring to a theorem by Banach and Lamperti recalled in
Section 2, we will call (BL) representations the representations of the form
πq, 1 6 q < ∞. In the sequel, we will distinguish (BL) orthogonal repre-
sentations from other possible classes of orthogonal representations in the
case q = 2. Then we can define the fixed-point spectrum of affine isometric
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4 Omer LAVY & Baptiste OLIVIER

actions with linear parts (πq)q>1 as

FL∞(X,µ)(G, (πq)q>1) = {q > 1 |H1(G, πq) = {0}}

where H1(G, πq) is the first cohomology group of G with coefficients in
πq (see Section 2.3 for a definition). For simplicity in notations, we will
denote FL∞(X,µ)(G, (πq)q>1) by FL∞(X,µ)(G, πp) for p 6= 2 (but this set
does not depend on p). In the sequel, we will say that πp is measure-
preserving (resp. ergodic) if the associated action on (X,µ) is measure-
preserving (resp. ergodic). We say that πp is positive if πp(g)f > 0 for all
g ∈ G and all f > 0, f ∈ Lp(X,µ).
The following theorem describes the form of the spectra FL∞(X,µ)(G, π)

relative to measure-preserving ergodic actions.

Theorem 1.3. — Let G be a second countable locally compact group.
Let (X,µ) be a finite measure space, and π : G → O(Lp(X,µ)) be a (BL)
measure-preserving ergodic representation. Then we have:

• The spectrum FL∞(X,µ)(G, π) is an interval or is empty.
• If G has property (T ), the spectrum FL∞(X,µ)(G, π) is an interval
of the form [1, pc] or [1,∞[ for some pc > 2.

Theorem 1.3 is in contrast with the following well-known fact (detailed
in Section 5.2): if G does not have property (T ), there exists some (BL)
measure-preserving ergodic representation ρ : G → O(Lp(X,µ)) such that
FL∞(X,µ)(G, ρ) is empty.

Theorems 1.2 and 1.3 are in the spirit of C. Drutu’s conjecture. Other
partial results in that direction are proved in the paper. We study topolog-
ical properties of the fixed-point spectrum. We discuss general arguments
for closedness (resp. openness) of fixed-point spectra in Section 3 (resp.
Section 5.1). Moreover, we use recent results from [3] about deformation
of cohomology to show the connectedness of spectra FL∞(0,1)(G, π) under
some additional assumptions on G and π.
The paper is organized as follows. In Section 2, we recall general facts

and results we will need about isometric group actions on Lp-spaces. In Sec-
tion 3, we show general results concerning the closedness of the fixed-point
spectrum. Section 4 is devoted to the proof of Theorem 1.2. In Section 5, we
prove various partial results toward a proof of the conjecture of C. Drutu
concerning the case of Lp(0, 1).
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2. Isometric group actions on Lp(X,µ)-spaces

In this section, we recall some general definitions and properties of linear
and affine isometric actions on Lp(X,µ)-spaces. Let G be a topological
group, and (X,µ) be a standard Borel measure space.

2.1. Orthogonal representations on Lp(X,µ)

Let 1 6 p <∞, p 6= 2, and denote by O(Lp(X,µ)) the group of bijective
linear isometries of the space Lp(X,µ). By a theorem of Banach and Lam-
perti, elements inO(Lp(X,µ)) are the linear maps U : Lp(X,µ)→ Lp(X,µ)
described as follows:

(∗) Uf(x) = h(x)
(

dϕ ∗ µ
dµ (x)

)1/p
f(ϕ(x))

where h : X → C is a measurable function of modulus one, and ϕ : X → X

is a µ-class-preserving bijective transformation. In the particular case where
(X,µ) is a discrete measure space, ϕ is a permutation of the countable
set X.

An orthogonal representation π of the group G on Lp(X,µ) is a group
homomorphism π : G → O(Lp(X,µ)) such that the maps g 7→ π(g)f
are continuous on G for all f ∈ Lp(X,µ). For 1 6 p < ∞ and p 6= 2,
each element π(g), g ∈ G, is given by formula (∗), and we call π a (BL)
representation. For p = 2, the isometry group O(L2(X,µ)) contains much
more elements than (BL) representations described by formula (∗) in the
Banach–Lamperti theorem. Orthogonal representations on L2(X,µ) which
are (BL) representations will play a central role in our study.
In the current paper, the set of π(G)-invariant vectors is denoted by

Lp(X,µ)π(G). Recall that when p = 2, the orthogonal complement L′2(X,µ)
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6 Omer LAVY & Baptiste OLIVIER

to L2(X,µ)π(G) is also a π(G) invariant space. Then the space L2(X,µ)
can be written as a direct sum of π(G)-invariant subspaces, L2(X,µ) =
L2(X,µ)π(G) ⊕ L′2(X,µ). The authors of [1] described a similar decompo-
sition for Lp(X,µ), p 6= 2, which we recall now.
For p > 1, and p′ = p/(p − 1), the contragradient representation π∗ :

G→ O(Lp′(X,µ)) is defined by duality as follows:

〈x, π∗(g)y〉 = 〈π(g−1)x, y〉 for all g ∈ G, x ∈ Lp(X,µ), y ∈ Lp′(X,µ).

Then we define the following π(G)-invariant decomposition of the space
Lp(X,µ):

Lp(X,µ) = Lπ(G)
p ⊕ L′p(π)

where L′p(π) = {f ∈ Lp | ∀ h ∈ Lπ
∗(G)
p′ , 〈f, h〉 = 0} is the annihilator of the

G-invariant vectors for the contragradient representation π∗ : G→ O(Lp′)
of π (more details can be found in [1, Proposition 2.6 and Section 2.c]).
Given such a decomposition, one can consider the restriction π′ : G →
O(L′p(π)). When p = 1, the analog of the previous representation is the
representation π′ : G→ O(L1/L

π(G)
1 ), obtained from π by composing with

the quotient projection. If the context is clear, we will keep the notation π
in place of π′ in the sequel.
Let π : G → O(Lp(X,µ)) be a (BL) orthogonal representation. We will

denote |π| : G → O(Lp(X,µ)) the map defined by the following formula,
extended to Lp(X,µ) by linearity:

|π|(g)f = |π(g)f | for all f ∈ Lp(X,µ), f > 0.

Notice that |π| is a (BL) representation, since π is a (BL) representation.
The representation |π| is obtained from π by simply omitting the function h
appearing in formula (∗) (or equivalently taking it to be constant 1) for each
element π(g), g ∈ G. We will say that π is positive in the case where π = |π|.
Also, we will say that π is measure-preserving if the corresponding action of
G on (X,µ) is µ-preserving, equivalently if the associated Radon–Nikodym
derivative is equal to 1 almost everywhere. By Banach’s description of the
isometries of `p, all (BL) representations on the space `p are measure-
preserving (see [5, Section 2] for details).

2.2. The Mazur map

A very useful tool to study Lp-spaces and their representations is the
Mazur map. Here we recall the definition and some well-known properties
of this map. The proofs of the basic properties of the Mazur map can be
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found in [6, Chapter 9.1]. For f ∈ Lp(X,µ), we will use notations sg(f)
and |f | for the polar decomposition components of f , so that f = sg(f)|f |
for sg(f) : X → C of modulus one, and |f | > 0.

Let 1 6 p, q <∞. The map
Mp,q : Lp(X,µ) −→ Lq(X,µ)

f = sg(f)|f | 7−→ sg(f)|f |p/q

is called the Mazur map. It induces a uniformly continuous homeomorphism
between the unit spheres of Lp(X,µ) and Lq(X,µ). More precisely, the
Mazur map Mp,q is min(1, pq )-Hölder on the unit sphere, i.e. for all 1 6
p, q <∞:

(2.1) ‖Mp,q(x)−Mp,q(y)‖q 6 Cp,q‖x− y‖θp,q
p

for all x, y ∈ S(Lp(X,µ)), where the constant Cp,q depends only on p, q, and
θp,q = min(1, pq ) (see [6, Theorem 9.1] and [23]). The following remark 2.2
will be helpful for our proofs, and it relies on the property stated in the
following lemma.

Lemma 2.1. — Let Q be some compact interval in [1,∞[. There exists
a choice of constants Cp,q > 0 such that the statements below hold.

(1) For q ∈ Q and p ∈ [1,∞[, (2.1) above holds with Cp,q.
(2) For p ∈ [1,∞[, the constant Cp = supq∈Q Cp,q > 0 satisfies Cp <∞.
(3) For p ∈ [1,∞[, (2.1) holds with Cp in place of Cp,q for all q ∈ Q.

Proof. — The proof is the one given in the proof of [6, Theorem 9.1], with
some additional observation. So we detail only the part which requires a
new argument. For p > q, the proof in [6] shows that Cp,q = p/q so our
statement is clear.
The authors of [6] also shows the existence of some cp,q > 0 such that

the inequality below holds

‖Mp,q(x)−Mp,q(y)‖q > cp,q × ‖x− y‖θp,q
p ,

and it follows inequality (2.1) for p < q since M−1
p,q = Mq,p and by taking

Cp,q = (cp,q)−1.
To prove our statement, it is sufficient to show that constant cp,q can be

made independent of q on compact subsets Q ⊂ [1,∞[. Following the lines
of the proof in [6], we show that we have |ap/q−θbp/q| > cp|a−θb|p/q for cp
independent of q over compact subsets, and for all a > b > 0, and |θ| = 1.
First we notice that it is sufficient to prove the existence of cp for b = 1,

and for all 1 6 a 6M , where M > 0 is some positive constant. Indeed, the
inequality for b = 0 holds with cp = 1. And for b 6= 0 we can consider a/b

TOME 71 (2021), FASCICULE 1



8 Omer LAVY & Baptiste OLIVIER

in place of a and b = 1. As a/b goes to infinity, |(a/b)p/q − θ| is equivalent
to |(a/b)− θ|p/q. Hence, there exists some constant M > 0 such that for all
0 < b 6 a with a/b > M , we have |(a/b)p/q − θ| > (1/2) × |(a/b) − θ|p/q.
Hence we can take cp = 1/2 for cases b = 0, or b = 1 and a >M .

Now we assume b = 1, 1 6 a 6M for someM > 0, and we fix a compact
subset Q ⊂ [1,∞[. As noticed in [6], the constant c1p = 1 solves the case
|a − θ| 6 1. For the case |a − θ| > 1, we find a constant c2p > 0 as follows.
We notice that the set

K =
{

(q, a, θ) ∈ Q× [1,M ]× S1 ∣∣ |a− θ| > 1
}

is compact. Hence, the continuous map

K −→ R+∗

(q, a, θ) 7−→ |a
p/q − θ|
|a− θ|p/q

attains a minimum c2p > 0 on the compact set K. To finish the proof, we
set cp = min(1/2, c1p, c2p). �

Remark 2.2. — Assume that we have a sequence (pn)n such that pn ∈
[1,∞[ for all n, and limn pn = p for some p > 1. Then by Lemma 2.1 we
can find a constant Cp > 0, which does not depend on n, and such that:

‖Mp,pn
(x)−Mp,pn

(y)‖pn
6 Cp‖x− y‖

θp,pn
p

for all x, y ∈ S(Lp(X,µ). In particular, if we have

lim
n
‖Mpn,p(xn)−Mpn,p(yn)‖p = 0

for some xn, yn ∈ S(Lpn(X,µ)), then the equality limn ‖xn − yn‖pn = 0
holds as well.

Let x, y be any positive numbers and assume 1 6 p 6 q. Then we have
the following inequality

|xp/q − yp/q| 6 |x− y|p/q.

The following inequality is obtained from the inequality above:

(2.2) ‖Mp,q(x)−Mp,q(y)‖q 6 ‖x− y‖p/qp

for all x, y > 0 s.t. x− y ∈ Lp(X,µ).

See also [22, Proposition 1.1.4].
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Now let p > 1 and let πp : G → O(Lp(X,µ)) be a (BL) orthogonal
representation of G on Lp(X,µ). Since πp is described by equation (∗), the
formula

πq(g)x = (Mp,q ◦ πp(g) ◦Mq,p)x for all g ∈ G, x ∈ Lq(X,µ)

define an orthogonal representation πq : G→ O(Lq(X,µ)). Note that when
the associated action on (X,µ) is measure preserving the representations
πp and πq coincide on the intersection, Lp(X,µ) ∩ Lq(X,µ)
A sequence (fn)n in a Banach space F is said to be a sequence of almost

invariant vectors for an orthogonal representation π : G→ O(F ) if ‖fn‖F =
1 and

lim
n
‖π(g)fn − fn‖F = 0 uniformly on compact subsets of G.

The following lemma was first stated in the proof of Theorem A in [1]
(see [1, Remark 4.3]). For the convenience of the reader, we recall the proof
of this lemma, given in Proposition 2.5.1 of [22] in a more general setting.

Lemma 2.3. — For a family (πp)16p<∞ of (BL) orthogonal representa-
tions, and for all 1 6 p < ∞, 1 6 q < ∞, a group G admits a sequence of
almost invariant vectors for the representation (πp)′ if and only if it admits
a sequence of almost invariant vectors for (πq)′

Proof. — Let fn ∈ S(L′p(πp)) be a sequence of almost invariant vectors.
Note that for that the following inequalities hold (see [21, Proposition 3.5]):

d(fn, Lπ
p(G)

p ) > 1/2 for all n.

Notice that Lπ
q(G)
q = Mp,q(Lπ

p(G)
p ). Define hn = Mp,qfn. By the uniform

continuity of the Mazur map then, hn is a sequence of unit vectors in Lq
with

d(hn, Lq(πq)) > δ > 0.
Furthermore we have for every compact set Q ⊂ G,

lim
n

sup
g∈Q
‖hn − πq(g)hn‖q = 0.

Consider first the case q > 1. Let vn denote the projections of hn on the
complement subspace L′q(πq). Since ‖vn‖q > δ, the uniform convergence on
compact subsets holds when replacing hn by vn/‖vn‖p. Hence (vn/‖vn‖p)n
is a sequence of almost invariant vectors for πq with values in (πq)′.
For q = 1, we consider vn the projection of hn on the quotient space

F = L1/L
π1(G)
1 . Then ‖vn‖F > δ, and the sequence vn/‖vn‖F is a sequence

of almost invariant vectors for the representation (π1)′ : G→ O(F ). �

TOME 71 (2021), FASCICULE 1



10 Omer LAVY & Baptiste OLIVIER

2.3. Affine isometric actions on Lp(X,µ)

Denote by Isom(Lp(X,µ)) the group of affine bijective isometries of
Lp(X,µ). An affine isometric action of G on Lp(X,µ) is a group homo-
morphism α : G → Isom(Lp(X,µ)) such that the maps g 7→ α(g)f are
continuous for all f ∈ Lp(X,µ). Then we have

α(g)f = π(g)f + b(g) for all g ∈ G, f ∈ Lp(X,µ)

where π : G → O(Lp(X,µ)) is an orthogonal representation, and b : G →
Lp(X,µ) is a 1-cocycle associated to π, that is a continuous map satisfying
the following relations:

b(gh) = b(g) + π(g)b(h) for all g, h ∈ G.

Given an orthogonal representation π and a cocycle associated to π, we will
sometimes use the notation α = (π, b) to denote the affine representation
whose linear part is π, and translation part is b. We denote by H1(G, π)
the first cohomology group with coefficients in π, that is the quotient of
the space of 1-cocycles associated to π, by the subspace of 1-coboundaries
(a coboundary is a cocycle of the form b(g) = f − π(g)f for some f ∈
Lp(X,µ)).

We recall that an affine isometric action of G on Lp(X,µ) has a fixed-
point if and only if the associated cocycle b : G → Lp(X,µ) is a bounded
map (see [1, Lemma 2.14] for p > 1, and [2] for p = 1). The action is said
to be proper if limg→∞ ‖b(g)‖p =∞. A topological group G is said to have
the fixed-point property (FLp(X,µ)) if every action by affine isometries of G
on Lp(X,µ) admits a fixed-point, that is H1(G, π) = {0} for all orthogonal
representation π : G→ O(Lp(X,µ)).
A locally compact second countable group G is said to have property

(TLp(X,µ)) if for any orthogonal representation π : G → O(Lp(X,µ)), the
restriction of π on L′p(π) (when p > 1) or L1/L

π(G)
1 (when p = 1), has no

sequence of almost invariant vectors. The following facts were proved by
Guichardet for the case of Hilbert spaces. Later they were proved in the
general setting of Lp spaces in [1] (see Section 3.a for proofs):

Proposition 2.4. — If an orthogonal representation π : G→ O(Lp(X,
µ)) of a second countable groupG has a sequence of almost invariant vectors
in L′p(π), then H1(G, π) 6= {0}.

An important consequence of the previous proposition is the following
corollary, whose result holds in a much more general context (see [1, The-
orem 1.3]).
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Corollary 2.5. — Property (FLp(X,µ)) implies property (TLp(X,µ)).

In the case where the group G is second countable and generated by a
compact subset Q ⊂ G, an orthogonal representation π : G→ O(Lp(X,µ))
without any sequence of almost invariant vectors in Lp(X,µ)′ satisfies the
condition: there exists ε > 0 such that for all x ∈ Lp(X,µ)′ (for p > 1), or
all x ∈ L1(X,µ)/Lπ(G)

1 (X,µ) (for p = 1), the following inequality holds:

ε‖x‖p 6 ‖x− π(g)x‖p for some g ∈ Q.

When p = 2 and the previous condition holds for all orthogonal represen-
tations π : G→ O(L2(X,µ)), the pair (Q, ε) is called a Kazhdan pair.

3. About the closedness of the fixed-point spectrum

Our goal is to show that the fixed-point spectrum FL∞(X,µ) is an interval
containing 1. To achieve this, we study the topological properties of the set
FL∞(X,µ) in [1,∞[. More precisely our goal is to show it is connected.
In this section, we show closedness results for FL∞(X,µ)(G, π). To prove
these results, we use a limit-version of a well-known fact about almost
invariant vectors for (BL) representations, which is interesting in its own
right (Proposition 3.2 below).
We begin with some general facts concerning isometric actions on Lp-

spaces.

Lemma 3.1. — Let 1 6 p < ∞, 1 6 pn < ∞, pn 6= 1, be such that
limn pn = p. Let G be a topological group. Let (X,µ) be a standard Borel
measure space. Let πp : G → O(Lp(X,µ)) be a (BL) orthogonal repre-
sentation. Then there exists C ′ > 0 and N such that for all n > N , we
have

d(Mpn,pf, Lp(X,µ)π
p(G)) > C ′ for all f ∈ S(Lpn(X,µ)′(πpn)).

Proof. — For f ∈ S(L′pn
(πpn)), the following inequalities hold (see [21,

Proposition 3.5]):

d(f, Lπ
pn(G)

pn
) > 1/2 for all n.

Notice that Lπ
p(G)
p = Mpn,p(L

πpn (G)
pn ). Assume by contradiction, that the

result does not hold. Then there exist fn ∈ S(L′pn
(πpn)) and an ∈ Lπ

pn (G)
pn

such that

(3.1) lim
n
‖Mpn,pfn −Mpn,pan‖p = 0.
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12 Omer LAVY & Baptiste OLIVIER

In particular, since ‖an‖pn
= ‖Mpn,pan‖p, we have limn ‖an‖pn

= 1. Let
an = an

‖an‖pn
. It follows that

lim
n
‖Mpn,pfn −Mpn,pan‖p

6 lim
n

(‖Mpn,pfn −Mpn,pan‖p + ‖Mpn,pan −Mpn,pan‖p).

As ‖an‖pn → 1, we conclude from (3.1) that:

lim
n
‖Mpn,pfn −Mpn,pan‖p = 0.

Applying Remark 2.2 we obtain

lim
n
‖fn − an‖pn

= 0.

As fn ∈ S(L′pn
(πpn)), and an ∈ Lπ

pn(G)

pn
this contradicts the fact that

d(fn, Lπ
pn(G)

pn
) > 1/2 for all n. �

The following proposition is a limit version of Proposition 2.3.

Proposition 3.2. — Let 1 6 p < ∞, 1 6 pn < ∞, pn 6= 1, be such
that limn pn = p. Let G be a second countable topological group. Let
(X,µ) be a standard measure space. Let πp : G→ O(Lp(X,µ)) be a (BL)
orthogonal representation. Assume that there exists a sequence (fn)n ∈
S(Lpn(X,µ)′(πpn)) such that

lim
n

sup
g∈Q
‖fn − πpn(g)fn‖pn

= 0

for all compact subsets Q ⊂ G. Then there exists a sequence of almost
invariant vectors for πp in Lp(X,µ)′(πp).

Proof. — Let Q ⊂ G be a compact set. Define hn = Mpn,pfn ∈
S(Lp(X,µ)) for n ∈ N. As in the previous lemma, we can choose C for
the estimates of the Mazur maps Mpn,p, independent of n. Then we have

lim
n

sup
g∈Q
‖hn − πp(g)hn‖p = 0.(∗)

Now by Lemma 3.1, there exists C ′ > 0 such that d(hn, Lπ
p(G)
p ) > C ′ holds

for all n large enough.
Consider first the case where p > 1. Let vn denote the projections of hn

on the complement subspace L′p(πp). Since ‖vn‖p > C ′ for n large enough,
the uniform convergence (∗) on compact subsets holds when replacing hn
by vn/‖vn‖p. Hence (vn/‖vn‖p)n is a sequence of almost invariant vectors
for πp with values in L′p(πp).

ANNALES DE L’INSTITUT FOURIER



FIXED-POINT SPECTRUM FOR ACTIONS ON Lp-SPACES 13

For p = 1, we consider vn the projection of hn on the quotient space F =
L1/L

πp(G)
1 . Then ‖vn‖F > C ′, and the sequence vn/‖vn‖F is a sequence of

almost invariant vectors for the representation (π1)′ : G→ O(F ). �

Now we show a closedness property for some sets FL∞(X,µ)(G, π). Our
proof requires two important assumptions: the monoticity of (Lp(X,µ))p
for the inclusion, and the representation π to be measure-preserving.

Proposition 3.3. — Let 1 6 p < ∞, 1 6 pn < ∞, pn 6= 1, be such
that limn pn = p. Assume that Lp(X,µ) ⊂ Lpn(X,µ) for all n, and that
limn ‖f‖pn

= ‖f‖p for all f ∈ Lp(X,µ). Let G be a second countable
topological group. Let πp : G→ O(Lp(X,µ)) be a (BL) measure-preserving
orthogonal representation. Assume also that

H1(G, πpn) = {0}.

Then we have
H1(G, πp) = {0}.

Proof. — Let b : G→ Lp(X,µ) be a cocycle associated to πp. Let n ∈ N.
Since by assumption Lp(X,µ) ⊂ Lpn

(X,µ) and πp is measure-preserving,
b defines also a cocycle for the representation πpn . Then there exists fn ∈
Lpn

(X,µ) such that

b(g) = fn − πpn(g)fn for all g ∈ G.

Notice that we can assume that fn ∈ L′pn
(πpn) for all n, without loss of

generality.

Claim 3.4. — The sequence (‖fn‖pn
)n is bounded.

Let us prove this claim now. We assume the contrary and will show that
(πp)′ has a sequence of almost invariant vectors, which is not possible by
assumption. Assume then that there exist a subsequence of (fn)n, (and
use the same notation for the subsequence), with limn (‖fn‖pn)n =∞ Let
Q ⊂ G be a compact subset. Since limn ‖b(g)‖pn

= ‖b(g)‖p for all g ∈ G,
for n large enough we have

sup
q∈Q

∥∥∥∥ fn
‖fn‖pn

− πpn(g) fn
‖fn‖pn

∥∥∥∥
pn

=
supg∈Q ‖b(g)‖pn

‖fn‖pn

6 2
supg∈Q ‖b(g)‖p
‖fn‖pn

and the right-hand side of the inequality tends to 0 as n tends to ∞. Thus
we can apply Proposition 3.2 on the sequence fn

‖fn‖pn
and deduce that there

exists a sequence of almost invariant vectors for (πp)′. Hence by Lemma 2.3
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14 Omer LAVY & Baptiste OLIVIER

the representations (πpn)′ admits a sequence of almost invariant vectors
for all n as well. This contradicts the vanishing of H1(G, πpn) (by the Lp
version of Guichardet’s Theorem, stated in Proposition 2.4), and Claim 3.4
is proved.
Then there exists C ′′ > 0 such that ‖fn‖pn 6 C ′′ for all n ∈ N. Let

g ∈ G. We have
‖b(g)‖p = lim

n
‖b(g)‖pn 6 2C ′′.

Hence the cocycle b : G→ Lp(X,µ) is bounded in Lp(X,µ). �

4. The fixed-point spectrum for actions on `p

This section handles the case of actions of G on `p-spaces over a discrete
space X. It is divided in two parts. In the first part, we prove Theorem 1.2.
Some elements in the proofs of our Proposition 4.1 and Lemma 4.2 can be
found in [11, Section 3.1], and in particular the crucial use of estimates (2.2).
However, the approach of the current paper requires different statements
from those in [11], and we provide relevant results with complete proofs
for convenience of the reader. In the second part of the section, we discuss
property (F`p

) and exhibit examples of groups G illustrating each form of
possible fixed-point spectra F`∞(G) listed in the statement of Theorem 1.2.

4.1. Proof of Theorem 1.2

Theorem 1.2 is a direct consequence of Proposition 4.1, which we state
and prove after a few useful remarks.

Let π : G → O(`p) be a (BL) orthogonal representation. Write `p =
`p(X) and decompose X = Xf ∪ Xi where Xf is the union of the finite
orbits of the G-action, and Xi the union of the infinite orbits. In the sequel,
we will make use of the decomposition of π as π = πf ⊕ πi with respect to
the decomposition `p(X) = `p(Xf )⊕ `p(Xi).
We make the following observation:

H1(G, π) = {0} ⇐⇒ H1(G, πf ) = {0} and H1(G, πi) = {0}.

Hence F`∞(G, π) is an interval of the form [1, pc] or [1, pc[ for some pc > 1
if the two following conditions hold:

(i) F`∞(G, πf ) is an interval [1, p′c] or [1, p′c[ for some p′c > 1;
(ii) F`∞(G, πi) is an interval [1, p′′c ] or [1, p′′c [ for some p′′c > 1.
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For technical reasons, we are not able to prove that F`∞(G, π) is an
interval for all representations π (but for positive representations, we do).
Nevertheless, the following Proposition 4.1 shows a very close result to the
connectedness of all sets F`∞(G, π), and Theorem 1.2 is a straightforward
consequence of this result. Notice that when a group G is not compactly
generated, then F`∞(G) is empty: for any p > 1, such a group does not
have property (T`p

) (see [5]), nor property (F`p
) by well-known results.

Proposition 4.1. — Let G be a second countable group generated by
a compact set Q. Let π : G→ O(`p) be a (BL) orthogonal representation.
Let πf , πi be defined as in the previous discussion. Then we have:

(1) F`∞(G, πf ) = [1, p′c] or [1, p′c[;
(2) F`∞(G, πi) ∩ F`∞(G, |πi|) = [1, p′′c ] or [1, p′′c [.

Before giving the proof of Proposition 4.1, we start with a simple lemma.

Lemma 4.2. — Let 1 6 p < q. Let πp : G→ O(`p) be a (BL) orthogonal
representation. Assume that Xf = ∅, and that

H1(G, πq) = {0} and H1(G, |πp|) = {0}.

Then we also have
H1(G, πp) = {0}.

Proof. — Let b : G→ `p be a cocycle for π. As `p ⊂ `q, b is also a cocycle
for πq. By assumption, there exists x ∈ `q such that

b(g) = x− π(g)x for all g ∈ G.

For all a, b ∈ C, we have ∣∣|a| − |b|∣∣ 6 |a− b|,
and the following inequalities follow for all g ∈ G:∥∥|x| − |πp|(g)|x|

∥∥
p
6 ‖b(g)‖p.

Hence the formula c(g) = |x| − |πp|(g)|x| defines a cocycle for |πp| with
values in `p. By assumption, there exists y ∈ `p such that

|x| − |πp|(g)|x| = y − |πp|(g)y for all g ∈ G.

It follows then, that |x|−y is a |πp| invariant vector. Since `p ⊂ `q, and |πp|
coincides with |πq| on `p, this is a |πq| invariant vector as well. From the
assumption Xf = ∅, we deduce that |πq| does not have non-zero invariant
vectors. Hence |x| − y = 0, i.e. |x| = y, and then x ∈ `p. �

Remark 4.3. — Note that in `p(Xi) there are no non-zero invariant vec-
tors for both π, and |π|.
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16 Omer LAVY & Baptiste OLIVIER

Now we are able to prove Proposition 4.1.
Proof of Proposition 4.1.
(1). — We will show that for all 1 < p < q, H1(G, (πf )q) = {0} implies

H1(G, (πf )p) = {0}. If this assertion holds, the set F`∞(G, πf ) is an interval
of one the following forms: [1, p′c], [1, p′c[, ]1, p′c] or ]1, p′c] for some p′c > 1.
By the closedness property of Proposition 3.3, F`∞(G, πf ) is an interval of
the form [1, p′c] or [1, p′c[.
Let b : G→ `p(Xf ) be a cocycle associated to πf . By assumption, there

exists x ∈ `q such that

b(g) = x− πf (g)x for all g ∈ G.

Notice that we can assume that x ∈ `q(Xf )′ without loss of generality.
We decompose Xf = tj>0Xj in (finite) orbits, and write x =

⊕
j xj in

`q(Xf ) =
⊕

j `q(Xj). From the definition of the complement `′q (see Sec-
tion 2.1), it is clear that xj ∈ `q(Xj)′ for all j.
SinceH1(G, (πf )q) = {0}, πf has no sequence of almost invariant vectors

in `q(Xf )′. As recalled in Lemma 2.3, it is then also true that πf has no
sequence of almost invariant vectors in `p(Xf )′. In particular, there exists
ε > 0 such that

ε‖u‖p 6 sup
g∈Q
‖u− πf (g)u‖p for all u ∈ `′p(πf ).

Define un =
⊕

j6n xj ∈ `′q, and M = supg∈Q ‖b(g)‖p. Then we have for
all n,

ε‖un‖p 6 sup
g∈Q
‖un − πf (g)un‖p

6 sup
g∈Q
‖b(g)‖p

= M.

Hence the sequence (un)n is bounded in `p by M/ε. Hence x ∈ `p and the
proposition is proved.
(2). — Let 1 6 p < q < ∞. We assume that q ∈ F`∞(G, πi) ∩

F`∞(G, |πi|). Then we need to show that p ∈ F`∞(G, πi)∩F`∞(G, |πi|). By
Lemma 4.2, it is sufficient to show that H1(G, |((πi)p)|) = {0}.
Let b : G → `p(Xi) be a cocycle associated to |((πi)p)|. By assumption,

there exists x ∈ `q such that

b(g) = x− |πi|(g)x for all g ∈ G.

On the one hand, we have for all g ∈ G,∥∥|x| − |πi|(g)|x|
∥∥
p
6 ‖x− |πi|(g)x‖p.
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On the other hand, estimates (2.2) for the Mazur maps imply the following
inequalities for all g ∈ G:

‖Mp,q(|x|)− |πi|(g)Mp,q(|x|)‖q 6
∥∥|x| − |πi|(g)|x|

∥∥p/q
p
.

Hence the formula Mp,q(|x|) − |πi|(g)Mp,q(|x|), g ∈ G, define a cocycle
associated to |πi| with values in `q. By assumption, there exists y ∈ `q such
that

Mp,q(|x|)− |πi|(g)Mp,q(|x|) = y − |πi|(g)y for all g ∈ G.
It follows then, that Mp,q|x| − y is a |πi| invariant vector. Since Xi has
only infinite orbits for the G-action, there is no non-zero |πi|(G)-invariant
vector in `q. Hence we have |x| = Mq,py. It follows that x ∈ `p and the
proposition is proved. �

As a particular case of the previous proofs, we have the following result.

Corollary 4.4. — Let G be a second countable group, and p > 1.
Let π : G → O(`p) be a (BL) orthogonal positive representation. Then
F`∞(G, π) is empty, or is an interval of the form [1, pc[ (pc 6∞) or [1, pc]
(pc <∞).

4.2. More about property (F`p
)

Now we give examples of groups G for which the fixed-point spectrum
F`∞(G) is the union of two intervals [1, pc[\{2} (pc > 2). We recall the
following well-known relationships between properties (T ), (T`p

) and (F`p
)

(see for example [1, Theorem 1.3]):
(F`p

)⇒ (T`p
) for all p > 1,

(T )⇒ (F`p
)⇒ (T`p

) for 1 6 p 6 2.

There are naturally few continuous actions of a connected group on dis-
crete spaces. As shown in [5] where property (T`p) was studied, the class
of connected groups having property (T`p

) is restricted to the groups with
compact abelianization (see [5, Corollary 3]). We now show that the latter
groups also have property (F`p

).

Theorem 4.5. — Let G be a locally compact second countable group.
Assume that G is connected. Let p 6= 2. Then the following assertions are
equivalent:

(1) G has property (F`p
);

(2) G has property (T`p
);
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(3) the abelianised group G/[G,G] is compact.

Remark 4.6. — For p = 2, property (T ) is equivalent to property (F`2)
(also called property (FH)). Any group with property (T ) has compact
abelianised group, but it is no longer true for non-Kazhdan groups (such
as SL2(R)). For p > 1 (possibly p = 2), the following proof shows that any
(BL) representation π of a connected group G on `p (G possibly being non-
Kazhdan), whose abelianised group is compact, satisfies H1(G, π) = {0}.

Proof. — We only have to show the implication (3) ⇒ (1). Since G is
connected, the orbits of a continuous action of G on a countable infinite
discrete set X are singletons. Hence a (BL) representation on `p(X) is
a direct sum of continuous unitary characters. So we have to show that
H1(G, π) = {0} for every orthogonal representation π : G → O(`p) of the
form

π =
⊕
i∈I

χi

where every χi is a continuous character on G. Let π =
⊕

i∈I χi be such a
representation. Let H =

⋂
i∈I Ker(χi) be the kernel of the homomorphism

ϕ : G −→
∏
i∈I

S1

g −→ (χi(g))i∈I .

Denote by N = [G,G] and p : G → G/N the quotient projection. Notice
that, since N ⊂ H, π(n) = id for all n ∈ N and `π(N)

p = `p. So π factors
through G/N as π = ρ◦p. As a consequence of the Hoschild–Serre spectral
sequence, we have the following exact sequence:

H1(G/N, ρ) −→ H1(G, π) −→ H1(N, 1N )G/N .

On the one hand, we have H1(G/N, ρ) = {0} since G/N is compact. On the
other hand, `p is commutative and N = [G,G], so it follows H1(N, 1N ) =
Hom(N, `p) = {0}. As a consequence, we have H1(G, π) = {0} and this
finishes the proof. �

Remarks 4.7.
(1) The proof of Theorem 4.5 was inspired by techniques used in [8]

to obtain results concerning the cohomology (and the reduced co-
homology) associated to the regular representation. In particular,
it is shown that the reduced `p-cohomology H

1
p(Γ, λΓ) vanishes

if and only if p 6 e(Γ) for some lattices Γ ⊂ G in rank one
groups G and some critical exponent e(Γ) explicitly defined (see
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Theorem 2 and the discussion which follows its statement). Hence
the fixed-spectrum for reduced cohomology {p > 1 | H1

p(Γ, λΓ) =
{0}} is a closed interval of the form [1, e(Γ)]. By analogy, our
Corollary 4.4 asserts that the fixed-point spectrum F`∞(Γ, λΓ) =
{p > 1 |H1

p (Γ, λΓ) = {0}} is an interval of the form [1, pc[ or [1, pc].
Results providing relationships between e(Γ) and pc could possibly
help to decide if F`∞(Γ, λΓ) is open or closed.

(2) Examples which suggest that the set F`∞(G, π) is closed can be
found in [7, see Remark 4 in Section 1.6, and Remark 3 in Sec-
tion 2.4].

Question 4.8. — Does pc always belong to F`∞(G, π) when the fixed-
point spectrum is non-empty and π is a positive (BL) representation?

The following examples show that the fixed-point spectrum can have one
or two connected components when it is not empty.

Examples 4.9.
(1) For instance, the group SL2(R) does not have property (T ), but

has property (F`p
) for all p 6= 2 by the previous theorem. So we

have F`∞(SL2(R) = [1,∞[\{2}.
(2) The group SL2(Ql) (where Ql is the field of l-adic numbers) has

property (T`p
) (see [5, Exemple 9]). On the other hand, SL2(Ql) is

known to act on a tree without fixed point. Hence it does not have
property (F`p

) for any p > 1 (see [4, Section 2.3 p. 87] for instance).
So property (T`p) is stricly weaker than property (F`p). Moreover,
G = SL2(Ql) is an example of a group such that F`∞(G) is empty.

(3) Any group G with property (T ) has a spectrum F`∞(G) of the form
[1, pc[ or [1, pc] for some pc > 2.

As mentioned above, a second countable Kazhdan group has property
(F`p) for all 1 6 p 6 2. This suggests the following question.

Question 4.10. — Does there exist a second countable non-Kazhdan
totally disconnected group which has property (F`p) for some (all) 1<p< 2?

5. Fixed-point spectrum for actions on Lp(X,µ) associated
to non-atomic measure spaces (X,µ)

This section is devoted to the study of connectedness properties for
FL∞(X,µ)(G) for general measure spaces (X,µ). We give partial results
concerning C. Drutu’s conjecture asserting that FL∞(0,1)(G) is connected.
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5.1. Openness of the spectrum FL∞(G)

The openness of FL∞(0,1)(G) at 2 is a well-known fact, due to Fisher
and Margulis. Their argument uses a limit action on an ultraproduct of
Lp-spaces, which we recall briefly in this section. Then we explain how it is
used to show some openness properties relative to the fixed-point spectrum
FL∞(0,1)(G). We refer to the survey [13] for more details on ultraproducts
of Banach spaces.

We now recall the construction of the ultraproduct space of Lp-spaces in
the context which is relevant for our purpose: we will use the ultraproduct
of Lpn

(X,µ)-spaces over the same measure space (X,µ), but such that
(pn)n is a sequence of real numbers converging to p > 1.
Let 1 6 p, pn < ∞ be real numbers such that limn pn = p. Let (X,µ)

be a measure space. Fix a non-principal ultrafilter U on N. We recall the
construction of the ultraproduct (affine) space of the Lpn

(X,µ)-spaces with
marked points xn ∈ Lpn

(X,µ). The latter affine space is defined as

(xn)n + (Lpn
)U = (xn)n +

(∏
n

Lpn

)
∞

/N

where (∏
n

Lpn

)
∞

=
{

(fn)n
∣∣∣∣ sup

n
‖fn‖pn

<∞
}
,

and

N =
{

(fn)n ∈
(∏

n

Lpn

)
∞

∣∣∣∣∣ ‖(fn)n‖U = 0
}

for ‖(fn)n‖U := lim
n,U
‖fn‖pn

.

Recall the definition of a Banach lattice (from [15, Definition 1.a.1]).

Definition 5.1. — A partially ordered Banach space B over R is called
a Banach lattice if the following assertions hold:

(1) x 6 y implies x+ z 6 y + z for every x, y, z ∈ B.
(2) αx > 0 for every x > 0 and real α > 0.
(3) for every x, y ∈ B there exist a least upper bound x

∧
y and a

greatest lower bound x
∨
y.

(4) ‖x‖ 6 ‖y‖ whenever |x| 6 |y|, where |x| is defined as |x| = x
∧

(−x).

Lp(X,µ)-spaces are examples of Banach lattices. We recall also the def-
inition of a p-additive norm.

Definition 5.2. — Let 1 6 p < ∞. A norm on a Banach lattice is
called p-additive if ‖x+ y‖p = ‖x‖p + ‖y‖p, whenever x

∧
y = 0.
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An ultraproduct of Banach lattices is still a Banach lattice. Moreover,
the norm ‖ · ‖ on (Lpn

)U is clearly p-additive since limn pn = p. Hence by
the generalized Kakutani representation theorem (see [15, Theorem 1.b.2]),
(Lpn

)U is isometrically isomorphic to Lp(Y, ν) for some measure space
(Y, ν).
Let G be a locally compact group generated by a compact subset Q ⊂ G.

Let αn = (πn, bn) be affine isometric actions of G on the spaces Lpn
(X,µ).

In the sequel, the diameter of a set X is denoted by diam(X). Under
the assumption that diam(αn(Q)xn) is bounded for all n, we can define an
isometric affine action α on the affine space (xn)n+(Lpn)U by the following
formula:

α(g)((xn) + (fn)U ) = (xn)n + (αn(g)xn − xn + πn(g)fn)n

for all (fn)U ∈ (Lpn)U and all g ∈ G. This is not clear that the limit action
needs to be continuous when G is only assumed to be locally compact. We
will discuss this issue later in this section.

Theorem 5.3 (Margulis, Fisher [1, Section 3.c]). — Let G be a finitely
generated group. Assume G has property (T ). Then the fixed-point spec-
trum FL∞(0,1)(G) contains a neighborhood of 2.

We now sketch the proof of this theorem as it is given in [1, Section 3.c],
since we will need some variation of it in the sequel.

Proof. — Let Q ⊂ G be a compact generating set. The theorem is a
consequence of the following claim.

Claim. — There exists C > 0, ε > 0 such that for all q ∈ (2− ε, 2 + ε),
for all affine isometric action α on Lq(0, 1), and for all x ∈ Lq(0, 1), there
exists y ∈ Lq(0, 1) such that:

‖x− y‖q 6 C diam(α(Q)x)

diam(α(Q)y) 6 1
2 diam(α(Q)x).

From the claim, it is very easy to show that G has property (FLq(0,1))
(see [1]).
To prove the claim, we assume the contrary and show that this con-

tradicts the fact that G has property (T ). Hence we assume that there
exists a sequence of reals (pn)n converging to 2, a sequence (xn)n with
xn ∈ Lpn

(0, 1), and affine isometric actions αn = (πn, bn) on Lpn
(0, 1) such

that diam(αn(Q)xn) = 1 and

diam(αn(Q)y) > 1/2 for all y ∈ B(xn, n)(∗).
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Then we define a limit action α on the ultraproduct affine space (xn)n +
(Lpn

(0, 1))U , as recalled in the previous discussion. Since limn pn = 2, the
limit space is an affine Hilbert space and condition (∗) implies that α has
no G-fixed-point, contradicting property (T ). �

In the previous proof, one major argument requires the group G to be
countable: the continuity of the limit action. The following example shows
that the continuity of the limit action does not hold in the general case of
localy compact groups.

Example 5.4. — Let G = R. Let U be a non-principal ultrafilter on N.
We define H = (L2(R))U to be the ultrapower of copies of L2(R) along U .
On the n-th copy of L2(R), define the orthogonal representation πn : G→
O(L2(R)) by

πn(a)f(x) = f(x+ na) for all n ∈ N, a, x ∈ R and f ∈ L2(R).

Now let π be the natural limit action (which acts by linear isometries) on
H associated to the actions πn. Denote also by f the diagonal embedding
of f := χ[0,1], the indicator function of [0, 1], in H. It is easily checked that,
for all a 6= 0, we have

‖π(a)f − f‖ = 2.

Hence the limit action π is not continuous on H.

For countable groups G, one can show the openness of the fixed-point
spectrum FL∞(0,1)(G) in [1,∞[.

Proposition 5.5. — Let G be a finitely generated group. Then
FL∞(0,1)(G) is open in [1,∞[.

Proof. — The proof of this result is also based on the construction of
Margulis and Fisher. Let p > 1 and assume that G has property (FLp(0,1)).
It is sufficient to prove an analog claim as in the proof of Theorem 5.3,
replacing 2 by p, and to conclude with the arguments from [1]. Let Q ⊂ G
be a finite generating set.

Claim. — There exists C > 0, ε > 0 such that for all q ∈ (p− ε, p+ ε),
for all affine isometric action α on Lq(0, 1), and for all x ∈ Lq(0, 1), there
exists y ∈ Lq(0, 1) such that:

‖x− y‖q 6 C diam(α(Q)x)

diam(α(Q)y) 6 1
2 diam(α(Q)x).
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If the claim does not hold, we can construct isometric affine actions αn of
G on Lpn

(0, 1) for all n, and a limit isometric affine action α = (π, b) of G
on a space (xn)n+(Lpn(0, 1))U such that diam(αn(Q)xn) = 1, limn pn = p,
and

(∗∗) diam(αn(Q)y) > 1/2 for all y ∈ B(xn, n).

From inequality (∗∗), the action α has no fixed point, and so the cocycle b
is unbounded.
By the Kakutani theorem, the space (Lpn

(0, 1))U is isometrically iso-
morphic to Lp(Y, ν) for some measure space (Y, ν). Hence the orthogonal
representation π can be assumed to act on Lp(Y, ν), and the cocycle part
b to satisfy b(g) ∈ Lp(Y, ν) for all g ∈ G.
By Lemma 9.2 in [18], there exists an isometric affine action α′ = (π′, b′)

on Lp(0, 1) such that ‖b(g)‖p = ‖b′(g)‖p for all g ∈ G. Since b is unbounded,
the cocycle part b′ is unbounded as well, and α′ has no fixed point in
Lp(0, 1). Notice that the action α′ is continuous since G is discrete. So G
does not have property (FLp(0,1)), which is a contradiction. Hence the claim
holds and Proposition 5.5 is proved. �

In the previous proof, two major arguments require the group G to be
discrete: the continuity of the limit action (which is necessary as discussed
previously), and the restriction of an arbitrary Lp(Y, ν) limit space on which
G acts on, to the classical Lp(0, 1) space. Unfortunately, we are not able to
extend Proposition 5.5 to second countable groups since we do not have a
proof for the continuity of the limit action in that case. An analog of the
second argument should be easier to extend from the same lines of proof of
Lemma 9.2 in [18]. So the continuity issue seems to be the main difficulty
to generalize Proposition 5.5 to second countable groups.

5.2. Fixed-point spectrum associated to measure preserving
ergodic actions on finite measure spaces

As a consequence of the following proposition, the fixed-point spectrum
FL∞(X,µ)(G, π) is an interval when the measure µ is finite, and the action
associated to the representation π is measure-preserving and ergodic.

Proposition 5.6. — Let 1 6 p < q < r < ∞. Let (X,µ) be a Borel
standard measure space such that µ is finite. Let πp : G→ O(Lp(X,µ)) be
a (BL) representation whose associated action is measure-preserving and
ergodic. Assume that

H1(G, πp) = {0},
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and
H1(G, πr) = {0}.

Then we have also
H1(G, πq) = {0}.

The proof follows the same lines as the proof for actions on `p.
Proof. — Notice that we have Lr(X,µ) ⊂ Lq(X,µ) ⊂ Lp(X,µ).
Let b : G → Lq(X,µ) be a πq-cocycle. Since π = πp is measure-

preserving, b defines a cocycle with values in Lp(X,µ). By assumption,
there exists f ∈ Lp(X,µ) such that

b(g) = f − πp(g)f for all g ∈ G.

Triangle inequalities imply the following inequalities for all g ∈ G:∥∥|f | − |π|(g)|f |
∥∥
q
6 ‖b(g)‖q <∞.

Now we apply estimates (2.2) with q < r, and |f | to obtain:∥∥|f |q/r − |π|(g)|f |q/r
∥∥
r
6
∥∥|f | − |π|(g)|f |

∥∥q/r
q

<∞.

Hence the left hand-side of the previous inequality defines a cocycle with
values in Lr, which is a coboundary by assumption. Since the action of G
on (X,µ) is ergodic we can write:

|f |q/r = c+ h

where c is a constant function, and h ∈ Lr(X,µ)′. Then we have |f |q/r ∈
Lr(X,µ), that is f ∈ Lq(X,µ). �

Now the proof of Theorem 1.3 is an easy consequence of Proposition 5.6.
Proof of Theorem 1.3. — Let π : G → O(Lp(X,µ)) be a measure-pres-

erving ergodic on (X,µ) finite. By Proposition 5.6, the set FL∞(X,µ)(G, π)
is empty or is an interval. When the fixed-point spectrum is non-empty, it
is closed on the right by Proposition 3.3.
If G has property (T ), we know that the set F(G) contains an interval

of the form [1, q[ for some q > 2 (see Theorem 5.3, and [1, Theorem 1.3]).
Combined with our Proposition 5.6, the set FL∞(X,µ)(G, π) is an interval of
the form [1, pc] or [1,∞[ for some pc > 2. Hence the theorem is proved. �
Let p > 1. By a construction from [10], in the case where G does not

have property (T ), there exists a (Gaussian) finite measure space (X,µ)
endowed with an action of G such that:

• the action of G on (X,µ) is measure-preserving;
• the restriction of the associated representation ρp to L′p(ρp) admits

a sequence of almost invariant vectors.
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Thus by the usual Guichardet argument, we have

H1(G, ρp) 6= {0},

and it follows that FL∞(X,µ)(G, (ρp)p) = ∅ when G does not have prop-
erty (T ).

The construction of such an action of G on some Gaussian measure
space (X,µ) is due to Connes and Weiss, and details are explained in [4,
Theorem 6.3.4]. See also [1, Section 4.c] for the proof of the statement
related to almost invariant vectors.

Let (X,µ) and π be defined as in Proposition 5.6. In the case where G
has property (T ), we know by Proposition 5.5 that FL∞(0,1)(G) is open
in [1,∞[. If a similar openness result was true for fixed-point spectrum
FL∞(X,µ)(G, π) restricted to measure-preserving and ergodic actions, we
could conclude that FL∞(X,µ)(G, π) is equal to the whole interval [1,∞[.
Unfortunately, we could not derive an analog of Proposition 5.5 for fixed-
point spectrum sets of the form FL∞(X,µ)(G, π).

Question 5.7. — If π is a measure-preserving ergodic (BL) represen-
tation on a finite measure space (X,µ), and if G has property (T ), do we
always have FL∞(X,µ)(G, π) = [1,∞[?
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