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ON THE LIPMAN–ZARISKI CONJECTURE FOR
LOGARITHMIC VECTOR FIELDS ON LOG

CANONICAL PAIRS

by Hannah BERGNER (*)

Abstract. — We consider a version of the Lipman–Zariski conjecture for log-
arithmic vector fields and logarithmic 1-forms on pairs. Let (X, D) be a pair con-
sisting of a normal complex variety X and an effective Weil divisor D such that
the sheaf of logarithmic vector fields (or dually the sheaf of reflexive logarithmic
1-forms) is locally free. We prove that in this case the following holds: if (X, D) is
dlt, then X is necessarily smooth and bDc is snc. If (X, D) is lc or the logarithmic
1-forms are locally generated by closed forms, then the pair (X, bDc) is toroidal.
Résumé. — Nous considérons une version de la conjecture de Lipman–Zariski

pour des champs de vecteurs logarithmiques et des 1-formes logarithmiques. Soit
(X, D) une paire, où X est une variété complexe normale et D est un diviseur de
Weil effectif, tels que le faisceau des champs de vecteurs logarithmiques (ou de façon
duale le faisceau des 1-formes logarithmiques réflexives) est localement libre. Nous
démontrons le suivant dans ce cas : si (X, D) est dlt, alors X est nécessairement lisse
et bDc est snc. Si (X, D) est lc ou si les 1-formes logarithmiques sont engendrées
localement par des formes fermées, alors la paire (X, bDc) est toroïdale.

1. Introduction

The Lipman–Zariski conjecture posed in [19, p. 874] states that every
normal complex space with locally free tangent sheaf is smooth. In this
paper, we consider a version of this conjecture for the logarithmic tangent
sheaf TX(− logD), or equivalently the dual sheaf Ω[1]

X (logD) of reflexive
logarithmic 1-forms, on a pair (X,D), where X is a normal complex quasi-
projective variety and D a reduced Weil divisor; for precise definitions see
Section 2.
Keywords: Lipman–Zariski conjecture, logarithmic vector fields, logarithmic 1-forms,
toroidal varieties.
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(*) Financial support by the DFG-Graduiertenkolleg GK1821 “Cohomological Methods
in Geometry” at the University of Freiburg is gratefully acknowledged.



408 Hannah BERGNER

Example 1.1 (Snc pair). — Let X = An with coordinates z1, . . . , zn and
D = {z1 · . . . · zk = 0}. Then z1

∂
∂z1

, . . . , zk
∂
∂zk

, ∂
∂zk+1

, . . . , ∂
∂zn

form an
OX -basis of the logarithmic tangent sheaf, and the dual sheaf of logarithmic
1-forms is spanned by dz1

z1
, . . . , dzk

zk
, dzk+1, . . . , dzn.

More generally, if X is smooth and D is a reduced snc divisor, then the
logarithmic tangent sheaf TX(− logD) and its dual are locally free.

Example 1.2 (Toric variety). — If (X,D) is a pair consisting of a normal
toric variety X and a reduced divisor D whose support is the complement
of the open torus orbit, then the sheaf Ω[1]

X (logD) of reflexive logarithmic
1-forms is free; cf. [21, Section 3.1].

This raises the question in which cases a converse of this is locally true:

Question. — Let (X,D) be a pair such that the logarithmic tangent
sheaf TX(− logD), or equivalently Ω[1]

X (logD), is locally free. Is (X,D) then
necessarily toroidal, i.e. locally of the form as in Example 1.2?

In general, this is false. Consider for instance the following example:

Example 1.3. — Let X = A2
C and D = {y2 = x3}. Then Ω[1]

X (logD) is
locally free and D is irreducible, but D is not normal.

For smooth varieties X and arbitrary reduced divisors D logarithmic
vector fields, logarithmic differential forms and their properties have been
studied a lot. Recently, precise conditions under which a reduced divisor
D in a smooth variety X such that TX(− logD) is locally free is normal
crossing were given in [8] and [3].
In this article, we study the pairs (X,D) with locally free sheaf Ω[1]

X (log
D), where X is allowed to be singular. If D =

∑
i aiDi, ai ∈ Q, is an

effective Weil divisor, let bDc =
∑
ibaicDi denote its rounddown. We com-

pletely answer the above question for pairs (X, bDc) such that there is a
pair (X,D) that is dlt or lc, or such that the sheaf Ω[1]

X (logbDc) of reflexive
logarithmic 1-forms is locally generated by closed forms:

Theorem 1.4 (cf. Theorems 4.1, 5.14, 6.8). — Let (X,D) be a pair con-
sisting of a normal quasi-projective variety X and a divisor D =

∑
i aiDi,

where Di are distinct prime divisors, ai ∈ Q and 0 6 ai 6 1. Assume that
Ω[1]
X (logbDc) is locally free. Then the following holds:
(a) If the sheaf Ω[1]

X (logbDc) of reflexive logarithmic 1-forms is locally
generated by closed forms, then (X, bDc) is toroidal.

(b) If the pair (X,D) is dlt, then X is smooth and bDc is an snc divisor.
If (X,D) is lc, then (X, bDc) is toroidal.
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LOGARITHMIC LIPMAN–ZARISKI CONJECTURE 409

Recall that we call a pair (X,D) toroidal if X is locally (in the analytic
topology) isomorphic to a toric variety Y and D is a reduced divisor corre-
sponding to the complement of the open torus orbit in Y . A consequence
of Theorem 1.4 and [7, Theorem 1.4.2] is the same result for Du Bois pairs,
which is stated in Corollary 6.9.
In the special case of a projective lc pair (X,D) with globally free sheaf

Ω[1]
X (logbDc), the main result of [24] on compact Kähler manifolds with

trivial logarithmic tangent bundle has direct implications for the geometry
of (X,D):

Corollary 1.5 (cf. Corollary 6.3). — Let (X,D) be an lc pair such
that X is projective. Then the sheaf Ω[1]

X (logbDc) is free if and only of
there is a semi-abelian variety T which acts on X with X \ bDc as an
open orbit.

Outline of the article

First some definitions and notation in the context of pairs and logarith-
mic vector fields and 1-forms are recalled in Section 2. In Section 3, some
facts about extension of logarithmic differential forms, flows of vector fields
on varieties, and residues of logarithmic 1-forms are collected.
The case of dlt pairs is considered in Section 4. In Section 5, we study

pairs whose sheaf of reflexive logarithmic 1-forms is locally generated by
closed forms, and use globalisation techniques in order to obtain local em-
beddings into toric varieties. Finally, the case of lc pairs is considered in
Section 6. The statement for lc pairs in Theorem 1.4(b) is proven by re-
ducing to part (a) of the theorem. If the singular locus of an lc pair (X,D)
consists of isolated points, we prove that locally there exist closed reflexive
logarithmic 1-forms spanning the sheaf of logarithmic 1-forms; see Propo-
sition 6.5. Then an argument using hyperplane sections is used to reduce
to this case and thus the setting as in Theorem 1.4(a).
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410 Hannah BERGNER

2. Definitions and Notation

Convention. — Throughout, we work over the complex numbers and
all varieties are complex algebraic varieties. We will also work with the
induced structure of a complex space on an algebraic variety, and open
neighbourhoods are allowed to be open neighbourhoods in the analytic
C-topology.

2.1. Pairs

In the following Definition 2.1, we fix the notation for a few important
definitions in the context of pairs. Definitions and more details may be
found in [18, Chapter 2].

Definition 2.1 (Pair). — A pair (X,D) is a pair consisting of a normal
quasi-projective complex variety X and a divisor D =

∑
i aiDi, where

D1, . . . , Dk are distinct prime divisors, ai ∈ Q, and 0 6 ai 6 1.
The rounddown bDc of the divisor D is defined as bDc =

∑
ibaicDi.

The pair (X,D) is called snc if X is smooth and D is snc, that is, all
intersections Di1 ∩ . . . ∩Dik are smooth.
The singular locus Z = (X,D)sing of a pair (X,D) is the smallest closed

subset Z ⊂ X such (X \ Z,D|X\Z) is snc.

Note that Definition 2.1 is slightly less general than [18, Definition 2.25]
since we put the additional assumption that 0 6 ai 6 1 on the coefficients
ai of the divisor D.

Notation 2.2. — We use the abbreviations klt, plt, dlt, and lc for Kawa-
mata log terminal, purely log terminal, divisorially log terminal and log
terminal. For definitions of these notions see [18, Definition 2].

Definition 2.3 (Log resolution). — Let (X,D) be a pair. A log res-
olution of (X,D) is a proper surjective birational morphism π : X̃ → X

defined on a smooth variety X̃ such that its exceptional divisor E = Exc(π)
is of pure codimension 1 and the divisor Exc(π) +D is snc, where D is the
strict transform ofD, and E = Exc(π) is endowed with the induced reduced
structure.
We will furthermore only consider log resolutions which are strong in the

sense that π induces an isomorphism X̃ \ (π−1(Z)) → X \ Z outside the
singular set Z = (X,D)sing of (X,D).

ANNALES DE L’INSTITUT FOURIER
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2.2. Logarithmic 1-forms

The notion of a logarithmic 1-form is essential for this article. For the
theory of logarithmic differential forms see [22], and for more specific as-
pects about reflexive forms compare also [10, Section 2.E].

Notation 2.4 (Sheaves of 1-forms). — Let (X,D) be a pair. We denote the
sheaf of Kähler differential 1-forms on X by Ω1

X and the sheaf of reflexive
differential 1-forms by Ω[1]

X .
The sheaf of Kähler logarithmic 1-forms is denoted by Ω1

X(logbDc) and
the sheaf of reflexive logarithmic 1-forms by Ω[1]

X (logbDc).

Remark 2.5. — We have Ω[1]
X = (Ω1

X)∗∗ = ι∗(Ω1
Xreg

), where ι : Xreg ↪→ X

denotes the inclusion of the smooth locus Xreg of X. A reflexive 1-form on
an open subset U ⊆ X is thus simply given by a 1-form on the smooth part
U ∩Xreg.
Similarly, a reflexive logarithmic 1-form on U is given by logarithmic

1-form on U ′ = U \ (U, bDc|U )sing. Recall that a rational 1-form σ on U ′
is logarithmic if σ is regular on U ′ \ bDc and σ and dσ have at most first
order poles along each irreducible component of bDc.
On X \ bDc the notion of reflexive 1-forms and of reflexive logarithmic

1-forms coincide and we have Ω[1]
X
∼= Ω[1]

X (logbDc).

Definition 2.6. — We say that a reflexive logarithmic 1-form on a pair
(X,D) is closed if its restriction to the smooth locus of X \D, where it is
a regualar 1-form, is closed in the usual sense.

Convention. — Throughout the article, we always consider reflexive
(logarithmic) 1-forms and thus a (logarithmic) 1-form shall always mean a
reflexive (logarithmic)1-form.

2.3. Vector fields

Dual to the notion of 1-forms, there is the notion of vector fields on a
variety (cf. [22, Definition 1.4]):

Notation 2.7 (Tangent sheaf). — Recall that a vector field on a normal
variety X is a OX -linear derivation OX → OX of sheaves. A logarithmic
vector field on a pair (X,D) is a vector field ξ on X which is tangent to
bDc in the sense that ξ(IbDc) ⊆ IbDc, where IbDc denotes the ideal sheaf
of bDc. We denote the sheaf of vector fields on X (or tangent sheaf of X)
by TX , and the sheaf of logarithmic vector fields (or logarithmic tangent
sheaf) on a pair (X,D) by TX(− logbDc).

TOME 71 (2021), FASCICULE 1



412 Hannah BERGNER

Remark 2.8 (Compare also [11, Section 3.1] and references therein).
The tangent sheaf TX and the logarithmic tangent sheaf TX(− logbDc) are
reflexive sheaves. Therefore, a vector field on a normal variety X could also
be defined to be a vector field on the smooth locus Xreg of X, and TX as
TX = ι∗(TXreg) if ι : Xreg ↪→ X denotes again the inclusion of the smooth
locus.
The sections of the logarithmic tangent sheaf TX(− logbDc) of a pair

(X,D) are precisely those vector fields on X whose flows (in the sense of
Section 3.2) stabilise bDc as a set.
Vector fields and 1-forms are dual, and we have TX = (Ω1

X)∗ = (Ω[1]
X )∗

and TX(− logbDc) = (Ω[1]
X (logbDc))∗. In particular, the logarithmic tan-

gent sheaf TX(− logbDc) is (locally) free if and only if Ω[1]
X (logbDc)) is

(locally) free.

3. Methods

3.1. Extension of differential forms

The extension of logarithmic forms on pairs to log resolutions is an im-
portant tool. The following result was proven in [10]:

Theorem 3.1 (Extension Theorem, [10, Theorem 1.5]). — Let the pair
(X,D) be an lc pair, π : X̃ → X a log resolution, and let D̃ be the
largest reduced divisor contained in the support of π−1(W ), where W is
the smallest closed subset such that (X \W,D|X\D) is klt. Then the sheaf
π∗ΩpX̃(log D̃) is reflexive for any p 6 dimX. �

This means that logarithmic forms defined on the regular part of the pair
(X,D), i.e. the largest open subset Y ⊆ X such that Y is smooth and D|Y
is an snc divisor, extend to any log resolution.

3.2. Flows of vector fields on varieties

A useful result when studying vector fields on complex varieties is the
following theorem by Kaup on the existence of local flows of holomorphic
vector fields on complex spaces:

Theorem 3.2 (Existence of flows, [14, Satz 3]). — Let X be a normal
complex space and ξ a holomorphic vector field on X. Then the local flow
of ξ exists, in other words, there is an open subset Ω ⊆ C×X such that

ANNALES DE L’INSTITUT FOURIER
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(1) the set Ω contains {0}×X and for each x ∈ X, Ωx = {t ∈ C | (t, x) ∈
Ω} ⊆ C is connected, and

(2) there exists a holomorphic map ϕ : Ω → X with ϕ(0, x) = x for
all x ∈ X and d

dtf(ϕ(t,−)) = ξ(f)(ϕ(t,−)) for any holomorphic
function f defined on an open subset of X. �

Even though vector fields on a variety X can in general not be pulled
back by a morphism f : Y → X to vector fields on Y , the existence of local
flows allows us to lift vector fields on a variety to the functorial resolution
of singularities as in [16, Theorems 3.35, 3.36]. A detailed description of
this procedure can be found in [9, Section 4.2].

Proposition 3.3. — Let (X,D) be a pair and π : X̃ → X the functorial
log resolution of the pair. Let E = Exc(π) denote the exceptional divisor of
π and set D̃ = E +D, where D is the strict transform of D. Then we have

TX ∼= π∗(TX̃) ∼= π∗(TX̃(− logE))

and also

TX(− logbDc) ∼= π∗(TX̃(− logbD̃c)).

�

The idea for the proof of this proposition (as in [9, Section 4.2]) is to
consider the local flow of the given vector field on X, which exists by Theo-
rem 3.2. Since the functorial resolution commutes with smooth morphisms
and as the flow map ϕ : Ω→ X is a smooth morphism, it can be lifted to a
local action ϕ̃ on X̃, which then induces a vector field ξ̃ on X̃. The flow map
of a vector field on an algebraic variety is not necessarily algebraic, but in
general a holomorphic map of complex spaces, one also needs to consider
resolution of complex spaces at this point, see e.g. [16, Theorem 3.45], and
do the procedure for these.

Remark 3.4. — Proposition 3.3 means that every vector field ξ on X

can be lifted to X̃ in the sense that there is a vector field ξ̃ on X̃ whose
restriction to X̃ \ (π−1((X,D)sing)) ∼= X \ (X,D)sing coincides with the
restriction of ξ to X \ (X,D)sing. The flow of ξ̃ stabilises the exceptional
divisor E and is thus logarithmic with respect to E.
If a vector field ξ on X is logarithmic with respect to D, then ξ̃ is

logarithmic with respect to D̃ = E +D.
Moreover, if the flow ϕ of a vector field on some variety Y stabilises a

divisor E, then the flow actually has to stabilise every irreducible com-
ponent Ej of E, i.e. ϕt(Ej) = Ej for any t ∈ C such that ϕt is defined

TOME 71 (2021), FASCICULE 1



414 Hannah BERGNER

on a neighbourhood of E, since we have ϕ0(Ej) = id(Ej) = Ej for each
irreducible component Ej and by continuity this implies ϕt(Ej) = Ej for
all suitable t.

Conversely, logarithmic vector fields on a log resolution of singularities
of a pair always induce logarithmic vector fields on the pair itself:

Remark 3.5. — If (X,D) is a pair and π : X̃ → X is any log resolution
(as in Definition 2.3) with exceptional divisor E and D the strict transform
of D, D̃ = D + E, then any logarithmic vector field ξ̃ ∈ TX̃(− logbD̃c) on
X̃ induces a logarithmic vector field ξ ∈ TX(− logbDc) on X with π∗ ◦ ξ
= ξ̃ ◦ π∗. This can be seen as follows:
Since π induces an isomorphism X̃ \π−1(Z)→ X \Z outside the singular

set Z = (X,D)sing of (X,D), the vector field ξ̃ naturally induces a vector
field ξ on X \ Z and ξ is logarithmic with respect to the divisor bDc ∩
(X \ Z) = π(bD̃c ∩ (X̃ \ π−1(Z))). This vector field ξ then extends to a
vector field ξ on all ofX which is logarithmic with respect to the divisor bDc
because the singular set Z = (X,D)sing of (X,D) has at least codimension 2
in X and the logarithmic tangent sheaf is reflexive (cf. Remark 2.8). By
construction we have π∗ ◦ ξ = ξ̃ ◦π∗ on X \Z and by the identity principle
this holds on all of X.

As a consequence of Proposition 3.3 and the extension result for loga-
rithmic 1-forms, we get the following:

Corollary 3.6. — Let (X,D) be an lc pair and π : X̃ → X the
functorial log resolution, denote its exceptional divisor by E and set D̃
= E + D, where D is the strict transform of D. Let U ⊆ X be an open
subset such that the restriction of the sheaf Ω[1]

X (logbDc) to U is free (or
equivalently, the restriction of TX(− logbDc) to U is free). Then the sheaves
Ω[1]
X̃

(logbD̃c) and TX̃(− logbD̃c) are free when restricted to π−1(U).

Proof. — Since Ω[1]
X (logbDc) and TX(− logbDc) are dual to each other,

one of them is (locally) free if and only if the other one is. Since the question
is local, we may assume that Ω[1]

X (logbDc) is free.
Let σ1, . . . , σn be logarithmic 1-forms on X spanning Ω[1]

X (logbDc) and
let ξ1, . . . , ξn be logarithmic vector fields which span TX(− logbDc) and
are dual to σ1, . . . , σn, i.e. σi(ξj) = δij . By Theorem 3.1, the logarithmic
1-forms σ1, . . . , σn can be extended to logarithmic 1-forms σ̃1, . . . , σ̃n on
X̃. Let ξ̃1, . . . , ξ̃n denote the lifts of ξ1, . . . , ξn to X̃. Since π is an iso-
morphism onto its image when restricted to π−1(X \ (X,D)sing), we have
σ̃i(ξ̃j) = σi(ξj) = δij on the open dense subset π−1(X \ (X,D)sing) ∼= (X \
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(X,D)sing) of X̃ and thus on all of X̃. Consequently, the logarithmic 1-forms
σ̃1, . . . , σ̃n span Ω[1]

X̃
(logbD̃c), and ξ̃1, . . . , ξ̃n span TX̃(− logbD̃c). �

3.3. Residues of logarithmic 1-forms

If D is a smooth hypersurface in a complex manifold X, then the residue
map for logarithmic 1-forms with respect to D gives an exact sequence

0→ Ω1
X → Ω1

X(logD)→ OD → 0.

This can directly be generalised to the case of an snc divisor D in a com-
plex manifold or smooth variety (and also logarithmic p-forms). In general
however, a residue sequence like this for logarithmic differential forms on
an arbitrary pair does not exist.
If (X,D) is a pair such that X is smooth and D is the sum of irre-

ducible prime divisors, the residue of a logarithmic p-form can be defined
as described in [22, Section 2], but it is in general not holomorphic but
meromorphic.

Proposition 3.7 ([22, Section 1.1 and Lemma 2.2]). — Let X be a
complex manifold, D a hypersurface in X locally defined by the reduced
equation h(z) = 0 for a holomorphic function h. If σ is a logarithmic
1-form on X, then locally there are holomorphic functions g1, g2, and a
holomorphic 1-form η such that

g1σ = g2
dh

h
+ η.

The functions g1 and g2 are in general not unique, but the restriction to
D of their ratio g2

g1
gives rise to a well-defined meromorphic function res(σ)

on the normalisation D̃ of D. �

This allows us to define a residue map as follows:

Definition 3.8. — Let X be a complex manifold, D a reduced hyper-
surface in X, and let ρ : D̃ → D denote the normalisation of D. We define
the residue map as

Ω1
X(logD)→ ρ∗(MD̃), σ 7→ res(σ),

whereMD̃ denotes the sheaf of meromorphic functions on D̃.

Remark 3.9. — Similarly to the residue of a logarithmic 1-form, the
residue of logarithmic p-forms can be defined, and for any logarithmic form
σ we have

res(dσ) = d(res(σ)).

TOME 71 (2021), FASCICULE 1



416 Hannah BERGNER

Remark 3.10. — Recently, precise characterisations under which a re-
duced divisor D in a complex manifold X is normal crossing under the
assumption that TX(− logD) is locally free were given in [8] and [3]. One
of these equivalent characterisations is the regularity of the residues of log-
arithmic 1-forms along the divisor D.

It turns out that also in the case of pairs (X,D), where X is allowed to
be singular, this notion is useful. We are always assuming that X is normal
and thus there is a closed subset Z ⊂ X of codimension at least 2 such
X \Z is smooth and D|X\Z is an snc divisor. Given any logarithmic 1-form
σ on X, we may then define its residue by first restricting σ to X \ Z,
then taking the residue along D|X\Z , which then defines a unique rational
function on the normalisation D̃ of D.
In general this residue will not be regular, nor does there exist a short

exact residue sequence as in the case of snc pairs. In the case of dlt pairs
however, we have the following result for logarithmic 1-forms:

Theorem 3.11 (Residue sequence for dlt pairs, [10, Theorem 11.7]).
Let (X,D) be a dlt pair with bDc 6= ∅ and D0 ⊆ bDc an irreducible
component. Then there is a sequence

0 −→ Ω[1]
X (log(bDc −D0)) −→ Ω[1]

X (logbDc)
resD0−→ OD0 −→ 0,

which is exact on X outside a subset of codimension at least 3. Moreover
this sequence coincides with the usual residue sequence where the pair
(X, bDc) is an snc pair. �

Remark 3.12. — If (X,D) is a dlt pair, p ∈ D, then by definition either
the pair (X,D) is snc near p, or there is an open neighbourhood U ⊆ X

of p such that (U,D|U ) is plt. Thus if (X,D) is not locally snc at p ∈ D,
we know by [18, Proposition 5.51] that bDc is normal when restricted to
U and the disjoint union of its irreducible components. In particular, p is
contained in only one irreducible component of bDc.

In the case of lc pairs the extension of logarithmic forms to resolutions
also yields residues for logarithmic 1-forms:

Remark 3.13. — Let (X,D) be an lc pair. Since logarithmic 1-forms ex-
tend to logarithmic 1-forms on a log resolution of (X,D) by [10, Theo-
rem 1.5], the residue of a logarithmic 1-form along a component of bDc is a
regular function on the normalisation of that component of bDc. Moreover,
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we have an exact sequence

0→ Ω[1]
X → Ω[1]

X (logbDc)→
k⊕
j=1

(ρj)∗(OD̃j
),

where D1, . . . , Dk denote the irreducible components of the rounddown
bDc and ρj : D̃j → Dj is the normalisation of Dj . Note however that the
last arrow of this sequence is in general not surjective.

Remark 3.14. — Let (X,D) be an arbitrary pair, and σ a logarithmic
1-form on X that is closed (as defined in Definition 2.6). Since d(resDj (σ))
= resDj

(dσ) = 0 along each irreducible component Dj of bDc, the residue
res(σ) is constant on each irreducible component Dj .

4. Dlt pairs with locally free sheaf of logarithmic 1-forms

If (X,D) is a dlt pair and its sheaf of logarithmic differential 1-forms is
locally free, then (X,D) is necessarily snc:

Theorem 4.1. — Let (X,D) be a dlt pair such that Ω[1]
X (logbDc) is

locally free. Then X is smooth and bDc is an snc divisor.

Proof. — After shrinking X, we may assume that Ω[1]
X (logbDc) is free.

If p /∈ bDc, then the pair (X,D) is klt near p and Ω[1]
X (logbDc) ∼= Ω[1]

X

near p. Since the Lipman–Zariski conjecture is true for klt spaces by [10,
Theorem 6.1], X is smooth near p.
Assume now p ∈ bDc and let π : X̃ → X be the functorial log resolution

with exceptional divisor E, D the strict transform of D and D̃ = E + D.
Then Ω[1]

X̃
(logbD̃c) is free by Corollary 3.6. Suppose that the pair (X,D)

is not snc at p. Then by Remark 3.12 the point p is only contained in one
irreducible component of bDc, and after possibly further shrinking we may
thus assume that bDc is irreducible. Let D denote again the strict trans-
form of D, and E1, . . . , Em the exceptional divisors, D̃ = D+E1 + . . . +
Em. Let σ1, . . . , σn be logarithmic 1-forms spanning Ω[1]

X (logbDc), and let
σ̃1, . . . , σ̃n denote the extensions of these to X̃ (cf. Corollary 3.6 and its
proof), which span Ω[1]

X̃
(logbD̃c). Let q0 ∈ π−1(p) ∩ bDc. Since D̃ is snc,

there is j such that the residue resbDc(σ̃j) along bDc does not vanish in q0

and hence resbDc(σj)(p) = resbDc(σ̃j)(q0) 6= 0. The divisor bDc, which we
assume to be irreducible as argued above, is normal since (X,D) is dlt and
by Theorem 3.11 the residues resbDc(σi) are all regular functions on bDc.
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Therefore, there exist regular functions fi on X defined on some neighbour-
hood of p such that resbDc(σi) = fi|bDc along the divisor bDc. As argued
before we have fj(p) 6= 0 and after possibly changing the numbering of the
σi’s we assume j = 1. Now after restricting to an appropriate neighbour-
hood of p and replacing σ1, . . . , σn by 1

f1
σ1, σ2 − f2

f1
σ1, . . . , σn − fn

f1
σ1, we

may thus assume that resbDc(σ1) = 1 and resbDc(σi) = 0 for i > 1. There-
fore, σ2, . . . , σn are regular 1-forms without poles. By [6, Theorem 3.1]
the extensions σ̃2, . . . , σ̃n of σ2, . . . , σn to X̃ are also regular, and have
in particular no poles along the exceptional divisors E1, . . . , Em, hence
resEi

(σ̃j) = 0 for j > 1 and all i. Choose l ∈ {1, . . . , k} such that El
intersects bDc, which exists since we supposed that (X,D) is not snc at
p ∈ bDc. Let q ∈ El ∩ bDc and η be a logarithmic 1-form on a neighbour-
hood of q such resEl

(η) = 1 and resbDc(η) = 0. By Corollary 3.6 we have
η = α1σ̃1 + . . . + αnσ̃n for some regular functions αj . This implies

0 = resbDc(η) = α1|bDc resbDc(σ̃1) + . . .+ αn|bDc resbDc(σ̃n) = α1|bDc,

and in particular α1(q) = 0. But then we also have

resEl
(η) = α1|El

resEl
(σ̃1) + . . .+ αn|El

resEl
(σ̃n) = α1|El

and in particular resEl
(η)(q) = α1(q) resEl

(σ̃1)(q) = 0, which is a contra-
diction to resEl

(η) = 1. �

5. Pairs with locally free sheaf of logarithmic 1-forms
generated by closed forms.

If we allow slightly more general singularities for the pair (X,D) than
dlt singularities, e.g. if (X,D) is lc, then the statement of Theorem 4.1
is no longer true. Even if the sheaf of logarithmic 1-forms is locally free,
X could have singularities or the irreducible components of bDc could be
non-normal:

Example 5.1. — Let X = A2 and D = {y2 − x3 − x2 = 0} be the nodal
curve, which is not normal. The pair (X,D) is lc and its sheaf of logarithmic
1-forms is locally free.

Example 5.2. — Let X = A2 and D = {y2−x3 = 0} be the cusp. In this
case the pair (X,D) is not lc, D is not normal, but the sheaf of logarithmic
1-forms is locally free.
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Example 5.3. — Let X be a normal toric variety. Let T ⊆ X denote the
open orbit of the (C∗)n-action and set D = X \ T . Then the pair (X,D) is
lc by [15, Proposition 3.7].
Moreover, the sheaves of logarithmic vector fields on (X,D) and logarith-

mic 1-forms can be described rather explicitly (see e.g. [21, Section 3.1]),
and in particular these are free sheaves.

In this section we consider the case of a pair (X,D) with the property
that its sheaf Ω[1]

X (logbDc) of logarithmic 1-forms is locally free and locally
generated by closed 1-forms.
The main result (see Theorem 5.14) is that pairs consisting of a toric

variety and boundary divisor as in Example 5.3 describe the local struc-
ture of all such pairs, i.e. if (X,D) is a pair whose sheaf Ω[1]

X (logbDc) of
logarithmic 1-forms is locally free and locally generated by closed 1-forms,
then (X, bDc) is toroidal. We briefly give an overview over the main steps
towards the proof of Theorem 5.14 presented in this section:
The technical, though very useful Lemma 5.6 is a direct consequence of

a standard formula for the calculation of the exterior derivative of a 1-form
and states that if σ1, . . . , σn form a local basis of logarithmic 1-form on a
pair and ξ1, . . . , ξn form the dual basis of logarithmic vector fields, then
then logarithmic 1-forms are closed if and only if the vector fields pairwise
commute.
In Proposition 5.8 the properties of the irreducible components D1, . . . ,

Dk of bDc of a pair (X,D) whose sheaf Ω[1]
X (logbDc) of logarithmic 1-forms

is locally free and locally generated by closed 1-forms are investigated. It
is proven that in this case the intersection⋂

ij ∈ I
Dij

for any subset I ⊂ {1, . . . , k} is normal. The proof of this statement heavily
relies on the subsequent technical Lemma 5.9 whose proof follows from a
careful study of the residues of the logarithmic 1-forms while at the same
time studying the flows of a dual basis of logarithmic vector fields and it
uses moreover methods from complex analytic geometry such as quotients
of Stein spaces in connection with the study of attractive fixed points as
investigated in [23] and globalisations of complex Stein spaces in the sense
of [12, Section 1.1].
Corollary 5.11 then proves a type of extension theorem to resolutions of

singularities for logarithmic 1-forms in the special setting where the sheaf
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Ω[1]
X (logbDc) of logarithmic 1-forms of a pair (X,D) is locally free and

locally generated by closed 1-forms.
These results with a few more technical remarks and another careful

analysis of the residues of the involved logarithmic 1-forms and properties
of the flows of the dual vector fields are then used to prove Theorem 5.14.

Remark 5.4. — Let X be a normal complex space. Then any closed
1-form σ on the smooth locus of X extends to any resolution of singu-
larities of X by [13, Theorem 1.2]. As a consequence the Lipman–Zariski
conjecture holds for normal complex spaces X whose sheaf Ω[1]

X is locally
free and locally generated by closed 1-forms, see [13, Theorem 1.1].
For the case of a pair (X,D) whose sheaf Ω[1]

X (logbDc) of logarithmic
1-forms is locally free and locally generated by closed 1-forms this directly
implies that X \ bDc is smooth.

Next, we show that the requirement to locally have a basis for Ω[1]
X (log

bDc) consisting of closed forms and the requirement that Ω[1]
X (logbDc) is

locally free and locally generated by closed forms are equivalent.

Lemma 5.5. — Let (X,D) be a pair such that Ω[1]
X (logbDc) is locally

free and locally generated by closed 1-forms. Then locally there exists a
basis of closed 1-forms σ1, . . . , σn spanning Ω[1]

X (logbDc).

Proof. — After possibly shrinking X, let σ1, . . . , σn be a basis of loga-
rithmic 1-forms, and let τ1, . . . , τm be closed 1-forms generating Ω[1]

X (log
bDc). Since σ1, . . . , σn form a basis, there is an m × n-matrix A whose
entries aij are regular functions on X and such that( τ1

...
τm

)
= A

( σ1
...
σn

)
.

Similarly, since τ1, . . . , τm generate Ω[1]
X (logbDc), there is an n×m-matrix

B whose entries are regular functions and such that( σ1
...
σn

)
= B

( τ1
...
τm

)
.

Combining the above, we get( σ1
...
σn

)
= B

( τ1
...
τm

)
= BA

(
σ1
...
σn

)
and because σ1, . . . , σn form a basis we get BA = id. In particular, the ma-
trix B has rank n at each point, and (after possibly reordering) τ1, . . . , τn
form a local basis for Ω[1]

X (logbDc). �
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Lemma 5.6. — Let (X,D) be a pair such that Ω[1]
X (logbDc) is locally

free. Let σ1, . . . , σn be a local basis of the logarithmic 1-forms and let
ξ1, . . . , ξn be a dual local basis of logarithmic vector fields for TX(− logbDc).
Then the 1-forms σ1, . . . σn are closed if and only if ξ1, . . . , ξn pairwise
commute, i.e. [ξi, ξj ] = 0 for all i, j.

Proof. — On the smooth locus of any variety we have

dσ(ξ, ξ′) = ξ(σ(ξ′))− ξ′(σ(ξ))− σ([ξ, ξ′])

for any regular 1-form σ and arbitrary vector fields ξ, ξ′. Therefore, we get

dσi(ξj , ξk) = ξj(σi(ξk))− ξk(σi(ξj))− σi([ξj , ξk])
= ξj(δik)− ξk(δij)− σi([ξj , ξk])
= −σi([ξj , ξk])

on the smooth locus of X \ bDc, and by continuity this holds on all of
X. Since σ1, . . . , σn and ξ1, . . . , ξn are local bases for Ω[1]

X (logbDc) and
TX(− logbDc), we have dσi = 0 for any i if every commutator [ξj , ξk] van-
ishes and vice versa. �

Let us now consider the case of a pair (X,D) with locally free sheaf
Ω[1]
X (logbDc) which is locally generated by closed forms. We start with the

case where bDc is irreducible.

Lemma 5.7. — Let (X,D) be a pair such that Ω[1]
X (logbDc) is locally

free, bDc is irreducible and assume that Ω[1]
X (logbDc) is locally generated

by closed 1-forms. Then X is smooth and bDc is smooth.

Proof. — By Remark 5.4 we already know that X \ bDc is smooth. Let
p ∈ bDc ⊂ X be a singular point of X and shrink X such that Ω[1]

X (logbDc)
is free and generated by the closed forms σ1, . . . , σn. The residue of the
closed forms σj along bDc is constant (cf. Remark 3.14) and thus the residue
of each logarithmic 1-form along bDc is regular. Let q ∈ bDc be a smooth
point of X. Then locally near q, bDc is given by an equation h = 0 for a
regular function h. Moreover, σ = dh

h defines a logarithmic 1-form near q
and resbDc(σ) = 1. Thus, there is j ∈ {1, . . . , n} such that resbDc(σj) 6= 0,
and hence we may assume without loss of generality that resbDc(σ1) = 1
and resbDc(σj) = 0 for j > 1. Then σ2, . . . , σ2 are regular.
Let π : X̃ → X be the functorial log resolution of the pair (X,D) as in

Proposition 3.3, let E be the exceptional divisor and D the strict transform
of D, D̃ = D+E. Since the 1-forms σ2, . . . , σn are regular and closed, they
extend to regular 1-forms σ̃2, . . . , σ̃n on X̃ by [13, Theorem 1.2].
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Furthermore, let ξ1, . . . , ξn be logarithmic vector fields which are dual to
σ1, . . . , σn. They lift to vector fields ξ̃1, . . . , ξ̃n on X̃ (cf. Proposition 3.3)
whose flows stabilise each component of bD̃c = bDc + E as explained in
Remark 3.4. We may thus restrict these vector fields to bDc. Since for any
point q0 ∈ bDc we have(

σ̃i|bDc
)(

ξ̃j |bDc
)

(q0) = σ̃i

(
ξ̃j

)
(q0) = σi(ξj)(π(q0)) = δij

for any i, j > 2, the vector fields ξ̃2|bDc, . . . , ξ̃n|bDc are independent at
each point in bDc. Their flows also stabilise E and thus E ∩ bDc, which
yields a contradiction as n− 2 = dimE ∩ bDc. �

If (X,D) is any pair such that Ω[1]
X (logbDc) is locally free, then it does

not follow in general that the irreducible components of bDc are normal as
illustrated in Example 5.1. However, if we also assume that Ω[1]

X (logbDc) is
locally generated by closed forms such examples cannot occur.

Proposition 5.8. — Let (X,D) be a pair such that Ω[1]
X (logbDc) is

locally free and locally generated by closed forms. Let D1, . . . , Dk be the
irreducible components of bDc. Then for any subset I ⊆ {1, . . . , k} the
intersection ⋂

i∈ I
Di

is normal.

The Proposition 5.8 is a consequence of the following Lemma 5.9, which
describes the local geometry of group actions induced by appropriate log-
arithmic vector fields.

Lemma 5.9. — Let (X,D) be a pair such that Ω[1]
X (logbDc) is locally free

and locally generated by closed forms. Let Dj be an irreducible component
of bDc and p ∈ Dj . Then there is a neighbourhood U of p such that the
following is true:

(1) There is a local basis of closed logarithmic 1-forms σ1, . . . , σn for
Ω[1]
X (logbDc) on U such that resDj

(σ1) = 2πi and resDj
(σk) = 0 for

all k 6= 1.
(2) Let ξ1, . . . , ξn be a basis of logarithmic vector fields on U dual to

σ1, . . . , σn. Then there is an S1-action ϕ : S1×U → U on U which
induces the vector field ξ1, i.e. d

dt

∣∣
t=1 (f ◦ ϕ)(t, x) = ξ1(f)(x) for

any x ∈ U and any holomorphic function f defined near x.
(3) There is an open embedding ι : U ↪→ Y ⊆ CN into a normal Stein

space Y such that there is a holomorphic C∗-action ψ : C∗ × Y →
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Y which is induced by a linear C∗-action on CN and induces the
S1-action ϕ on U , i.e. ψ|S1×U = ϕ, where we identify U and ι(U).

(4) Let A = {y ∈ Y |ψ(t, y) = y for all t ∈ C∗} be the fixed point set
of the C∗-action on Y , and let π : Y → Y//C∗ be the categorical
quotient of Y by the C∗-action ψ. Then A = U ∩ Dj and the
quotient space Y//C∗ is isomorphic to A.

(5) Let B ⊆ U be a closed analytic subset which is S1-invariant, i.e.
S1 · B = ϕ(S1 × B) = B. Then C∗ · B = ψ(C∗ × B) is a closed
subset of Y and (C∗ · B) ∩ U = B. Moreover, if B is normal, then
B ∩A is normal.

Before proving the Lemma 5.9, we show how the above proposition fol-
lows from the lemma.

Proof of Proposition 5.8. — Relabelling the components of bDc if neces-
sary, it is enough to show that ifD1∩ . . .∩Dj−1 is normal, thenD1∩ . . .∩Dj

is normal.
Let p ∈ D1 ∩ . . . ∩ Dj . Let U ⊆ X be an open neighbourhood of p

as described in the preceding lemma, Y ⊆ CN a normal complex Stein
space with a C∗-action ψ : C∗ × Y → Y , and ι : U → Y an embedding
such that the restriction of the vector field ξ induced by the C∗-action ψ
to U is a logarithmic vector field with respect to D and such that there
is a local basis σ1, . . . , σn for Ω[1]

X (logbDc)|U consisting of closed forms
such that ξ, ξ2, . . . , ξn is a dual basis for TX(− logbDc)|U for appropriate
logarithmic vector fields ξ2, . . . , ξn on U .

Again, we identify U with its image ι(U) ⊆ Y and let π : Y → Y//C∗
denote the categorical quotient. As before the quotient Y//C∗ may be iden-
tified with set the of fixed points A = Dj ∩ U of the C∗-action.
Set B = D1 ∩ . . . ∩Dj−1 ∩ U . Then B is a closed analytic subset of U

which is S1-invariant by construction. Moreover, the set B is normal by
assumption. Then by part (5) of the preceding Lemma 5.9 the intersec-
tion B ∩A = B ∩Dj = D1 ∩ . . . ∩Dj−1 ∩Dj is normal. �

Proof of Lemma 5.9. — By Lemma 5.7 we already know that

Dj \

⋃
i6=j

Di


is smooth for each j. Since the question is local, we may assume that
Ω[1]
X (logbDc) is free and spanned by closed forms σ1, . . . , σn. By the same

argument as used in the proof of Lemma 5.7, we may furthermore assume
that resDj

(σ1) = 2πi and resDj
(σi) = 0 for i > 1. This proves part (1).
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In order to prove part (2), let ξ1, . . . , ξn be a basis of logarithmic vector
fields dual to σ1, . . . , σn. Let χ : Ω → X be the flow map of ξ1 (cf. Theo-
rem 3.2), Ω ⊆ C×X. Let q ∈ Dj \ (

⋃
i 6=j Di). Then X and Dj are smooth

near q by Lemma 5.7. We may now define local coordinates on a suitable
neighbourhood of q by setting

z1(x) = exp
(∫ x

q0

σ1

)
and

zi(x) =
∫ x

q0

σi

for i > 1 and a fixed point q0 ∈ X \ bDc near q. Note that the integrals are
independent of the chosen path since σ1, . . . , σn are closed, resDj

(σ1) = 2πi
and σ2, . . . , σn are holomorphic near q. With respect to these coordinates
we have Dj = {z1 = 0} and

σ1 = d log(z1) = dz1

z1
, σ2 = dz2, . . . , σn = dzn,

and the dual vector fields ξ1, . . . , ξn are thus necessarily of the form

ξ1 = z1
∂

∂z1
, ξ2 = ∂

∂z2
, . . . , ξn = ∂

∂zn
.

Therefore ξ1 vanishes along {z1 = 0} and by the identity principle along
all of Dj . Since each point in Dj is a fixed point of the flow χ : Ω → X

of the vector field ξ1, there is an open connected neighbourhood V of the
point p ∈ Dj (as in the statement of the Lemma 5.9) such that the domain
Ω of definition of χ can be chosen such that

((−1, 1)× (−4π, 4π))× V ⊂ Ω ⊆ C×X,

and such that V ∩Dj is connected and contains p and q.
The flow of ξ1 with respect to the local coordinates z1, . . . , zn is given by

χ

(
t,

( z1

...
zn

))
=

 etz1
z2
...
zn

 .

Thus χ(2πi, x) = x for all x near q and by the identity principle we get
χ(2πi, x) = x for all x ∈ V . Let V ′ be a relatively compact open subset of
V such that V ′ ∩Dj is also connected and contains p and such that χ({0}
× (−4π, 4π)× V ′) ⊆ V . Consequently, χ(i(s+ t), x) and χ(is, χ(it, x)) are
defined for all x ∈ V ′, s, t ∈ (−4π, 4π) with s+ t ∈ (−4π, 4π), and we have

χ(i(s+ t), x) = χ(is, χ(it, x)).
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Set U = χ({0} × (−4π, 4π)× V ′). Then U is an open neighbourhood of p,
U ⊆ V , and we can define a map ϕ : S1 × U → U by setting

ϕ(eit, x) = χ(it, x).

This is well-defined since χ(2πi, x) = x for all x ∈ V , χ(i(s + t), x)
= χ(is, χ(it, x)) implies ϕ(S1×U) ⊆ U and that ϕ is a group action. More-
over, this S1-action ϕ induces ξ1 by construction, and thus we proved (2).
By standard arguments (see for example [4, Proposition 2.3]), there is

an open neighbourhood U ′ ⊆ U of p and an embedding ι : U ′ → CN ,
and moreover we can choose N minimal in the sense that N = dimTp(U ′)
= dimTp(X). We may assume ι(p) = 0. Consider now the set

U ′′ =
⋂
s∈S1

ϕ({s} × U ′) ⊆ U ′.

This set U ′′ is open and contains p since S1 is compact and p a fixed
point because p ∈ Dj and ξ1|Dj

= 0. Moreover, U ′′ is S1-invariant, i.e.
ϕ(S1×U ′′) = U ′′. After shrinking, we may thus assume that U = U ′ = U ′′.
Moreover, we will always identify U and ι(U) ⊆ CN in the following and
also denote the inclusion map U = ι(U) ↪→ CN by ι.

Since p is a fixed point of the S1-action ϕ, we get a linear S1-action on
TpX ∼= CN by differentiation, which we denote by ρ : S1 × CN → CN .
Next, we want to average the embedding ι : U ↪→ CN in order to obtain an
embedding U ↪→ CN which is equivariant with respect to the S1-action ϕ
on U and the linear S1-action ρ on CN . Let µ denote the normalised Haar
measure on S1 and set

ι̃ : U → CN , ι̃(u) =
∫
S1
ρ(s)ι

(
ϕ
(
s−1, u

))
dµ(s).

Then ι̃(p) = 0 and ι̃ is equivariant by construction. Identifying TpU ∼= CN
and T0(ι(U)) = T0CN ∼= CN appropriately, we have Dι(p) = idCN and thus

Dι̃(p) =
∫
S1
Dρ(s)Dι(p)Dϕ

(
s−1, p

)
dµ(s)

=
∫
S1
ρ(s) ◦ id ◦ρ

(
s−1) dµ(s) = id

and consequently ι̃ is an immersion at p. Thus we can shrink U and get an
equivariant embedding ι̃ : U ↪→ CN , and identifying U and ι̃(U) ⊆ CN , the
S1-action ϕ on U is induced by a linear S1-action on CN . After possibly
further shrinking U and rescaling, we may assume that U is a closed subset
of the open unit ball BN = {z ∈ CN | 〈z, z〉 < 1} with respect to an
S1-invariant hermitian inner product 〈 , 〉.
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The linear S1-action on CN extends to a linear C∗-action ψ : C∗ × CN
→ CN on CN , and the restriction of the induced vector field d

dt

∣∣
t=1 ψ(t,−)

to U is precisely the vector field ξ1.
The function α : CN → R, z 7→ 〈z, z〉, is S1-invariant and plurisub-

harmonic. Therefore, the open unit ball BN = {z ∈ CN |α(z) < 1} is
orbit-convex (cf. [12, Section 3.4 Proposition]), i.e. for every z ∈ BN and
v ∈ R = iLie(S1) such that exp(v) · z = ψ(exp(v), z) ∈ BN we also have
exp(tv) · z = ψ(exp(tv), z) ∈ BN for all t ∈ [0, 1].
Define now Y = C∗ · U = ψ(C∗ × U) ⊆ CN . Then Y is an irreducible

normal complex space since U is normal and U ⊆ Y is an open subset.
By [12, Section 3.3], the complex space Y is the S1-complexification (in
the sense of [12, Section 1.1]) of the S1-invariant analytic subset U of the
open unit ball BN and consequently, Y is a Stein space by [12, Section 6.6].
This finishes the proof of part (3).
The categorical quotient π : Y → Y//C∗ of Y by the C∗-action ψ exists

and is a complex Stein space by [23, Theorem 5.3]. Furthermore, Y//C∗ is
normal since Y is normal (see [23, Lemma 3.2 and the subsequent remark]).
By definition of Y as Y = C∗ · U = ψ(C∗ × U), the fixed point set

A = {y ∈ Y |ψ(t, y) = y for all t ∈ C∗}

is contained in U . For elements u ∈ U we know that u ∈ A precisely if
ξ1(u) = 0, and thus we get Dj ∩ U ⊆ A.

Let q ∈ Dj ∩U , q /∈
⋃
i6=j Di, such that q is a smooth point of U and Dj .

As argued before, there are local coordinates z1, . . . , zn for U near q such
that locally Dj = {z1 = 0} and ξ1 = z1

∂
∂z1

, and locally near q the set of
fixed points A and Dj coincide.
Moreover, q is an attractive fixed point of the C∗-action, i.e. there is a

neighbourhood W ⊆ Y of q such that for any y ∈ W the closure of the
orbit C∗ · y through y contains a fixed point. Then the set of fixed points
A is a closed irreducible subspace of Y by [23, Theorem 6.2] and hence
A = Dj ∩ U .
Since every fibre of π contains precisely one closed orbit, and the set of

fixed points A is the set of orbits of minimal dimension, π(A) is closed.
Moreover, π(A) is open since there is an attractive fixed point. Therefore,
we get that A is isomorphic to Y//C∗ and every fixed point is an attractive
fixed point, see also [23, Theorem 6.2].
In order to prove part (5) of the lemma, let B ⊆ U be a closed analytic

S1-invariant subset of U . The results of [12, Section 3.3] now directly imply
that C∗·B = ψ(C∗×B) is a closed analytic subset of Y , and (C∗·B)∩U = B.
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In particular, C∗ · B is a complex Stein space, and normal if B is nor-
mal. Let A denote again the set of fixed point of the C∗-action on Y . By
similar arguments as used before, it follows that the categorical quotient
(C∗ ·B)//C∗, which is normal if C∗ ·B is normal, can be identified with the
set of fixed points A′ in C∗ ·B, and we have

A′ = A′ ∩ U = A ∩ (C∗ ·B) ∩ U = A ∩B.

This shows in particular that A ∩B is normal if B is normal. �

Lemma 5.10. — Let (X,D) be a pair. Let σ1, . . . , σk be closed 1-forms
on X \ bDc and σk+1, . . . , σn closed 1-forms on X such that the sheaf
Ω[1]
X |X\bDc is spanned by σ1, . . . , σn. Let ξ1, . . . , ξn be vector fields on

X which are logarithmic with respect to bDc and dual to σ1, . . . , σn (on
X \ bDc), i.e. σi(ξj) = δij . Assume that the vector fields ξ1, . . . , ξk are
induced by S1-actions, i.e. there are actions ψj : S1 × X → X of the Lie
group S1 by holomorphic transformations such that the induced vector field
d
ds

∣∣
s=1 ψj(s, ·) coincides with ξj .
Then the 1-forms σ1, . . . , σk extend to logarithmic 1-forms σ1, . . . , σk ∈

Ω[1]
X (logbDc)(X).

Proof. — Since the pair (X, bDc) is snc outside a set of codimension
at least 2 and Ω[1]

X (logbDc) is reflexive, it is enough to consider the case
where X is smooth and bDc an snc divisor. By Lemma 5.6 the vector fields
ξ1, . . . , ξn pairwise commute since the dual forms σ1, . . . , σn are closed.
Hence, the S1-actions ψj all commute and thus induce an (S1)k-action
ψ : (S1)k ×X → X by setting

ψ

 s1

...
sk

 , p

 = ψ1(s1, ψ2(s2, . . . ψk(sk, p) . . .))

for  s1

...
sk

 ∈ (S1)k, p ∈ X.

Let p0 ∈ bDc. First, we consider the case where k = n and p0 is a fixed
point of the (S1)n-action ψ, or equivalently ξ1(p0) = . . . = ξn(p0) = 0.
Then the action can locally be linearised, i.e. there are local coordinates
z1, . . . , zn near p0 such that p0 = 0 and the action ψ is linear in these
coordinates. Moreover, we may assume that z1, . . . , zn are chosen such

TOME 71 (2021), FASCICULE 1



428 Hannah BERGNER

that there are constants aij for i, j = 1, . . . , n such that

ψ

 s1
...
sn

 ,

 z1
...
zn

 =

 s
a11
1 ·...·san1

n

. . .
s

a1n
1 ·...·sann

n

 ·
 z1

...
zn



=

 s
a11
1 ·...·san1

n ·z1

...
s

a1n
1 ·...·sann

n zn


and then

ξi(z) =
n∑
j=1

aijzj
∂

∂zj
.

Since σ1, . . . , σn and hence ξ1, . . . , ξn are linearly independent on X \
bDc we get that the matrix A = (aij)1 6 i,j6n has to be invertible. We
may thus replace the vector fields ξ1, . . . , ξn (and also σ1, . . . , σn) by an
invertible linear combination of them and then get ξj = zj

∂
∂zj

for all
j = 1, . . . n. This implies σj = 1

zj
dzj , and therefore σ1, . . . , σn are log-

arithmic 1-forms on X.
Let now p0 ∈ bDc be any point and k be arbitrary. Let G = ((S1)k)p0

= {s ∈ (S1)k |ψ(s, p0) = p0} denote the isotropy group in p0. Since G is a
closed subgroup of (S1)k, we have G ∼= (S1)l for some l 6 k, and since (S1)k
is abelian, there is a Lie subgroup H ∼= (S1)k−l of (S1)k such that (S1)k
∼= G×H. After possibly again replacing the vector fields ξ1, . . . , ξk by an
invertible linear combination of them we may assume that the Lie algebra of
G is spanned by ξ1, . . . , ξl and the Lie algebra of H by ξl+1, . . . , ξk. Since
the isotropy group of H in p0 is trivial by construction and the vector
fields ξj all satisfy σi(ξj) = δij on X for i > k, we get that ξl+1, . . . , ξn are
independent at each point in a neighbourhood of p0.

Moreover, ξl+1, . . . , ξn are commuting and thus span an involutive dis-
tribution (of rank n− l) locally near p0. Therefore, by Frobenius’ theorem
there are local coordinates w1, . . . , wn such that

ξl+1 = ∂

∂wl+1
, . . . , ξn = ∂

∂wn

and we may assume also w1(p0) = . . . = wn(p0) = 0. Potentially, we could
have ξi(wj) 6= 0 for some i 6 l and j > l.

We now want to average wl+1, . . . , wn in order to obtain G-invariant
coordinates z1, . . . , zn with ξi(zj) = 0 for all i 6 l and j > l. We define

zj(p) =
∫
G

wj(ψ(s, p))dµ(s)
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for j > l and where µ denotes the normalised Haar measure on G ∼= (S1)l.
Setting z1 = w1, . . . , zl = wl we get new coordinates z1, . . . , zn such that
z1(p0) = . . . = zn(p0) = 0, ξl+1 = ∂

∂zl+1
, . . . , ξn = ∂

∂zn
and such that

zl+1, . . . , zn are G-invariant. Since the vector fields ξ1, . . . , ξl are induced
by the G-action and zl+1, . . . , zn are G-invariant, we now get ξi(zj) = 0
for all i 6 l and j > l.
Moreover, the subset S = {zl+1 = . . . = zn = 0} is G-invariant, a

smooth submanifold and parametrised by the coordinates z1, . . . , zl. We
have p0 ∈ S by construction and may now apply the argument from the
beginning of the proof to S and the G ∼= (S1)l-action on S. This then
yields that (after possibly changing the coordinates z1, . . . , zl) the vector
fields ξ1, . . . , ξl locally have the form ξi = zi

∂
∂zi

, i = 1, . . . , l, on S. Since
ξi(zj) = 0 for all i 6 l and j > l when the ξi’s are considered as vector
fields on X, we also get that locally on X with respect to the coordinates
z1, . . . , zn the vector fields ξ1, . . . , ξl have the form ξi = zi

∂
∂zi

, i = 1, . . . , l.
This implies σi = 1

zi
dzi, i = 1, . . . l for the dual 1-forms and hence yields

the desired result. �

Corollary 5.11. — Let (X,D) be a pair such that Ω[1]
X (logbDc) is

locally free and locally generated by closed forms. Let π : X̃ → X be any
log resolution of the pair (X,D), let E be the exceptional divisor of π and
D the strict transform of D.
Then every logarithmic 1-from on (X,D) extends to a logarithmic 1-from

on (X̃, D̃), where D̃ = E +D.

Proof. — As explained in [9, Lemma 2.13] (and keeping in mind their
notation/definition as in [9, Definition 2.8]), the statement of this Corol-
lory 5.11 holds for one specific log resolution of the pair (X,D) if and only
if it holds for all log resulations of the pair. Therefore, we will assume in
the following that π : X̃ → X is the functionral resolution of the pair as
needed for Proposition 3.3.
Let D1, . . . , Dk denote the irreducible components of bDc, bDc = D1 +

. . .+Dk. Since the statement is local, it is enough to prove the statement
for a neighbourhood of a point p ∈ D1 ∩ . . . ∩ Dk. By Lemma 5.5 there
exist closed logarithmic 1-forms σ1, . . . , σn which span Ω[1]

X (logbDc) in a
neighbourhood of p.
Let

A = (resDi
(σj))1 6 i6 k,1 6 j6n

be the k × n-matrix whose entry at the position (i, j) is the residue of
σj along the divisor Di. Note that by Remark 3.14 all entries of A are
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complex numbers. After relabelling the indices of the Di’s and passing to
a linear combination of σ1, . . . , σn we may assume that there is l 6 n

such that resDi(σi) = 2πi and resDi(σj) = 0 for all i 6 l and all j 6= i,
and resDi

(σj) = 0 for all j > l, i.e. σl+1, . . . , σn are regular. By [13,
Theorem 1.2] we already know that σl+1, . . . , σn extend to regular 1-forms
on X̃.
Let ξ1, . . . , ξn be logarithmic vector fields dual to σ1, . . . , σn. For any

i 6 l we have resDi
(σi) = 2πi and resDi

(σj) = 0 for j 6= i, and thus by
Lemma 5.9(2) we get that for i 6 l there are open neighbourhoods Ui of p
and S1-actions ϕi : S1 × Ui → Ui which induce ξi.
Let ξ̃1, . . . , ξ̃n denote the lifts of ξ1, . . . , ξn to X̃ (cf. Proposition 3.3).

The S1-actions ϕi also lift to X̃ and induce the vector fields ξ̃1, . . . , ξ̃l.
Moreover, the vector fields ξ̃l+1, . . . , ξ̃n are independent at each point since
σl+1, . . . , σn extend to regular 1-forms on X̃. An application of Lemma 5.10
now yields that σ1, . . . , σl extend to logarithmic 1-forms on X̃. �

Lemma 5.12. — Let (X,D) be a pair such that Ω[1]
X (logbDc) is free and

generated by closed logarithmic 1-forms σ1, . . . , σn such that σl+1, . . . , σn
are regular. Let D1, . . . , Dk be the irreducible components of bDc.

Then σl+1, . . . , σn can be restricted to any intersection Di1 ∩ . . . ∩Dij

for i1, . . . , ij ∈ {1, . . . , k}, i.e. there are regular 1-forms ηl+1, . . . , ηn on
Di1 ∩ . . . ∩Dij such that ι∗(σi) = ηi if ι : Di1 ∩ . . . ∩Dij ↪→ X denotes
the inclusion map.
Moreover, we have dim(D1 ∩ . . . ∩Dk) > n− l if D1 ∩ . . . ∩Dk 6= ∅, and

D1 ∩ . . . ∩Dk is smooth.

Proof. — Without loss of generality, let Di1 ∩ . . . ∩ Dij = D1 ∩ . . . ∩
Dj , and suppose D1 ∩ . . . ∩ Dj 6= ∅. Recall that by Proposition 5.8 this
intersection D1 ∩ . . . ∩Dj is normal.
Let ξ1, . . . , ξn be a basis of logarithmic vector fields dual to σ1, . . . , σn.

Since the flows of ξ1, . . . , ξn stabilise each irreducible component of bDc,
the vector fields ξ1, . . . , ξn induce vector fields on D1 ∩ . . . ∩ Dj for any
j 6 k.
Let π : X̃ → X be a log resolution of (X,D) with exceptional divisor

E and let Di be the strict transform of Di. By Corollary 5.11, σ1, . . . , σn
extend to logarithmic 1-forms σ̃1, . . . , σ̃n on X̃.

We first want to restrict to D1. We may assume that resD1(σ1) = 1 and
resD1(σi) = 0 for i > 1. Then also resD1

(σ̃i) = 0 for i > 1 and σ̃i is thus reg-
ular alongD1\(E∪D2∪ . . .∪Dk). Therefore the restriction of σ̃2, . . . , σ̃n to
D1 yields logarithmic 1-forms with respect to (E+D2 + . . .+Dk)|D1

. Since
D1 is normal, D1 is isomorphic to an open subset of D1 outside a closed
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subset of codimension at least 2. Consequently, the logarithmic 1-forms
σ̃2|D1

, . . . , σ̃n|D1
on the strict transform D1 induce logarithmic 1-forms

on (D1, (D2 + . . .+Dk)|D1) since Ω[1]
D1

(log(D2 + . . .+Dk)|D1) is reflexive,
and these give the desired restrictions σ2|D1 , . . . , σn|D1 of σ2, . . . , σn to
D1. Moreover, the restricted vector fields ξ2|D1 , . . . , ξn|D1 are dual to these
and hence σ2|D1 , . . . , σn|D1 yield a basis of logarithmic 1-forms on D1. The
vector fields ξ2|D1 , . . . , ξn|D1 commute and σ2|D1 , . . . , σn|D1 are closed.

If k > 1 and if there is Di, say D2 = Di, with codimD1(D1 ∩ Di) = 1,
we apply the procedure again. It might now happen that Di ∩ (D1 ∩D2) =
D1 ∩ D2 for some i > 2. Assume (D1 ∩ D2) ∩ . . . ∩ Di = D1 ∩ D2 and
(D1 ∩D2)∩Di′ ( D1 ∩D2 for all i′ > i. In this case, σ3, . . . , σn restrict to
logarithmic 1-forms of the pair (D1∩ . . . ∩Di, (Di+1 + . . .+Dk)|D1∩ ...∩Di

),
and ξ3, . . . , ξn induce dual logarithmic vector fields on D1 ∩ . . . ∩Di.
We continue then iteratively. At each step either the boundary (Di+1 +

. . . + Dk)|D1∩ ...∩Di′ of the pair (D′, D0) = (D1 ∩ . . . ∩Di, (Di+1 + . . . +
Dk)|D1∩ ...∩Di

) is empty or otherwise there is i′ > i such that Di′ ∩ (D1 ∩
. . . ∩Di) has codimension 1 in D1 ∩ . . . ∩Di as explained in the following:
By construction we have Di′ ∩ (D1 ∩ . . . ∩ Di) 6= D′ = D1 ∩ . . . ∩ Di

and thus the codimension is at least 1. On D′ = D1 ∩ . . . ∩ Di we have
the restricted logarithmic 1-forms σr|D′ , . . . , σn|D′ and dual logarithmic
vector fields ξr|D′ , . . . , ξn|D′ , where r 6 i + 1, r − 1 = codimX(D′). If
the codimension of Di′ ∩ D′ in D′ is at least 2 for all i′ > i, then the
logarithmic 1-forms σr|D′ , . . . , σn|D′ are regular since D′ is normal. But
this is in contradiction to the fact that the vector fields ξr|D′ , . . . , ξn|D′
stabilise each Di′ .
This procedure eventually gives rise to regular 1-forms σr|D1∩ ...∩Dk

, . . . ,

σn|D1 ∩ ...∩Dk
on D1 ∩ . . . ∩Dk, r 6 l+ 1 and also their dual vector fields

ξr|D1 ∩ ...∩Dk
, . . . ξn|D1 ∩ ...∩Dk

. Hence, we have dim(D1 ∩ . . . ∩ Dk) =
n− r+ 1 > n− (l+ 1)− 1 = n− l. Furthermore, D1 ∩ . . . ∩ Dk is smooth
by [13, Theorem 1.1] since σr|D1 ∩ ...∩Dk

, . . . , σn|D1 ∩ ...∩Dk
are a basis for

Ω[1]
D1 ∩ ...∩Dk

and each σj |D1 ∩ ...∩Dk
is closed. �

Remark 5.13. — In the setting of the previous Lemma 5.12 and its proof,
we also get that r = rk(A) + 1 and hence

dim(D1 ∩ . . . ∩Dk) = n− r + 1 = n− rk(A),

where
A = (resDi

(σj))1 6 i6 k, 1 6 j6n

is the matrix of residues as before.
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Theorem 5.14. — Let (X,D) be a pair such that Ω[1]
X (logbDc) is locally

free and locally generated by closed logarithmic 1-forms. Then (X, bDc)
is toroidal, i.e. for any point there is a neighbourhood U ⊆ X which is
isomorphic to an open subset of a toric variety Y with open (C∗)n-orbit T ,
and the divisor bDc corresponds to the complement Y \ T of T in Y .

Proof. — LetD1, . . . , Dk denote the irreducible components of bDc, and
let p ∈ X. Since the statement of the theorem is local, we may assume
that Ω[1]

X (logbDc) is free and generated by the closed logarithmic 1-forms
σ1, . . . , σn, and that p ∈ D1 ∩ . . . ∩Dk.
We first consider the case where D1 ∩ . . . ∩Dk = {p}. Let

A = (resDi
(σj))1 6 i6 k, 1 6 j6n

denote again the residue matrix of the forms σ1, . . . , σn. Since we assumed
dim(D1∩ . . . ∩Dk) = 0, we have rk(A) = n by Remark 5.13. In particular,
there are at least n = dimX irreducible components of bDc containing the
point p, and without loss of generality we may assume that A is of the form

A = (resDi
(σj))1 6 i6 k, 1 6 j6n =


2πi

. . .
2πi

B

 ,

where B is an arbitrary (k − n) × n-matrix. Let ξ1, . . . , ξn be a basis of
logarithmic vector fields dual to σ1, . . . , σn. By Lemma 5.9(2) there is
an open neighbourhood Uj of p for any j = 1, . . . , n and an S1-action
ϕj : S1 ×Uj → Uj which induces the vector field ξj on Uj and such that p
is a fixed point of this S1-action.
There is a neighbourhood U ′ of p such that ϕ1, . . . , ϕn define a map

ϕ : (S1)n × U ′ → X by setting

ϕ

 s1

...
sn

 , q

 = ϕ1(s1, ϕ2(s2, . . . ϕn(sn, q) . . .)

for  s1

...
sn

 ∈ (S1)n and q ∈ U ′.
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Moreover, the vector fields ξ1, . . . , ξn all commute by Lemma 5.6 and
hence the S1-actions ϕ1, . . . , ϕn all commute. Thus, there is an open neigh-
bourhood U of p such that ϕ : (S1)n × U → U is an (S1)n-action; set e.g.

U =
⋂

t∈ (S1)n

ϕ({t} × U ′)

and note that U is open since (S1)n is compact and U contains p since
ϕ((S1)n × {p}) = {p}.

By the same arguments as used in the proof of Lemma 5.9(3), we can
shrink U such that there is a normal Stein space Y ⊆ CN with a holo-
morphic (C∗)n-action ψ : (C∗)n × Y → Y which is induced by a linear
(C∗)n-action on CN and such that there is an open equivariant embedding
ι : U ↪→ Y with Y = ψ((C∗)n × ι(U)), and we identify again U and ι(U).
Moreover, we may assume that U is a closed analytic subset of the open
unit ball BN = {z ∈ CN | 〈z, z〉 < 1} with respect to an (S1)n-invariant
hermitian inner product 〈 , 〉.
Let q ∈ U \bDc and consider the orbit (C∗)n · q = ψ((C∗)n×{q}), which

is open and dense in Y . The unique closed orbit in its closure (C∗)n · q in
the ambient space CN is 0. Thus every orbit (C∗)n · x with x ∈ (C∗)n · q
contains 0 in its closure and there is x′ ∈ BN with (C∗)n · x = (C∗)n · x′.
Since U ⊂ BN is analytic and (S1)n-invariant and BN is orbit-convex, we
have ((C∗)n · U) ∩BN = U (cf. [12, Section 3.3 Corollary]) and then

((C∗)n · q) ∩BN ⊂ ((C∗)n · U) ∩BN = U.

This implies x′ ∈ U and hence (C∗)n · q = Y . Consequently, Y is an affine
toric variety.
Now, let dim(D1∩ . . . ∩Dk) be arbitrary. The intersection D1∩ . . . ∩Dk

is smooth by Lemma 5.12 and we have dim(D1 ∩ . . . ∩ Dk) = n − rk(A)
by Remark 5.13. Thus we may assume that σl+1, . . . , σn, where l = rk(A),
are regular 1-forms and resDi

(σj) = 2πiδij for i, j 6 l. Let p ∈ D1 ∩ . . . ∩
Dk and let ξ1, . . . , ξn denote again the logarithmic vector fields dual to
σ1, . . . , σn. Applying Lemma 5.9(2) to the vector fields ξ1, . . . , ξl, we get
commuting S1-actions ϕj : S1 × Uj → Uj on some neighbourhood Uj of
p, j = 1, . . . , l, which induce the vector fields ξj . This gives now rise to
an (S1)l-action ϕ : (S1)l × U → U on some neighbourhood U of p. As
before (cf. Lemma 5.9(3)) we may globalise the corresponding local(C∗)l-
action and get that there are a normal complex Stein space Y ⊆ CN with a
linear (C∗)l-action ψ : (C∗)l × Y → Y and an equivariant open embedding
ι : U ↪→ Y . Identifying U and its image ι(U) we have that the set A of
fixed points of the (C∗)l-action ψ in Y is precisely A = U ∩ (D1∩ . . . ∩Dk)
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and moreover A is isomorphic to Y//(C∗)l if π : Y → Y//(C∗)l denotes the
categorical quotient of Y by the action ψ. The vector fields ξl+1, . . . , ξn
induce commuting and independent vector fields onD1∩ . . . ∩Dk, and since
they also commute with ξ1, . . . , ξl, they induce vector fields ξ̂l+1, . . . , ξ̂n
on the quotient Y//(C∗)l with ξj ◦ π∗ = π∗ ◦ ξ̂j for j = l + 1, . . . , n. The
fibre π−1(p) of p ∈ U ∩ D1 ∩ . . . ∩ Dk

∼= Y//(C∗)l is l-dimensional and
the flows of ξ1, . . . , ξl stabilise π−1(p) by construction such that ξ1, . . . , ξl
induce commuting vector fields on π−1(p). The flows of ξl+1, . . . , ξn and
ξ̂l+1, . . . , ξ̂n now induce a local isomorphism χ : S×X ′ → X onto its image,
where S is an open neighbourhood of p in U ∩D1 ∩ . . . ∩Dk

∼= Y//(C∗)l
and X ′ an open neighbourhood of p in π−1(p). Since U ∩ D1 ∩ . . . ∩ Dk

is smooth, S is also smooth and the divisors D1, . . . , Dk induce divisors
D1|X′ , . . . , Dk|X′ on X ′. Moreover, we may restrict σ1, . . . , σl to X ′, they
are dual to ξ1|X′ , . . . , ξl|X′ and thus give rise to a basis of closed logarithmic
1-forms σ1|X′ , . . . , σl|X′ of ΩX′(logbDc|X′). The intersection of the divisors
Dj |X′ is now D1|X′ ∩ . . . ∩Dk|X′ = {p} and applying the above arguments
to X ′ we conclude that X ′ is toroidal. Consequently, S × X ′, which is
isormorphic to a neighbourhood of p in X, is toroidal. �

6. Lc pairs with (locally) free sheaf of logarithmic 1-forms

In this section the case of an lc pair (X,D) with (locally) free sheaf of
logarithmic 1-forms is considered.

As already noted in Examples 5.1 and 5.3 we cannot expect that X
is smooth in this case. However, the singularities in these examples are
contained in the support of bDc, and this is true in general. Since the
Lipman–Zariski conjecture holds for lc pairs (see [6, Corollary 1.3] or [2,
Theorem 1.1]), we have the following:

Remark 6.1. — If (X,D) is lc and Ω[1]
X (logbDc) is locally free, then

X \ bDc is smooth since the sheaf of 1-forms and the sheaf of logarith-
mic 1-forms agree on X \ bDc.

In the following, we first consider the case of an lc pair (X,D) where X is
projective and the sheaf of logarithmic 1-forms is free. Then we deal with
the case of a (not necessarily projective) lc pair (X,D) with locally free
sheaf of logarithmic 1-forms. The goal is to prove that (X,D) is toroidal
by reducing to the case where the sheaf of logarithmic 1-forms is spanned
by closed forms as in the previous section.
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6.1. Lc pairs with free sheaf of logarithmic 1-forms

Let us consider the case of an lc pair (X,D) such that its sheaf of loga-
rithmic 1-forms is free and assume additionally that X is projective.
In the case of a smooth compact Kähler (or weakly Kähler) manifold X

and an snc divisor D, Winkelmann described precisely under which condi-
tions the logarithmic tangent bundle is trivial. In particular, the following
result for smooth projective varieties is obtained.

Theorem 6.2 ([24, Corollary 1]). — Let X be a smooth projective va-
riety and D a reduced snc divisor on X. Then TX(− logD) is a free sheaf
if and only if there is a semi-abelian variety T acting on X with X \ D as
an open orbit. �

Recall that a semi-abelian variety is an algebraic group which is a quo-
tient of (C∗)n by a lattice Γ which contains a C-basis of Cn.

As a consequence of this result, we get an explicit description of projective
lc pairs (X,D) with free sheaf of logarithmic 1-forms.

Corollary 6.3. — Let (X,D) be an lc pair such that X is projective.
Then the logarithmic tangent sheaf TX(− logbDc) is free if and only of
there is a semi-abelian variety T which acts on X with X \ bDc as an open
orbit.

Proof. — Let π : X̃ → X be a resolution of the pair (X,D) as in Propo-
sition 3.3 and denote D̃ = E + D, where E is the exceptional divisor and
D the strict transform of D. Then by Proposition 3.3 and Corollary 3.6,
the sheaf TX(− logbDc) is free if and only if TX̃(− logbD̃c) is free.
Consequently, if TX(− logbDc) is free, then Theorem 6.2 implies that

there is a semi-abelian variety T acting on X̃ with X̃ \ bD̃c as an open
orbit. Each component of bD̃c and thus in particular the exceptional di-
visors are T -invariant. This T -action on X̃ hence induces n commuting
vector fields ξ̃1, . . . , ξ̃n on X̃ which are logarithmic with respect to bD̃c
and such that their flow maps give rise to the action of T . By Remark 3.5
these vector fields induce vector fields ξ1, . . . , ξn on X which are loga-
rithmic with respect to bDc and which satisfy ξ̃j ◦ π∗ = π∗ ◦ ξj . Since π
induces an isomorphism X̃ \ π−1(Z) → X \ Z outside the singular locus
Z = (X,D)sing of the pair (X,D), the identity principles implies that the
vector fields ξ1, . . . , ξn pairwise commute on all of X. Moreover, since X is
projective the flows of ξ1, . . . , ξn are all global and their combination thus
gives rise to a Cn-action on X. Using again that π induces an isomorphism
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X̃\π−1(Z)→ X\Z outside the singular locus Z = (X,D)sing and the iden-
tity principle, we get that this Cn-action actually descends to a T -action on
X. Moreover, by construction it follows that π is equivariant with respect
to the T -actions on X̃ and X. Since X̃ \ bD̃c and X \ bDc are isomorphic
via π, X \ bDc has to be an open orbit of T .
Conversely, if there is an action of a semi-abelian variety T on X with

X\bDc as an open orbit, then this action lifts to X̃ by [16, Proposition 3.9.1]
with X̃ \ bD̃c as an open orbit. Consequently, TX̃(− logbD̃c) and hence
TX(− logbDc) are free. �

6.2. Lc pairs with locally free sheaf of logarithmic 1-forms

We now consider the case of an arbitrary lc pair (X,D) whose logarithmic
tangent sheaf TX(− logbDc) is locally free.
First, we deal with the isolated case in the sense that there is a point

at which every logarithmic vector field vanishes. Then the general case
is considered and reduced to isolated case by an inductive argument via
hyperplane sections.

Lemma 6.4. — Let (X,D) be an lc pair with locally free tangent sheaf
TX(− logbDc). Suppose that there is p ∈ X such that ξ(p) = 0 for all
logarithmic vector fields ξ defined on some neighbourhood of p.

Then there exists a log resolution π : X̃ → X of the pair (X,D) with
exceptional divisor E with the following properties:

(1) Each irreducible component of π−1(p) is a toric variety.
(2) There is a point q ∈ π−1(p) such that ξ(q) = 0 for any logarithmic

vector field ξ ∈ TX̃(− logbD̃c)(U) defined on some open neighbour-
hood U ⊆ X̃ of q, where D̃ = D + E for the strict transform D

of D.

Proof of Lemma 6.4(1). — Shrink X such TX(− logbDc) is free and let
σ1, . . . , σn denote a basis of logarithmic 1-forms and ξ1, . . . , ξn the dual
logarithmic vector fields.
Let π′ : X ′ → X be the blow-up of X in p, and let D′ be the sum of the

exceptional divisor Ep and the strict transform of D. Since each vector field
ξj fixes the the point p, these vector fields lift to logarithmic vector fields
ξ′1, . . . , ξ

′
n of the pair (X ′, D′), which can be proven by the same argument

as used for Proposition 3.3.
Let π̃ : X̃ → X ′ be the functorial log resolution of the pair (X ′, D′),

and let ξ̃1, . . . , ξ̃n denote the lifts of ξ′1, . . . , ξ′n to X̃. The composition
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π = π′ ◦ π̃ : X̃ → X is also a log resolution of (X,D), and thus σ1, . . . , σn
extend to logarithmic 1-forms σ̃1, . . . , σ̃n on X̃.

Let E denote the exceptional divisor of π, D the strict transform of D,
and set D̃ = E + D. Since π−1(p) = π̃−1(Ep), the fibre π−1(p) has pure
codimension 1, and each irreducible component of π−1(p) is a component of
the exceptional divisor E. Furthermore, the flows of ξ̃1, . . . , ξ̃n all stabilise
π−1(p) since ξ1, . . . , ξn vanish at p and hence ξ̃1, . . . , ξ̃n induce vector fields
on π−1(p). Let E1 be an irreducible component of π−1(p) and let q ∈ E1
be a point which is not contained in any other irreducible component of E
and also not contained in bD̃c. Since E1 ⊆ π−1(p) is projective, we may
assume that the residues of σ̃1, . . . , σ̃n satisfy

resE1(σ̃1) = 1

and

resE1(σ̃j) = 0

if j > 1.
Therefore σ̃2, . . . , σ̃n induce logarithmic 1-forms on E1 with respect to

the divisor B = (E2 + . . . + Ek + D)|E1 if E1, . . . , Ek denote the irre-
ducible components of E. The restrictions of ξ̃2, . . . , ξ̃n to E1 are dual to
these forms. Therefore, the sheaves Ω[1]

E1
(logbBc) and TE1(− logbBc) are

free. By [24, Corollary 1] there is a semi-abelian variety T acting on E1
with E1 \ bBc as an open orbit, where T admits a short exact sequence of
algebraic groups

0→ (C∗)d → T → Alb(E1)→ 0
for some d and where Alb(E1) denotes the Albanese variety of E1. Further-
more, the Lie algebra of T is spanned by the vector fields ξ̃2|E1 , . . . , ξ̃n|E1 .
The flow of each vector field ξ̃j |E1 is global, i.e. we can take C×E1 as its

domain of definition, and for every relatively compact open subset U ⊂ C,
there is a neighbourhood V ⊂ X̃ of E1 such that the flow ϕj of ξ̃j is defined
on U × V , ϕj : U × V → X̃, (t, x) 7→ ϕj(t, x) = ϕjt (x).
Let L = O(−E1) denote the line bundle associated with the divisor E1.

We have ϕjt (E1) = E1 and thus get (ϕjt )∗(L|W ) = L|V for any t ∈ C
and appropriate neighbourhoods V,W of E1 in X̃ with ϕjt : V → W .
Consequently, we have (ϕjt )∗(L|E1) = L|E1 for all t ∈ C and hence g∗(L|E1)
= L|E1 for any g ∈ T .
By a version of the Negativity Lemma as in [5, Proposition 1.6], the line

bundle L|E1 is big. Let (L|E1)⊗r be a multiple of the line bundle L|E1 such
that there is an effective divisor F in E1 with (L|E1)⊗r = O(F ). By [20,
Proposition 5.5.28] the connected component St(F )0 of the stabiliser St(F )
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is contained in the maximal linear subgroup (C∗)d of T . Moreover, the con-
nected components of St((L|E1)⊗r) = {t ∈ T | t∗((L|E1)⊗r) = (L|E1)⊗r}
and St(F ) coincide by [20, Lemma 5.5.8]. Therefore, the stabiliser

T = St(L|E1)0 = St(L|E1) = {t ∈ T | t∗(L|E1) = L|E1} ⊆ St
(
L|E1)⊗r

)0

of L|E1 is contained in the maximal connected linear subgroup (C∗)d of T .
Thus we conclude that T = (C∗)d with d = n− 1, Alb(E1) = 0, and E1 is
a toric variety. �

Proof of Lemma 6.4(2). — Let E1 be any irreducible component of
π−1(p). Since E1 is smooth and projective, the action of the torus
T = (C∗)n−1 on E1 has a fixed point q ∈ E1. The Lie algebra of T is
spanned by ξ̃2|E1 , . . . , ξ̃n|E1 and thus we have ξ̃j(q) = 0 for all j > 1.
By construction only σ̃1 has a pole along E1 and therefore we necessarily
have ξ̃1|E1 = 0 for the dual vector field. Moreover, ξ̃1, . . . , ξ̃n span the sheaf
TX̃(− logbD̃c) on some neighbourhood of E1 and the statement follows. �

Proposition 6.5. — Let (X,D) be an lc pair whose logarithmic tan-
gent sheaf TX(− logbDc) is locally free. Suppose that there is p ∈ X such
that ξ(p) = 0 for all logarithmic vector fields ξ defined on some neighbour-
hood of p.
Then there exist closed logarithmic 1-forms σ1, . . . , σn which span the

sheaf Ω[1]
X (logbDc) in a neighbourhood of p. In particular, the pair (X,D)

is toroidal in a neighbourhood of p by Theorem 5.14.

The proof consists of two main steps. First, we consider a local basis of
logarithmic vector fields ξ1, . . . , ξn, and consider their lifts ξ̃1, . . . , ξ̃n to a
log resolution (X̃, D̃). The statement of the preceding lemma is then used
to study their behaviour near a point q where ξ̃1(q) = . . . = ξ̃n(q) = 0 and
a version of Poincaré’s theorem (see e.g. [1, p. 190]) on the normal form
of holomorphic vector fields allows us to modify ξ1, . . . , ξn in such a way
that these vector fields are induced by local C∗-actions, or equivalently by
S1-actions, on a neighbourhood of p.
Then, averaging by an appropriate S1-action yields commuting vector

fields η1, . . . , ηn, which can be shown to still span the sheaf of logarithmic
vector fields locally near p. The logarithmic 1-forms dual to η1, . . . , ηn
are then closed by Lemma 5.6 and yield the desired local basis of closed
logarithmic 1-forms.

Proof. — Let π : X̃ → X be a log resolution of the pair (X,D) as in
Lemma 6.4. As before, let E denote the exceptional divisor and D the strict
transform of D, D̃ = E +D.
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Since the question is local we may assume again that TX(− logbDc) and
Ω[1]
X (logbDc) are free. Let ξ1, . . . , ξn be a basis of logarithmic vector fields

and let ξ̃1, . . . , ξ̃n denote their lifts to X̃. By Lemma 6.4, there is a point
q ∈ π−1(p) with ξ̃1(q) = . . . = ξ̃n(q) = 0. Since ξ̃1, . . . , ξ̃n form a basis for
TX̃(− logbD̃c), n irreducible components D̃i1 , . . . , D̃in of bD̃c have to meet
in q. There exist local coordinates z1, . . . , zn near q such that q = 0 and
locally Dil = {zl = 0} for l = 1, . . . , n, and there are local holomorphic
functions akl(z) such that locally ξ̃1

...
ξ̃n

 = A(z)


z1

∂
∂z1
...

zn
∂

∂zn


for A(z) = (akl(z))1 6 k,l6n.
We now want to prescribe the linear part of the vector field ξ̃1 at the

point q such that ξ1 is conjugated to its linear part and its flow induces
a local C∗-action. For this, we substitute ξ1, . . . , ξn by a invertible linear
combination of them such that A(0) is of the form

A(0) =


n+ 1 n+ 2 · · · 2n

0
... A0
0


where A0 is an invertible (n− 1)× (n− 1)-matrix.
The linear part of ξ̃1 at q is then given by

(n+ 1)z1
∂

∂z1
+ · · ·+ 2nzn

∂

∂zn
,

and the important point is that its n-tuple of eigenvalues (n + 1, . . . , 2n)
is non-resonant (in the sense of [1, Section 22]) and the convex hull of the
eigenvalues does not contain 0. Hence we may apply Poincaré’s theorem (see
e.g. [1, p. 190]) and get that there is a neighbourhood of q on which ξ̃1 is
biholomorphically conjugated to its linear part (n+1)z1

∂
∂z1

+· · ·+2nzn ∂
∂zn

.

Moreover, the eigenvalues are all different, which we will need later on.
In a neighbourhood of q the flow ϕ̃1 of ξ̃1 is given byt,

 w1

...
wn

 7→
 e(n+1)tw1

...
e2ntwn


in appropriate local coordinates w1, . . . , wn. Since π−1(p) is compact, the
vector field ξ̃1 induces a global flow on each irreducible component of
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π−1(p), and there is an open connected neighbourhood V ⊆ X of p such
that ϕ̃1 can be defined on U × π−1(V ), where

U = {t ∈ C | |Re(t)| < 1, | Im(t)| < 4π} ,

and the flow ϕ1 of ξ1 is defined on U × V , and we have a commutative
diagram:

U × π−1(V )

id×π
��

ϕ̃1
// X̃

π

��
U × V

ϕ1
// X

Locally near q we have ϕ̃1(2πi, w) = w and by the identity principle we
thus get ϕ̃1(2πi, y) = y for any y ∈ π−1(V ) and moreover ϕ1(2πi, x) = x

for any x ∈ V . Hence the flow map ϕ1 induces a local C∗-action and
we may define an S1-action χ1 : S1 × V → V on V (after possibly
shrinking V ) by setting χ1(eis, x) = ϕ1(is, x) (as explained in the proof
of Lemma 5.9) which induces ξ1. Moreover, ϕ̃1 gives rise to an S1-action
χ̃1 : S1 × π−1(V )→ π−1(V ) which induces the vector field ξ̃1.
We now want to use the S1-action χ1 : U × V → V to average the other

vector fields ξj and obtain commuting vector fields. For this purpose we
define vector fields

ξ′j =
∫
S1

(χ1
s)∗(ξj) dµ(s)

for j > 2, where µ denotes the unique normalised Haar measure on S1, we
write χ1

s for χ1(s, ·), and the push-forward (χ1
s)∗(ξj) of the vector field ξj

is as usually defined by(
χ1
s

)
∗ (ξj)(f)(x) = ξj

(
f ◦ χ1

s

) (
χ1
s−1(x)

)
for any x ∈ V and local holomorphic function f . The vector fields ξ′j are
all logarithmic with respect to D since the S1-action χ1 stabilises each
irreducible component Di of bDc. Moreover, for any t ∈ S1 we have(

χ1
t

)
∗

(
ξ′j
)

=
(
χ1
t

)
∗

∫
S1

(
χ1
s

)
∗ (ξj) dµ(s) =

∫
S1

(
χ1
t

)
∗

(
χ1
s

)
∗ (ξj) dµ(s)

=
∫
S1

(
χ1
st

)
∗ (ξj) dµ(s) = ξ′j

due to the invariance of the Haar measure. This implies (ϕ1
t )∗(ξ′j) = ξ′j for

any t ∈ C in a neighbourhood of 0. Consequently, the vector fields ξ1 and
ξ′j commute: [

ξ1, ξ
′
j

]
= − d

dt

∣∣∣∣
t=0

(
ϕ1
t

)
∗ (ξ′j) = − d

dt

∣∣∣∣
t=0

ξ′j = 0
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Next, we prove that ξ′1, . . . , ξ′n (where we set ξ′1 = ξ1) still form a lo-
cal basis for the logarithmic tangent sheaf TX(− logbDc) near p and that
ξ′1, . . . , ξ

′
n are pairwise commuting. In order to do so, we consider the lifts

of ξ′j to π−1(V ), which are given by

ξ̃′j =
∫
S1

(
χ̃1
s

)
∗

(
ξ̃j

)
dµ(s),

and analyse them near the point q. Recall that in appropriate coordinates
w1, . . . , wn with wj(q) = 0 we have ξ̃′1 = ξ̃1 = (n+1)w1

∂
∂w1

+. . .+2nwn ∂
∂wn

near q. Let bjkl(w) be holomorphic functions defined locally near q = 0 such
that

ξ̃j =
n∑

k,l=1
bjkl(w)wk

∂

∂wl

for j > 2.
The definition of the S1-action χ̃1

s via the flow map ϕ̃1 of ξ1 yields that
with respect to the local coordinates w1, . . . , wn the map χ̃1

s is given by

χ̃1
s(w) = χ̃1

s

 w1

...
wn

 =

 s(n+1)w1
...

s2nwn


Therefore, we have(

(χ̃1
s)∗ξ̃j

)
(wl) = ξ̃j

(
wl ◦ χ̃1

s

)
◦ χ1

s−1 = ξ̃j
(
sn+lwl

)
◦ χ1

s−1

=

 n∑
k=1

bjkl

 s−(n+1)w1
...

s−2nwn

 wl,

where we used the specific form of ξ̃j in the local coordinates. Since the
exponents of s in the expression s−(n+1)w1

...
s−2nwn


are all negative integers and remembering that∫

S1
srdµ(s) =

∫ 2π

0
eiθr

dθ

2π = 0

for all integers r 6= 0, we get

ξ̃′j(wl) =
∫
S1

(
(χ̃1
s)∗ξ̃j

)
(wl)dµ(s) =

n∑
k=1

bjkl(0)wl,
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also keeping in mind that the bjkl are holomorphic functions in a neigh-
bourhood of q = 0. These local calculations thus yield that ξ̃′j is linear
(with respect to the coordinates w1, . . . , wn) and of the form

ξ̃′j =
n∑

k,l=1
bjkl(0)wk

∂

∂wl
.

Moreover, since all eigenvalues of ξ̃1 = ξ̃′1 at q = 0 are different and ξ̃′j and
ξ̃′1 commute we get that bjkl(0) = 0 if k 6= l and hence ξ̃′j is of the form

ξ̃′j =
n∑
k=1

bjkwk
∂

∂wk

for some constants bjk. In particular, we see now that the vector fields ξ̃′j
are all pairwise commuting near q, thus by the identity principle on all of
π−1(V ) and consequently ξ′1, . . . , ξ

′
n are also pairwise commuting vector

fields.
Moreover, we have  ξ̃′1

...
ξ̃′n

 = C̃(w)

 ξ̃1

...
ξ̃n


for some matrix C̃(w) whose entries c̃jk(w) are local holomorphic functions
and which satisfies C̃(q) = C̃(0) = En since we have

ξ̃′1 = ξ̃1 and ξ̃′j(0) =
n∑
k=1

bjkwk
∂

∂wk
=

n∑
k,l=1

bjkl(0)wk
∂

∂wl
= ξ̃j(0)

for j > 2 at the point q = 0.
Since ξ1, . . . , ξn form a basis of logarithmic vector fields on X, we have ξ′1

...
ξ′n

 = C(x)

 ξ1

...
ξn


for a matrix C(x) whose entries cjk(x) are holomorphic functions on a
neighbourhood of p. Using that ξ̃1, . . . , ξ̃n are the lifts of ξ1, . . . , ξn and
ξ̃′1, . . . , ξ̃

′
n the lifts of ξ′1, . . . , ξ′n, we get C(π(y)) = C̃(y) on a neighbour-

hood of q ∈ X̃ and in particular C(p) = C(π(q)) = C̃(q) = En is invertible.
Hence ξ′1, . . . , ξ′n also form a local basis of logarithmic vector fields on X
near q. These vector fields ξ′1, . . . , ξ′n commute and their dual logarithmic
1-forms σ1, . . . , σn are thus closed (cf. Lemma 5.6). �
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The statement of the next Lemma 6.6 on hyperplane sections will be
useful when reducing the case of an lc pair (X,D) with locally free sheaf
Ω[1]
X (logbDc) to the isolated case as in Proposition 6.5. For more details on

hyperplane sections and their properties relevant to our setting the reader
is referred to [10, Section 2.E].

Lemma 6.6. — Let (X,D) be an lc pair, D1, . . . Dk the irreducible
components ofD,D =

∑
i aiDi, and letH be a general member of an ample

basepoint free linear system on X and assume that the sheaf Ω[1]
X (logbDc)

is locally free. Then Ω[1]
H (logbDc|H) is locally free.

Moreover, for any point p ∈ H there is a logarithmic vector field of
(X,D) defined on a neighbourhood U of p in X which does not vanish
on this neighbourhood and is transversal to the hyperplane H all points
q ∈ U ∩H.

Remark 6.7. — By [10, Lemma 2.23] the divisor H is normal and irre-
ducible, and the intersections Dj ∩H are all distinct. Therefore, (H,D|H)
with D|H = a1(D1 ∩H) + . . .+ ak(Dk ∩H) is a pair, and (H,D|H) is lc if
(X,D) is lc; see [10, Lemma 2.25].

Proof of Lemma 6.6. — Since the question is local, we may assume that
Ω[1]
X (logbDc) is free and H is given by the reduced equation h = 0 for a

regular function h on X.
Let π : X̃ → X be a log resolution of (X,D) and let H̃ = π−1(H). By [10,

Lemma 2.24] the restricted morphism π|H̃ : H̃ → H is a log resolution of
the pair (H,D|H), and the exceptional sets Exc(π) of π and Exc(π|H̃) of
π|H̃ satisfy Exc(π|H̃) = Exc(π) ∩ H̃.
Let σ1, . . . , σn be a basis of logarithmic 1-forms on (X,D), and let

σ̃1, . . . , σ̃n denote their lifts to X̃. The hyperplane H̃ ⊂ X̃ is given by
the reduced equation h̃ = h ◦π = 0. Let α1, . . . , αn be regular functions on
X such that

dh =
n∑
j=1

αjσj and dh̃ =
n∑
j=1

(αj ◦ π)σ̃j .

After possibly shrinking X, the 1-form dh̃ has no zeroes and there is j, say
j = 1, with αj(π(y)) = α1(π(y)) 6= 0 for all y ∈ X̃. Consequently, we may
assume dh̃ = σ̃1 and dh = σ1 without loss of generality.
Let H◦ be largest open subset of H such that (H◦, D|H◦) is snc. Then

(X,D) is snc along H◦ and the restrictions of σ2, . . . , σn to logarithmic
forms σ2|H , . . . , σn|H in Ω[1]

H (logbDc|H) are well-defined. On H0 we have
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an exact sequence

0→ OH◦〈h〉 → Ω[1]
X (logbDc)|H◦ → Ω[1]

H (logbDc|H)|H◦ → 0,

where the kernel of the morphism Ω[1]
X (logbDc)|H◦ → Ω[1]

H (logbDc|H)|H◦
is generated by dh = σ1. Consequently, the forms σ2|H◦ , . . . , σn|H◦ form
a basis of Ω[1]

H (logbDc|H)|H◦ and hence σ2|H , . . . , σn|H also form a ba-
sis of Ω[1]

H (logbDc|H) since H \H◦ has at least codimension 2. Therefore,
Ω[1]
H (logbDc|H) is locally free.
Let ξ1, . . . , ξn be the dual vector fields to the logarithmic 1-forms σ1, . . . ,

σn. By construction we have

1 = σ1(ξ1) = dh(ξ1) = ξ1(h).

Hence ξ1(q) 6= 0 for all q on a neighbourhood ofH. Moreover, ξ1 is transver-
sal to H in every point since H = {h = 0} and ξ1(h) = 1 6= 0 and ξ1 thus
is a vector field as required in the statement of the Lemma 6.6. �

Theorem 6.8. — Let (X,D) be an lc pair such that Ω[1]
X (logbDc) is

locally free. Then (X, bDc) is toroidal.

Proof. — Let Z ⊂ X be the smallest closed analytic subset such that
the pair (X \Z, bDc|X\Z) is toroidal. We shrink X such that TX(− logbDc)
and Ω[1]

X (logbDc) are free and Z is connected. We now want to do induction
on the dimension of Z.

If Z is 0-dimensional, then Z consists of a single point Z = {p}, and the
statement of the theorem is the content of Proposition 6.5. Assume now
thatm = dimZ and that the theorem is proven for those pairs (X ′, D′) such
that the non-toroidal locus Z ′ of the pair (X ′, bD′c) has dimZ ′ < m. Let
H be a general hyperplane section of an ample basepoint free linear system
on X as described in Lemma 6.6. Then (H,D|H) is lc, Ω[1]

H (logbD|Hc) is
locally free and dim(Z ∩H) = dimZ − 1 = m− 1 < m. Hence (H, bD|Hc)
is toroidal by the induction hypothesis.
Let p ∈ Z such that p ∈ H ∩ Z and let ξ be a vector field on a neigh-

bourhood of p that is transversal to H, which exists by the second part of
the statement of Lemma 6.6. We may assume that X ⊂ An and H is the
intersection of a smooth divisor Ĥ and X. The vector field ξ extends to a
holomorphic vector field ξ̂ on an open neighbourhood of p ∈ X ⊂ An in
An. Let ϕ̂ : Ω → An, Ω ⊆ C × An, denote the flow map of ξ̂. Since ξ is
not tangent to H at p, ξ̂ is not tangent to Ĥ at p and the flow ϕ̂ induces
a morphism χ : U × Ĥ → An, (t, q) 7→ ϕ̂(t, q), where U is an open sub-
set of C with 0 ∈ U , such that χ is biholomorphic near p. Moreover, we
have χ(U ×H) ⊆ X by construction, and thus we get that U ×H and X
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are biholomorphic near p. In particular, it follows that X is toroidal in a
neighbourhood of p, which is a contradiction to our assumption that p is
contained in the non-toroidal subset Z of X. �

A version of Theorem 6.8 for Du Bois pairs can now directly be deduced
by applying the results of [7]. For definitions and a detailed discussion of
Du Bois pairs the reader is referred to [17, Chapter 6].

Corollary 6.9. — Let X be a normal quasi-projective variety and
Σ ( X a reduced closed subscheme such that (X,Σ) is a Du Bois pair. Let
Σdiv denote the largest reduced divisor whose support is contained in Σ.
Assume that Ω[1]

X (log Σdiv) is locally free. Then (X,Σdiv) is toroidal.

Proof. — It is again enough to consider the case where TX(− log Σdiv)
and Ω[1]

X (log Σdiv) are free. Then the twisted canonical sheaf ωX(Σdiv) ∼=
Ω[n]
X (log Σdiv), n = dimX, is also free, which implies that the divisor KX +

Σdiv is linearly equivalent to 0, where KX denote a canonical divisor of X.
In particular, KX + Σdiv is Cartier. Therefore, the pair (X,Σdiv) is lc by
[7, Theorem 1.4.2] and (X,Σdiv) is toroidal by Theorem 6.8. �

Remark 6.10. — Alternatively, the statement of Corollary 6.9 could be
proven along the lines as the statement for lc pairs noting that extension
of logarithmic forms to log resolutions and the cutting down procedure via
hyperplanes also work for Du Bois pairs by [7, Theorem 4.1 and Lemma 4.4].
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