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SMOOTH WEIGHTED HYPERSURFACES
THAT ARE NOT STABLY RATIONAL

by Takuzo OKADA (*)

Abstract. — We prove the failure of stable rationality for many smooth well
formed weighted hypersurfaces of dimension at least 3. It is in particular proved
that a very general smooth well formed Fano weighted hypersurface of index one
is not stably rational.
Résumé. — Nous prouvons l’absence rationalité stable pour de nombreuses hy-

persurfaces pondérées lisses de dimension au moins 3. Il est en particulier prouvé
qu’une hypersurface pondérée de Fano très générale lisse de l’indice un n’est pas
stablement rationnelle.

1. Introduction

Totaro [15] proved the failure of stable rationality for many hypersurfaces
by developing the combination of the arguments of Voisin [16], Colliot-
Thélène, Pirutka [4] and Kollár [8]. To be precise, it is proved that a very
general complex hypersurface of degree d in Pn+1 is not stably rational if
n > 3 and d > 2d(n+ 2)/3e. Recently Schreieder [14] improved this result
drastically. The aim of this article is to generalize the Totaro’s result to
smooth weighted hypersurfaces.
In the study of stable rationality of smooth weighted hypersurfaces, main

objects to be considered are Fano varieties. Smooth Fano weighted hyper-
surfaces of dimension 3 are X4 ⊂ P(14, 2), X6 ⊂ P(14, 3), X6 ⊂ P(13, 2, 3)
and hypersurfaces of degree at most 4 in P4. Here the subscript of X indi-
cates the degree of the defining equation of X and, for instance, P(14, 2) =
P(1, 1, 1, 1, 2). The failure of stable rationality of very generalX4 ⊂ P(14, 2),
X6 ⊂ P(14, 3) and X6 ⊂ P(13, 2, 3) is proved in [16], [1] and [7], respectively.

Keywords: Fano variety, stable rationality, weighted hypersurface.
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The failure of stable rationality of a very general terminal Fano weighted
hypersurface of index 1 (which belongs to one of the famous 95 families)
is also proved in [12]. It is proved in [11] that a very general 4-dimensional
smooth weighted hypersurface of index 1 (i.e. IX = 1, see below) is not
stably rational.
Besides the hypersurfaces in a projective space, one of the most familiar

varieties which can be described as a weighted hypersurface are cyclic covers
of Pn. It is proved in [3] and [11] that a cyclic cover of Pn branched along
a very general hypersurface of degree d is not stably rational if d > n+ 1.

For a smooth well formed weighted hypersurfaceX=Xd⊂P(a0, . . . , an+1)
of degree d, we define

aΣ = a0 + a1 + · · ·+ an+1,

aΠ = a0a1 · · · an+1,

IX = aΣ − d.

We see that X is a Fano manifold if and only if IX > 0, and in this case
IX is called the index of X. Note that X is not stably rational if IX 6 0. It
is known that the weights a0, . . . , an+1 are mutually coprime to each other
and that d is divisible by aΠ (see Lemma 3.10). The following are the main
results of this article.

Theorem 1.1. — Let X be a very general smooth well formed weighted
hypersurface of degree d in PC(a0, . . . , an+1), where n > 3. If the inequality

IX 6 max{a0, . . . , an+1},

holds, then X is not stably rational.

Theorem 1.2. — Let X be a very general smooth well formed weighted
hypersurface of degree d in PC(a0, . . . , an+1), where n > 3. Suppose that
e := d/aΠ > 1 and let p be the smallest prime factor of e. If the inequality

d >
p

p+ 1aΣ

holds, then X is not stably rational.

Theorem 1.3. — Let X be a very general smooth well formed weighted
hypersurface of degree d in PC(a0, . . . , an+1), where n > 3. Suppose that
e := d/aΠ > 1 is odd. If the inequality

d > aΠ + 2
3aΣ

holds, then X is not stably rational.
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Focusing on the index of Fano hypersurfaces, Totaro’s result can be in-
terpreted as follows: a very general Fano hypersurface of index I in Pn+1

is not stably rational for n > 3I. As a corollary to the above theorems, we
can generalize this to weighted hypersurfaces.

Corollary 1.4. — For a given integer I, there exists a constant NI
depending only on I such that a very general smooth well formed weighted
hypersurface of dimension n which is not a linear cone is not stably rational
for n > NI .

Combining the above main theorems and the recent result of Schreieder
[14, Theorem 1.1] on hypersurfaces in projective spaces, we obtain the
following.

Corollary 1.5. — Let X be a very general smooth well formed
weighted hypersurface of index IX and of dimension at least 3, which is
not a linear cone. Then the following hold.

(1) If IX = 1, then X is not stably rational.
(2) If IX = 2, thenX is not stably rational except possibly forX3 ⊂ P4.
(3) If IX = 3, thenX is not stably rational except possibly forX2 ⊂ P4,

X3 ⊂ P5 and X4 ⊂ P6.

This implies that we can take N1 = 3, N2 = 4 and N3 = 6 although
N2, N3 may not be optimal. In the above exceptions, X2 ⊂ P4 is clearly
rational and X3 ⊂ P4 is not rational by [2] while its stable rationality
is unknown. Neither rationality nor stable rationality is determined for
X3 ⊂ P5 and X4 ⊂ P6.

We explain the content of the paper. In Section 2, we recall the special-
ization arguments of universal CH0-triviality and the Kollár’s construction
of global differential forms on inseparable covering spaces. In Section 3, we
study weighted hypersurfaces in arbitrary characteristic with an emphasis
on singularities and on the restriction maps of global sections of sheaves.
Sections 4, 5 and 6 are devoted to the proof of Theorems 1.2, 1.3 and 1.1,
respectively. Theorems 1.2 and 1.3 can be thought of as direct generaliza-
tions of Totaro’s result on hypersurfaces, while in the proof of Theorem 1.1
we need to consider a mixed characteristic degeneration different from To-
taro’s. In Section 7, we give a supplemental result on the failure of stable
rationality of smooth weighted hypersurfaces and in Section 8 we prove
corollaries.
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2. Preliminaries

We briefly recall fundamental results which will be necessary in the proof
of stable non-rationality of varieties via the reduction modulo p arguments.

2.1. Specialization of universal CH0-triviality

For a variety X, we denote by CH0(X) the Chow group of 0-cycles on
X, which is by definition the free abelian group of 0-cycles modulo rational
equivalence.

Definition 2.1.
(1) A projective varietyX defined over a field k is universally CH0-trivial

if, for any field extension F ⊃ k, the degree map deg : CH0(XF )→ Z
is an isomorphism.

(2) A projective morphism ϕ : Y → X defined over a field k is univer-
sally CH0-trivial if, for any field extension F ⊃ k, the pushforward
map ϕ∗ : CH0(YF )→ CH0(XF ) is an isomorphism.

Universal CH0-triviality is an obstruction for stable rationality.

Lemma 2.2. — IfX is a smooth, projective, stably rational variety, then
X is universally CH0-trivial.

We apply the following form of specialization result on universal CH0-
triviality.

Theorem 2.3 ([4, Théorème 1.14]). — Let A be a discrete valuation
ring with fraction field K and residue field k, with k algebraically closed.
Let X be a flat proper scheme over A with geometrically integral fibers.
Let X be the generic fiber X ×AK and Y the special fiber X ×A k. Assume
that the geometric generic fiber XK is smooth, where K is an algebraic
closure of K, and Y admits a universally CH0-trivial resolution Ỹ → Y of
singularities. If XK is universally CH0-trivial, then so is Ỹ .

Failure of universal CH0-triviality can be concluded by the existence of
a global differential form.

Lemma 2.4 ([15, Lemma 2.2]). — Let X be a smooth projective variety
over a field. If H0(X,ΩiX) 6= 0 for some i > 0, then X is not stably rational.
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2.2. Inseparable covers and global differential forms

Let Z be a smooth variety defined over an algebraically closed field k
of characteristic p > 0, L an invertible sheaf on Z, m a positive integer
divisible by p and s ∈ H0(Z,Lm).
Let U = Spec(

⊕
i>0 L−i) be the total space of the line bundle L and

πU : U → Z the natural morphism. We have πU ∗π∗UL =
⊕

i>−1 L−i and
we denote by y ∈ H0(U, π∗UL) the canonical section corresponding 1 ∈
H0(Z,OZ). We define

Z[ m
√
s] = (ym − π∗Us = 0) ⊂ U.

Set X = Z[ m
√
s] and π = πU |X : X → Z. We call X or π : X → Z the

covering of Z obtained by taking the mth roots of s.
The singularities of X can be analyzed by critical points of the section s.

Let q ∈ Z be a point and x1, . . . , xn local coordinates of Z at q. Around q,
we can write s = f(x1, . . . , xn)τm, where f ∈ OZ,q and τ is a local generator
of L at q. We write f = α+ `+q+g, where α ∈ k, `, q are linear, quadratic
forms in x1, . . . , xn, respectively, and g = g(x1, . . . , xn) ∈ (x1, . . . , xn)3.

Definition 2.5. — We keep the above setting. We say that s ∈
H0(Z,Lm) has a critical point at q ∈ Z if ` = 0 at q.
We say that s ∈ H0(Z,Lm) has an admissible critical point at q ∈ Z if

s has a critical point at q and the following is satisfied:
• In case either p 6= 2 or p = 2 and n is even, q is a nondegenerate

quadric.
• In case p = 2, n is odd and 4 - m, we have

length(OZ,q/(∂f/∂x1, . . . , ∂f/∂xn)) = 2,

or equivalently q = βx2
1 + x2x3 + x4x5 + · · · + xn−1xn for some

β ∈ k and the coefficient of x3
1 in g is not zero under a suitable

choice of local coordinates.
• In case p = 2, n is odd and 4 | m, we have

length(OZ.q/(∂f/∂x1, . . . , ∂f/∂xn)) = 2

and the quadric in Pn−1 defined by q = 0 is smooth, or equivalently,
q = x2

1 + x2x3 + x4x5 + · · ·+ xn−1xn and the coefficient of x3
1 in g

is not zero under a suitable choice of local coordinates.

Note that admissible critical points are isolated. It is easy to see that X
is singular at p ∈ X if and only if s has a critical point at π(p). Thus, if
the section s has only admissible critical points on Z, then the singularity
of X are isolated.

TOME 71 (2021), FASCICULE 1
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Remark 2.6. — We briefly recall the argument showing that a general
section s ∈ H0(Z,Lm) has only admissible critical points on Z. We refer
readers’ to [9, Section V.5] for details. For a point q ∈ Z and an integer
i > 2, we denote by

restiq : H0(Z,Lm)→ Lm ⊗ (OZ,q/miq)

the restriction map, where mq = mZ,q is the maximal ideal of OZ,q. If rest2
q

is surjective, then the subset V cr
q ⊂ H0(Z,Lm) consisting of the sections

admitting a critical point at q is a linear subspace of codimension dimZ

in H0(Z,Lm). If rest4
q is surjective, then the subset V na

q ⊂ H0(Z,Lm)
consisting of the sections admitting a non-admissible critical point at q is
a proper closed subset of V cr

q , and hence V na
q is of codimension at least

dimZ + 1 in H0(Z,Lm). In particular, by counting dimensions, a general
section in H0(Z,Lm) has only admissible critical point on Z if rest4

q is
surjective for any q ∈ Z.

We can summarize the results of [9], [3] and [11] in the following form.

Lemma 2.7 ([9, Chapter V.5], [3], [11, Proposition 4.1]). — Let X, Z,
L, m and s be as above. Assume that s ∈ H0(Z,Lm) has only admissible
critical points on Z. Then there exists an invertible subsheaf M of the
double dual (Ωn−1

X )∨∨ of the sheaf Ωn−1
X and a resolution of singularities

ϕ : X̃ → X with the following properties.
(1) M∼= π∗(ωZ ⊗ Lm).
(2) ϕ is universally CH0-trivial and ϕ∗M ↪→ Ωn−1

X̃

We will refer to M in the above lemma as the invertible subsheaf of
(Ωn−1

X )∨∨ associated to the covering π : X → Z.

3. Smooth weighted hypersurfaces

Throughout the present section, we work over an algebraically closed field
k of arbitrary characteristic unless otherwise specified. We always assume
that a weighted projective space P := P(a0, . . . , an+1) is well formed, that is,
gcd{a0, . . . , âi, . . . , an+1} = 1 for any i = 0, . . . , n+ 1. Let x0, . . . , xn+1 be
the homogeneous coordinates of degree a0, . . . , an+1, respectively. When we
make explicit the ground field k, we put it as a subscript Pk(a0, . . . , an+1).
The singular locus of P is a union of singular strata

ΠJ =
⋂

i∈{0,...,n+1}\J

(xi = 0) ⊂ P

ANNALES DE L’INSTITUT FOURIER
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for all subset J ⊂ {0, . . . , n+ 1} with gcd{ aj | j ∈ J } > 1.
Let X = Xd be a weighted hypersurface in P := Pk(a0, . . . , an+1) of

degree d and let F (x0, . . . , xn+1) = 0 be its defining equation. We say that
X is quasi-smooth if its affine cone CX := (F = 0) ⊂ An+2 is smooth
outside the origin. We say that X is well formed if X does not contain any
singular stratum of codimension 2 in P. Note that for a quasi-smooth well
formed X, the adjunction holds:

ωX ∼= OX(d− aΣ).

Remark 3.1. — Let X be as above. We say that X is a linear cone if
its defining equation is linear with respect to some coordinate xi. In this
case X is isomorphic to P(a0, . . . , âi, . . . , an+1). Clearly a general weighted
hypersurface of degree d in P is a linear cone if and only if d = ai for some
i. Note that under the assumption of Theorem 1.1, 1.2 or 1.3, it is easy to
verify d > ai for any i so that X cannot be a linear cone.

Throughout the present section, we set P = Pk(a0, . . . , an+1) and
Ui = (xi 6= 0) ⊂ P, for i = 0, . . . , n+ 1,
Ui,j = (xi 6= 0) ∩ (xj 6= 0) ⊂ P, for 0 6 i < j 6 n+ 1.

We fix notation which will be valid in the rest of the paper: for positive
integers a0, . . . , an+1 and d,

amax = max{a0, . . . , an+1},
aΣ = a0 + a1 + · · ·+ an+1,

aΠ = a0a1 · · · an+1,

r = |{ i | ai = 1 }| − 1 ∈ {−1, 0, . . . , n+ 1},
and we always assume that a0 = a1 = · · · = ar = 1 and ai > 1 for i > r.
We set pi := (0 : · · · : 1 : · · · : 0) ∈ P, where the unique 1 is in position i, for
0 6 i 6 n+ 1. Finally we define

∆ =
⋂
ai=1

(xi = 0) = (x0 = · · · = xr = 0) ⊂ P.

3.1. Open charts of weighted projective space

We explain descriptions of open sets Ui and Ui,j when ai = 1 and ai is
coprime to aj , respectively.
We consider Ui and assume that ai = 1. By symmetry, we may assume

i = 0. Then we have an isomorphism

Ui ∼= Speck[x1/x
a1
0 , . . . , xn+1/x

an+1
0 ].

TOME 71 (2021), FASCICULE 1
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By setting x̃i = xi/x
ai
0 , we see that Ui is isomorphic to the affine space

An+1
x̃1,...,x̃n+1

with coordinates x̃1, . . . , x̃n+1. Note that the restriction of the
global section xi ∈ H0(P,OP(ai)) to U0 is x̃i.
We consider Ui,j and assume that ai is coprime to aj . By symmetry, we

may assume i = n, j = n+1. We take integers λ, µ such that λan−µan+1 =
1 and set Q = xλnx

−µ
n+1. Then we have an isomorphism

Ui,j ∼= Speck[x0/Q
a0 , x1/Q

a1 , . . . , xn−1/Q
an−1 , xan+1

n /xan
n+1, x

an
n+1/x

an+1
n ].

By setting u = xan
n+1/x

an+1
n and x̃i = xi/Q

ai for i = 0, . . . , n−1, we see that
Un,n+1 is isomorphic to Anx̃0,...,x̃n−1

× (A1
u \ {o}). Note that, for restrictions

of global sections xi, 0 6 i 6 n− 1, xn and xn+1, we have

xi|Un,n+1 = x̃i, xn|Un,n+1 = uµ, xn+1|Un,n+1 = uλ.

3.2. Restriction maps

The following elementary result is useful in the study of restriction maps
of global sections.

Lemma 3.2. — Let a, b and N be positive integers and suppose that
a is coprime to b and N > (a − 1)(b − 1). Then there exist non-negative
integers k and l such that N = ka+ lb.

Proof. — If either a = 1 or b = 1, then the assertion is trivial. Without
loss of generality we may assume 1 < a < b. For an integer i, we set
Ni = N − ib. Then Ni 6≡ Nj (mod a) for any 0 6 i < j < a. Thus there
exists l ∈ {0, . . . , a − 1} such that Nl ≡ 0 (mod a). By the assumption
N > (a−1)(b−1), we have N0 > · · · > Na−2 > 0 and Na−1 > −a+ 1. The
latter implies that if l = a− 1, then Nl = Na−1 is non-negative. It follows
that Nl > 0 in any case and we have Nl = ka for some non-negative integer
k. This shows the existence of k and l. �

We study restriction maps in several cases.

Lemma 3.3.
(1) Let i be such that ai = 1 and let c, l be positive integers such that

c > lamax. Then the restriction map

restl+1
p : H0(P,OP(c))→ OP(c)⊗ (OP,p/m

l+1
p )

is surjective for any point p ∈ Ui.

ANNALES DE L’INSTITUT FOURIER
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(2) Let i 6= j be such that ai is coprime to aj , and c an integer such
that c > (ai − 1)(aj − 1). Then the image of the restriction map

rest2
p : H0(P,OP(c))→ OP(c)⊗ (OP,p/m

2
p)

is of dimension at least r + 1 for any point p ∈ Ui,j ∩∆.

Proof. — We prove (1). Let p ∈ Ui be a point. Replacing coordinates,
we may assume i = 0 and p = p0. The open set U0 is isomorphic to the
affine space An+1 with coordinates x̃1, . . . , x̃n+1 and we have xj |U0 = x̃j .
For any 1 6 j1, . . . , jl 6 n + 1 and non-negative integers m1, . . . ,ml with
0 6 m1 + · · ·+ml 6 l, we have

c− (m1aj1 + · · ·+mlajl
) > c− lamax > 0,

and the restriction of the monomial

xm1
j1
xm2
j2
· · ·xml

jl
x
c−(m1aj1+···+mlajl

)
0 ∈ H0(P,OP(c))

to U0 is
x̃m1
j1
x̃m2
j2
· · · x̃ml

jl
.

This immediately shows that restl+1
p is surjective.

We prove (2). We may assume (i, j) = (n, n+1). Then the open set Un,n+1
is isomorphic to Anx̃0,...,x̃n−1

×(A1
u\{o}). Since c−1 > (an−1)(an+1−1), we

can take non-negative integers νn, νn+1 such that c− 1 = νnan + νn+1an+1
by Lemma 3.2. By setting M = xνn

n x
νn+1
n+1 , we have monomials

x0M,x1M, . . . , xrM ∈ H0(P,OP(c)),

and they restrict to
x̃0u

m, x̃1u
m, . . . , x̃ru

m,

where m is a suitable integer. Since p ∈ Un,n+1 ∩ ∆, the coordinates
x̃0, . . . , x̃r can be chosen as a part of local coordinates of P at p (with-
out taking a translation) and the coordinate u does not vanish at p. Thus
the section xiM ∈ H0(P,OP(c)) is mapped to x̃i ∈ OP(c)⊗ (OP,p/m

2
p) and

the image of rest2
p is of dimension at least r + 1. �

Lemma 3.4. — Suppose that a0, . . . , an+1 are mutually coprime to each
other and let c be positive integer divisible by aΠ. Then the restriction map

rest2
p : H0(P,OP(c))→ OP(c)⊗ (OP,p/m

2
p)

is surjective for any smooth point p ∈ P.

TOME 71 (2021), FASCICULE 1
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Proof. — By the assumption, the singular locus of P is the set {pi | ai>1},
hence the smooth locus of P is covered by the Ui for i such that ai = 1
and the Ui,j for i 6= j with ai, aj > 1. If p ∈ Ui with ai = 1, then rest2

p is
surjective by Lemma 3.3(1) since c > aΠ > amax.
Suppose that p ∈ Ui,j with i 6= j and ai, aj > 1. Without loss of gener-

ality, we may assume (i, j) = (n, n + 1), i.e. p ∈ Un,n+1. As in the proof
of Lemma 3.3, Un,n+1 is isomorphic to Anx̃0,...,x̃n−1

× (A1
u \ {o}), where

xj |Un,n+1 = x̃j for j = 0, . . . , n− 1. Let λ, µ be positive integers such that
λan − µan+1 = 1 and set Q = xλnx

−µ
n+1. Then we have u = xan

n+1/x
an+1
n . For

each 0 6 j 6 n− 1, we have

c−aj > ajanan+1−aj = aj(anan+1−1) > anan+1−1 > (an−1)(an+1−1)

and thus there exists a monomial Mj = x
λj
n x

µj

n+1 of degree c − aj by
Lemma 3.2. Hence we have global sections

x0M0, x1M1, . . . , xn−1Mn−1 ∈ H0(P,OP(c))

which restrict to
x̃0u

m0 , x̃1u
m1 , . . . , x̃n−1u

mn−1

on Un,n+1. Now we write c = manan+1, where m > 1. Then the sections

xman+1
n , x(m−1)an+1

n xan
n+1, . . . , x

man
n+1 ∈ H0(P,OP(c))

restricts to

uµman+1 , uµman+1+1, . . . , uµman+1+m = uλman .

We see that the image of the sections

x0M0, . . . , xn−1Mn−1, x
man+1
n , x(m−1)an+1

n xan
n+1 ∈ H0(P,OP(c))

generates the k-vector space OP(c) ⊗ (OP,p/m
2
p). This completes the

proof. �

Remark 3.5. — Let Z be an irreducible subvariety of P and let p ∈ Z be
a point such that both Z and P are smooth at p. Then the surjectivity of
the restriction map

restl+1
p : H0(P,OP(c))→ OP(c)⊗ (OP,p/m

l+1
p )

implies the surjectivity of the restriction map

restl+1
Z,p : H0(Z,OZ(c))→ OZ(c)⊗ (OZ,p/ml+1

Z,p ).

Moreover, if the image of rest2
p is of dimension at least m, then the image

of rest2
Z,p is of dimension at least m− codimP(Z).
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3.3. Smoothness of various weighted projective varieties

Let F = |OP(d)| be the complete linear system of weighted hyper-
surfaces of degree d in P = Pk(a0, . . . , an+1) so that F ∼= PN , where
N = h0(P,OP(d)) − 1, and let W ⊂ P × F , together with the second
projection W → F , be the family of such weighted hypersurfaces. We set

Wsing = { (p, X) | X is singular at p } ⊂ P×F .

The image of Wsing under the second projection Wsing → F is the space
parametrizing singular weighted hypersurfaces of degree d in P. A compo-
nent V of Wsing is called F-dominating if the restriction V → F of the
second projection P × F → F to V is dominant. For a component V of
Wsing, its image via the first projection P × F → P is denoted by CP(V)
and is called the P-center of V. For a component V of Wsing and a point
p ∈ P, we denote by Vp the fiber over P of the projection V → P. We define
∆i,j = ∆ ∩ Ui,j ⊂ P.

Lemma 3.6. — Suppose that d > amax. Then the following assertions
hold.

(1) For any F-dominating component V ⊂ Wsing, its P-center CP(V) is
contained in ∆.

(2) Let i 6= j be such that i, j > r (i.e. ai, aj > 1) and ai is coprime to
aj . Suppose that one of the following holds.
(i) d is divisible by aΠ.
(ii) d > (ai − 1)(aj − 1) and 2r > n.
Then, for any F-dominating component V ⊂ Wsing, its P-center
CP(V) is disjoint from ∆i,j .

Proof. — We prove (1). Let V ⊂ Wsing be an F-dominating component.
Suppose that the P-center C = CP(V) of V intersects Ui = (xi 6= 0) ⊂ P
for some i = 0, 1, . . . , r. Since d > amax, the restriction map

rest2
p : H0(P,OP(d))→ OP(d)⊗ (OP,p/m

2
p)

is surjective for any point p ∈ Ui by Lemma 3.3. This shows that, for any
point p ∈ C ∩Ui, Vp is of codimension at least n+2 in F = {p}×F . Hence
we have

dimV 6 dimC + (dimF − (n+ 2)) < dimF
since dimC 6 n + 1. This is impossible since V is F-dominating. Thus C
is contained in (xi = 0) for i = 0, . . . , r, and (1) is proved.
We prove (2). Let V ⊂ Wsing be an F-dominating component. By (1),

C = CP(V) is contained in ∆. Suppose that C ∩∆i,j 6= ∅. We set c = n+ 2
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and c = r + 1 if we are in case (i) and (ii), respectively. By Lemmas 3.4
and 3.3(2), the image of the restriction map

rest2
p : H0(P,OP(d))→ OP(d)⊗ (OP,p/m

2
p)

is of dimension at least c for any p ∈ ∆ij , and thus the codimension of Vp
is at least c in F . We have

dimV 6 dimC + (dimF − c) < dimF ,

where the last inequality clearly follows when we are in case (i) and follows
since dimC 6 dim ∆ = n− r and n 6 2r when we are in case (ii). This is
impossible and (2) is proved. �

Note that we have

∆ \

 ⋃
r<i<j6n+1

∆i,j

 = {pr+1, . . . , pn+1}.

Lemma 3.7. — Suppose that a0, . . . , an+1 are mutually coprime to each
other.

(1) If d is divisible by aΠ, then a general weighted hypersurface of
degree d in Pk(a0, . . . , an+1) is smooth.

(2) If d1, d2 are both divisible by aΠ, then a general weighted complete
intersection of type (d1, d2) in Pk(a0, . . . , an+1) is smooth.

Proof. — We prove (1). Suppose that there exists an F-dominating com-
ponent V ⊂ Wsing. By Lemma 3.6, CP(V) = {pi} for some i ∈ {r + 1, . . . ,
n+1}, that is, a general member of F is singular at pi. On the other hand,
since d is divisible by ai for any i, a general member of F does not even
pass through pi for any i = r + 1, . . . , n + 1. This is a contradiction and
there is no F-dominating component ofWsing. Therefore a general member
of F is smooth.
We prove (2). Let X1 be a general weighted hypersurface of degree d1 in

P which is smooth by (1). By Lemma 3.4, the restriction map

H0(X1,OX1(d2))→ OX1(d2)⊗ (OX1,p/m
2
X1,p)

is surjective for any point p ∈ X1. From this we can conclude (by counting
dimensions) that a general member Z ∈ |OX1(d2)|, which is a general
weighted hypersurface of type (d1, d2), is smooth. �

Lemma 3.8. — Suppose that the following conditions are satisfied.
(1) ai is coprime to aj for any i < j except for {i, j} = {n, n+ 1}.
(2) d is divisible by ai for any i.
(3) 2r > n.
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Then a general weighted hypersurface of degree d in P(a0, . . . , an+1) is
smooth outside (x0 = · · · = xn−1 = 0).

Proof. — Let V ⊂ Wsing be an F-dominating component. We can apply
Lemma 3.6(1), since d > amax by the assumption (2), and also apply
Lemma 3.6(2) for r < i < j 6 n + 1 with (i, j) 6= (n, n + 1) and conclude
that CP(V) is contained in the set {pr+1, . . . , pn−1} ∪ Γ, where Γ = (x0 =
· · ·xn−1 = 0). Since d is divisible by ai for i = r+1, . . . , n−1, CP(V) 6= {pi}
for i = r+ 1, . . . , n− 1. Thus the P-center of a F-dominating component is
contained in Γ. Therefore a general member of F is smooth outside Γ. �

Lemma 3.9. — Suppose that the following conditions are satisfied.
(1) a0, . . . , an+1 are mutually coprime to each other.
(2) There exists k ∈ {r+1, . . . , n+1} such that d is divisible by aΠ/ak.
(3) d > (ai − 1)(aj − 1) for any 0 6 i < j 6 n+ 1, and d > amax.
(4) 2r > n.

Then a general weighted hypersurface of degree d in P(a0, . . . , an+1) is
smooth outside the point pk = (0: · · · :1 :0 : · · · :0).

Proof. — Let V ⊂ Wsing be an F-dominating component. We can apply
Lemma 3.6 and conclude that CP(V) is contained in {pr+1, . . . , pn+1}. Since
d is divisible by ai for i 6= k, CP(V) 6= {pi} for i 6= k. Therefore CP(V) ⊂
{pk} and the proof is completed. �

3.4. Characterization of smooth well formed weighted
hypersurfaces

Lemma 3.10. — Let X be a general weighted hypersurface of degree d
in Pk(a0, . . . , an+1). Then X is smooth, well formed and is not a linear cone
if and only if the following conditions are satisfied:

(1) a0, . . . , an+1 are mutually coprime to each other.
(2) d is divisible by aΠ.
(3) d > 2amax.

Proof. — Set Pk := Pk(a0, . . . , an+1). Suppose that (1), (2) and (3) are
satisfied. By (3), X is not a linear cone. By (1), Pk has at most isolated sin-
gularities and hence X is clearly well formed. By Lemma 3.8, X is smooth.
Conversely, suppose that X is smooth, well formed and is not a linear

cone. We first prove that (1), (2) and (3) hold assuming that char(k) = 0.
By [13, Corollary 2.14], X is quasi-smooth, which implies Sing(X) = X ∩
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Sing(Pk). Since X is smooth, this means X ∩ Sing(Pk) = ∅. Hence Pk
has at most isolated singularities and X avoids those points. The former
implies (1). The latter implies that d is divisible by ai for any i, which
implies (2). We now know that d is divisible by amax. The case d = amax
does not happen since X is not a linear cone. Thus we have (3). Now
suppose that char(k) = p > 0. Then we can lift a very general weighted
hypersurface X of degree d in Pk to a very general weighted hypersurface,
denoted byXK , of degree d in PK(a0, . . . , an+1), whereK is an algebraically
closed field with char(K) = 0 (using the ring of Witt vectors with residue
field k). We see that XK is smooth, by the generic smoothness, and it
is clearly well formed and is not a linear cone. Then (1), (2) and (3) are
satisfied by the above argument. �

Further restrictions are imposed on a0, . . . , an+1 and d when a general
weighted hypersurface is in addition assumed to be Fano.

Lemma 3.11. — Suppose that n > 3 and that a general weighted hy-
persurface of degree d in Pk(a0, . . . , an+1), a0 6 · · · 6 an+1, is a smooth
well formed Fano variety which is not a linear cone. Then the following
assertions hold.

(1) 2r > n+ 1.
(2) d > 3an unless d = 2 and r = n+ 1.
(3) d > 3an+1 unless either d = 2an+1 and r > n or d = 2an+1,

r = n− 1 and an = 2.

Proof. — We note that the assumption implies that the conditions (1),
(2) and (3) in Lemma 3.10 are satisfied.

We prove (1). If r > n− 1, then the assertions follows immediately since
n > 3. Thus we assume r 6 n−2. Since 2 6 ar+1, 3 6 ar+2, . . . , n−r+1 6
an, we have

(n− r + 1)!an+1 6 aΠ 6 d.

On the other hand, the assumption that a general weighted hypersurface
X of degree d in P(a0, . . . , an+1) is Fano implies

d < aΣ 6 r + 1 + (n− r + 1)an+1.

Combining the above inequalities, we have

(n− r + 1)((n− r)!− 1)an+1 < r + 1.

Since we are assuming r 6 n− 2, we have (n− r)!− 1 > 1. Hence we have
n− r + 1 < r + 1 and this proves (1).
We prove (2). Suppose that d < 3an. Since d is divisible by an and X

is not a linear cone, we have d = 2an. Since an+1 divides d and an+1 is
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coprime to an, we have an+1 6 2. If an+1 = 1, then we have r = n+ 1 and
d = 2. Suppose that an+1 = 2. Then a0 = · · · = an = 1. In particular we
have d = 2an = 2 = an+1. But this is impossible since X is not a linear
cone. This proves (2).
We prove (3). Suppose that d < 3an+1. By the similar argument as

above, we have d = 2an+1 and an 6 2. If an = 1, then we have r > n, and
if an = 2, then r = n− 1. This proves (3). �

4. Proof of Theorem 1.2

Let n > 3, a0, . . . , an+1 and d be positive integers which satisfy the
assumptions of Theorem 1.2, i.e. a general degree d weighted hypersurface
in PC := PC(a0, . . . , an+1) is smooth and well formed, and for the smallest
prime number p dividing d/aΠ > 1, the inequality

d >
p

p+ 1aΣ

is satisfied. Note that a very general weighted hypersurface of degree d in
PC is not a linear cone (cf. Remark 3.1), hence the weights ai are mutually
coprime to each other, d > 2amax and d is divisible by aΠ by Lemma 3.10.

Lemma 4.1. — Theorem 1.2 holds true if in addition one of the following
is satisfied.

(1) d > aΣ.
(2) d < 2pamax.

Proof. — Let W be a very general weighted hypersurface of degree d in
PC(a0, . . . , an+1). If we are in case (1), then H0(W,ωW ) 6= 0 and W is not
stably rational by Lemma 2.4.
Suppose that we are in case (2). We assume that amax = an+1 and write

d = mpaΠ for some positive integer m. Then we have

d = mpaΠ < 2pamax = 2pan+1,

which implies m = 1 and a0 = · · · = an = 1. Then W degenerates to a
degree p cyclic cover W ′ of PnC branched along a very general hypersurface
of degree d = pan+1 and the condition of Theorem 1.2 is equivalent to
d > n+ 1. Then the failure of stable rationality of W ′, hence of W by the
specialization theorem [16, Theorem 2.1], is proved in [3] and [11]. �

In the following we assume that we are in none of the cases (1) and (2)
of Lemma 4.1 so that n, a0, . . . , an+1, d and p satisfy the following.
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Condition 4.2.
(1) a0, . . . , an+1 are mutually coprime to each other and n > 3.
(2) p is a prime number and d is divisible by paΠ.
(3) 2pamax 6 d < aΣ.
(4) d > p

p+1aΣ.

Note that the conditions (1), (2) and (4) follow from the assumption of
Theorem 1.2 and Lemma 3.10. The condition (3) is due to Lemma 4.1.

We explain a degeneration of weighted hypersurfaces which enables us
to pass to characteristic p in the proof of Theorem 1.2. We set b = d/p.

Remark 4.3. — Under the above setting, we consider the variety

X := (yp − f = ty − g = 0) ⊂ PC(a0, . . . , an+1, b)× A1
t ,

where we take x0, . . . , xn+1, y as homogeneous coordinates of degree a0, . . . ,

an+1, b, respectively, and f, g ∈ C[x0, . . . , xn+1] are homogeneous polyno-
mials of degree d, b, respectively. We assume that f and g are very general.
By eliminating the coordinate y, the fiber of X → A1

t over a point ex-
cept for the origin is a (very general) weighted hypersurface of degree d in
PC = PC(a0, . . . , an+1) and, for the fiber Xo over the origin o ∈ A1, we have
an isomorphism

Xo ∼= (yp − f = g = 0) ⊂ PC(a0, . . . , an+1, b),

which is a degree p cyclic cover of the weighted hypersurface (g = 0) ⊂ PC
branched along the divisor (f = g = 0) ⊂ PC. This degeneration origi-
nates [10, Example 4.3]. By Lemma 3.7, both (g = 0) ⊂ PC and (f = g =
0) ⊂ PC are smooth since deg f = d and deg g = b = d/p are both divisible
by aΠ, which implies that Xo is smooth.
By the specialization theorem [16, Theorem 2.1], to prove Theorem 1.2, it

is enough to show that Xo is not universally CH0-trivial. By Theorem 2.3, it
is then enough to work over an algebraically closed field k of characteristic
p, consider a weighted hypersurface of the form

X := (yp − f = g = 0) ⊂ Pk(a0, . . . , an+1, b),

where f, g ∈ k[x0, . . . , xn+1] are very general, and show the existence of a
universally CH0-trivial resolution ϕ : X̃ → X such that X̃ is not universally
CH0-trivial. Note that X is the covering of Z := (g = 0) ⊂ Pk(a0, . . . , an+1)
obtained by taking the pth roots of the section f ∈ H0(Z,OZ(d)).

In the following, we work over an algebraically closed field k of charac-
teristic p. Let f, g ∈ k[x0, . . . , xn+1] be general homogeneous polynomials
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of degree d, b = d/p, respectively. We set

X = (yp − f = g = 0) ⊂ P̃ := Pk(a0, . . . , an+1, b),
Z = (g = 0) ⊂ P := Pk(a0, . . . , an+1),

and let π : X → Z be the natural morphism. Here x0, . . . , xn+1, y are ho-
mogeneous of degree a0, . . . , an+1, b of P̃, respectively, and we use the same
coordinates x0, . . . , xn+1 for the homogeneous coordinates of P.

Lemma 4.4. — Z is smooth.

Proof. — In view of (1) and (2) of Condition 4.2, this follows from
Lemma 3.7. �

We set L = OZ(b) and we view f as an element of H0(Z,Lp) =
H0(Z,OZ(d)). Then π : X → Z can be identified with the covering of
Z obtained by taking the pth roots of f ∈ H0(Z,Lp). In the following
we assume that a0 = · · · = ar = 1 and ai > 1 for any i > r. We set
∆ = (x0 = · · · = xr = 0) ⊂ P and ∆Z = ∆ ∩ Z.

Lemma 4.5. — A general f ∈ H0(Z,Lp) does not have a critical point
along ∆Z .

Proof. — By (1) and (2) of Condition 4.2, we can apply Lemma 3.4 and
conclude that the image of the restriction map

H0(Z,Lp)→ Lp ⊗ (OZ,p/m2
p)

is surjective for any point p ∈ Z. It follows that the sections in H0(Z,Lp)
having a critical point at a given point p ∈ ∆Z form a subspace of codi-
mension at least n. Since dim ∆Z < n, the proof is completed by counting
dimensions:

dimH0(Z,Lp)− n+ dim ∆Z < dimH0(Z,Lp).

This shows that a general f ∈ H0(Z,Lp) does not have a critical point
along ∆Z . �

Lemma 4.6. — A general f ∈ H0(Z,Lp) has only admissible critical
points on Z.

Proof. — We set Ui = (xi 6= 0) ⊂ P and U = U0 ∪ · · · ∪ Ur. Note that
U = P \∆. Since d > 2pamax > 3amax by Condition 4.2(3), the restriction
map

rest4
p : H0(Z,Lp)→ Lp ⊗ (OZ,p/m4

p)
is surjective for any point p ∈ Z ∩ U by Lemma 3.3(1). By Remark 2.6,
a general f ∈ H0(Z,Lp) has only admissible critical point on U . This,
together with Lemma 4.5, completes the proof. �
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Proposition 4.7. — The variety X admits a universally trivial resolu-
tion ϕ : X̃ → X of singularities such that X̃ is not universally CH0-trivial.

Proof. — Let M be the invertible subsheaf of (Ωn−1
X )∨∨ associated to

the covering π : X → Z. We have an isomorphism

M∼= π∗(ωZ ⊗ Lp) ∼= OX (b− aΣ + d) .

By Lemmas 4.6 and 2.7, X admits a universally CH0-trivial resolution
ϕ : X̃ → X such that ϕ∗M ↪→ Ωn−1

X̃
. We see that H0(X,M) 6= 0 since

b− aΣ + d = p+ 1
p

d− aΣ > 0

by Condition 4.2(4). This shows that H0(X̃,Ωn−1
X̃

) 6= 0, hence X̃ is not
universally CH0-trivial by Lemma 2.4. �

Theorem 1.2 follows from Remark 4.3 and Proposition 4.7.

5. Proof of Theorem 1.3

The aim of this section is to prove Theorem 1.3 following the Totaro’s
degeneration (to a reducible variety) which will be explained below. We
assume that a0, . . . , an+1, d and e = d/aΠ are positive integers satisfying
the assumptions of Theorem 1.3.

Lemma 5.1. — Theorem 1.3 holds true if in addition one of the following
is satisfied.

(1) d > aΣ.
(2) e = 3.

Proof. — Let W = Wd ⊂ PC(a0, . . . , an+1) be a very general weighted
hypersurface of degree d. If (1) is satisfied, then W is clearly not stably
rational. Suppose that e = 3, i.e. d = 3aΠ. Then the condition d > aΠ+ 2

3aΣ
is equivalent to d > aΣ, hence W is not stably rational. �

In the following we assume that we are not in (1) or (2) of Lemma 5.1
so that n, a0, . . . , an+1, d and e satisfy the following.

Condition 5.2.
(1) a0, . . . , an+1 are mutually coprime to each other.
(2) d < aΣ.
(3) e = d/aΠ > 5 is odd.
(4) d > aΠ + 2

3aΣ.
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Remark 5.3. — LetW be a very general weighted hypersurface of degree
d = eaΠ in PC := PC(a0, . . . , an+1). We can degenerate W to a union of
a very general weighted hypersurfaces X and G in PC of degree (e− 1)aΠ
and aΠ, respectively. Note that e − 1 is even. Let Y be the degeneration
of X over an algebraically closed field k of characteristic 2 obtained as in
Remark 4.3, which is a purely inseparable double cover of a very general
weighted hypersurface Z in Pk := Pk(a0, . . . , an+1) of degree (e − 1)aΠ/2.
Let H be a very general weighted hypersurface of degree aΠ in Pk to which
G degenerates. We set b = (e− 1)aΠ/2 and write

Y = (y2 + f = g = 0) ⊂ P̃k := Pk(a0, . . . , an+1, b),
Z = (g = 0) ⊂ Pk = Pk(a0, . . . , an+1),
H = (h = 0) ⊂ Pk,

where x0, . . . , xn+1, y are homogeneous coordinates of degree a0, . . . ,

an+1, b, respectively, and f, g, h ∈ k[x0, . . . , xn+1] are very general homo-
geneous polynomials of degree 2b = (e− 1)aΠ, b, aΠ, respectively, and set
L = OZ(b). Let π : Y → Z be the natural morphism which is obtained by
taking the roots of f ∈ H0(Z,L2). We set

YH := Y ∩ π−1(H) = (y2 + f = g = h = 0) ⊂ P̃k,

ZH := Z ∩H = (g = h = 0) ⊂ Pk.

Note that π|YH
: YH → ZH is the morphism obtained by taking the roots

of f |ZH
∈ H0(ZH , (L|ZH

)2).
Now suppose that the following are satisfied.
(1) Z is smooth, the section f ∈ H0(Z,L2) does not have a critical

point on YH ⊂ Y and has only admissible critical points on Z.
(2) ZH is smooth and the section f |ZH

∈ H0(ZH , (L|YH
)2) has only

admissible critical points on ZH .
(3) The invertible subsheaf M of (Ωn−1

Y )∨∨ associated to π : Y → Z

has a non-zero global section.
(4) H0(ZH , ωZH

) = 0.
Let ϕ : Ỹ → Y be the universally CH0-trivial resolution of Y as in Lem-
ma 2.7 (note that ϕ is obtained by blowing-up each singular point of Y ).
Here the existence of ϕ follows from (1). Replacing Ỹ by a further blowing
up (at each singular point of ZH which is contained in the smooth locus
of Y by (2)) model, we may assume that the restriction ϕ|Z̃H

: Z̃H → ZH ,
where Z̃H is the proper transform of ZH by ϕ, is the universally CH0-
trivial resolution of ZH . Under the above assumptions, it follows from the
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argument in [15, p. 887–888] that universal CH0-triviality of W implies
that the restriction

H0(Ỹ ,Ωn−1
Ỹ

)→ H0(Z̃H ,Ωn−1
Z̃H

)

is injective. By (1) and (3), we have 0 6= H0(Ỹ , ϕ∗M) ↪→ H0(Ỹ ,Ωn−1
Ỹ

).
By (4), H0(Z̃H ,Ωn−1

Z̃H
) = H0(ZH , ωZH

) = 0. This is a contradiction. There-
fore, for the proof of Theorem 1.3, it is enough to show that (1), (2), (3)
and (4) are satisfied.

We keep the same notation and setting as in Remark 5.3.

Lemma 5.4. — Z is smooth, the section f ∈ H0(Z,L2) does not have
a critical point on ZH ⊂ Z and has only admissible critical points on Z.

Proof. — Recall that the weighted hypersurface Z ⊂ P is of degree b =
(e − 1)aΠ/2 and b is divisible by aΠ. By Lemma 3.7, Z is smooth. Recall
also that L2 = OZ((e− 1)aΠ) and e− 1 > 4. By the same argument as in
the proof of Lemma 4.5, we conclude that a general f ∈ H0(Z,L2) does not
have a critical point along a given proper closed subvariety of Z. Thus f
does not have a critical point along ∆Z∪ZH . Then, since (e−1)aΠ > 3amax,
we can apply Lemma 3.3(1) and conclude that f has only admissible critical
points on Z (by the same argument as in the proof of Lemma 4.6). �

Lemma 5.5. — ZH is smooth and the section f |ZH
∈ H0(ZH , (L|ZH

)2)
has only admissible critical points on ZH .

Proof. — The variety ZH is a general weighted complete intersection
of type (b, aΠ) in Pk. By Lemma 3.7, ZH is smooth. We have (L|ZH

)2 ∼=
OZH

(2b) and 2b = (e − 1)aΠ > 3amax. Thus we can apply Lemma 3.3.(1)
and conclude that f |ZH

∈ H0(ZH , (L|ZH
)2) has only admissible critical

points on ZH . �

Proof of Theorem 1.3. — It is enough to show that the conditions (1),
(2), (3) and (4) in Remark 5.3 are satisfied. Conditions (1) and (2) are
already verified in Lemmas 5.4 and 5.5. For the invertible sheaf M ⊂
(Ωn−1

Y )∨∨, we have an isomorphism

M∼= π∗(ωZ ⊗ L2) ∼= OY
(

3
2d−

3
2aΠ − aΣ

)
.

We have H0(Y,M) 6= 0 since d > aΠ + 2
3aΣ, and the condition (3) is

verified. Finally, we have

ωZH
= OZH

(
e+ 1

2 aΠ − aΣ

)
.
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Since (e+ 1)/2 < e and d− aΣ < 0, we have
e+ 1

2 aΠ − aΣ < d− aΣ < 0,

and thus the condition (4) is verified. This completes the proof. �

6. Proof of Theorem 1.1

The aim of this section is to prove Theorem 1.1. Let n > 3, a0, . . . , an+1
and d be as in Theorem 1.1. Since a general weighted hypersurface of degree
d in PC(a0, . . . , an+1) is smooth, well formed and is not a linear cone (see
Remark 3.1), the weights ai are mutually coprime to each other, d > 2amax
and d is divisible by aΠ.

Lemma 6.1. — Theorem 1.1 holds true if in addition one of the following
is satisfied.

(1) d > aΣ.
(2) r > n.
(3) d 6= aΠ.

Proof. — Let W be a very general weighted hypersurface of degree d in
PC(a0, . . . , an+1).
If we are in case (1), thenW is not stably rational since H0(W,ωW ) 6= 0.
Suppose that we are in case (2). If r = n + 1, i.e. W is a hypersurface

of degree d in Pn+1, then the stable non-rationality of W follows from [15,
Theorem 2.1] since the condition IW 6 amax = 1 is equivalent to d >
n + 1 which is stronger than d > 2d(n + 2)/3e. If r = n, then W can
be degenerated to a (degree d/amax) cyclic cover of PnC branched along a
hypersurface of degree d. Then stable non-rationality ofW follows from [11,
Theorem 1.1] since the condition IW 6 amax is equivalent to d > n+ 1.

Suppose that we are in case (3). By (1) and (2), we may assume that
d < aΣ and r 6 n − 1. We may assume amax = an+1. Note that we have
a0 · · · an > 2. Let p be the smallest prime number dividing d/aΠ. Then we
have

aΣ > d > pa0 · · · anan+1 > 2pan+1.

By the assumption of Theorem 1.1, we have IW 6 an+1 which is equivalent
to d > aΣ − an+1. We have

d− p

p+ 1aΣ > (aΣ − an+1)− p

p+ 1aΣ = 1
p+ 1(aΣ − (p+ 1)an+1)

>
p− 1
p+ 1an+1 > 0.
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Thus the assumption of Theorem 1.2 is satisfied and W is not stably ra-
tional. This completes the proof. �

In the following we assume that we are in none of the cases (1), (2)
and (3) of Lemma 6.1 so that n, a0, . . . , an+1 and d satisfy the following
after re-ordering the ai.

Condition 6.2.
(1) a0, . . . , an+1 are mutually coprime to each other and n > 3.
(2) an+1 = max{a0, . . . , an+1} and an = max{a0, . . . , an} > 2.
(3) 3an 6 d = aΠ < aΣ.
(4) 2r > n.
(5) d >

∑n
i=0 ai.

Note that the inequality 3an 6 d in (3) follows from Lemma 3.11(2), and
the inequality (4) follows from Lemma 3.11(1). Moreover the inequality (5)
follows from the assumption in Theorem 1.1 that IX 6 max{a0, . . . , an+1}.
We choose and fix a prime number p which divides an. We set b := anan+1
and e := d/b = a0 · · · an−1. Note that d = eb.

Remark 6.3. — A very general smooth well formed weighted hypersur-
face W of degree d in PC(a0, . . . , an+1) degenerates to a weighted hyper-
surface W ′ in PC(a0, . . . , an+1) of degree d defined by an equation of the
form

xean
n+1 + x

(e−1)an

n+1 fb + · · ·xan
n+1f(e−1)b + feb = 0,

where fi ∈ C[x0, . . . , xn] is a very general homogeneous polynomial of de-
gree i. The varietyW ′ is a (very) general member of a base point free linear
system and W ′ avoids the singular points of PC(a0, . . . , an+1), hence W ′
is smooth by Bertini theorem (cf. [5, Corollary 10.9, Remark 10.9.2]). By
the specialization theorem [16, Theorem 2.1], to prove Theorem 1.1, it is
enough to show that W ′ is not universally CH0-trivial. Let k be an alge-
braically closed field of characteristic p. By Theorem 2.3, it is then enough
to show that a weighted hypersurface X in Pk(a0, . . . , an+1) defined by an
equation of the form

xean
n+1 + x

(e−1)an

n+1 fb + · · ·xan
n+1f(e−1)b + feb = 0,

where fi ∈ k[x0, . . . , xn] is a very general homogeneous polynomial of de-
gree i, admits a universally CH0-trivial resolution ϕ : X̃ → X such that X̃
is not universally CH0-trivial.

In the following we work over an algebraically closed field k of charac-
teristic p unless otherwise specified and let P̃ := Pk(a0, . . . , an+1) be the
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weighted projective space with homogeneous coordinates x0, . . . , xn+1 with
deg xi = ai. The coordinate xn+1 will be distinguished and we denote it as
y = xn+1. We define X to be the weighted hypersurface of degree d in P̃
defined by the equation

F := yean + y(e−1)anfb + y(e−2)anf2b + · · ·+ yanf(e−1)b + feb = 0,

where fi ∈ k[x0, . . . , xn] is a general homogeneous polynomial of degree i.
Let

P := Pk(a0, . . . , an, b)
be the weighted projective space with homogeneous coordinates x0, . . . , xn
and z with deg xi = ai and deg z = b, and let Z be the weighted hypersur-
face of degree d in P defined by

G := ze + ze−1fb + ze−2f2b + · · ·+ zf(e−1)b + feb = 0.

Note that Z is a general weighted hypersurface of degree d in P. The re-
striction of the natural morphism

P̃→ P, (x0 : · · · :xn :y) 7→ (x0 : · · · :xn :yan)

to X is denoted by π : X → Z. We set
ΓZ := (x0 = · · · = xn−1 = 0) ∩ Z ⊂ P,
Z◦ := Z \ ΓZ ,

ΓX := π−1(Ξ) = (x0 = · · · = xn−1 = 0) ∩X,

X◦ := π−1(Z◦) = X \ ΓX .

Lemma 6.4. — Z◦ is smooth.

Proof. — This follows from Lemma 3.8. �

Lemma 6.5. — X is smooth along ΓX .

Proof. — Set V = (xn 6= 0)∩ (y 6= 0) ⊂ P̃k. We have ΓX = ΓX ∩V since
pn, pn+1 /∈ X. Take positive integers λ, µ such that λan − µan+1 = 1 and
set Q = xλny

−µ. Note that p - µ since p | an. Then V can be identified with
Anx̃0,...,x̃n−1

× (A1
u \ {o}), where x̃i = xi/Q

ai and u = yan/x
an+1
n . We have

y|V = uλ and xn|V = uµ so that global sections

yean , y(e−1)anxan+1
n , · · · , xean+1

n ,

restrict to functions

uµean , uµean−1, · · · , uµean−e = uλean+1 ,

on V . We write

F = yean + α1y
(e−1)anxan+1

n + α2y
(e−2)anx2an+1

n + · · ·+ αex
ean+1
n + h,
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where αi ∈ k is the coefficient of xian+1
n in fib and h = h(x0, . . . , xn, y) is

the remaining terms. Note that h ∈ (x0, . . . , xn−1). Then X ∩ V is defined
by the equation

F |V = uλean + α1u
λean−1 + α2u

λean−2 + · · ·+ αeu
λean−e + h̃,

where h̃ = h̃(x̃0, . . . , x̃n−1, u) = h|V . Note that λean − e = µean+1 is not
divisible by p, α1, . . . , αe are general, h̃ ∈ (x̃0, . . . , x̃n−1) and ΓX ∩ V is
defined by x̃0 = · · · = x̃n−1 = 0. It is then easy to check that X is smooth
along ΓX and the proof is completed. �

We set L = OZ◦(an+1). We can view z (or more precisely z|Z◦) as an
element of H0(Z◦,Lan) = H0(Z◦,OZ(b)), and π◦ = π|X◦ : X◦ → Z◦ is the
covering obtained by taking the anth roots of z. We define ∆Z = (x0 =
· · · = xr = 0) ∩ Z and ∆◦Z = ∆Z \ ΓZ .

Lemma 6.6. — The section z ∈ H0(Z◦,Lan) does not have a critical
point along ∆◦Z .

Proof. — The section z has a critical point at p ∈ Z◦ if and only if X
is singular at any point of π−1(p). Thus it is enough to show that X is
smooth along ∆◦X , where

∆◦X = π−1(∆◦Z) = (x0 = · · · = xr = 0) ∩X \ ΓX .

We set ∆P̃ = (x0 = · · · = xr = 0) ⊂ P̃ and ∆◦P̃ = ∆P̃ \ (x0 = · · · =
xn−1 = 0). Let W be the k-vector subspace of H0(P̃,OP̃(d)) generated by
the monomials{

xk0
0 · · ·xkn

n ylan

∣∣∣ ki, l > 0,
∑

kiai + lanan+1 = d
}
.

Note that X is defined by a general element ofW . We claim that the image
of the restriction map

rest2
p : W → OP̃(d)⊗ (OP̃,p/m

2
p)

is of dimension at least r + 1 for any point p ∈ ∆◦P̃. We define

Vi,j = (xi 6= 0) ∩ (xj 6= 0) ⊂ P̃, for r < i < j 6 n,

Vi,y = (xi 6= 0) ∩ (y 6= 0) ⊂ P̃, for r < i 6 n− 1.

We set pi = (0 : · · · : 1 : · · · : 0) ∈ P̃, where the unique 1 is in position i, for
0 6 i 6 n+ 1. Then we have

∆◦P̃ \ {pr+1, . . . , pn−2} =

 ⋃
r<i<j6n

∆P̃ ∩ Vi,j

 ∪
 ⋃
r<i6n−1

∆P̃ ∩ Vi,y

 .
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Suppose that p ∈ ∆ ∩ Vi,j for some r < i 6= j 6 n. Then, since ai
is coprime to aj and d > aiaj > (ai − 1)(aj − 1), there exists monomial
M = xλi x

µ
j of degree d − 1 by Lemma 3.2. The section xiM ∈ W , for

i = 0, . . . , r, restricts to the function x̃iu
l on Vi,j , where l is a suitable

integer, and x̃0, . . . , x̃r form a part of local coordinates of P̃ at p. Thus the
image of rest2

p is of dimension at least r + 1.
Suppose that p ∈ ∆ ∩ Vi,y for some r < i 6 n − 1. Then, since ai is

coprime to anan+1 and d > aianan+1 > (ai − 1)(anan+1 − 1), there exists
a monomial M ′ = xλ

′

i y
µ′an of degree d− 1. Since xiM ′ ∈ W , i = 0, . . . , r,

we can repeat the above arguments and conclude that the image of rest2
p

is of dimension at least r + 1. Thus the claim is proved.
For p ∈ ∆◦P̃, let Wp be the subspace of W consisting of the polynomials

H ∈ W such that the weighted hypersurface in P̃ defined by H = 0 is
singular at p. By the above claim, the codimension of Wp in W is at least
r + 1 for any p ∈ ∆◦ \ {pr+1, . . . , pn−2}. Since dim ∆P̃ = n− r and 2r > n

by Condition 6.2(4), we have

dimW − (r + 1) + dim ∆ < dimW.

This shows that X is smooth along ∆◦P̃ \ {pr+1, . . . , pn−2}. It is clear that
a general H ∈ W does not vanish at pi (for i = r + 1, . . . , n− 2). Thus X
is smooth along ∆◦P̃. �

Lemma 6.7. — The section z ∈ H0(Z◦,Lan) has only admissible critical
points on Z◦.

Proof. — We choose and fix general fb, f2b, . . . , f(e−1)b ∈ k[x0, . . . , xn]
and we will show that the section z ∈ H0(Z◦,Lan) has only admissible
critical points on Z◦ for a general choice of fd = feb ∈ k[x0, . . . , xn]. Note
that Z itself varies as we vary fd.

Let F be the affine space parameterizing homogeneous polynomials of
degree d = eb in variables x0, . . . , xn. For a homogeneous polynomial fd of
degree d, we denote by [fd] ∈ F the corresponding point. We set

Wna :=
{

(p, [fd]) ∈ P×F
∣∣∣∣ p ∈ Z◦ and z has a non-admissible

critical point at p

}
.

It is enough to show that there is no F-dominating component of Wna.
Assume to the contrary that there exists such a component V of Wna and
let C be the P-center of V, i.e. the image of V under the first projection
Wna → P.
For 0 6 i 6 r, we set Ui = (xi 6= 0) ⊂ P and U = U0 ∪ · · · ∪ Ur ⊂ P.

Assume that C∩U 6= ∅. We compute the number of independent conditions
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imposed for z (and for fd) to have a non-admissible critical point at p. To
do so we may assume p = (1 : 0 : · · · : 0 : ζ) ∈ U0 for some ζ ∈ k by
considering a suitable automorphism of P◦ (which leaves z invariant). Note
that, by Lemma 3.3(1) and Condition 6.2(3), the restriction map

rest3
p : H0(P,OP(d))→ OP(d)⊗ (OP/m

4
p)

is surjective. For a homogeneous polynomial h = h(x0, . . . , xn, z) ∈
H0(P,OP(d)), we set h̃ = h(1, x̃1, . . . , x̃n, z̃), so that h̃ is the restriction
of the section h to U0 ∼= An+1

x̃1,...,x̃n,z̃
. We write

fib = αix
ib
0 + `ix

ib−1
0 + qix

ib−2
0 + cix

ib−3
0 + gib,

where `i, qi, ci are linear, quadratic, cubic forms in x1, . . . , xn and gib is
contained in the ideal (x1, . . . , xn)4 ⊂ k[x0, . . . , xn]. Note that Z ∩ U0 is
the hypersurface in U0 defined by the equation

G̃ = z̃e + z̃e−1f̃ b + z̃e−2f̃2b + · · ·+ f̃eb = 0.

We set

ξ := ∂G̃

∂z̃
(p) = eζe−1 +

e−1∑
j=1

(e− j)αjζ(e−j)−1 ∈ k.

Wemay assume ξ 6= 0 because otherwise z̃ (or more precisely, its translation
z̃ − ζ) becomes a part of local coordinates of Z◦ at p and z does not have
a critical point at p. Then we can choose x̃1, . . . , x̃n as local coordinates of
Z◦ at p and we express z̃ as

z̃ = ζ + `+ q + c+ · · · ,

where `, q and c are linear, quadric and cubic forms in variables x̃1, . . . , x̃n,
respectively.
By substituting z̃ = ζ+`+· · · into the defining equation G̃ = 0 of Z∩U0,

we have
g := G̃(x̃1, . . . , x̃n, ζ + `+ q + c+ · · · ) = 0.

Looking at the constant term of g, we have

ζe +
e−1∑
j=1

αiζ
e−j + αe = 0,

which imposes 1 condition on fd = feb = αex
eb
0 + `ex

eb−1
0 + · · · since rest3

p
is surjective. Looking at the linear term of g, we have

ξ`+
e−1∑
j=1

ζe−j`j + `e = 0,
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We see that z has a critical point at p if and only if ` = 0 as a polynomial,
which is equivalent to

`e = −
e−1∑
j=1

ζe−j`j .

Since rest3
p is surjective, this imposes n independent conditions on fd. From

now on we assume that ` = 0. Then, by looking at the quadratic and cubic
terms of g = 0, we have

−ξq =
e−1∑
j=1

ζe−jqj + qe,

−ξc =
e−1∑
j=1

(e− j)ζe−j−1q`i +
e−1∑
j=1

ζe−jcj + ce.

It is now easy to see that, in view of the fact that rest3
p is surjective,

z̃ = ζ + q + c + · · · has an admissible critical point at p for a general
choice of qe, ce. This shows that the fiber Wna

p of Wna → P over p ∈ U =
U0 ∪ · · · ∪ Ur is of dimension dimF − (n + 2). Since dimP = n + 1, it
follows that the P-center C of V is disjoint from U and thus contained in
(x0 = · · · = xr = 0) ⊂ P, that is, z has only admissible critical points
on Z◦ \ ∆◦Z for a general choice of fd. Now the proof is completed by
Lemma 6.6. �

Proposition 6.8. — The variety X admits a universally CH0-trivial
resolution ϕ : X̃ → X of singularities such that H0(X̃,Ωn−1

X̃
) 6= 0.

Proof. — Let M◦ be the invertible subsheaf of (Ωn−1
X◦ )∨∨ associated to

the covering π◦ = π|X◦ : X◦ → Z◦ and letM⊂ (Ωn−1
X )∨∨ be the pushfor-

ward ofM◦ via the open immersion X◦ ↪→ X. Note that we have

M◦ ∼= π◦∗(ωZ◦ ⊗ Lan) ∼= OX◦
(
d−

∑n

i=0
ai
)
,

and hence

M∼= OX
(
d−

∑n

i=0
ai
)
.

By Lemmas 6.7 and 2.7, X admits a universally CH0-trivial resolution
ϕ : X̃ → X such that ϕ∗M ↪→ Ωn−1

X̃
. We have H0(X,M) 6= 0 by Condi-

tion 6.2(5). This shows that H0(X̃,Ωn−1
X̃

) 6= 0 and X̃ is not universally
CH0-trivial by Lemma 2.4. �
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7. A supplemental result

In this section, as a supplement to the main theorems stated in Sec-
tion 1, we give a yet another result of the failure of stable rationality of
smooth weighted hypersurfaces, which will be necessary in the proof of
Corollary 1.5.

Theorem 7.1. — Let X be a very general smooth well formed weighted
hypersurface of degree d in PC(a0, . . . , an+1) which is not a linear cone.
Suppose that n > 3 and there exists k ∈ {0, . . . , n+ 1} with the following
properties:

(1) ak > 1.
(2) d > ak(ai − 1)(aj − 1) for any 0 6 i < j 6 n+ 1, and d > akamax.
(3) There exists l 6= k such that d/ak − al is divisible by ak.
(4) The inequality

d >
ak

ak + 1aΣ

is satisfied.
Then X is not stably rational.

Remark 7.2. — The assumptions in Theorem 7.1 are complicated. How-
ever, when 2 appear in the weights and d/aΠ is odd, they become simple
because, by choosing ak = 2, the conditions (1), (2) and (3) are automati-
cally satisfied.
In some cases, Theorem 7.1 can give results better than Theorems 1.1,

1.2, 1.3 (see also Remark 7.3 below): Consider a very general weighted
hypersurface X2ab ⊂ PC(1n−1, 2, a, b), where n > 3, 2 < a < b, a, b are
odd and coprime to each other. Theorems 1.2 and 1.3 cannot be applicable
to X2ab and, by applying Theorem 1.1, we conclude the failure of stable
rationality of X2ab when 2ab − a > n + 1. On the other hand, we can
apply Theorem 7.1 and conclude the failure of stable rationality of X2ab for
3ab−a−b > n+1, which is better than the result obtained by Theorem 1.1.

Remark 7.3. — We consider a very general weighted hypersurfaceX2m ⊂
PC(12m+1, 2) of degree 2m for m > 2. Failure of stable rationality of X2m is
proved for even m > 4 by Theorem 1.2 and for odd m > 7 by Theorem 1.3,
and the casesm = 2, 3, 5 are not covered by the main theorems in Section 1.
By Theorem 7.1, we can conclude that X2m is not stably rational for m =
3, 5. Moreover, X4 ⊂ P(15, 2) is covered by [6], so that X2m is not stably
rational for any m > 2.

ANNALES DE L’INSTITUT FOURIER



SMOOTH WEIGHTED HYPERSURFACES 231

From now on, let a0, . . . , an+1, d, k and p be as in Theorem 7.1. We set
b = d/ak.

Lemma 7.4. — Theorem 7.1 holds true if in addition one of the following
condition is satisfied.

(1) d > aΣ.
(2) d < 3amax.

Proof. — Let W = Wd ⊂ PC(a0, . . . , an+1) be a very general smooth
well formed weighted hypersurface of degree d. (1) is obvious and we omit
the proof. We may assume d < aΣ, that is, W is Fano, in the following.

We prove (2). Suppose that d < 3amax. Then, by Lemma 3.11(3), d =
2amax and we are in one of the cases:

(i) r = n+ 1,
(ii) r = n,
(iii) r = n− 1 and an = 2.
The case (i) does not happen since we are assuming the existence of

ak > 1.
Suppose that we are in case (ii). Then we have W = W2a ⊂ P(1n+1, a)

and ak = a > 1. The condition (4) in Theorem 7.1 is equivalent to a > n−1
which implies IX = n+1−a 6 2 6 a = amax. ThusW is not stably rational
by Theorem 1.1.
Suppose that we are in case (iii). Then W = W2a ⊂ P(1n, 2, a) for some

odd a > 3. There are two possibility for the choice of k: either ak = 2 or
ak = a. If ak = 2 (resp. ak = a), then the condition (4) of Theorem 7.1
is equivalent to 2a > n + 2 (resp. a > n), and in both cases we have
IW = n + 2 − a 6 a = amax. It follows that W is not stably rational by
Theorem 1.1 and (2) is proved. �

Hence, in addition to the conditions explicitly given in Theorem 7.1, we
may assume that the following hold.

Condition 7.5.
(1) a0, . . . , an+1 are mutually coprime to each other.
(2) d is divisible by aΠ.
(3) 2r > n+ 1.
(4) b = d/ak is coprime to ak.
(5) 3amax 6 d < aΣ.

Note that (1), (2), (3) follows from Lemmas 3.10, and 3.11, (4) follows
from the condition (3) of Theorem 7.1 and (5) follows from Lemma 7.4.
In the following we choose and fix a prime number p which divides ak.
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Remark 7.6. — By considering the variety

X := (yak − f = ty − g = 0) ⊂ PC(a0, . . . , an+1, b)× A1
t ,

where we take x0, . . . , xn+1, y as homogeneous coordinates of degree a0, . . . ,

an+1, b = d/ak, respectively, and f, g ∈ C[x0, . . . , xn+1] are very general ho-
mogeneous polynomials of degree d, b, respectively, we see that a very gen-
eral weighed hypersurface W of degree d in PC(a0, . . . , an+1) degenerates
to a complete intersection

W ′ = (yak − f = g = 0) ⊂ P̃C := PC(a0, . . . , an+1, b).

By Lemma 7.7 below, W ′ is smooth. We consider reduction modulo p of
W ′ and set

X = (yak − f = g = 0) ⊂ Pk(a0, . . . , an+1, b),

where k is an algebraically closed field of characteristic p and f, g ∈
k[x0, . . . , xn+1] are very general homogeneous polynomials of degree d, b,
respectively. By the same argument as in Remark 4.3, W is not stably ra-
tional if there is a universally CH0-trivial resolution ϕ : X̃ → X such that
X̃ is not universally CH0-trivial.

Lemma 7.7. — Let K be an algebraically closed field. Let f, g ∈
K[x0, . . . , xn+1] be general homogeneous polynomials of degree d, b = d/ak,
respectively, and define

XK := (yak − f = g = 0) ⊂ P̃K := PK(a0, . . . , an+1, b),

Γ =
⋂

06i6n+1,i6=k
(xi = 0) ⊂ P̃K .

where x0, . . . , xn+1, y are homogeneous coordinates of degree a0, . . . ,

an+1, b, respectively. Then the following assertions hold.
(1) XK is smooth along Γ ∩XK .
(2) If char(K) = 0, then XK is smooth.

Proof. — In this proof, re-ordering the ai, we assume that k = n+ 1, i.e.
ak = an+1.
We first prove (1). We may assume that the coefficient of the degree d

monomial xbn+1 in f is 1 since f is general. Then

Γ ∩XK = (x0 = · · · = xn = 0) ∩XK

= (x0 = · · · = xn = yan+1 − xbn+1 = 0).

Let p ∈ Γ ∩ XK be any point. Then we can write p = (0 : · · · : 0 : α : β)
for some non-zero α, β ∈ K. Since b is coprime to ak = an+1, we can take
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positive integers λ, µ such that λan+1 − µb = 1, and set Q = xλn+1y
−µ.

Then the open set V = (xn+1 6= 0) ∩ (y 6= 0) ⊂ P̃K is isomorphic to
An+1
x̃0,...,x̃n−1

× (A1
u \ {o}), where x̃i = xi/Q

ai and u = yan+1/xbn+1. Note
that p corresponds to the point (0, . . . , 0, γ) ∈ An+1 × (A1 \ {o}) for some
non-zero γ ∈ K. Let l 6= n+ 1 be such that b−al is divisible by an+1 (such
an l exists by the assumption of Theorem 7.1) and write b − al = man+1,
where m = (b − al)/an+1 is a positive integer. We may assume that the
coefficient of the degree b monomial xlxmn+1 in g is 1 since g is general.
Then we have

f̃ := f |V = uλan+1 − uµb + f̃1, g̃ := g|V = x̃uν + g̃1,

where ν 6= 0 is an integer, f̃1, g̃1 ∈ (x̃0, . . . , x̃n) and x̃luν is the unique term
in g̃ consisting only of x̃l and u. We see that XK ∩ V is the subvariety of
V defined by f̃ = g̃ = 0 and we compute

∂f̃

∂u
(p) = ∂g̃

∂x̃l
(p) = 1,

which shows that XK is smooth at any point of Γ ∩XK . This proves (1).
We prove (2). We assume char(K) = 0. We set

ZK := (g = 0) ⊂ PK := PK(a0, . . . , an+1),

and let DK = (f = g = 0) ⊂ PK be the divisor on ZK cut out by the
equation f = 0. Note that a0, . . . , an+1 are mutually coprime to each other,
b = deg g is divisible by aΠ/an+1 and b > (ai − 1)(aj − 1) for any i 6= j.
Hence, by Lemma 3.9, ZK is smooth outside the point q := (0 : · · · : 0 :1) ∈
PK . We see thatDK is a general member of the base point free linear system
|OZK

(d)|. By Bertini theorem, DK is smooth. Let π : XK → ZK be the
natural morphism. Then, since ZK is smooth outside q and X \ π−1(q)→
ZK \ {q} is a cyclic covering branched along the smooth divisor DK , we
conclude that XK \ π−1(q) is smooth. We have π−1(q) = Γ ∩XK . By (1),
XK is smooth at any point of π−1(q), hence XK is smooth. �

In the following, we work over an algebraically closed field k of char-
acteristic p, where we recall that p divides ak. Let f, g ∈ k[x0, . . . , xn+1]
be general homogeneous polynomials of degree d, b = d/ak, respectively.
We set

X = (yak − f = g = 0) ⊂ Pk(a0, . . . , an+1, b),
Z = (g = 0) ⊂ P := Pk(a0, . . . , an+1),

and let π : X → Z be the natural morphism. By the above argument Theo-
rem 7.1 follows if we show the existence of a universally CH0-trivial resolu-
tion of singularities ϕ : X̃ → X such that X̃ is not universally CH0-trivial.
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We define qi = (0 : · · · : 1 : · · · : 0) ∈ P, where the unique 1 is in position i,
for 0 6 i 6 n + 1. Since b is not divisible by ak, we have qk ∈ Z. We set
Z◦ = Z \ {qk} and X◦ = π−1(Z◦).

Lemma 7.8. — Z◦ is smooth, and X is smooth along X \X◦.

Proof. — The first and second assertions follows from Lemmas 3.9
and 7.7(1). �

We set L = OZ◦(b), which is an invertible sheaf. We can view f (or
more precisely f |Z◦) as a global section of Lak = OZ◦(d). The restriction
π◦ = π|X◦ : X◦ → Z◦ is the covering obtained by taking the akth roots
of f ∈ H0(Z◦,Lak ). In the following, re-ordering the xi, we assume a0 =
· · · = ar = 1 and ai > 1 for any i > r. We set ∆ = (x0 = · · · = xr = 0) ⊂ P,
∆◦ = ∆ \ {qk} and ∆Z = ∆ ∩ Z, ∆◦Z = ∆◦ ∩ Z.

Lemma 7.9. — A general f ∈ H0(Z◦,Lp) has only admissible critical
points on Z◦.

Proof. — For r < i 6= j 6 n + 1, we set Ui,j = (xi 6= 0) ∩ (xj 6= 0) ⊂ P.
We have

∆◦Z =
⋃

r<i<j6n+1,i,j 6=k
∆Z ∩ Ui,j .

Since d > aiaj for any i, j 6= k, we can apply Lemma 3.3(2) (cf. Remark 3.5)
and the image of the restriction map

H0(Z,OZ(d)) = H0(Z◦,Lak )→ Lak ⊗ (OZ◦/m2
p)

is of dimension at least r, as a k-vector space, for any p ∈ ∆◦Z . Since
dim ∆◦Z = n − (r + 1) and 2r 6 n + 1, we can conclude by counting
dimensions that a general f ∈ H0(Z◦,Lp) does not have a critical point
along ∆◦Z .

The rest of the proof is completely the same as that of Lemma 4.6, where
all we need is the condition d > 3amax. �

Proposition 7.10. — The variety X admits a universally CH0-trivial
resolution ϕ : X̃ → X of singularities such that X̃ is not universally CH0-
trivial.

Proof. — Let M◦ be the invertible subsheaf of (Ωn−1
X◦ )∨∨ associated to

the covering π◦ : X◦ → Z◦ and M the pushforward of M◦ via the open
immersion X◦ ↪→ X. We have

M◦ ∼= π◦∗(ωZ◦ ⊗ Lak ) ∼= OX◦(b− aΣ + d),
M∼= OX(b− aΣ + d).
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By Lemmas 7.9 and 2.7, X admits a universally CH0-trivial resolution
ϕ : X̃ → X such that ϕ∗M ↪→ Ωn−1

X̃
. We see that H0(X,M) 6= 0 since

b− aΣ + d = ak + 1
ak

d− aΣ > 0.

This shows H0(X̃,Ωn−1
X̃

) 6= 0, hence X̃ is not universally CH0-trivial by
Lemma 2.4. �

8. Proof of Corollaries

Proof of Corollary 1.4. — Let X be a very general smooth well formed
weighted hypersurface of degree d and index I in PC(a0, . . . , an+1). Note
that d = aΣ− I and we have aΣ > n+ 2. If I 6 amax, then X is not stably
rational by Theorem 1.1. Hence, in the following we assume that ai < I

for any i. Since a0, . . . , an+1 are mutually coprime to each other, this in
particular implies aΠ 6 (I − 1)!.

Suppose that d/aΠ > 2 is even. If n > 3I − 2, then

d− 2
3aΣ = 1

3aΣ − I = 1
3(n+ 2)− I > 0.

Thus, by Theorem 1.2, X is not stably rational.
Suppose that d/aΠ = 3. If n > 4I − 2, then by the similar argument as

above, we have d > 3
4aΣ and, by Theorem 1.2, X is not stably rational.

Suppose that d/aΠ > 5 is odd. If n > 3I + 3(I − 1)!− 2, then

d− aΠ −
2
3aΣ = 1

3aΣ − aΠ − I >
1
3(n+ 2)− (I − 1)!− I > 0.

Hence, by Theorem 1.3, X is not stably rational.
Finally, suppose that d/aΠ = 1. Let (b1, . . . , bm) be a tuple of mutually

coprime integers such that 2 6 b1 < · · · < bm < I and bΣ − bΠ 6 I, where
bΣ = b1 + · · ·+ bm and bΠ = b1 · · · bm. Then a general smooth well formed
weighted hypersurface of degree bΠ in P(1I+bΠ−bΣ , b1, . . . , bm) is of index
I. Conversely, if we are given a smooth well formed hypersurface of degree
d = aΠ in P(a0, . . . , an+1), then (ar+1, . . . , an+1), where r is defined in
such a way that ai > 1 if and only if i > r, is a tuple of mutually coprime
integers satisfying the above conditions. It is easy to see that a set of tuples
(b1, . . . , bm) such that 2 6 b1 < · · · < bm < I is finite. This means that
there are only finitely many combinations of the weights (a0, . . . , an+1) such
that a weighted hypersurfaces of degree aΠ in P(a0, . . . , an+1) is smooth,
well formed and of index I. Thus there exists a number N ′I depending only
on I such that if n > N ′I , then X does not exist.
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We set

NI = max{3I − 2, 4I − 2, 3I + 3(I − 1)!− 2, N ′I}.

Then the assertion in the corollary holds for this NI . �

Proof of Corollary 1.5. — Let X = Xd ⊂ PC(a0, . . . , an+1) be a very
general smooth well formed hypersurface of degree d. (1) follows immedi-
ately from Theorem 1.1.
Suppose that IX = 2. Then IX > amax if and only if a0 = · · · = an+1 = 1.

In this caseX is a degree n hypersurface in Pn+1 which is not stably rational
except possibly when n = 3 by [14] or [15]. This proves (2).
Suppose that IX = 3. Then IX > amax if and only if either X is a

hypersurface of degree n − 1 in Pn+1 or X is a weighted hypersurface of
degree 2m in P(12m+1, 2) for m > 2. If X is a hypersurface of degree n− 1
in Pn+1, then X is not stably rational except possibly when n = 3, 4, 5
by [14]. We see from Remark 7.3 that X = X2m ⊂ P(12m+1, 2) is not
stably rational for any m > 2. This proves (3). �
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