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STRUCTURE OF EXTENSIONS OF FREE
ARAKI-WOODS FACTORS

by Cyril HOUDAYER & Benjamin TROM (*)

ABSTRACT. We investigate the structure of crossed product von Neumann al-
gebras arising from Bogoljubov actions of countable groups on Shlyakhtenko’s free
Araki—-Woods factors. Among other results, we settle the questions of factoriality
and Connes’ type classification. We moreover provide general criteria regarding
fullness and strong solidity. As an application of our main results, we obtain exam-
ples of type Il factors that are prime, have no Cartan subalgebra and possess a
maximal amenable abelian subalgebra. We also obtain a new class of strongly solid
type III factors with prescribed Connes’ invariants that are not isomorphic to any
free Araki-Woods factors.

REsuME. — Nous étudions la structure de produits croisés d’algébres de von
Neumann provenant des actions Bogoljubov de groupes dénombrables sur les fac-
teurs d’Araki—-Woods libres. Nous résolvons notamment les questions concernant
la factorialité et la classification du type de Connes. Nous donnons également des
critéres généraux concernant le caracteére plein et la solidité forte. Comme applica-
tion de nos résultats, nous obtenons des exemples de facteurs de type 111y qui sont
premiers, sans sous-algébre de Cartan et qui possédent une sous-algébre maximale
moyennable abélienne. Nous obtenons aussi une nouvelle classe de facteurs forte-
ment solides de type III avec des invariants de Connes prescrits et qui ne sont pas
isomorphes & des facteurs d’Araki-Woods libres.

Introduction

A von Neumann algebra is a unital x-subalgebra of bounded linear op-
erators on a Hilbert space that is closed with respect to the weak operator
topology. By a well-known theorem of von Neumann, in order to under-
stand von Neumann algebras, it is sufficient to classify factors, that is, von
Neumann algebras with trivial center. Factors can be divided into different
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types: I, IT and III. By Connes-Tomita—Takesaki modular theory, one can
further decompose any type III factor as the crossed product of a type 11,
von Neumann algebra by a trace scaling action of R. A central theme in
operator algebras is to understand how much information the factor re-
tains from its building data. The rigidity paradigm aims at recovering the
building data out of the analytic/algebraic structure of the factor.

There is a distinguished class of factors that is completely understood:
the class of amenable factors. By Connes’ celebrated result [11], any
amenable factor is approximately finite dimensional (AFD), that is, it can
be written as the weak closure of an increasing sequence of finite dimen-
sional subalgebras. By the work of Connes [11, 12] and Haagerup [15],
amenable factors are completely classified by their type and by their flow
of weights. For instance, there is a unique amenable type I1; factor: it is the
AFD type II; factor of Murray—von Neumann [37] that we denote by R.

The classification problem of nonamenable factors remained elusive for
a long time. However the situation dramatically changed in 2001 when
Popa [44, 45, 46] introduced his deformation/rigidity theory to study tra-
cial von Neumann algebras and equivalence relations arising from probabil-
ity measure preserving (pmp) group actions on standard measure spaces.
Among landmark results that are also relevant to this paper, Ozawa—
Popa [41] showed that free group factors are strongly solid, meaning that
the normalizer of any diffuse amenable subalgebra stays amenable. Popa—
Vaes [47] showed that any free ergodic pmp action of the free groups gives
rise to a group measure space construction with a unique Cartan subalge-
bra, up to unitary conjugacy.

The absence of a (faithful normal semifinite) trace makes the study of
type III factors extremely difficult. Over the last few years, a deforma-
tion/rigidity theory for type III factors has emerged, extending Popa’s
deformation/rigidity theory for type II; factors to the realm of type III
factors (see e.g. [4, 8, 20, 29]). This novel approach in the study of the
structure and the classification of type III factors, combined with Connes—
Tomita—Takesaki modular theory, has been very successful, notably in the
study of free Araki-Woods factors [6, 23, 24, 26].

Free Araki-Woods factors were introduced by Shlyakhtenko in [49] us-
ing Voiculescu’s free Gaussian functor [60, 62]. To any strongly continuous
orthogonal representation U : R ~ Hg, one can associate a von Neumann
algebra I'(Hgr,U)"”, called the free Araki-Woods von Neumann algebra,
that is endowed with a canonical faithful normal state g, called the free
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quasi-free state. We refer the reader to Section 2 for a detailed construc-
tion. Using Voiculescu’s free probability theory, Shlyakhtenko settled the
questions of factoriality, type classification, fullness and Connes’ type I1I
invariants for free Araki-Woods von Neumann algebras [49, 50, 51, 52] (see
also [58]). When U = 1pg, we have I'(Hr, 1ag)" = L(Fdim(ag)) and so
M =T(Hr,lug)" is a free group factor. When U # 1y, I'(Hgr,U)" is a
full factor of type III. For that reason, free Araki—-Woods factors are often
regarded as type III analogues of free group factors.

To any countable group G and any orthogonal representation 7 : G ~
Hpg such that U and m commute (abbreviated [U, 7] = 0 hereafter), one can
associate the corresponding free Bogoljubov action o™ : G ~ I'(Hgr,U)"”
that preserves the free quasi-free state . We simply denote the crossed
product von Neumann algebra I'(Hg, U)"” x G by I'(U, 7)"’. We refer to the
von Neumann algebra I'(U, 7)”
von Neumann algebra T'(Hgr,U)” by the countable group G via the free
Bogoljubov action ™.

In this paper, we investigate the structure of entensions of free Araki—

as the extension of the free Araki—-Woods

Woods factors T'(U,7)”. Among other results, we settle the questions of
factoriality and Connes’ type classification. We moreover provide general
criteria regarding fullness and strong solidity. Our results generalize and
strengthen some of the results obtained by the first named author [18]
regarding the structure of crossed product type II; factors arising from free
Bogoljubov actions of countable groups on free group factors. Moreover,
we apply our results to obtain new classes of type III factors with various
structural properties such as the existence of maximal amenable abelian
subalgebras or the property of strong solidity, to name a few. All locally
compact groups are assumed to be second countable and all (real) Hilbert
spaces are assumed to be separable, unless stated otherwise.

1. Statement of the main results
Factoriality and Connes’ type classification

Our first result settles the questions of factoriality and Connes’ type
classification of extensions of free Araki-Woods factors I'(U, 7). Let G be
any countable group. For every g € G, we denote by C(g) = {hgh™' | h €
G} the conjugacy class of g € G. Recall that the FC-radical of G is defined
by FC(G) = {g € G | |C(g)| < +o0}. Observe that Z(G) < FC(G) < G,
where Z(G) denotes the center of G.
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476 Cyril HOUDAYER & Benjamin TROM

THEOREM A. — Let U : R ~ Hgr be any strongly continuous orthog-
onal representation with dim Hg > 2. Let G be any countable group and

: G ~ Hgr any orthogonal representation such that [U,n] = 0. Put
M =TI'(U,n)". The following assertions hold.

(i) M is a factor if and only if my # 1 for every g € FC(G) \ {e}.
(ii) Assume that M is a factor. Then

T(M)={teR|3ge Z(G) such that U, =my}.

(iii) When M is a factor, Connes’ invariant T(M) completely determines
the type of M.

M is of type III; <= T(M) = {0 }

(M) =
M is of type I, <= T(M) = 7Z with 0<A<1
(M)

M is of type Illy <= T(M) is dense inR and T(M) #R
M is of type Il <—= T(M) =R
(iv) When M is a type IIl; factor, M has trivial bicentralizer.

One of the key elements of the proof of Theorem A is the fact that when-
ever m € O(HR) is a nontrivial orthogonal transformation that commutes
with U, the corresponding Bogoljubov automorphism o™ € Aut(I'(Hgr, U)")
is not inner (see Lemma 3.2).

Fullness and Connes’ T invariant

Whenever G is a locally compact group and p : G ~ HR is a strongly
continuous orthogonal representation, we define 7(p) as the weakest topol-
ogy on G that makes p continuous. When G is countable, we simply denote
by 7¢ the discrete topology on G. Following [10], we say that a factor with
separable predual M is full if the subgroup of inner automorphisms Inn (M)
is closed in the group of all x-automorphisms Aut(M). If M is full, Connes’
7 invariant 7(M) is defined as the weakest topology on R that makes the
modular homomorphism 03 : R — Out(M) continuous.

Our second result shows that the extension I'(U, 7)" is a full factor when-
ever 7 is faithful and 7(G) is discrete in O(Hgr ) with respect to the strong
topology. This result extends [18, Theorem A] to the type III setting. As-
suming moreover that G is infinite and that the weakest topology on R x G
that makes the representation p : R x G ~ Hgr continuous is 7(U) X ¢,
we can compute Connes’ invariant 7(M). This phenomenon is unique to
the type III setting and has no analogue in the realm of type II; factors.
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THEOREM B. — Let U : R ~ Hgr be any strongly continuous orthog-
onal representation with dim Hg > 2. Let G be any countable group and
7w : G ~ Hgr any faithful orthogonal representation such that [U, x| = 0.
Define the strongly continuous orthogonal representation p : R x G ~ Hgr
by p(,q) = Uiy for every t € R and every g € G. Put M =T'(U,)".

(i) Assume that 7(7) = 7. Then M is a full factor.
(ii) Assume that G is infinite and that 7(p) = 7(U) x 7. Then M is a
full factor and 7(M) = 7(U).

The proof of Theorem B uses a combination of Popa’s asymptotic or-
thogonality property [43], e-orthogonality techniques [17, 18] and modular
theory of ultraproduct von Neumann algebras [2].

We should point out that Theorem B does not rely on Marrakchi’s re-
sult [36, Theorem B] (see also [33] for the tracial case). Recall that for any
full factor N, any countable group G and any outer action ¢ : G ~ N
such that the image of o(G) is discrete in Out(N), the crossed product
M = N x G is a full factor by [36, Theorem B]. The condition that the
image of o(G) is discrete in Out(N) is rather difficult to check in general
as it requires to understand the quotient group Out(N). For the class of
Bogoljubov actions ¢™ : G ~ N, where N = I'(Hg,U)”, our Theorem B
shows that the crossed product N x G is a full factor under the weaker
assumption that 7(G) is discrete in O(Hr) with respect to the strong
topology, or equivalently, that o™ (G) is discrete in Aut(N) with respect to
the u-topology.

When the countable group G is amenable, combining our Theorem B,
[22, Theorem 3.6] and Marrakchi’s very recent result [35, Theorem A], we
obtain the following characterization.

COROLLARY. — Let U : R ~ Hgr be any strongly continuous orthog-
onal representation with dim Hg > 2. Let G be any amenable countable
group and 7 : G ~ Hg any faithful orthogonal representation such that
[U,7] =0. Put N =T(Hg,U)" Cc I(U,n)" = M. The following assertions
are equivalent.

(i) 7(m) = 7¢-
ii) The image of 0™ (G) is discrete in Out(N).
(iii) M is a full factor.
(iv) For every directed set I and every cofinal ultrafilter w on I, we have
N'nM* = Cl.

_
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Amenable and Gamma absorption

Next, we investigate absorption properties of the inclusion L(G) C
(U, )" with respect to amenable and/or Gamma subalgebras. Recall that
a o-finite von Neumann algebra N is said to have property Gamma if the
central sequence algebra N’ N N¥ is diffuse for some (or any) nonprincipal
ultrafilter w € B(N)\N. Recall also that a von Neumann subalgebra P C M
is said to be with expectation if there exists a faithful normal conditional
expectation Ep : M — P. Our next result extends and strengthens [18,
Theorems D and E] to the type III setting.

THEOREM C. — Let U : R ~ Hgr be any strongly continuous orthog-
onal representation. Let G be any countable group and w : G ~ Hgr any
orthogonal representation such that [U, 7] = 0. Put M =T'(U,w)".

(i) Assume that m: G ~ Hg is weakly mixing. Let L(G) C P C M be
any intermediate von Neumann subalgebra with expectation such
that P is amenable relative to L(G) inside M. Then P = L(G).

(ii) Assume that 7 : G ~ Hg is mixing. Let P C M be any von
Neumann subalgebra with expectation and with property Gamma
such that P NL(G) is diffuse. Then P C L(G).

The proof of Theorem C relies on [34, Theorem 5.1] and [28, Theorem 3.1]
as well as mixing techniques for inclusions of von Neumann algebras (see
Appendix A). Note that item (ii) of Theorem C can also be regarded as a
strengthening of item (i) of Theorem B in the case when 7 is mixing.

Using Theorem C as well as Theorems 6.1 and 6.2, we obtain examples of
type Il factors, with prescribed Connes’ T invariant, that are prime, have
no Cartan subalgebra and possess a maximal amenable abelian subalgebra.

ApPPLICATION D. — Let U : R ~ Hr be any mixing strongly continu-
ous orthogonal representation. Let G C R be any countable dense subgroup
and put m = Ulg.

Then M =T(U, )" is a type Iy factor such that T(M) = G. Moreover,
M is prime, M has no Cartan subalgebra and L(G) C is maximal
amenable.

We would like to point out that all previously known examples of max-
imal amenable abelian subalgebras with expectation A C M in type III
factors (see [4, 19, 27]) require the intermediate amenable subalgebra A C
P C M to be also with expectation. That is why the terminology “maximal
amenable with expectation” was used in [4, 19, 27]. Application D provides
the first concrete class of abelian subalgebras with expectation in type III
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factors that are genuinely maximal amenable, that is, with no further as-
sumption on the intermediate amenable subalgebra A C P C M. Indeed,
for the inclusions in Application D, any intermediate von Neumann sub-
algebra L(G) C P C M is automatically with expectation and so we may
apply Theorem C.

Strong solidity

Following [6, 41], a o-finite von Neumann algebra N is said to be strongly
solid if for any diffuse amenable subalgebra with expectation @Q C N, the
normalizer Ny (Q)” C N of @ inside N stays amenable, where Ny (Q) =
{u e U(N) | uQu* = Q}. In their breakthrough article [41], Ozawa—Popa
famously proved that free group factors are strongly solid. These were the
first class of strongly solid type II; factors in the literature. Recently, gener-
alizing the methods of Ozawa—Popa, Boutonnet—Houdayer—Vaes [6] showed
that free Araki—-Woods factors are strongly solid, thus obtaining the first
class of strongly solid type III factors.

Our next result shows that when G is amenable and 7 is faithful and
mixing, the extension I'(U, )" is strongly solid. We refer the reader to [7,
32] for other examples of strongly solid type III factors.

THEOREM E. — Let U : R ~ Hr be any strongly continuous or-
thogonal representation. Let G be any amenable countable group and
m : G ~ Hg any faithful mixing orthogonal representation such that
[U, 7] = 0.

Then I'(U, )" is a strongly solid factor.

The proof of Theorem E uses Popa’s deformation/rigidity theory. More
precisely, it relies on [6, Theorem 3.7] and [32, Theorem A] as well as mixing
techniques for inclusions of von Neumann algebras (see Appendix A).

We use Theorem E to obtain a new class of strongly solid type III factors,
with prescribed Connes’ invariants, that are not isomorphic to any free
Araki-Woods factor.

APPLICATION F. — Let U : R ~ Hr be any strongly continuous or-
thogonal representation such that U # 1, and such that U has a nonzero
invariant vector. Let w : Z ~ Kr be any mixing orthogonal representation
such that the spectral measure of @n>1 7@ is singular with respect to the
Haar measure on T.

Put M =T(U®1kg, 1as ®m)". Then M is a strongly solid type II factor
that has the complete metric approximation property and the Haagerup
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property and such that T(M) = ker(U) and 7(M) = 7(U). Moreover, M
is not isomorphic to any free Araki-Woods factor.
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thank the anonymous referee for pointing out a correction in the proof of
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2. Preliminaries
2.1. Background on o-finite von Neumann algebra

For any von Neumann algebra M, we denote by Z(M) its centre, by
U(M) its group of unitaries, by Ball(M) its unit ball with respect to the
uniform norm || - ||ee and by (M, L*(M), J,L*(M)) its standard form [14].

Let M be any o-finite von Neumann algebra and ¢ € M, any faithful
state. We write ||z, = p(z*2)'/? for every = € M. Recall that on Ball(M),
the topology given by || - ||, coincides with the strong topology. We denote
by &, = ©'/? € L?(M), the unique element such that ¢ = (-€0,&0).
Conversely, for every ¢ € L*(M),, we denote by we = (-£,6) € M, the
corresponding positive form. The mapping M — LZ(M ) 1 & — x€, defines
an embedding with dense image such that ||z|, = ||z, | for all z € M.

Let M be any o-finite von Neumann algebra and ¢ € M, any faithful
state. We denote by ¢¥ the modular automorphism group of the state .
The centralizer M, of the state ¢ is by definition the fixed point algebra of
(M, o%). The continuous core of M with respect to ¢, denoted by ¢, (M), is
the crossed product von Neumann algebra M %, R. The natural inclusion
Ty : M — ¢, (M) and the unitary representation A, : R — ¢, (M) satisfy
the covariance relation

Vee M, VteR, X(t)muo(2)Ap(t)" = mu(of ().

Put L,(R) = Ay(R)”. There is a unique faithful normal conditional ex-
pectation Ep_(r) @ co(M) — Ly(R) satisfying Ep_(r) (T (2)As(t)) =
©(x)Ap(t). The faithful normal semifinite weight L*(R)* — [0, +o0] :
f = Jgexp(—s)f(s)ds gives rise to a faithful normal semifinite weight
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Tr, on Ly(R) via the Fourier transform. The formula Tr, = Tr, o Er_(r)
extends it to a faithful normal semifinite trace on ¢, (M).

Because of Connes’ Radon—Nikodym cocycle theorem [9, Théoréme 1.2.1]
(see also [55, Theorem VIIL.3.3]), the semifinite von Neumann algebra
¢, (M) together with its trace Tr, does not depend on the choice of ¢
in the following precise sense. If v is another faithful normal state on M,
there is a canonical surjective *-isomorphism IL, y : ¢y (M) — ¢, (M) such
that II, yomy = 7, and Tr, oIl 4 = Try. Note however that IL, , does not
map the subalgebra Ly (R) C ¢y (M) onto the subalgebra Ly, (R) C ¢, (M)
(and thus we use the symbol L, (R) instead of the usual L(R)).

2.2. Ultraproduct von Neumann algebras

Let M be any o-finite von Neumann algebra. Let J be any nonempty
directed set and w any cofinal ultrafilter on J, that is, for all jo € J, we
have {j € J:j > jo} € w. Define

30(M) = {(xm € 1°°(J, M)

lim [l2,C)| = lim I¢ay ]| = 0,¥ ¢ € LQ(M)}
jow jow

()5 Jw(M) C Joo (M)

and J,(M) (z;); C 3w(M)}
Observe that J,(M) C M (M). The multiplier algebra 9~ (M) is a C*-
algebra and J,(M) C M (M) is a norm closed two-sided ideal. Follow-
ing [38, Section 5.1], we define the ultraproduct von Neumann algebra by
M« = M¥(M)/3,(M), which is indeed known to be a von Neumann al-
gebra. Observe that the proof given in [38, 5.1] for the case when J = N

and w € B(N) \ N applies mutatis mutandis. We denote the image of
(z;); € M (M) by (z;)* € M.

oM (M) = { (e;); € £(J, M)

2.3. Extensions of free Araki—Woods factors

Let U : R ~ Hg be any strongly continuous orthogonal representation.
Denote by H = Hgr ®r C = Hgr ® iHgr the complexified Hilbert space, by
I:H — H:£+in— & —in the canonical involution on H and by A the
infinitesimal generator of U : R ~ H, that is, U; = A' for all t € R. We
have TAI = A='. Observe that j : Hr — H : ( — (ﬁ“)l/% defines an
isometric embedding of Hgr into H. Put Kr = j(Hg). It is easy to see that
Kr NiKgr = {0} and that Kg + iKr is dense in H. Write T = TA~'/2,
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Then T is a conjugate-linear closed invertible operator on H satisfying
T =T7"and T*T = A~'. Such an operator is called an involution on H.
Moreover, we have dom(7) = dom(A~'/?) and Kr = {¢ € dom(T) | T¢ =
¢}. In what follows, we simply write

VEneKr, +in=T(E+in) =¢—in.
We introduce the full Fock space of H by

F(H)=CQa P H
n=1
The unit vector €2 is called the vacuum vector. For all £ € H, define the
left creation operator £() : F(H) — F(H) by

{é(&)ﬂze
LE)(6® &) =ER6H1 - ®&n.

We have [|€(§)]|co = |I€]] and £(€) is an isometry if ||£|| = 1. For all £ € Kg,
put W(&) = £(£) +£(£)*. The crucial result of Voiculescu [62, Lemma 2.6.3]
is that the distribution of the self-adjoint operator W (£) with respect to
the vector state oy = (-2, Q) is the semicircular law of Wigner supported
on the interval [—||£]], ||€]].

Following [49], the free Araki-Woods von Neumann algebra associated
with U : R ~ HR is defined by

[(Hr,U)" ={W (&) | ¢ € Kr}".

The vector state py = (-Q,Q) is called the free quasi-free state and is
faithful on T'(Hg,U)"”. Let £,n € Kr and write ( = £ + in. Put

W(C) = W (&) +iW(n) = £(C) + £(C)"
It is easy to see that for all n > 1 and all (1,...,(, € Kr + iKR,

(G® - ® € T(Hgr,U)"Q. When (i, ..., (, are all nonzero, we will denote
by W((1 ® -+ ®¢(,) € T'(Hgr,U)"” the unique element such that

Q@ ®G=W((& &)L

Such an element is called a reduced word. By [23, Proposition 2.1 (i)] (see
also [17, Proposition 2.4]), the reduced word W ((; ® - - - ® (,,) satisfies the
Wick formula given by

n

W& @C) =Y 0G) LG Ckr1)" - £(Cn)".

k=0
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Since inner products are assumed to be linear in the first variable, we
have £(&)*¢(n) = (¢,n)1 = (n,&)1 for all £, n € H. In particular, the Wick
formula from [23, Proposition 2.1 (ii)] is

W(§1®--~®§r)W(771®"'®775)
=W &M ®ns)

+ <5’r7771> W(fl & - ®§r71)W(n2 K- 7]5)

for all &1,...,&,m1,...,ms € Kr + 1Kr. We will repeatedly use this fact
throughout. We refer to [23, Section 2] for further details.

The modular automorphism group ¢¥? of the free quasi-free state @y is
given by o7 = Ad(F(Uy)), where F(U;) = 1ca®@D, 5, US". In particular,
it satisfies

VnéeN, V<1,-.-,<nEKR+iKR, VteR,
ol WG @ ®G))=W({UiG @ @UiGn).

Let now G be any countable group and m : G ~ Hgr any orthogonal
representation such that U and = commute (hereafter abbreviated [U, 7] =
0). Denote by 7 : G ~ H the corresponding unitary representation. Using
the Wick formula, for all n > 0, all (1,...,(, € Kr +iKgr and all g € G,
we have

Ad(F(mg))(W(G @ -+ @ Cn)) = W (C1) @ - -+ @ 7mg(Cn))-

The action Ad(F (7)) : G ~ B(F(H)) leaves the free Araki-Woods von
Neumann algebra I'(Hgr,U)” globally invariant. We use the following ter-
minology.

DEFINITION 2.1. — The action o™ : G ~ I'(Hr,U)" defined by o] =
Ad(F(ry)) for every g € G is called the free Bogoljubov action associated
with the orthogonal representation m : G ~ Hr. The action o™ preserves
the quasi-free state gy and commute with its modular automorphism group
0¥V that is,

VgeG,VteR, pu=ypyoo, and of’ oo, =0, 00{".

We simply denote by I'(U,w)"” = T'(Hgr,U)"” X,= G the corresponding
crossed product von Neumann algebra. We refer to I'(U,n)” as the ex-
tension of the free Araki-Woods von Neumann algebra I'(Hg,U)” by the
countable group G via the free Bogoljubov action ¢™ : G ~ I'(Hg,U)".
Put N = T'(Hg,U)"” and M = T'(U,n)"” so that M = N x G. Denote by
Exy : M — N the canonical faithful normal conditional expectation and
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by ¢ = ¢y o Ex the canonical faithful normal state on M. We identify the
standard form L?(M) with F(H) ® ¢?(G) via the unitary mapping

U:LAHM) = FH)@C(G) : W(l @ @ Ca)uglp = (@ @ (@3,

where n >0, (1,...,(, € Kr +1Kr, g € G.

2.4. Intertwining theory

Let M be any o-finite von Neumann algebra and A C 14M1,4, B C
1pM1p any von Neumann subalgebras with expectation. Following [20,
44, 45], we say that A embeds with expectation into B inside M and write
A =<p; B, if there exist projections e € A and f € B, a nonzero partial
isometry v € eM f and a unital normal *-homomorphism 6 : ede — fBf
such that the inclusion f(eAe) C fBf is with expectation and av = v6(a)
for all a € eAe.

We will need the following technical result that is essentially contained
in [29, Lemma 2.6].

LEMMA 2.2. — Let M be any von Neumann algebra with separable
predual. Let A C 14M14, B C M be any von Neumann subalgebras with
expectation. Assume that B is of type 1. If A Ay B, there exists a diffuse
abelian subalgebra with expectation D C A such that D £y B.

Proof. — The proof of [29, Lemma 2.6] applies mutatis mutandis to the
case when B is a type I von Neumann algebra. |

2.5. Relative amenability

Let M be any o-finite von Neumann algebra and A C 1,M14, BC M
any von Neumann subalgebras with expectation. Following [41, 21], we say
that A is amenable relative to B inside M and write A <js B if there exists
a conditional expectation ® : 14(M,B)14 — A such that the restriction
Dl 1, 1aM14 — A is faithful and normal.

Fix now E4 : 14M14 — A a faithful normal conditional expectation.
Using [31, Remark 3.3], A <)y B if and only if there exists a conditional
expectation @ : 14(M, B)14 — A such that ®|; a1, = Ea.
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3. Factoriality and Connes’ type classification

We start by proving the following well known fact about orthogonal
representations of abelian locally compact second countable (lcsc) groups.

PROPOSITION 3.1. — Let G be any abelian Icsc group and p : G ~
Hgr any irreducible strongly continuous orthogonal representation. Then
dim(Hg) € {1,2}.

If dim(Hgr) = 1, there exists a continuous homomorphism ¢ : G —
{—1,1} such that for all g € G, we have py = €4l pp,.

If dim(HR) = 2, there exist a Borel map ¢ : G — R such that for
all g,h € G, we have (gh) — ¢ (g) — ¥(h) € 2nZ, and there exists an
orthonormal basis of Hr such that p : G ~ Hr has the following form:

_( cos(¥(g))  sin(¥(g))
VgeG, py= (sjn(1/1(g)) cos(w(g))> '

Proof. — We denote by pc : G ~ Hc¢ the complexified strongly con-
tinuous unitary representation. Denote by J : Hc — Hc the canonical
conjugation. Observe that pc(g)J = Jpc(g) for every g € G. The fact that
the orthogonal representation p is irreducible translates into the following
fact for pc: the only closed subspaces of H¢ that are invariant under both
pc(G) and J are {0} and He.

Since G is an abelian lcsc group, we may consider the spectral measure
E)c : B(G) — P(Hc) where B(G) is the o-algebra of Borel subsets of G
and P(Hc) is the lattice of projections of B(H¢). Then we have

VgeG, plg)= /ax@) dE, (x)-

Since pc(g) = Jpc(g)J for every g € G, we have E,(B) = JE,.(B)J for
every B € B(G).

We claim that there exists y € G such that supp(E,c) = {x, x}- Indeed,
otherwise we can find x1, x2 € supp(E,¢) such that {x1,x1}N{x2, X2} = 0.
We can then find open neighborhoods O1,0y C G of X1, X2 respectively
such that (01 U 071) N (02 U @) ={. Put B=0;UO;. Then B = B and
E,o(B) # 0. Since O UOs C G \ B, we have E, (@ \ B) # 0. It follows
that the range K of E,;(B) is a subspace of Hc that is invariant under
pc(G) and J and such that K # {0} and K # Hc. This contradicts the
irreducibility of the orthogonal representation p. Thus, there exists x € G
such that supp(E,.) = {x, X}

Firstly, assume that ¥ = x. Since the orthogonal representation p is irre-
ducible, E, ({x}) is necessarily a rank one projection and so dim¢(Hc)=1.
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This implies that dimg (Hr) = 1. Then there exists a continuous homomor-
phism ¢ : G — {—1,1} such that for all g € G, we have p, = e4lpy.

Secondly, assume that ¥ # x. Since the orthogonal representation p is ir-
reducible, E, . ({x}) is necessarily a rank one projection and so dimc(Hc) =
2. This implies that dimg (Hgr) = 2. Consider the one-to-one Borel map
f: T — ]—m, 7] such that exp(if(z)) = z for every z € T. Define the Borel
map ¢ : G — |—m, 7] by ¥ = fox. Then we have ¢(gh) —(g)—(h) € 2rZ
for all g,h € G. Moreover, there exists an orthonormal basis of Hg such
that p : G ~ Hg has the following form:

_( cos(¥(g))  sin(¥(g))
VgeG, py= (sjn(1/1(g)) cos(w(g))> '

This finishes the proof of Proposition 3.1. |

We generalize [25, Theorem 5.1] to the setting of Bogoljubov transfor-
mations of free Araki-Woods factors.

LEMMA 3.2. — Let U : R ~ Hgr be any strongly continuous orthogonal
representation with dim Hg > 1. Put (N,¢) = (I'(Hr,U)",pv). Let 7 €
O(HR) be any orthogonal transformation such that [U, 7| = 0.

If Ad(F(m)) € Inn(N), then m = 1.

Proof. — Assume that § = Ad(F(w)) € Inn(N). Let v € U(N) such
that 6 = Ad(u). We show that m = 1. Since [U,n] = 0, we may define
the strongly continuous orthogonal representation p : R x Z ~ Hg by
p(t,ny = Upm™. There are two cases to consider.

First, assume that p is reducible and write Hr = Hg & Hg where
H{ C Hg is a nonzero p-invariant subspace for every i € {1,2}. Write
U, = U‘le" for every ¢ € {1,2}. Then [49, Theorem 2.11] implies that
(N,o) = (T(Hg,U1)", pu,) * (D(HE,U2)", ¢u,). For every i € {1,2}, we
moreover have

ul(Hg,U)'v* = 0(T(Hg, U;)") = T(n(HR),U:)" = T(Hg, Ui)".
Then [57, Proposition 3.1] implies that u € ['(Hg,U1)” NT(HE, Us)” and
so u € T1. Thus, § =idy and so 7 = 1.

Secondly, assume that p is irreducible. Since R x Z is an abelian lcsc
group, we have dim(Hg) € {1,2} by Proposition 3.1. If dim(Hgr) = 1, we
have § = idy and thus 7 = 1. If dim(Hg) = 2, there exist 0 < A < 1 and

> 0 and an orthonormal basis of Hgr such that p: R x Z ~ Hgr has the
following form:

V(tn) € RXZ, prm = (cos(t log A +nlogpu) —sin(tlog\ + nlog,u)) .

sin(tlog A+ nlogpu)  cos(tlog A + nlogp)
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If A =1, U is trivial and [25, Theorem 5.1] implies that 7 = 1. If 0 < A < 1,
using [49, Section 4], we know that N is a type III, factor. Moreover, we
have ™ = p,1) = Us where t = }gg‘; Since T(N) = 102;)\Z and since
of = 0 = Ad(u), there exists k € Z such that 128£ = ¢ = 27k Then

log A log A*
log 4 = 27k and so ™ = p(p,1) = 1.

Proof of Theorem A. — Put N = I'(Hg,U)” and M = T'(U,n)"” so
that M = N x (. Denote by Exy : M — N the canonical faithful normal
conditional expectation. Denote by ¢ € N, the free quasi-free state on N
and put ¥ = p o Ex € M,.

(i). — We start by proving the following claim.
Cram 3.3. — L(G)' N M =L(G) N (N x FC(G)).

Indeed, let 2 € L(G) N M and write = Y, zu;, for its Fourier
decomposition where 2" = Ey(zu}) for every h € G. Then we have
Ug(nglhg) = " for all g,h € G. Since 0™ : G ~ N is @-preserving
and since Y, |22 = ]|, < +oo, it follows that " = 0 for every
h € G\ FC(G). Since N x FC(G) C M is o¥%-invariant, we may denote
by F: M — N x FC(G) the unique -preserving conditional expectation.
Then z = F(z) € N x FC(G) and the claim is proven.

Assume that 7, # 1 for every g € FC(G)\ {e}. Since Z(M) C L(G)'NM,
we have Z(M) = M' N (N x FC(G)) by Claim 3.3. By assumption and
using Lemma 3.2, the action o™ : FC(G) ~ N is outer. It follows that
N'N(N xFC(G)) = C1 and so Z(M) = C1.

Assume that 7, = 1 for some g € FC(G) \ {e}. Then m;, = 1 for every
k € C(g). This implies that © =}, .o, ur € Z(M) and so Z(M) # C1.

(ii). — We compute Connes’ invariant T(M). Let ¢ € R for which there
exists g € Z(G) such that U; = m,. Then of = 0. By construction of the
crossed product von Neumann algebra M = N x G, since L(G) C My, and
since g € Z(G), we have o} = Ad(uy) and so t € T(M).

Conversely, let t € T(M). Then there exists u € UY(M) such that o, =
Ad(u). Since L(G) C My, we have w € L(G)'NM and so u € N xFC(G) by
Claim 3.3. As ag’ leaves N globally invariant, we have u € Ny wrc(q) (V).
By assumption and using Lemma 3.2, the action o™ : FC(G) ~ N is outer.
Then there exist v € U(N) and g € FC(G) such that u = vu, (see e.g. [3,
Corollary 3.11]). Thus, we have of = Ad(v)ooy and so of 007, € Inn(N).
Since of o o = Ad(F(Uymg)), Lemma 3.2 implies that U; = my. Since
[U,n] = 0, we have m, € Z(n(G)). Since M is a factor, 7|pc(q) is faithful
by item (i). Altogether, this implies that g € Z(G).
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Recall that by [49], we have T(N) = {t € R | U; = 1} and Connes’
invariant T(INV) completely determines the type of N. In particular, we
always have T(N) C T(M).

(iii). — We now prove that Connes’ invariant T(M) completely deter-
mines the type of M. Denote by c¢(IN) (resp. ¢(M)) the continuous core
of N (resp. M). We canonically have ¢(M) = ¢(N) x G where the action
c(0™) : G ~ ¢(N) is given by c(0™)y(mu(2)As (1)) = mu(07 (2))A,(t) for
every g € G, every t € R and every x € N. We prove the following claim.

CLamM 3.4. — L(G)' Nec(M) =L(G) N (c(N) x FC(GQ)).

Indeed, let p € L,(R) C ¢(N) be any nonzero finite trace projection.
Since p € L(G)' N ¢(M), it follows that the restriction c(c™) : G ~
p c¢(N)p is a trace preserving action on a tracial von Neumann algebra
and p ¢(M)p =p ¢(N)p x G. The same proof as in Claim 3.3 shows that

p(L(G) Ne(M))p

L(G)' np c(M)p

(@) N (p c(N)p x FC(G))
(G) Np(c(N) x FC(G))p
(L(G)' N (c(N) x FC(G)))p-

L
L
p

Since we can find an increasing sequence of nonzero finite trace projections
Pk € Ly (R) such that p, — 1 strongly, the claim is proven.

If M is of type IIIy, then T(M) = {0} by [9, Théoréme 3.4.1]. Conversely,
assume that T(M) = {0}. Since T(N) C T(M), we also have T(N) = {0}.
This implies that N is of type III; (see [49]). By combining [16, Proposi-
tion 5.4], Lemma 3.2 and item (ii), we have that c(o™) : FC(G) m~ ¢(N) isan
outer action. This implies that ¢(N)'N(c(N) xFC(G)) = C1. By Claim 3.4,
we have Z(c(M)) = c(M)' N (c¢(N) x FC(GQ)) and so Z(c(M)) = C1. This
implies that c¢(M) is a factor and so M is of type III;.

Let 0 < A < 1 and put T' = T If M is of type III, then T(M) =
TZ by [9, Théoreme 3.4.1]. Conversely, assume that T(M) = TZ. Since
T(N) C T(M), we have T(N) = kT'Z for some x € N. Since M is a factor,
Tlrc(e) is faithful and we may denote by g € Z(G) the unique element
such that Ur = m,. Moreover, the map ¢ : T(M) — Z(G) : kT ~ ¢* is a
well-defined group homomorphism.

Firstly, assume that x = 0, so that N is of type III; (see [49]). Since
c(N) is a factor and since c(o™), is outer for every h € FC(GQ) \ g% (by
combining [16, Proposition 5.4], Lemma 3.2 and item (ii)), it follows that

c(N)' N ((c(N) x FC(G)) = ¢(N)' 1 (c(N) % g%).
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Using the above observation with Claim 3.4, we infer that
Z(c(M)) =L(G)' N (c(N) N (c(N) x FC(G)))
=L(G)' N (c(N) N (c(N) % g%))
=L(G) N{ug*As(T)}"  (since ¢(N) is a factor)
= {ug" (1)} = L™ (R/TZ).

Since the action R »~ R/TZ is essentially transitive, the dual action R ~
Z(c(M)) is essentially transitive and so M is of type III,.

Secondly, assume that x > 1. We have 1 = Uxr = my~. Since 7|pc(q) is
faithful, we have g = 1 and so have g% = Z/xZ. Since T(N) = kTZ =
b;ﬁz, N is of type ITT 1/« (see [49]). Then ¢ is kT-periodic and we have
(Ny)' NN = C1 by [9, Théoreme 4.2.6]. Observe that M, = N, x G. We

next prove the following claim.
Cram 3.5. — Z(My) = L(¢g%).
Indeed, by Claim 3.3, we have
Z(My) = (N,)'NL(G) N (N, x G) = (N,) NL(G) N (N, x FC(G)).

Let z € (N,) N (N, x FC(G)) and write z = Y, z"uy, for its Fourier
decomposition. Then we have yz" = z"o7(y) for every h € FC(G) and
every y € N,. Since (N,)' N N = C1, for every h € FC(G), there exist
ap € C and v, € U(N,) so that 2" = ajvy. Let h € FC(G) such that
ap # 0. Then of|n, = Ad(vp)|n,. Then Ad(vj) o of is p-preserving and
Ad(vy) o of|n, = idn,. Applying the proof of [16, Theorem 3.2] to the
periodic weight ¢ ® Trpg(y2), there exists ¢t € R such that Ad(vj)oo] = af.
Lemma 3.2 implies that U; = 7, and so t € T(M) and h € g%. This shows
that (N,)' N (N, x FC(Q)) = (N,)' N (N, x g%) = L(g%) (since N,, is a
factor) and so Z(M,,) = L(g?%).

Since Z(My) is discrete, M cannot be of type IIIj (see [9, Cor. 3.2.7(b)])
and so M is of type III by [9, Théoréme 3.4.1].

If M is of type Iy, then T(M)=R. Conversely, if T(M)=R, since M has
separable predual, it follows that M is semifinite by [9, Théoreme 1.3.4(b)].
Since N C M is with expectation, this further implies that N is semifinite
(see [54, Lemma V.2.29]) and so N is a type II; factor by [49]. Since the
free Bogoljubov action G ~ (N, ) is trace-preserving, M = N x G is a
type II; factor.

Using the above reasoning, M is of type Il if and only if T(M) is
dense in R and T(M) # R.. Therefore, Connes’ invariant T(M) completely
determines the type of M.
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(iv). — Finally, assume that M is a type III; factor. For bicentralizer
algebras, we use notation of [20, Section 3]. To prove that M has trivial
bicentralizer, it suffices to show that B(M,v) = C1. Using item (ii), Q =
N x FC(G) is a type III; factor. Choose a nonprincipal ultrafilter w €
B(N) \ N. Using [20, Proposition 3.2] and Claim 3.3, we have

B(M, 1)) = (M¥)y) N M C ((Q“)y=) NL(G) N M C ((@Q%)y)' NQ
=B(Q,v).

In order to prove that B(M,¢) = C1, it suffices to show that B(Q, ) = C1.

Put H = FC(G). Fix an enumeration {h, | n € N} of H. For every
n € N, denote by H,, the subgroup of H generated by {ho,...,h,}. Then
(Hy)n is an increasing sequence of subgroups of H such that |J,,cn Hyn = H.
For every n € N, since H, is finitely generated and since FC(H,,) = H,, its
center Z(H,) has finite index in H,, and so H,, is virtually abelian. Using
item (ii), @, = N x H,, is a type III; factor. Theorem 6.1 implies that Q,,
is semisolid and [20, Theorem 3.7] implies that Q,, has trivial bicentralizer.
Thus, we have B(Q,,, 1) = C1 for every n € N.

For every n € N, denote by Eg, : @ — @, the unique vy-preserving
conditional expectation. Let « € B(Q, ). Then Eq, (z) € B(Q,, %) and so
Eg, (z) = ¢(z)1. Since lim, ||z — Eq, ()||4 = 0, it follows that x = ¢ (z)1.
Thus, we have B(Q, 1) = C1 and so B(M, ) = C1. This finishes the proof
of Theorem A. |

4. Fullness

We fix the following notation. Let U : R ~ Hgr be any strongly contin-
uous orthogonal representation with dim Hgr > 2. Let G be any countable
group and m : G ~ Hg any faithful orthogonal representation such that
[U,n] = 0. Put M = (U, )" and denote by (M,L*(M),J,L*(M),) its
standard form. Write ¢ € M, for the canonical faithful state on M.

Write Hr = Hy' & HY™ where Hyy (vesp. HY™) is the almost periodic
(resp. weakly mixing) part of the orthogonal representation 7 : G ~ HRg.
Note that the subspace H§™ is invariant under U (and so is Hgy ). Likewise,
write H = H* @ HY™ where H®P (resp. H"™) is the almost periodic
(resp. weakly mixing) part of the corresponding unitary representation 7 :
G ~ H. As usual, denote by A the infinitesimal generator of U : R ~ H
and let j : Hr — H : n — (ﬁ)lmn be the corresponding isometric
embedding. Put Kr = j(Hr), Kg' = j(Hg ) and K§™ = j(HE™). Recall
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that Kgr NiKr = {0} and Kr + iKgr is dense in H. We consider the
involution Kg +iKgr — KR +iKR given £ +in = £ —in for all £,n € KR.
Let L C Kr +iKr be any subspace such that L = L. Denote by X'(L)
the closure in L?(M) of the linear span of all the elements of the form
e1® Qe ®, where k >1,e1 € L, eq,...,ep € Kgr +iKgr, h € G.

LEMMA 4.1. — Assume that H§™ # 0. Let L C K§™ +iKg™ be any
nonzero finite dimensional subspace. Then for every x = (z,,)¥ € L(G)' N
M*, we have lim, ., ||Px()(zn8,)| = 0.

Proof. — Fix an integer N > 1. Since the representation 7| gwm is weakly
mixing and since L C K§™ +iK{™ C H"™ is finite dimensional, we may
choose inductively elements gi,...,gn € G such that 7y, (L) L1 /(v dim(z))

g, (L) for all 1 < i < j < N. We start by proving the following claim.

Cram 4.2. — For all 1 < i < j < N, we have X(my, (L)) Lyi/n
X (g, (L))-

Indeed, let 1 <7 < j < N and put g = g; lg; € G. Put Ug = ugJugd €
U(L*(M)). We have Uy(X (L)) = X(my(L)). Let (Io)1<a<dim(r) be an or-
thonormal basis for the space L. Let £, € X (L) be any elements. Observe
that we may and will identify L?(M) © L*(L(G)) with H @ L*(M) via the
unitary operator

U:L*(M) 6 L*(L(G) — H ® L*(M)
GR - ®G®IG—>GR(L® (R,

where £ > 1, (1,...,(¢ € H, g € G. We can then write £ = Zdlm B, @&,
and n = zhﬁ(L) Iy ® my for some &,,m, € L?(M). Using Cauchy-Schwarz

inequality and the assumption that m,(L) L(1/n dim(z)) L, we have

dlm(L
(U, Z (g (la), Io)| [{(Ug(&a), m0)|
a,b=1
. dim(L)

R

< N 2 el I
1

< — .
~ €l linl

This proves that X'(my(L)) L1/n X(L) and so X (g, (L)) Ly/n X (7g,(L)).
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For all g € G and all n € N, we have

”PX(L) ($n§¢)||2 = <PX(L (fvn&o) xn€g9>
= <U (PX(L (xngga)) (xngga»
= <PX(ﬂg(L))(Ug($n£<P))7 Ug(xn&p»

Since ug € L(G) C My, we have Ug(2n&,) = ugr,u}é,. Since x = (r,)” €

L(G) N M*, we have lim,, ,, ||(ugznu); — 2,)€,| = 0 and so

Jm (1P (z) (@n8o)I* = lim (P, (1)) (@nbo)s nber)-
Applying the above result to gi1,...g9xy € G, we obtain, using Cauchy—
Schwarz inequality,
N

. .1
Jim (| Py (@n€e)[* = im <> (P(r,, (1) (#n€e): Tny)

n—w ¢
i=1

N
1
Y}I—I}}J N <ZPX(7TQ (L)) <$n€¢> xn€¢>

i=1

hm —
n—w

@) @n€o) || lznllp-

Using Claim 4.2, for all n € N, we have
2

N
> Prin,, ) (@ny)|| = (Px(r,, (1)) (®n€p)s Pr(n,, (1)) (Tn€p))

i=1 1<ij <N
ol 1
ZHPX(% (L)) (@) II” + N Z ||30n||i
i=1 1<iAj<N
N(N - 1)
< Nlal + S5 a2 = @N - 1o,

In the end, we obtain lim,, ., || Py(r)(zn&,)|? < 201 || . Since this
is true for every N > 1, we obtain that lim,, ., || Px(z)(zn&,)| = 0. O

Following [20, Appendix CJ, define K}i* = [Jyoo 11,0 (A)(HY™) C
KE™ +iKg™. Observe that K™ = K7™ and that K" C K™ +iKg™ is
a dense subspace in H"™ of elements nn € K§™ +iKg™ for which the map
R — K™ +iKg™ : t — Uy extends to a (K§™ + iKg™)-valued entire
analytic map. For all n € K™ the element W (n) is entire analytic for the

modular automorphism group ¥ and we have o? (W (n)) = W (A*n) for
every z € C.
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LEMMA 4.3. — Assume that HY™ # 0. Let z = (z,,)¥ € L(G)' N M¥,
& € K™ any unit vector and (t,)nen any real-valued sequence such that

i]jr(ld |l W (U, &) — W(f)xn||<ﬁ =0.
Then we have x € L(G)“.

Proof. — Observe that for every ¢ € R, we have in/Q(W(Utf)*) =
in/Q(W(UtE)) = W(AY/?H). For every n € N, put y, = 2,,—Ep,g)(2n) €
M e L(G). Put y = 2 — Eyg) (z) € M* © L(G)* so that y = (y,)*. For
all n € N, we have

(4.1)  (2aW(Ut, &) = W()mn)&,p
= (W (U,8) = W(E)yn)S
+ (Eve) (@)W (U, €) — W(E) Eve)(#n))&,
= JW(AY2HE) Ty, — W (E)yn,
+ Evre) (@n)W(Ut,6)E — W(E) EL) (7n)E,
Put L = span{¢, £} C K™ +iK¥™. Lemma 4.1 implies that
Alg}d 1yn€p — Pr(n1y(ynés)ll2 = 0.

Since (JW (AY/2+itn ) J),, is uniformly bounded, in the ultraproduct Hilbert
space L?(M)“, we have the following equalities

(W(g)ynggo)w = (W(g)PX(Li)(yn&p))w
(JW (A2 E) Ty o) = (JW (A 2HE) T P14 (€)oo
Using the Wick formula, for every n € N, we have that

o W(E)Px(r1)(ynéy) lies in the closure in L2(M) of the linear span
of all the elements of the form £ RN ®e; ®- - ®e, ® ), where k > 0,
UGLJ‘, el,...,ex € Kp +iKgR, h € G.

o JW(AY &) TPy (11)(yné,) lies in the closure in L*(M) of the
linear span of all the elements of the form d;, or n®e; ®--- Qe @Iy,
where k >0, n€ L, ey,...,er € Kr +iKgr, h € G.

o Epq)(@n)W(U, &)E — W() Erq)(2n)é, lies in the closure in
L?(M) of the linear span of all the elements of the form &), or e® dj,
where e € Kr +iKRr, h € G.

This implies that W (§)Px(1)(yn,) is orthogonal to JW (A2 Hitn )

JPxr1y(ynép) and to Ere) (@n)W (U, )8 — W(E) Ere)(zn)é, for
every n € N. Using moreover the assumption together with (4.1)
and (4.2), we obtain lim, ., [[W(&)Py1)(yné,)l| = 0. Since for every

(4.2)
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n € N, we have W()Px (1) (Ynéy) = € ® Px(r1)(ynéy), it follows that
limy, o, [[Pyz1)(Unép)|l = 0 and so limy, ., ||ynépll = 0. This shows that
r— B« (z) =y =0 and so v = Er,g)« () € L(G)~. O

Proof of Theorem B. — Put M =T'(U,n)”" = N x G.

(i). — We first consider the case when G is finite. In that case, the image
of 0™ (G) in Out(N) is finite thus discrete. Then [36, Theorem B] implies
that M = N x G is a full factor.

We next consider the case when G is infinite. Since 7(G) C O(HRr) is
infinite (7 is faithful) and discrete with respect to the strong topology, it
follows that the weakly mixing part of 7 is nonzero, that is, H§™ # 0. We
may then choose a unit vector £ € K",

Let x = (x,)¥ € M’ N M¥ be any element. Since x = (x,)¥ € L(G)' N
M and since lim,,_, ||z, W (§) — W(§)zn|l, = 0, Lemma 4.3 implies that
z € L(G)*. We may then replace each z,, by Erg)(z,) and assume that
x = (x,)* where x,, € L(G). Since 7(G) C O(HR) is discrete with respect
to the strong topology, o™ (G) C Aut(M) is discrete with respect to the u-
topology. Since 7 is faithful and since o™ is p-preserving, there exist k£ > 0
and y1,...,ym € N such that for all g € G\ {0}, we have

m
> o7 (k) — yil% > k.
k=1

Write z,, = >
have

gec(@n)9ug for the Fourier decomposition of z,, in L(G). We

m m
D lwnye = vrrnllZ =Y @)D llog (i) — vl
k=1 geG k=1
>k Y (@)
9€G\{e}

= Klzn — T(xn)1||§

Since x € M’ NL(G)¥, we have lim,_, ||znyr — Yrxnlle, = 0 for all 1 <
k < m. This implies that lim,_, ||z, — 7(2,)1]|]2 = 0 and so & € C1. This
shows that M is full.

(ii). — Assume that (¢,)n,en is a sequence converging to 0 with respect
to 7(M). By definition, it means that the class of ¢/ converges to 1 in
Out(M). Therefore, there exists a sequence of unitaries u, € U(M) such
that Ad(un) o 0f — idas with respect to the u-topology in Aut(M). Since
Aut(M) is a topological group, 6%, o Ad(uj) = (Ad(up) 0 of )™t — ida
with respect to the u-topology in Aut(M). This implies that lim, ||u,p —
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ouy| = 0. Let w € B(IN) \ N be any nonprincipal ultrafilter. We have
(Un)n € MY (M) and (u,)® € (M) w.

For every g € G, we have lim, ,, |u,of (ug) — ugunll, = 0. Since
of (ug) = ug, we obtain that (u,)* € L(G) N M¥. We also have
limy, o [[un W (U, §) = W (&)unllp = limp [lunof, (W(E)) = W(E)unll, =
0. Lemma 4.3 implies that (u,)¥ € L(G)%. Since u = (u,)¥ € L(G)%, we
may choose unitaries v, € U(L(G)) such that v = (v,)¥. We then have
Ad(vjun) — idy as n — w and so Ad(v,) o 0f — idy as n — w with
respect to the u-topology in Aut(M).

Write v, = 37 c(vn)?ug for the Fourier decomposition of v;, in L(G).
We claim that

(43) dk>0,3y1,...,ym E N,Vge G\{e},VteR,
> g o o) (k) — (we)ll2 = &
k=1

Indeed, if (4.3) does not hold, then there exist g; € G\ {e} and t; € R
such that o o of — idy with respect to the u-topology in Aut(N). This
implies that py, 4,y = Ui, mg, — 1 strongly, contradicting the assumption
on p. Then (4.3) holds. For every n € N, we have

m m
Y lonof () —woally = D 1wa)*P Y llog o of ) (yw) — wall?
k=1 k=1

geG =

>r 3 ()P
geG\{e}

= ko — (o113,

Since Ad(v,) o 0f — idy as n — w with respect to the u-topology in
Aut(M), we have limy, ., ||vn0f (y&) — Yrnll, = 0 for all 1 < k < m. This
implies that lim,, ., ||v, —7(v,)1]]2 = 0 and so lim,, ., ||un —¢(un)1]|, = 0.
Since this is true for every nonprincipal ultrafilter w € 8(IN) \ N, we have
limy, ||un, — ¢@(un)l|l, = 0 and so Ad(u,) — idys with respect to the u-
topology in Aut(M). Therefore of — id with respect to the u-topology
in Aut(M). This further implies that U;, — 1 strongly which means that

t, — 0 with respect to 7(U). O
5. Amenable and Gamma absorption
Before proving Theorem C, we state a type I1I version of Krogager—Vaes’

result [34, Theorem 5.1(2)].
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THEOREM 5.1. — Let U : R ~ Hgr be any strongly continuous orthog-
onal representation. Let G be any countable group and w : G ~ Hgr any
orthogonal representation such that [U, 7] = 0. Put M =T'(U,w)".

(i) Assume that m: G ~ Hg is weakly mixing. Let L(G) C P C M be
any intermediate von Neumann subalgebra with expectation such
that P <p; L(G). Then P = L(G).

(ii) Assume that m : G ~ Hg is mixing. Let P C M be any von
Neumann subalgebra with expectation such that P <3; L(G) and
P NL(G) is diffuse. Then P C L(G).

Proof.

(i). — We adapt the proof of [34, Theorem 5.1(2)] for the reader’s con-
venience. Put M = T'(U,7)” and denote by ¢ the canonical faithful nor-
mal state on M. Since P <j; L(G), there exists a norm one projection
® : (M,L(G)) — P such that ®|p : M — P is the unique ¢-preserving
conditional expectation. Actually there exists a unique faithful normal con-
ditional expectation Ep : M — P. Indeed, since 7 is weakly mixing, the
@-preserving action G ~ (N, ) is ¢-weakly mixing. Theorem A.5 (i) im-
plies that P’ N M C L(G)' N M C L(G) C P. Then [9, Théoréme 1.5.5]
implies that there exists a unique faithful normal conditional expectation
Ep: M — P.

As usual, denote by A the infinitesimal generator of the strongly con-
tinuous unitary representation U : R ~ H. Put Kr = j(Hr) where
j:Hr — H : & (3 +1)1/ 2¢ is the canonical isometric embedding.
Recall that Kg NiKg = {0} and Kgr + iKR is dense in H.

Denote by (M,L?(M), J,L*(M),) the standard form of M. We identify
L2(M) = F(H) ® £2(G) and we view M = N x G C B(F(H) ® 2(@)) as
generated by b® 1 for b € N and by uy = F(my) ® Ay for g € G. For every
g € G, we have JugJ = 1® py. For every T' € B(F(H)), we identify T with
T®1 e B(F(H)®¢*G)). In particular, for every T € B(F(H)), we have
T € (JL(G)J) NB(L*(M)) = (M,L(G)).

For every unit vector e € Kg, denote by P. = {(e){(e)* the orthogonal
projection L?(M) — X(Ce) where X(Ce) is the closure in L?(M) of the
linear span of all the elements of the form e® ey - - - ® e, ® §, where k > 0,
e1,...,ex € Kp +iKgr, h € G.

CLAM 5.2. — For every unit vector e € Kgr, we have ®(P,) = 0.

Indeed, fix an integer N > 1. Since 7 is weakly mixing, we may choose
inductively elements g1,...,gn € G such that |(7y, (e), 7y, (e))| < 1/N for
all 1 <i < j < N. Claim 4.2 implies that X (Cmy,(e)) Li/nv X(Cmy,(e))
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and so HP,rgi(e)Pﬂgj(e)Hoo <1/Nforalll1<i<j< N.Putdp=podc
(M,L(G))*. Since uq, € L(G) C M,, for all 1 <i < N, we have

N N
e Z: U91P U N Z: Trgz e) *QS (Z g, (€) )

ﬂgl(e)
i=1 ¢
Moreover, we have
2
g, (€) = <P7rgi (e)» Pﬂ'gj (e)>¢
6 1<ij<N
N
Z @5+ D 1Pr 0 Pry 0l
i=1 1<i#j<N
N(N -1

This implies that ¢(P.) < ¥2N=L Since this is true for every N > 1, we
infer that ¢(P.) = 0 and so <I>( ) = 0 since ¢ is faithful.

Let ¢ € Kr and T € (M,L(G)). Applying Kadison’s inequality and
Claim 5.2, we have

O(U()T)P(U()T)" < R(U()TTE(e)") < ||T* 2(E(e)t(e)*) =0

and so ®(¢(e)T) = 0. Likewise, we have ®(T¢(e)*) = 0. Using Wick formula,
we obtain ®(W(e; ® --- ®@ex)) = 0 for all k > 1 and all ey,...,ex €
Kr +iKg. This further implies that ®(M © L(G)) = 0 and so P = L(G).

(ii). — Along the lines of the proof of item (i), the proof of [34, The-
orem 5.1(2)] for A = L(G) and B = P applies mutatis mutandis since
P NL(G) is tracial. We obtain that P C L(G). O

Proof of Theorem C.

(i). — This follows from Theorem 5.1(i).

(ii). — Let P C M be any von Neumann subalgebra with expectation
and with property Gamma such that P N L(G) is diffuse. Since P ¢ M
is with expectation and has property Gamma, [28, Theorem 3.1] implies
that there exists a faithful state ¢ € M, such that P is globally invariant
under o¥ and there exists a decreasing sequence of diffuse abelian von
Neumann subalgebras A, C Py such that \/, .((Ax) N P) = P. Observe
that Q, = (Ay)' N P is globally invariant under o¥ for every k € N.
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Using Lemma A.5(i), we have PN M C (PNL(G)) NM C L(G) and so
P'NM = P'NL(G). Using [21, Lemma 3.3 (v)], denote by 2+ € P'NL(G)
the largest projection such that Pzt <j; L(G). By contradiction, assume
that 2+ # 1 so that z = (z1)* # 0. We consider the following two possible
situations that will give a contradiction.

Firstly, assume that for every k& € N, we have Ayz Ay L(G). Using
Theorem B.3, we have (A;z) NzMz < L(G) and so Qxz <p L(G) since
Qrz C (Agz) N zMz is with expectation. Since Qrz is globally invariant
under o¥, [31, Remark 3.3] implies that there exists a norm one projection
Dy 2(M,L(G))z — Qrz such that ®p|,r. is the unique 3-preserving
conditional expectation. Choose a nonprincipal ultrafilter w € S(IN) \ N
and define the completely positive map ®,, : z(M,L(G))z — Pz as the
pointwise weak limit along w of the maps ®y. Since @, |, nr, is -preserving,
it follows that ®,, is indeed a norm one projection such that ®,|.ar, is
normal. Therefore, Pz <3 L(G) and so P = Pz @ Pz <) L(G) by [21,
Lemma 3.3 (v)]. This contradicts the definition of z*.

Secondly, assume that there exists k € N such that Agz =<pr L(G).
Since Agz is tracial, there exists n > 1, a normal *-homomorphism p :
Arz — M, (L(G)) and a nonzero partial isometry v € My, (2M)p(2)
such that av = wvp(a) for every a € Apz. Lemma A.5(i) implies that
v*v € M, (L(G)) and v*((Arz) NzMz)v C (v*vp(Akz)) Nu*oM,, (M )v*v C
v*oM, (L(G))v*v. For every ¢ > k, since Az C Ayz is a diffuse sub-
algebra, Lemma A.5 (i) implies that v*((Asz) NzMz)v C (vivp(Aez)) N
vioM, (M)v*v C  v*oM,(L(G))v*v. This shows that v*zPzv C
v oM, (L(G))v*v, where P = \/, .n((Ax) N M). Since vv* € (Arz)' N
zM2z C 2Pz, we have vv* 2Pz vv* <Xy L(G) and so 2Pz <; L(G). Since
Pz C zPz is with expectation, we have Pz <5 L(G) by [20, Lemma 4.8].
Using [21, Proposition 4.10], there exists a nonzero projection r € Z((Pz)'N
zMz) C z(P'N M)z C z(P' NL(G))z such that Pr <; L(G). Therefore,
Pzt @ Pr < L(G) by [21, Lemma 3.3 (v)]. This contradicts the definition
of z*+.

Therefore, we have P <,; L(G). Applying item (ii) in Theorem 5.1, we
obtain P C L(QG). O

Proof of Application D. — Tt follows from [9, Corollaire 1.5.7] that
T(M) = G. Since G < R is a countable dense subgroup, [9, Théoréme 3.4.1]
implies that M is a type Il factor. Using Theorem 6.1, M is a prime factor
and using Theorem 6.2, M has no Cartan subalgebra.

Write M = N x G and denote by (ug4)y the canonical unitaries in M
implementing the action ¢™ : G ~ N. Denote by ¢ € M, the canonical
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faithful normal state. Observe that for every g € G, we have o = Ad(uy).
Let L(G) C P C M be any intermediate von Neumann subalgebra. For
every g € G, we have oy (P) = ugPu} = P. Since 0¥ : R ~ N is continu-
ous with respect to the u-topology and since G < R is dense, we infer that
of(P) = P for every t € R and so P C M is with expectation by [53].
The previous reasoning implies that any intermediate amenable subalge-
bra L(G) C P C M is with expectation and Theorem C (i) implies that
L(G) = P. O

6. Strong solidity
6.1. Proof of Theorem E

Proof of Theorem E. — We denote by ¢ € M, the canonical faithful
state. Assume that G is amenable and 7 : G ~ Hg is a faithful mixing
orthogonal representation. Without loss of generality, we may assume that
kerU = {0} so that M is a type III; factor by Theorem A. Indeed, we
may replace Hr by Hr ® (Hr ® L (R)), U by U ® (137, ® Ar) and 7 by
T® (T ® 12 (r)) so that

M = F(U, 7T)H C F(U @ (1HR ® AR),TF @ (7T ® 1L%(R)))” = 93?

Then M C 9 is with expectation, 7®(7r® IL%(R)) is mixing and 9 is a type
ITT; factor by Theorem A. Since solidity is preserved under taking diffuse
subalgebras with expectation, up to replacing M by 9, we may assume that
M is a type III; factor. By contradiction, assume that M is not solid. Since
M is of type IIT and M is not solid, there exists a diffuse abelian subalgebra
with expectation A C M such that the relative commutant P = A’NM has
no nonzero amenable direct summand. Theorem B.3 implies that A <,
L(G). Then Theorem A.5 (iii) implies that P = A’'NM =<j; L(G). Then [21,
Proposition 4.10] implies that P has a nonzero amenable direct summand.
This is a contradiction.

We now prove that M = T'(U,w)” is strongly solid following the proof
of [6, Main theorem]. We explain below the appropriate changes that are
needed. As before, since strong solidity is preserved under taking diffuse
subalgebras with expectation, we may assume that M is a type III; fac-
tor. By contradiction, assume that M is not strongly solid. Since M is
a solid type IIT factor, the exact same reasoning as in the proof of [6,
Main theorem| shows that there exists a diffuse amenable subalgebra with
expectation @ C M such that @' N M = Z(Q) and P = N (Q)” has
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no nonzero amenable direct summand. Choose a faithful state ¢ € M,
such that Q C M is globally invariant under o®. Observe that P is also
globally invariant under o?. Denote by (IV,v) the unique Araki-Woods
factor of type III; endowed with any faithful normal state. We borrow no-
tation from Appendix B. Put M = cogu(M & N), B = cuey(L(G) ® N),
Q = lpoy,s0v(Copy(Q ® N)) and P = Tpgy sou (Cooy (P ® N)). By the
claim in the proof of [6, Main theorem], we have P C Np((Q)”. Since this
inclusion is with expectation and since P has no nonzero amenable direct
summand by [5, Proposition 2.8], it follows that My(Q)” has no nonzero
amenable direct summand either.

Since the inclusion L(G) C M is mixing, since P = Ny/(Q)” has no
nonzero amenable direct summand and since L(G) is amenable, a combi-
nation of Theorem A.5(iii) and [21, Proposition 4.10] implies that Q A
L(G). Since Q A L(G) and since Q'NM = Z(Q), [32, Theorem A] implies
that Q Az B. Fix a nonzero finite trace projection ¢ € Q and observe that
qQq Am B. Since M ® N is a type III; factor, M is a type Il factor.
Since Lygy (R) C M is diffuse and with trace preserving conditional expec-
tation, there exists a unitary u € U (M) such that ugu* € Logy(R) C B.
Up to conjugating Q and P by u € U(M) we may assume that ¢ € B and
that ¢Qq Aam B. Working inside the type II; factor ¢Mg, Theorem B.1
implies that (6;): does not converge uniformly to the identity on Ball(¢Qgq).
Combining [24, Theorem A] and [1, Lemma 4.6 and Theorem 4.9], the type
I1; factor ¢ Mgq has the complete metric approximation property. Moreover,
since L(G)® N is amenable, the ¢Mg-gMg-bimodule L2 (quq) oL?(gMq)
is weakly contained in the coarse bimodule L?(¢gMgq) ® L?(¢Myq) (see [24,
Section 4]). Combining [6, Proposition 3.7] with [47, Proposition 2.4 and
Corollary 2.5], we obtain that the stable normalizer sNyaq(¢Qg)” has a
nonzero amenable direct summand. Since ¢Pq C sNyaq(¢Qq)”, it follows
that P has a nonzero amenable direct summand and so does P ® N by [5,
Proposition 4.8]. Then P has a nonzero amenable direct summand. This is
a contradiction. g

Proof of Application F. — Combining [24, Theorem A] and [1, Conse-
quence 4.10 (¢)], M has the complete metric approximation property. Like-
wise, combining [24, Theorem 3.19] and [39, Corollary 5.15], M has the
Haagerup property.

Since 7 is faithful and mixing, Theorem E implies that M is a strongly
solid factor. Let (¢,n) € R x Z be any element such that U; @ m,, = 1. Since
7 is mixing, we necessarily have m, = 1. This implies that n = 0 and so
U; = 1. Thus, Theorem A shows that T(M) = ker(U). Let (tx,ni) € RXZ
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be any sequence such that U;, ® m,, — 1 strongly as k — oo. Since 7 is
mixing, the sequence (ny )y is necessarily bounded. This implies that ng = 0
for k € N large enough and so Uy, — 1 strongly as k — oco. Theorem B
implies that 7(M) = 7(U).

Denote by ¢ € M, the canonical faithful state. Put N = I'(Hg ® Kr,
U®lkyg)"” sothat M = N xZ. Observe that N, is a free group factor by [49]
since U ® 1k, contains 1g ® 1k, as a subrepresentation and dim(Kgr) =
+oo. Observe that M, = N, x Z. We claim that M, is a factor. Indeed,
since the action Z ~ N is mixing, we have Z(M,) C L(Z)' N (N, x Z) C
L(Z) by Theorem A.5(i). By contradiction, if Z(M,) # C1, there exists
z € Z(M,) C L(Z) such that z ¢ C1. If we write z = ) _, z,u, € L(Z)
for its Fourier decomposition, there exists n € Z\{0} for which z,, € C\{0}.
Let € U(N,) be any unitary such that ¢(z) = 0. Since 2z = zz, we have
™(x) = x. For every k € N, we have o], (z) = x and so p(o],, (z)z*) = 1.
Since Z ~ N is mixing, we have limy, ¢(of, (z)z*) = ¢(z)p(2*) = 0. This
is a contradiction and so Z(M,) = C1. Thus, M, is a nonamenable type
II; factor.

ag

Finally, we show that M is not isomorphic to any free Araki—-Woods
factor. By contradiction, assume that there exists a strongly continuous
orthogonal representation V : R ~ Ly such that T(U ® 1xg, lpgg @ )"
M = T'(Lr,V)"”. Denote by ¢ € M, the free quasi-free state on M =
I'(Lr,V)". Since M, is nonamenable, [26, Theorem 5.1] implies that there
exists a nonzero partial isometry v € M such that p = v*v € M, ¢ = vv* €
My and Ad(v) : (pMp, vp) — (¢Mgq,v,) is a state preserving isomorphism

here we simply denote ¢, = 222 and o, = “9) Ty particular, we
p #(p) a ¥(q)

obtain
pMyp = (pMp)y, = (¢Mq)y, = qMyq.

It follows that ¢ My g is nonamenable and so My is a free group factor
by [49]. This implies that M, is an interpolated free group factor [13, 48].
By assumption, the L(Z)-L(Z)-bimodule L?(M & L(Z)) is disjoint from the
coarse L(Z)-L(Z)-bimodule ¢?(Zx Z) (see [25, Section 4] for further details).
This implies in particular that the L(Z)-L(Z)-bimodule L*(M, © L(Z)) is
also disjoint from the coarse L(Z)-L(Z)-bimodule ¢?(Z x Z). Since M,, is an
interpolated free group factor, this contradicts [61, Corollary 7.6] and [51,
Proposition 9.2]. O
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6.2. Semisolidity and absence of Cartan subalgebra

Following [20, 40], we say that a o-finite von Neumann algebra M is
semisolid if for any von Neumann subalgebra with expectation Q C M that
has no nonzero type I direct summand, the relative commutant Q' N M is
amenable. Any nonamenable semisolid factor M is prime, that is, M does
not split as the tensor product of two diffuse factors. When the countable
group G is virtually abelian, we prove that the factor I'(U, 7)" is semisolid
for any faithful orthogonal representation 7 : G ~ Hg such that [U, 7] = 0.

THEOREM 6.1. — Let U : R ~ Hgr be any strongly continuous or-
thogonal representation with dim Hg > 2. Let G be any virtually abelian
countable group and 7 : G ~ Hg any faithful orthogonal representation
such that [U,n] = 0.

Then T'(U, )" is a semisolid factor. In particular, T'(U,7)" is a prime
factor.

Proof. — Put M =T'(U, )" and denote by ¢ € M, the canonical faithful
state. Since 7 is faithful and dim Hg > 2, M is a nonamenable factor by
Theorem A. Let Q C M be any von Neumann subalgebra with expectation
such that @ has no nonzero type I direct summand. Since L(G) is of type I,
[29, Lemma 2.6] (or Lemma 2.2) implies that there exists a diffuse abelian
subalgebra with expectation A C @ such that A Ay L(G). Theorem B.3
implies that A’NM is amenable. Since Q'NM C A’NM is with expectation,
it follows that @’ N M is amenable. This shows that M is semisolid. O

When the countable group G is abelian and 7 is weakly mixing, we
moreover prove that I'(U, )" has no Cartan subalgebra.

THEOREM 6.2. — Let U : R ~ Hgr be any strongly continuous orthogo-
nal representation with dim Hg > 2. Let G be any abelian countable group
and 7 : G ~ Hg any faithful weakly mixing orthogonal representation such
that [U,n] = 0.

Then T'(U, 7)" has no Cartan subalgebra.

Proof. — Put M =T(U,w)"” = N x G and denote by ¢ € M, the canon-
ical faithful state. Since = is faithful and dim Hgr > 2, M is a nonamenable
factor by Theorem A. By contradiction, assume that there exists a Cartan
subalgebra A C M. If A £y L(G) and since A C M is maximal abelian,
we can argue exactly as in the last paragraph of the proof of Theorem E
and we obtain that M = Nj/(A)” is amenable. This is a contradiction.
Therefore, we must have A <3, L(G). Since the orthogonal representation
7 G ~ Hg is weakly mixing, the action 0™ : G ~ (N, @) is p-weakly
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mixing. Theorem A.5 (i) implies that QN (L(G))” = L(G). In particular,
L(G) C M is maximal abelian and singular. Since A C M and L(G) C M
are both masas with expectation, [29, Theorem 2.5] implies that there ex-
ists a partial isometry w € M such that p = w*w € A, ¢ = ww* € L(G)
and wAw* = L(G)q. By spatiality and using [45, Lemma 3.5] (see also [28,
Proposition 2.3]), since Np(A4)” = M and since Ny (L(G))” = L(G), we
obtain

aMg = w(Nar(A) w0 = Norg(wAu®)” = Nynrg(L(G)a)”
= qNu(L(G))")g = L(G)q.
Thus, ¢gM¢q = L(G)q is amenable and so is M. This is a contradiction. [

Appendix A. Mixing inclusions

Let (M, @) be any o-finite von Neumann algebra endowed with any faith-
ful normal state. Let B C M, be any von Neumann subalgebra. Denote
by Ep : M — B the unique @-preserving conditional expectation and put
M © B = ker(Ep). Following [45, Section 3], we say that the inclusion
BCMis

e -mixing if for any uniformly bounded net (bg)x in B that converges

weakly to 0 as k — oo, we have

Vz,y€e Mo B, liin | Eg(z*bry)||e = 0.

e o-weakly mixing if there exists a net of unitaries (uy)x in B such
that

Vz,ye M e B, lilgn |Eg(z*ury)|l, = 0.

We recall the following important examples of ¢-mixing (resp. p-weakly
mixing) inclusions (see [45, Section 3]). Let G be any countable group,
(N, ¢) any o-finite von Neumann algebra endowed with any faithful normal
state and o : G ~ (N, ) any @-preserving action. Put M = N xG. Denote
by Enx : M — N the canonical faithful normal conditional expectation and
still denote by ¢ the faithful state ¢ o Exy € M,. Then L(G) C M,,. We say
that the action o : G ~ (N, ) is

e p-mixing if we have

VabeN, lim plog(z)y) = p()e(y).
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o p-weakly mixing if there exists a net (gx)x in G such that
VabeN, limep(og(v)y) = ¢(x)e(y).

By [45, Section 3], if the action o : G ~ (N, ¢) is ¢-mixing (resp. ¢-weakly
mixing), then the inclusion L(G) C M is -mixing (resp. ¢-weakly mixing).

Following [6, Section 3], for any inclusion with expectation Q C M, we
define the stable normalizer of () inside M as the von Neumann subalgebra
generated by the set

sNy(Q)={r e M| z"Qr C Q and zQz* C Q}.

Likewise, following [44, Section 1], we define the quasi normalizer of Q
inside M as the von Neumann subalgebra generated by the set

k k
ONu(Q)=<xzeM|Txq,...,2, 2Q C Zij and Qx C ijQ
j=1 j=1

We have the following inclusions @ C Ny (Q)” C sNu(Q)” € QNm(Q)” C
M and they are all with expectation.

We prove technical properties of (weakly) mixing inclusions that gener-
alize the main results of [45, Section 3] (see also [59, Theorem D.4] and [30,
Lemma 9.4]). We should point out that compared to [45, Section 3], the
faithful normal state ¢ is no longer assumed to be almost periodic and can
be arbitrary.

LEMMA A.1 ([42, Lemma 2.3]). — Let (M, ) be any o-finite von Neu-
mann algebra endowed with any faithful normal state. Let ) C N C M,
be any von Neumann subalgebras. Denote by Ex : M — N the unique
-preserving conditional expectation and put M © N = ker(Ey). Assume
that Q' "M = Q' N N.

For every x € M © N, there exists u € U(Q) such that |Juzu* — x|, >
Jal,-

Proof. — The proof is exactly the same as the one of [42, Lemma 2.3] by
averaging over U(Q) and exploiting the condition Q' "M C N. We give the
details for the reader’s convenience. Let x+ € M © N and define K, C M
as the weak closure in M of the convex hull of the set {uzu* | v € U(Q)}.
Since @@ C My, the unique element y € K of minimal || - ||,-norm satisfies
y€ Q' NM and soy € N. Since Ex(K;) = {0}, we obtain y = Ex(y) = 0.

By contradiction, assume that for every u € U(Q), we have |Juzu*—z||, <
||,- Then 2 # 0 and for every u € U(Q), we have ||z]|2, < 2R(p(z* uzu*)).
Taking weak limits of convex combinations of elements of the form uxu* for
u € U(Q), we obtain |22, < 2R(p(2*y)) = 0. This is a contradiction. [
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LEMMA A.2. — Let (M,y) be any o-finite von Neumann algebra en-
dowed with any faithful normal state. Let B C M, be any von Neumann
subalgebra. Let 1p € B be any nonzero projection and P C 1pBlp any
von Neumann subalgebra for which there exists a net of unitaries (ug)g
such that

(A1) Va,y€e Mo B, lil£n|| Ep(z*uiy)||, = 0.

Let K € 1pL*(M) be any P-B-subbimodule that is of finite trace as a
right B-module. Then K C 1p L*(B).

Proof. — By contradiction, assume that K ¢ 1p L*(B). Using [59, Lem-
ma A.1] and up to replacing K by Pi2(aner2(p)(Kz) where z € Z(B) is a
large enough projection, we may assume that IC C 1p LQ(M) elp LQ(B) is
a nonzero P-B-subbimodule that is finitely generated as a right B-module.
Proceeding as in the proof of [29, Theorem 2.3], there exist n > 1, a
nonzero vector £ € M ,(K) and a normal *-homomorphism = : P —
M,,(B) such that a{ = &n(a) for every a € P. Denote by Eng, () :
M, (M) — M, (B) the unique (¢ ® try)-preserving conditional expecta-
tion and put M,, (M) © M,,(B) = ker(En,, (py). Letting £* = Ja, () (§) €
L*(M,,(M))SL*(M,,(B)), we have £* € M, 1 (J)K), £ 1p = £* and £*a =
m(a)&* for every a € P. Write £* = v|¢*| for the polar decomposition of £*
in the standard form of M,, (M ). Then we have that v € 7(1p)M,, 1 (M1p)
is a nonzero partial isometry such that va = 7w(a)v for every a € P. We
moreover have that |¢*| € L?(M) . and a|¢*| = |€*|a for every a € P. First,
we prove the following claim.

CLAM A.3. — We havev € n(1p)M,, 1(Blp) and P'N1pMlp = P'N
1pBlp.

Indeed, for every k € N, we have
(v =Em, (5)(v))ur = 7(ur)(v — Eng,, () (v))-
Put w = (v — Enm, () (v)) € M, (M) © M, (B). Since supp(ww*) < 7(1p)
and since 7(uy) € U(m(1p)M,(B)w(1p)) for every k € N, (A.1) implies
I Em,, () (ww")llootr, = | Em, 5) (T (ue)ww”)[[ootr,
= EMn(B)(wukW*)Hm@trn — 0 as k — oo.

Therefore, we have w = 0 and so v = En, ()(v) € 7(1p)M, 1(Blp).
Likewise, let z € P’ N 1pM1p be any element. For every k € N, we have

(x — Ep(z))ur = ug(z — Eg(x)).
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Put y =2 — Ep(x) € 1pM1p © 1pBlp. Since supp(yy*) < 1p and since
up € U(1pBlp) for every k € N, (A.1) implies

I1Es(yy )l = | EB(uryy)lle = | Es(yury™)ll, — 0 as k — oc.

Therefore, we have y = 0 and so z = Eg(z) € B. Next, we prove the
following claim.

CLAIM A.4. — We have |¢*| € L*(B).

Indeed, write 7 for the orthogonal projection of [¢*| onto L*(M)©L*(B).
We show that n = 0. We still have an = na for every a € P. Since n €
L*(M) © L*(B), since 1pnlp = n and since 1p € M,, we may choose
a sequence x; € M © B such that 1pz;1p = x; for every 7 € N and
xj&, — nas j — oo. Note that (z;); need not be uniformly bounded. Since
P'N1pMlp = P'N1pBlp by Claim A.3, Lemma A.1 implies that for every
J € N, there exists a unitary u; € U(P) such that [[u;z;u} —z;ll, > ||lz;|,-
Then for every j € N, we have

2l — 25l = |luj(n — z;€0)u; — (n— 2;€) |
= [Juj 7€p uj — 250 ||
= llujzju; —x;ll,
2 lzjlle-

Since lim; ||n—x;&,|| = 0, we have lim; ||z;||, = 0 and so n = 0. This shows
that [£*] € L*(B).

Combining Claims A.3 and A.4, we obtain that £* = v|¢*| € L*(B).
Since by construction ¢* € L?(M)© L*(B), we obtain £* = 0 and so & = 0.
This is a contradiction. 0

THEOREM A.5. — Let (M, ) be any o-finite von Neumann algebra
endowed with any faithful normal state. Let B C M, be any von Neumann
subalgebra. The following assertions hold:

(i) Assume that the inclusion B C M is @-weakly mixing. Then
QNum(B)" = B.

(ii) Assume that the inclusion B C M is @-mixing. Let 1p € B be
any nonzero projection and P C 1pBlp any diffuse von Neumann
subalgebra. Then QN7 a1, (P)” C 1pBlp.

(iii) Assume that the inclusion B C M is p-mixing. Let 19 € M be
any nonzero projection and Q C 1gM1g any diffuse von Neumann
subalgebra with expectation. If Q@ <p; B, then N1,1,(Q)"” =m B.
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Proof.

(i). — Since the inclusion B C M is p-weakly mixing, there exists a
net of unitaries (uy)g in B such that (A.1) holds. Lemma A.2 implies that
ONy(B)' = B.

(ii). — Since P is diffuse, we may choose a net of unitaries (ug)y in
P that converges weakly to 0 as kK — oo. Since the inclusion B C M is
p-mixing, (A.l) holds for the net (ug)r. Lemma A.2 implies that
ONi,pm1,(P)" C1pBlp.

(iii). — Since Q =<y L(G), there exist projections ¢ € @ and p € L(G),
a unital normal *x-homomorphism 7 : ¢Q¢ — pL(G)p and a nonzero par-
tial isometry v € pMgq such that av = vn(a) for every a € qQq. Note that
w* € (¢Qq) NgMq C QNyng(9Qq)" and v*v € m(¢Qq)’ N pMp C pBp
using item (ii). For every € QNynq(qQq), it is straightforward to see that
vizv € QNpamp(m(gQq)) and so v* QN g (¢Qq)"v C pBp using item (ii).
This shows that vv* QN are(¢Qq)"vv* <y B and so QNynq(¢Qq)” =<um
B. Since sNgnq(qQq)” C QNynq(qQq)” is with expectation and since
g(sNu(Q)")g = sNgnmq(qQq)” (see [6, Lemma 3.4]), this implies that
q(sNu(Q)")g =ar B and so sNpy(Q)” = B (see [20, Lemma 4.8]). Since
N (Q)" € sNu(Q)” is with expectation, we finally obtain Ny (Q)” <y B
by [20, Lemma 4.8]. O

Appendix B. Popa’s deformation/rigidity theory
Popa’s malleable deformation

Let U : R ~ Hgr be any strongly continuous orthogonal representation.
Let G be any countable group and 7 : G ~ Hgr any orthogonal representa-
tion such that [U, 7] = 0. Let (NN, ) be any o-finite von Neumann algebra
endowed with a faithful normal state. Define

e M =T(U,w)" and ¢ the canonical faithful normal state on I'(U, 7)".
e M =T(Ua®U,n&n)” and $ the canonical faithful normal state on
rvelU,renr)".
M = (M®N) %,y R, the continuous core of M @ N with respect
to p ® 1.
o« M= (M@N) Xy R the continuous core of M & N with respect
to ¢ ® 1.
B = (L(G) ® N) x,gy R, the continuous core of L(G) ® N with
respect to ¢ ® .
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We can regard M as the semifinite amalgamated free product von Neumann
algebra

M= ((M&N) xpey R) x5 (M & N) Xpey R),
where we identify M with the left copy of (M ® N) x,gy R inside the
amalgamated free product. We simply denote by 7 the canonical faithful
normal semifinite trace on M and by || - ||z the 2-norm associated with 7.
Consider the following orthogonal transformations on Hgr ® Hg:

W= <1 0 ) and V= <cos(2t) 51n(2t)) VieR.

0 -1 sin(§t)  cos(§t)

Define the associated state preserving deformation (6;, 3) on M®N by
0, = Ad(F(U,)) ®idy  and B =Ad(F(V)) @idy .

Since V; and W commute with 7 & 7 and U & UN7 it follows that 6; and 3
commute with the actions (6™ * 0™) ® idy and a?®¥ . We can then extend
the deformation (6, 3) to M after defining S|p = idp and ;| = idg for
every t € R. Moreover, it is easy to check that the deformation (6, 3) is
malleable in the sense of Popa (see [45]):

(i) limy_o || — 0¢(x)]|2 = O for all z € M N L2(M).

(ii) f* =id gy and 0,8 = B0, for all t € R.

Since 0;, 8 € Aut(M) are trace-preserving, we will also denote by 6, 3 €
U (LQ(M)) the corresponding Koopman unitary operators.

Locating subalgebras

We can locate subalgebras of M for which the deformation (6;); con-
verges uniformly to the identity with respect to || - ||2 on the unit ball.

THEOREM B.1 ([24, Theorem 4.3], [18, Theorem 2.10]). — Keep the
same notation as above. Let p € M be any nonzero finite trace projection
and P C pMp any von Neumann subalgebra. If the deformation (6;):
converges uniformly in || - |2 on Ball(P), then P < B.

Proof. — Since the deformation (6;); converges uniformly in |- |2 on
Ball(P), there exist £ > 0 and n € N large enough so that 7(6s-n (u)u*) > K
for all w € U(P). Now the rest of the proof is almost entirely identical to
the one of [24, Theorem 4.3] except for some obvious modifications.

By contradiction, assume that P A B and choose a net of unitaries
up € U(P) such that limy || Eg(b*uga)l|ls = 0 for all a,b € pM. Using
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Popa’s malleable deformation in combination with [5, Theorem 2.5] (in lieu
of [8, Theorem 2.4]), there exists a nonzero partial isometry v € p./,\/lvﬁl(p)
such that vv* € pMp, v*v € 61(pMp) and xv = vb;(x) for every x € P.
Using [5, Claim in the proof of Theorem 3.3] (in lieu of [24, Claim 4.4]), we
infer that

[v™0ll2 = [ Eo, (an) (v 0) |2 = Lim [ Eg, (1) (v 061 () |2

= liin || Egl(M)(’U*uk’U)HQ =0.

This contradicts the fact that v # 0. Thus, we have P <j; B. a

Popa’s spectral gap rigidity

We prove the following general spectral gap rigidity result inside M.

THEOREM B.2 ([18, Theorem 6.5]). — Keep the same notation as above.
Let p € M be any nonzero finite trace projection and Q@ C pMp any von
Neumann subalgebra. Then at least one of the following assertions is true:

e There exists a nonzero projection z € Z(Q' N pMp) such that
Qz <M B.
e The deformation (0;); converges uniformly in ||-||2 on Ball(Q' N

pMp).

Proof. — We follow the proof of [21, Theorem A.1l]. Assume that the
deformation (6;); does not converge uniformly in || - |2 on Ball(Q' NpMp).
Then there exist ¢ > 0, a sequence (t) of positive reals such that limy ¢ =
0 and a sequence (zx); in Ball(Q' N pMp) such that ||xg — b2, (zk)]2 = ¢
for all k € N.

Denote by I the directed set of all pairs (¢, F) with ¢ > 0 and F C
Ball(Q) finite subset with order relation < defined by

(61,.7:1) < (62,f2) if and only if &9 <eq,F1 C Fo.

Let i = (¢,F) € I and put 0 = min(§, ). Choose k € N large enough so
that ||[p — 0, (p)]l2 < 0 and |la — 64, (a)||2 < /4 for all a € F.

Put & = 0u,(zk) — Ex(Or, (1)) € L*(M) & L*(M) and n; = p&ip €
LQ(pMp) S) L2(p/\/lp). By the transversality property of the malleable de-
formation (6;): (see [46, Lemma 2.1]), we have

1
[1€ill2 > g llzw — O2t, (7x) (|2 =

N O
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Observe that ||pb:, (zx)p — 0, (zk)|l2 < 2||p — ¢, (p)||2 < 26. Since p € M,
by Pythagoras theorem, we moreover have

1p0s, (21)p = O ()13 = | Bt (900, (2P — b, ()13 + Imi — &ill3
and hence ||n; — &;||2 < 26. This implies that

[nill2 = [I&llz2 = lln: — &ill2 2 5 — 26 >
For all x € pMp, we have

Hk\ﬁ

lenilla = (1 = Exo) (@0 (2)p) |2 < (|20, (z)pll2 < [[]l2-

By Popa’s spectral gap argument [46], for all a« € F C Ball(Q) C Ball(pMp),
since axy = zpa for all k € N, we have

llan; —miallz = [[(1 = Eam)(aby, (zx)p — pOr (xx)a)|2
< [lafy, (xk)p — pOr, (x1)all2
< 2fla = Or (a)ll2 + 2[lp = b1 (p)l2
€ €

2727

Thus n; € L? (p//\/lvp)@L2 (pMp) is a net of vectors satisfying lim sup; ||x7;2 <
|lz||2 for all € pMp, liminf; ||7;]]2 > § and lim; ||an; — nsall2 = 0 for all
a € Q.

_ By construction of the amalgamated free product von Neumann algebra
M = M x5 M, there exists a B-L-bimodule such that we have L?(M) ©
L*(M) = L2(M) ®p L as M-M-bimodules (see e.g. [56, Section 2]). The
existence of the net (1;);cr in combination with [28, Lemma A.2] shows that
there exists a nonzero projection z € Z(Q'NpMp) such that Qz <y B. O

N

We deduce the following spectral gap rigidity result inside M ® N.

THEOREM B.3. — Keep the same notation as above. Let A C M ® N
be any abelian von Neumann subalgebra with expectation.

If A Ayen (LIG)®N), then AN (M ® N) <y ey (L(G) ® N).

Proof. — Choose a faithful state ¢ € (M @N), such that A C (M ®N),.
Observe that Q@ = A’ N (M ® N) is globally invariant under o?. Assume
that @ is not amenable relative to L(G) ® N inside M ® N. Put ¢(Q) =
Mogp,6(ce(Q)) C M. Using [31, Theorem 3.2], ¢(Q) is not amenable rela-
tive to B inside M. Using [21, Lemma 3.3], there exists a nonzero finite trace
projection ¢ € Ly (R) such that I gy,¢(q) c(@Q)l,gyp,¢(¢) is not amenable
relative to B inside M. Using again [21, Lemma 3.3], there exists a nonzero

projection p € Z((Iypgy,¢(q) (@) Mpwp,6(9)) N Mpwp,s(@) Mpey 4(q))
such that with @ = pc(Q)p, we have that Qz is not amenable relative to B
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inside M for any nonzero projection z € Z(Q'NpMp). Theorem B.2 implies
that the deformation (6;); converges uniformly in || - ||z on Ball(Q' NpMp).
Since ygyp,¢(m(A))p C Q' NpMp is a von Neumann subalgebra, the de-
formation (6;); converges uniformly in || - ||2 on Ball(Il gy ¢ (74 (A))p). The-
orem B.1 implies that Il,gyp,¢(m4(A))p =am B. Since p = I,g4p,6(q)p, we
have Il,gyp,¢(ms(A)g) =aq B. Then [27, Lemma 2.4] implies that A <6 x5
(L(G) ® N). O
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