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Abstract. — We construct a slant product / : Sp(X × Y ) × K1−q(credY ) →
Sp−q(X) on the analytic structure group of Higson and Roe and the K-theory
of the stable Higson corona of Emerson and Meyer. The latter is the domain of
the co-assembly map µ∗ : K1−∗(credY )→ K∗(Y ). We obtain such products on the
entire Higson–Roe sequence. They imply injectivity results for external product
maps. Our results apply to products with aspherical manifolds whose fundamental
groups admit coarse embeddings into Hilbert space. To conceptualize the class
of manifolds where this method applies, we say that a complete spinc-manifold
is Higson-essential if its fundamental class is detected by the co-assembly map.
We prove that coarsely hypereuclidean manifolds are Higson-essential. We draw
conclusions for positive scalar curvature metrics on product spaces, particularly on
non-compact manifolds. We also obtain equivariant versions of our constructions
and discuss related problems of exactness and amenability of the stable Higson
corona.
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Résumé. — Nous construisons un slant-produit / : Sp(X×Y )×K1−q(credY )→
Sp−q(X) sur le groupe structural analytique de Higson et de Roe et la K-théorie
de la « stable Higson corona » d’Emerson et de Meyer. Cette dernière est le do-
maine de définition de l’application de coassemblage µ∗ : K1−∗(credY ) → K∗(Y ).
Nous obtenons ces produits sur toute la suite exacte de Higson–Roe. Ils impliquent
que certaines applications produits extérieurs sont injectives. Nos résultats s’ap-
pliquent aux produits avec des variétés asphériques dont les groupes fondamen-
taux se plongent de manière coarse dans un espace de Hilbert. Nous disons qu’une
spinc-variété complète est « Higson-essential » si sa classe fondamentale est détectée
par l’application de coassemblage. Nous prouvons que les variétés qui sont hyper-
euclidiennes coarse sont « Higson-essential ». Nous déduisons des résultats pour des
métriques à courbure scalaire positive sur les espaces produits, en particulier sur
les espaces non-compacts. En outre, nous donnons des variantes équivariantes de
nos constructions et nous discutons l’exactitude et la moyennabilité de la « stable
Higson corona ».
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1. Introduction

The first main entity we study in this paper is the analytic exact sequence
of Higson and Roe [41]. Questions around this sequence have generated
substantial activity in higher index theory, for a selection of recent works
see [23, 48, 49, 50, 57, 63, 68]. Its original motivation as devised by Higson
and Roe was to serve as the target of certain analytic index maps defined on
the surgery sequence from geometric topology. For this reason it also often
called analytic surgery sequence. Later it was also used to serve as a target
for index maps on the positive scalar curvature sequence of Stolz [48, 63]
(see Section 1.3).
To describe the sequence, start with the following setup. Let X be a

proper metric space endowed with a proper isometric action of a countable
discrete group G. Then the analytic sequence of Higson and Roe associated
to X reads as follows

(1.1) · · · → K∗+1(C∗GX) ∂−→ SG∗ (X)→ KG
∗ (X) Ind−−→ K∗(C∗GX)→ · · · ,

where K∗(C∗GX) is the topological K-theory of the equivariant Roe algebra
C∗GX, SG∗ (X) is the analytic structure group ofX and KG

∗ (X) stands for the
equivariant locally finite K-homology of X. The definitions of these groups
are given in Section 3. If X is a complete spinc-manifold of dimension m,
where the spinc-structure is preserved by G, then the Dirac operator defines
a fundamental class [ /DX ] ∈ KG

m(X).
If the G-action is free, then KG

∗ (X) ∼= K∗(G\X). If the G-action on X
is cocompact, then C∗GX is canonically Morita equivalent to the reduced
group C∗-algebra C∗redG. The sequence (1.1) is often applied to the case
X = M̃ , where M̃ is the universal covering of a compact smooth manifold
or finite simplicial complex M , and G = π1M . In this case it becomes

(1.2) · · · → K∗+1(C∗redG) ∂−→ SG∗ (M̃)→ K∗(M) IndG−−−→ K∗(C∗redG)→ · · · .

TOME 71 (2021), FASCICULE 3



916 Alexander ENGEL, Christopher WULFF & Rudolf ZEIDLER

Our initial investigations started with the following result of Zeidler:

Theorem 1.1 ([66, Corollary 5.8]). — Let N be a closed spinc-mani-
fold(1) of dimension n such that its universal covering Ñ is (rationally)
stably hypereuclidean. Then for every closed manifold M the map

SG∗ (M̃)→ SG×H∗+n (M̃ × Ñ), x 7→ x× [ /DN ],

where G = π1M and H = π1N , is (rationally) split-injective.

Here we implicitly used an external product which mixes an element
of the structure group and an element of K-homology to produce an ele-
ment of the structure group of the product. This is a well-known product
construction which we revisit in Section 3.
Next, recall the notion of a (stably) hypereuclidean manifold. This goes

back to Gromov and Lawson [32].

Definition 1.2. — A complete oriented Riemannian manifold X of di-
mension m is called stably hypereuclidean if for some k ∈ N, the product
X × Rk admits a proper Lipschitz map to Euclidean space Rm+k of de-
gree 1. If the latter condition is relaxed to merely non-zero degree, it is
called rationally stably hypereuclidean.

The assumption of being (rationally) stably hypereuclidean is quite gen-
eral. Dranishnikov [24] proved that the universal cover of any closed aspher-
ical manifold whose fundamental group has finite asymptotic dimension is
stably hypereuclidean. Further, there is currently no known example of
an aspherical closed manifold whose universal covering is not (rationally)
stably hypereuclidean.

This notion is closely related to the strong Novikov conjecture. Indeed, if
the universal covering M̃ of a closed spinc-manifold M is rationally hyper-
euclidean, then the higher index class IndG([ /DM ]) ∈ K∗(C∗redG) is non-zero.
In fact, since Rn satisfies the coarse Baum–Connes conjecture, the coarse
index Ind([ /D

M̃
]) ∈ K∗(C∗M̃) does not vanish. The canonical forgetful map

K∗(C∗redG) = K∗(C∗GM̃)→ K∗(C∗(M̃)) takes the higher index to the coarse
index and so this also proves non-vanishing of the former. Furthermore, it
turns out that the conclusion of Theorem 1.1 in itself implies non-vanishing
of the higher index class:

Theorem 1.3 (see Theorem 2.1). — Let z ∈ Kn(N) be such that for
every closed manifold M the map SG∗ (M̃) → SG×H∗+n (M̃ × Ñ), x 7→ x × z,

(1)Note that, although [66, Corollary 5.8] is stated for spin-manifolds, the statement
makes perfectly sense for spinc-manifolds and the proof given by Zeidler works also
perfectly well in the more general case of spinc-manifolds.
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where G = π1M and H = π1N , is rationally injective. Then IndH(z) ∈
Kn(C∗redH) is rationally non-zero.

The analogous integral version of Theorem 2.1 also holds. In fact, it is
formally weaker because injectivity implies rational injectivity and rational
non-vanishing implies non-vanishing.

These considerations suggested to us that there ought to be analytic
conditions related to the coarse Baum–Connes conjecture and the strong
Novikov conjecture that are weaker than hypereuclidean and would imply
the conclusion of Theorem 1.1. The quest for such hypotheses lead us to to
the second main player of the present paper—the coarse co-assembly map

µ∗ : K1−∗
(
credX

)
→ K∗(X)

of Emerson and Meyer [27], where credX denotes the stable Higson corona
of X and K∗(X) is the compactly supported K-theory of X. The coarse
co-assembly map is dual to the coarse index map (or “coarse assembly
map”)

µ = Ind: K∗(X)→ K∗(C∗X)
via a pairing between the K-theories of the stable Higson corona and the
Roe algebra. In particular, a K-homology class which pairs non-trivially
with a K-theory class in the image of µ∗ does not lie in the kernel of Ind.
Our first main result extends Theorem 1.1 to such classes. To formulate
this, we introduce the following new property.

Definition 1.4. — We say that a complete Riemannian spinc-manifold
X of dimension m is (rationally) Higson-essential if there exists ϑ ∈ K1−m
(credX) such that 〈[ /DX ], µ∗(ϑ)〉 = 1 (6= 0, respectively), where [ /DX ] ∈
Km(X) denotes the K-homological fundamental class of the spinc-structure.

This notion is reminiscent of coarse largeness properties à la Brunnbauer
and Hanke [15], we will see that (rationally) coarsely stably hypereuclidean
spinc-manifolds are (rationally) Higson-essential (see Theorem 6.11). In
particular, this applies to (rationally) stably hypereuclidean manifolds.
Furthermore, if the co-assembly map µ∗ : K1−∗(credX) → K∗(X) is sur-

jective, then a spinc-manifold X is automatically Higson-essential. If X =
M̃ is the universal covering of a closed aspherical manifold, then this co-
assembly map is in fact known to be an isomorphism for a very broad class
of examples. For instance, if π1M is coarsely embeddable into a Hilbert
space [27, Theorem 9.2] or more generally if π1M has a γ-element [28,
Corollary 34], or if it admits an expanding and coherent combing [30, The-
orem 5.10].

TOME 71 (2021), FASCICULE 3
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Our first main result generalizes Theorem 1.1 from stably hypereuclidean
to Higson-essential. Start with a more general version which applies to non-
compact manifolds.

Theorem 1.5 (see Corollary 6.12). — Let Y be an n-dimensional com-
plete spinc-manifold of continuously bounded geometry(2) . Suppose that
Y is (rationally) Higson-essential. Assume furthermore that Y is endowed
with a proper action of a countable discrete group H which preserves the
spinc-structure.
Then for every proper metric space X which is endowed with a proper

action of a countable discrete group G, the external product maps

SG∗ (X)→ SG×H∗+n (X × Y ), x 7→ x×
[
/DY

]
and

K∗ (C∗GX)→ K∗+n
(
C∗G×H(X × Y )

)
, x 7→ x× Ind

([
/DY

])
are (rationally) split-injective.

Specializing to universal coverings of closed manifolds yields the desired
generalization of Theorem 1.1:

Corollary 1.6. — Let N be a closed spinc-manifold of dimension n

such that its universal covering Ñ is (rationally) Higson-essential. Then for
every closed manifold M the maps

SG∗ (M̃)→ SG×H∗+n (M̃ × Ñ), x 7→ x×
[
/DN

]
,

and

K∗ (C∗red(G))→ K∗+n (C∗red(G×H)) , x 7→ x× IndH
([
/DN

])
where G = π1M and H = π1N , are (rationally) split-injective.

The existence of a γ-element has a far stronger consequences than this.
Traditionally, this concept appeared in proofs of the strong Novikov conjec-
ture. Indeed, it implies injectivity of the entire equivariant index map—not
just non-vanishing of the index of the fundamental class. Using an equivari-
ant version of the co-assembly map it also enables us to prove a stronger
result in the case of aspherical complexes.

Theorem 1.7 (see Theorem 6.5). — Let N be a finite aspherical com-
plex, and assume that H = π1N has a γ-element.

(2) see Definition 4.1(b).

ANNALES DE L’INSTITUT FOURIER
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Then for every proper metric space X endowed with a proper action of
a countable discrete group G, the external product maps

SGm(X)⊗Kn(N)→ SG×Hm+n (X × Ñ)

and

Km (C∗GX)⊗Kn(N)→ Km+n

(
C∗G×H(X × Ñ)

)
are rationally injective for each m,n ∈ Z.

Corollary 1.8. — In the setup of Theorem 1.7, where X = M̃ is the
universal covering of a closed manifold M and G = π1M , the external
product maps

SGm(M̃)⊗Kn(N)→ SG×Hm+n (M̃ × Ñ)(1.3)

and

Km (C∗redG)⊗Kn(N)→ Km+n (C∗red(G×H)) ,(1.4)

are rationally injective for each m,n ∈ Z.

One might conjecture that in the case of an aspherical manifold whose
universal covering is stably hypereuclidean, the rational version of Theo-
rem 1.1 should also follow from Corollary 1.8. This would be the case if the
following open question had a positive answer.

Question 1.9. — Let N be a closed aspherical manifold. If N is stably
hypereuclidean, does the fundamental group π1N admit a γ-element?

If we assume that π1N does not only have a γ-element, but that π1N

even satisfies the Baum–Connes conjecture, then the rational injectivity
of (1.4) upgrades to rational bijectivity due to the Künneth formula [21].
Our next result is that under the assumption of Baum–Connes we also get
such an upgrade for (1.3). To formulate this result in its full generality, we
introduce the following notation for the representable K-homology and its
counterpart for the structure group:

RKG
∗ (X) := lim−→

K

KG
∗ (K),(1.5)

RSG∗ (X) := lim−→
K

SG∗ (K),(1.6)

where the colimits run over G-compact subsets K ⊆ X. Note that (1.1)
then induces a sequence

(1.7) · · · → K∗+1(C∗redG)
∂−→ RSG∗ (X)→ RKG

∗ (X) Ind−−→ K∗ (C∗redG)→ · · · .

TOME 71 (2021), FASCICULE 3
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Theorem 1.10 (Theorem 7.1). — Let H be a countable discrete group.
Assume that H is torsion-free and satisfies the Baum–Connes conjecture
for all coefficient C∗-algebras with trivial H-action.(3)
Then for any simplicial complex M , the external product map

RSG∗ (M̃)⊗ RK∗(BH)→ RSG×H∗ (M̃ × EH),

where G = π1M , is rationally an isomorphism. If RK∗(BH) is torsion-free,
then it is integrally an isomorphism.

1.1. Slant products

The main technical innovation of our paper is the construction of slant
products between the various groups which appear in the Higson–Roe se-
quence and the K-theory of stable Higson corona. The most general of these
incorporate proper actions of countable discrete groups on all involved
spaces as is needed for the proof of Theorem 1.7. However, for simplic-
ity, start with an exposition of the non-compact setting ignoring all group
actions. The next theorem and the following properties is a summary of
Section 4.

Theorem 1.11. — Let X be a proper metric space, and let Y be a
proper metric space of bounded geometry.
For each element θ ∈ K1−q(credY ) we construct natural slant products /θ

such that we have a commuting diagram
(1.8)

Sp(X × Y ) //

/θ

��

Kp(X × Y ) //

/θ

��

Kp(C∗(X × Y ))

/θ

��

∂ // Sp−1(X × Y )

/θ

��

Sp−q(X) // Kp−q(X) // Kp−q(C∗X) ∂ // Sp−1−q(X)

and such that the slant products have the properties listed below in Prop-
erties 1.13.

We recall the relevant definition of bounded geometry at the beginning
of Section 4.1, and the stable Higson corona credY and the corresponding
coarse co-assembly map are recalled at the beginning of Section 4.

Remark 1.12 (Notation). — To state certain results more concisely, we
will use the symbol HR as a generic placeholder for any constituent of the

(3)For example, H could be a-T-menable [36] or it could be hyperbolic [42, 51].

ANNALES DE L’INSTITUT FOURIER
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Higson–Roe sequence. That is, HR∗(X) can stand for either S∗(X), K∗(X)
or K∗(C∗X).

Properties 1.13. — The slant products in Theorem 1.11 satisfy the
following properties:

(i) If Y has continuously bounded geometry, then the slant product

/θ : Kp(X × Y )→ Kp−q(X)

is compatible with coarse co-assembly µ∗ : K1−q(credY ) → Kq(Y ),
that is, for all x ∈ Kp(X × Y ) we have

x/θ = x/µ∗(θ),

where the slant product on the right hand side is the usual slant
product of locally finite K-homology with compactly supported K-
theory.

(ii) For any element y ∈ Kq(C∗Y ) the composition(4)

Kp(C∗X) ×y−−→ Kp+q (C∗(X × Y )) /θ−→ Kp(C∗X)

equals multiplication with 〈y, θ〉 ∈ Z on Kp(C∗X), where this is the
pairing constructed by Emerson and Meyer [27, Section 6], possibly
up to a sign (−1)q.(5)
Furthermore, for y ∈ Kq(Y ) the compositions

Kp(X) ×y−−→ Kp+q(X × Y ) /θ−→ Kp(X)

Sp(X) ×y−−→ Sp+q(X × Y ) /θ−→ Kp(X)

equal multiplication by 〈y, µ∗(θ)〉 ∈ Z, where this is the usual pair-
ing between locally finite K-homology and compactly supported
K-theory.

(iii) Denote by β ∈ K1−n(credRn) the class corresponding to the Bott
element of Euclidean space, that is, µ∗(β) ∈ Kn(Rn) ∼= Z is the
generator.
Then the slant product /β : HRp+n(X × Rn) → HRp(X) is

an isomorphism and coincides with the n-fold suspension isomor-
phism(6) .

(4)The construction of the external product −× y is recalled in Section 3.
(5)Emerson and Meyer did not specify their sign convention for the pairing.
(6)Or in other words, the Mayer–Vietoris boundary map associated to the (coarsely)
excisive cover X × R = X × (−∞, 0] ∪X × [0,∞).

TOME 71 (2021), FASCICULE 3
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(iv) The slant products are compatible with the coarsification and co-
coarsification maps(7) .
Recall that the coarse assembly map µ : Kp(Z) → Kp(C∗(Z)) fac-
tors as

Kp(Z) c−→ KXp(Z) µ−→ Kp(C∗(Z))

and that the coarse co-assembly map µ∗ : K1−q
(
credZ

)
→ Kq(Z) as

µ∗ : K1−q
(
credZ

) µ∗−→ KXq(Z) c∗−→ Kq(Z).

We have slant products on the coarsification of locally finite K-
homology such that the diagram

Kp(X × Y ) c //

/θ

��

KXp(X × Y )

/θ

��

µ
// Kp(C∗(X × Y ))

/θ

��

Kp−q(X) c // KXp−q(X)
µ

// Kp−q(C∗X)

commutes and such that for x ∈ KXp(X × Y ) we have x/θ

= x/µ∗(θ). The slant product on the right hand side is between
the coarsifications of locally finite K-homology and of compactly
supported K-theory (see Definition 4.45).

Property (i) in combination with commutativity of the middle square in
the diagram (1.8) translates to the formula

µ(x/µ∗(θ)) = µ(x)/θ

for all x ∈ Kp(X × Y ) and all θ ∈ K1−q(credY ).
As an example, we mention the following result which can be obtained

from the existence of the slant products with the above properties:

Corollary 1.14 (Corollary 6.4). — Let Y be either
(i) a uniformly contractible, proper metric space of continuously boun-

ded geometry which is scaleable,
(ii) a uniformly contractible, proper metric space of continuously boun-

ded geometry which admits an expanding and coherent combing,
or

(iii) the universal cover EG of the classifying space BG of a group G, if
BG is a finite complex and G is coarsely embeddable into a Hilbert
space.

(7)The co-coarsification maps are sometimes called “character maps” in the literature.

ANNALES DE L’INSTITUT FOURIER
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Then for every proper metric space Y the external product map

HRm(X)⊗Kn(Y )→ HRm+n(X × Y )

is rationally injective. Here we used the notation from Remark 1.12.

1.2. Equivariant slant products

As previously mentioned, there is an equivariant version of our slant
products. We exhibit this construction in Section 5. It requires an equivari-
ant version of the coarse co-assembly map. If Y is endowed with a proper
action of a countable discrete group H, we obtain an induced action on
the stable Higson corona. Using this, one obtains a co-assembly map of the
form

µ∗H : K1−∗
(
credY oµ H

)
→ K∗H(Y ),

where, in general, µ can be any exact crossed product functor in the sense
of [7, Definition 3.1], or the reduced one if H is exact. Note that this is a
different version of the equivariant co-assembly map than the one consid-
ered by Emerson and Meyer [28, 29]. We discuss this and related questions
around exactness in Sections 5.1, 5.2. In the following, we assume that an
appropriate choice for µ has been fixed.

Theorem 1.15. — Let X and Y be proper metric spaces, where Y has
bounded geometry, which are endowed with proper isometric actions of
countable discrete groups G and H, respectively. Then for each element
θ ∈ K1−q(credY oµ H), we construct natural slant products /θ such that
we have a commuting diagram

SG×Hp (X × Y ) //

/θ

��

KG×H
p (X × Y ) //

/θ

��

Kp(C∗G×H(X × Y ))

/θ

��

∂ // SG×Hp−1 (X × Y )

/θ

��

SGp−q(X) // KG
p−q(X) // Kp−q (C∗GX) ∂ // KG

p−1−q(X).

The equivariant slant products satisfy formal properties analogous to
Properties 1.13. We refer to Section 5.4 for the details. Moreover, in Sec-
tion 5.5 we prove that for free actions our equivariant slant product on
K-homology is identified with the usual slant product on K-homology of
the quotient space up to canonical induction isomorphisms.

The equivariant slant products are applied to prove the following in-
jectivity result for the external products on the Higson–Roe analytic se-
quence (1.2). In the following theorem we write M̃ for the universal cover
of M , and we denote G := π1(M).

TOME 71 (2021), FASCICULE 3
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Theorem 1.16 (see Theorem 6.1). — Let N be a finite complex, H
= π1N , and let z ∈ Kn(N). Assume that there is θ ∈ K1−n(credÑ oµ H)
with 〈z, µ∗H(θ)〉 = 1 (or 〈z, µ∗H(θ)〉 6= 0, respectively).
Then for every finite complex M , all vertical arrows in the following

diagram (with G = π1M) are split-injective (rationally split-injective, re-
spectively).

K∗+1 (C∗redG) ∂ //

× IndH(z)
��

SG∗ (M̃) //

×z
��

K∗(M) IndG //

×z
��

K∗ (C∗redG)

× IndH(z)
��

K∗+1+n (C∗red(G×H)) ∂ // SG×H∗+n (M̃ × Ñ) // K∗+n(M ×N)
IndG×H

// K∗+n (C∗red(G×H))

Indeed, a right inverse for the external product maps from the theorem
is given by our equivariant slant products with the class θ. A similar result
was proved by Zenobi [68, Remark 5.20].
Using a slightly more sophisticated version of the above theorem (see

Theorem 6.2), we can deduce Theorem 1.7. This is because the existence of
a γ-element implies surjectivity of the equivariant coarse co-assembly map
for aspherical complexes (see Corollary 5.3).

1.3. Geometric applications

1.3.1. The Stolz sequence for positive scalar curvature

The Stolz sequence for positive scalar curvature [55] is a sequence of bor-
dism groups incorporating Riemannian metrics of positive scalar curvature
(psc). It is in some sense analogous to the surgery sequence from geometric
topology. Given a closed smooth manifold M , we will denote by R+(M)
the set of Riemannian metrics of positive scalar curvature on M .

The Stolz sequence has received considerable attention in higher index
theory starting with work of Piazza and Schick [48] and Xie and Yu [63]
who established that it admits a map to the analytic sequence of Higson
and Roe. We recall the result here in the case of classifying spaces of groups.
Here it is convenient to use (1.7).

Theorem 1.17 ([48, 63]). — Let G be a countable discrete group. There
is a commutative diagram of exact sequences taking Stolz’ positive scalar
curvature sequence to the analytic sequence of Higson and Roe.

Ωspin
m (BG) Rspin

m (BG) Posspin
m−1(BG) Ωspin

m−1(BG) Rspin
m−1(BG)

RKm(BG) Km (C∗redG) RSGm−1(EG) RKm−1(BG) Km−1 (C∗redG)

β

∂

α ρ β α

µ ∂ µ
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We briefly explain the constituents of the top sequence above. First,
Ωspin
∗ (BG) is the usual spin bordism group of BG. The group Rspin

∗ (BG)
consists of bordism classes of pairs (W, g), where W is a compact spin
manifold together with a continuous map W → BG and g ∈ R+(∂W ).
Finally, the positive scalar curvature bordism group Posspin

∗ (BG) consists of
bordism classes of pairs (M, g), whereM is a closed spin manifold together
with a continuous map M → BG and g ∈ R+(M). The map β is the
Atiyah–Bott–Shapiro orientation, α is the higher relative index and ρ is
the higher ρ-invariant.

The positive scalar curvature bordism group admits an external product
with the spin bordism group as follows.

Posspin
m (BG)⊗ Ωspin

n (BH) → Posspin
m+n(B(G×H))

[M, g]⊗ [N ] 7→ [M ×N, g ⊕ gN ]

Here we choose any Riemannian metric gN on N such that the product
metric g⊕gN still has positive scalar curvature (this can always be achieved
by rescaling). Any two such choices yield isotopic metrics on the product
(again by a rescaling argument) and in particular the same bordism class.
By the product formula for the higher ρ-invariant (see [66]), it is compatible
with the external product for the analytic structure group. That is, the
following diagram commutes.

Posspin
m (BG)⊗ Ωspin

n (BH) //

ρ⊗β
��

Posspin
m+n(B(G×H))

ρ

��

RSGm(EG)⊗ RKn(BH) // RSG×Hm+n (E(G×H))

Similarly, we have a diagram involving the relative group.

Rspin
m (BG)⊗ Ωspin

n (BH) //

α⊗β
��

Rspin
m+n(B(G×H))

α

��

Km (C∗redΓ)⊗ RKn(BH) // Km+n (C∗red(G×H))

We now obtain the following corollary as a consequence of 1.5. In the
following we say that a spin manifold is Higson-essential if it is with respect
to the induced spinc-structure.

Corollary 1.18. — Let N be a closed spin manifold with π1N = H

such that its universal covering Ñ is Higson-essential. Let

[Mi, gi] ∈ Posspin
m (BG) with ρ (M0, g0) 6= ρ (M1, g1) ∈ RSGm(EG).
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Then also

ρ (M0 ×N, g0 ⊕ gN ) 6= ρ (M1 ×N, g1 ⊕ gN ) ∈ RSG×Hm+n (E(G×H)).

In particular, (M0×N, g0⊕ gN ) and (M1×N, g1⊕ gN ) represent different
bordism classes in Posspin

m+n(B(G×H)).

In [66, Corollary 6.10] this corollary was formulated for N aspherical
with H = π1N of finite asymptotic dimension. This was based on Dran-
ishnikov’s theorem that the universal covering of such a manifold is stably
hypereuclidean [24]. Our present method strictly improves Zeidler’s result,
because if N is aspherical and H = π1N admits a coarse embedding into
Hilbert space (which is far more general than having finite asymptotic
dimension), it satisfies the hypothesis of the corollary above (compare Re-
mark 6.8 and Corollary 6.4(c)).
Furthermore, if M is a closed spin manifold with π1M = G and g0, g1

∈ R+(M), then (M× [0, 1], (g0, g1)) represents a class in Rspin
m+1(BG), where

(g0, g1) ∈ R+(∂(M × [0, 1])) = R+(M)×R+(M). The corresponding rela-
tive index class in Km+1(C∗redG) is the (higher) index difference of g0 and
g1, denoted by inddiffG(g0, g1) ∈ Km+1(C∗redG). If the index difference is
non-zero, then the two metrics are not concordant as positive scalar cur-
vature metrics. In particular, they are not isotopic as psc metrics.
Again we obtain the following from Theorem 1.5.

Corollary 1.19. — Let N be a closed spin manifold with π1N = H

such that its universal covering Ñ is Higson-essential. Let M be a closed
spin manifold with π1M = G and g0, g1 ∈ R+(M) such that inddiffG(g0, g1)
6= 0 ∈ Km+1(C∗redG). Then

inddiffG×H (g0 ⊕ gN , g1 ⊕ gN ) 6= 0 ∈ Km+n+1 (C∗red(G×H)) .

In particular, g0 ⊕ gN and g1 ⊕ gN are not concordant as positive scalar
curvature metrics on M ×N .

The final conclusion of the previous corollary is also true for almost-spin
manifolds N , see Corollary 1.23 below.

Examples of pairs of (Mi, gi) with different ρ-invariants or pairs of metrics
with non-trivial index-differences exist in abundance. For the ρ-invariants,
such examples always exist if the group G satisfies the strong Novikov con-
jecture and has torsion. For the existence of non-trivial index differences,
this is also true for torsion-free groups. In fact, under the Novikov assump-
tion, lower bounds on the ranks of the groups Posspin

∗ (BG) and Rspin
∗ (BG)

can be given in terms of the homology of G, see for instance [5, 25, 58, 64].
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These results are always proved by showing that secondary index maps
such as α and ρ have a large range.
We deduce from Theorem 1.7 (applying it inside the relevant colimits)

that the size of the range is preserved under certain products.

Corollary 1.20. — Suppose the group H has a γ-element and admits
a finite model for BH.

(i) Let V ⊆ Posspin
m (BG) be a subset such that ρ(V ) ⊆ RSGm(EG)

generates a subgroup of rank > k. Then V ⊗ Ωspin
n (BH) generates

a subgroup of rank

> k · rank
(
βΩspin

n (BH)
)

in Posspin
m+n(B(G × H)).

(ii) Let V ⊆ Rspin
m (BG) be a subset such that α(V ) ⊆ Km(C∗redG)

generates a subgroup of rank > k. Then V ⊗ Ωspin
n (BH) generates

a subgroup of rank

> k · rank
(
βΩspin

n (BH)
)

in Rspin
m+n(B(G×H)).

1.3.2. Positive scalar curvature on non-compact manifolds

As our methods deal with non-compact spaces, there are applications
to uniform positive scalar curvature on non-compact manifolds. However,
here it is necessary to restrict the large-scale type of the metrics which we
consider. Otherwise, the fact that Rn for n > 3 admits metrics of uniform
positive scalar curvature would lead to counterexamples to the kind of
results we have in mind. We use a similar setup as in [67, Section 1.3].
Let X be a spin n-manifold and gX a fixed complete Riemannian metric

on X. We let R(X, gX) denote the set of all those Riemannian metrics g on
X such that the identity map (X, dg)→ (X, dgX ) is uniformly continuous.
Note that each metric inR(X, gX) is automatically complete because gX is.
Moreover, the identity map (X, dg)→ (X, dgX ) is coarse because (X, dg) is
a length space and so uniformly continuous maps are automatically large-
scale Lipschitz. Moreover, we let R+(X, gX) be the set of those metrics
in R(X, gX) with uniformly positive scalar curvature. If X is furnished
with a proper isometric action of a countable discrete group G and gX is
G-invariant, we write R(X, gX)G and R+(X, gX)G for the corresponding
subsets of G-invariant metrics. Note that if Ind( /DX) 6= 0 ∈ Km(C∗GX),
where we define the Roe algebra with respect to the metric gX , then
R+(X, gX)G = ∅.
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Definition 1.21. — We say that two metrics g0, g1 ∈ R+(X, gX)G are
concordant if there exists a metric in R+(X×R, gX⊕dt2)G which restricts
to g0 ⊕ dt2 on X × (−∞, 0] and to g1 ⊕ dt2 on X × [1,∞).

Given g0, g1 ∈ R+(X, gX)G, there is the (equivariant) coarse index dif-
ferenceinddiff(g0, g1) ∈ Kn+1(C∗GX) which vanishes if g0 and g1 are con-
cordant, see [67, Section 2.2.4], [66, Section 4.4]. Note that if X = M̃ is
the universal covering of a closed manifold M , then the equivariant coarse
index difference agrees with the index difference considered in the previ-
ous subsection via the identification K∗(C∗G(M̃)) = K∗(C∗redG). Moreover,
given another complete spin manifold (Y, gY ) such that gi ⊕ gY has uni-
formly positive scalar curvature for i = 0, 1, then the coarse index difference
satisfies the product formula

inddiff (g0 ⊕ gY , g1 ⊕ gY ) = inddiff (g0, g1)× Ind
(
[ /DY ]

)
.

Using our slant products, we obtain the following results.

Corollary 1.22. — Let (Y, gY ) be a complete spin manifold of con-
tinuously bounded geometry which is Higson-essential. Let M be a closed
spin manifold and G := π1M .

(i) If IndG[ /DM ] 6= 0 ∈ Km(C∗redG), then R+(M × Y, gM ⊕ gY ) = ∅.
(ii) Let g0, g1 ∈ R+(M) such that inddiffG(g0, g1) 6= 0 ∈ Km+1(C∗redG).

Then g0 ⊕ gY and g1 ⊕ gY are not concordant on M × Y .
Analogous statements apply if Y is rationally Higson-essential and the rel-
evant index class is rationally non-zero.

Proof. — Lifting metrics induces an identification

R (M × Y, gM ⊕ gY ) = R
(
M̃ × Y, g

M̃
⊕ gY

)G
,

preserving products, uniform psc and concordances. Hence it suffices to
prove the corresponding statements in R+(M̃×Y, g

M̃
⊕gY )G. The product

formula for the index and index difference together with Theorem 1.5 imply
Ind([ /D

M̃×Y ]) 6= 0 ∈ Km+n(C∗G(M̃ × Y )) in Corollary 1.22(i) and

inddiff (g̃0 ⊕ gY , g̃1 ⊕ gY ) 6= 0 ∈ Km+n+1

(
C∗G(M̃ × Y )

)
in Corollary 1.22 (ii). �

In particular, we deduce results for closed almost spin manifold (that is,
the universal covering is spin but not necessarily the manifold itself).

Corollary 1.23. — Let N be a closed manifold with π1N = H such
that its universal covering Ñ is spin and Higson-essential. LetM be a closed
spin manifold with π1M = G.

ANNALES DE L’INSTITUT FOURIER



SLANT PRODUCTS ON THE HIGSON–ROE EXACT SEQUENCE 929

(i) If IndG[ /DM ] 6= 0 ∈ Km(C∗redG), then R+(M ×N) = ∅.
(ii) Let g0, g1 ∈ R+(M) such that inddiffG(g0, g1) 6= 0 ∈ Km+1(C∗redG).

Then g0 ⊕ gN and g1 ⊕ gN are not concordant as positive scalar
curvature metrics on M ×N , where gN is some Riemannian metric
on N such that gi ⊕ gN ∈ R+(M ×N)

Proof. — If R+(M × N) 6= ∅, then lifting the metric shows R+(M
× Ñ , gM ⊕ g̃N ) 6= ∅ for any choice of Riemannian metrics gM and gN on M
and N , respectively. Hence the statement follows from Corollary 1.22(i).
The second part is reduced to Corollary 1.22 in an analogous fashion. �

For g ∈ R+(X, gX)G, there is also a ρ-invariant ρ(g) ∈ SGm(X). If ρ(g0)
6= ρ(g1), then the metrics are also not concordant. Theorem 1.5 then implies
an analogous version of Corollary 1.22 for the ρ-invariant. However, ρ(g0)
6= ρ(g1) already implies inddiff(g0, g1) 6= 0. In fact, this ρ-invariant is a
coarse bordism invariant in a suitable sense, see [67, Section 2.4.2], but
formulating this requires some care to ensure that the structure groups
on the two different ends of a bordism remain comparable. In the right
setup, it is then also possible to establish a non-compact version of the final
conclusion from 1.18, but we refrain from expounding the details here.

1.4. Generalizations and questions

1.4.1. Coefficients

Instead of working with the ordinary Roe algebra and ordinary stable
Higson corona, we could have used throughout this paper their correspond-
ing versions with coefficients, that is, Hilbert modules E , F and G for the
Roe algebras of the corresponding spaces and a C∗-algebra C for the sta-
ble Higson corona.(8) K-homology and the analytic structure group can be
similarly enriched.
For a ∈ Km(Y ;F) we then have the following diagram for the external

product by a:

Sn(X; E) //

×a
��

Kn(X; E) //

×a
��

Kn(C∗(X; E))

×µ(a)
��

// Sn−1(X; E))

×a
��

Sm+n(X×Y ; E⊗F)) // Km+n(X×Y ; E⊗F) // Km+n(C∗(X×Y ; E⊗F)) // Sm+n−1(X×Y ; E⊗F)

(8)Roe algebras with coefficients in C∗-algebras were considered by Higson, Pedersen
and Roe [37]. The definition of Roe algebras with coefficients in C∗-algebras given in [35]
is quickly seen to generalize to Hilbert modules; see also [62].

Emerson and Meyer [27] defined the stable Higson corona from the very beginning
with coefficients in C∗-algebras.
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and for b ∈ K1−m(cred(Y ;C)) the following version of the slant products
by b:

Sn(X × Y ;G) //

/b

��

Kn(X × Y ;G) //

/µ∗(b)
��

Kn(C∗(X × Y ;G)) //

/b

��

Sn−1(X × Y ;G)

/b

��

Sn−m(X;G⊗C) // Kn−m(X;G⊗C) // Kn−m(C∗(X;G⊗C)) // Sn−1−m(X;G⊗C)

In particular, take X = ∗to be a point and consider the standard Hilbert-
module A = A ⊗ `2, where A is some C∗-algebra. Then the Roe algebra
C∗(∗;A) is isomorphic to A⊗K(`2) and so K∗(C∗(∗;A)) = K∗(A). In the
situation of Theorem 1.5, we could then deduce (rational) injectivity of the
external product map

K∗(A)→ K∗+n (A⊗ C∗H(Y )) , x 7→ x× Ind
[
/DY

]
.

We do not discuss this any further in the paper to keep the notation
lean.

1.4.2. Real K-theory

We have formulated the results of this paper in the framework of com-
plex K-theory for simplicity. However, especially for applications to positive
scalar curvature and spin geometry, it would be desirable to establish the
analogous statements for KO-homology and the corresponding real version
of the analytic structure group. Our construction of slant products is suf-
ficiently abstract and does not use any idiosyncrasies of complex K-theory
(such as—for instance—using 2-periodicity in an essential way). Hence the
slant products also exist in the real setup and all applications that involve
external products with a single element (such as Theorem 1.5) go through
without essential change.
However, more care has to be taken with results that rely on universal

coefficient and Künneth theorems (such as Theorem 1.7, Theorem 1.10).
They do not appear to readily generalize and instead would require a more
elaborate framework such as in [12].

1.4.3. Künneth sequence for the structure group

In Corollary 1.8, we could have also included the case of the external
product for K-homology, that is, Km(M) ⊗ Kn(N) → Km+n(M × N). In
fact, injectivity of this map holds in full generality due to the Künneth
theorem for K-homology.
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There is also a Künneth theorem for the K-theory of the reduced group
C∗-algebras, provided the Baum–Connes conjecture is satisfied by one of
the groups.(9) Therefore, in this situation we get rational injectivity of (1.4)
as in the Theorem 1.7. But the assumption of satisfying Baum–Connes is
much stronger than admitting a γ-element.

It is now a natural question if there is also a version of the Künneth
sequence for the structure group. For instance, one might ask if there is a
short exact sequence of the form

0→
(

SG∗ (M̃)⊗K∗(N)
)
⊕
(

K∗(M)⊕ SH∗ (Ñ)
)

→ SG×H∗ (M̃ × Ñ)→ ?Tor?→ 0,

where ?Tor? is some suitable correction term analogous to the Tor-term
in the Künneth sequence for K-homology. For this to make sense, it is
probably necessary to diagonally divide out SG∗ (M̃) ⊗ SH∗ (Ñ) in the term
on the left. If such a sequence exists, then it should ideally imply the
conclusion of Theorem 1.10. However, by the result of Section 2, proving
the existence of such a sequence will—realistically—require at least some
hypotheses related to the strong Novikov conjecture.

1.4.4. Groups with torsion

Many of our results (such as Theorem 1.7) involve finite classifying spaces
of countable discrete groups (that is, finite aspherical complexes) which re-
stricts them to torsion-free groups. However, in our general constructions
(especially in Section 5) we need the groups to act only properly and not
necessarily freely. Thus many of these results will have corresponding ver-
sions for groups with torsion if we work with the classifying space for proper
actions EG instead—at least if the latter admits a G-finite model.

1.4.5. Exactness and the stable Higson corona

In Section 5, when introducing the equivariant versions of the slant prod-
ucts, we are working with crossed products credY oµ H, where oµ is any
exact crossed product functor. This is necessary because the relevant co-
assembly map might in general not exist for the reduced crossed product
unless H is exact.
(9)Tu [56] proved that if G is amenable, then C∗redG lies in the bootstrap class and hence
satisfies the Künneth formula. That C∗redG satisfies the Künneth formula if G satisfies
the Baum–Connes conjecture was proven by Chabert, Echterhoff and Oyono-Oyono [21].
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So the natural question arises in which situations credY is an amenable
H−C∗-algebra (see Definition 5.7) and hence all different choices of crossed
products for credY oH coincide. This is in general always the case when H
is an amenable group, and we show that it furthermore holds in the case
that H is a Gromov hyperbolic group acting on itself:

Proposition 1.24 (Example 5.13). — Let H be a Gromov hyperbolic
group. Then credH is an amenable H − C∗-algebra and credH omax H ∼=
credH ored H.

One can ask about the concrete relation between amenability of credH,
the equality credH omax H ∼= credH ored H and the exactness of H. In
Section 5.2 we get first partial results on this, and our general conjecture
is the following:

Conjecture 1.25. — Let Y be a proper metric space equipped with
an isometric action of a countable discrete group H. Then the following
conditions are equivalent:

(a) The group H acts amenably on the Higson corona of Y .
(b) credY is an amenable H − C∗-algebra.
(c) The group H is exact and we have credY omax H ∼= credY ored H.

Note that there is a related statement in the dual situation, that is, for
the uniform Roe algebra: H is exact if and only if the uniform Roe algebra
C∗uH is exact [13].

2. Injectivity implies non-vanishing index

In this short section, we provide a proof for our motivating observation
which was stated as Theorem 1.3 in the introduction.

Theorem 2.1. — Let N be a finite complex and z ∈ Kn(N) be such
that for every closed manifold M the map SG∗ (M̃) → SG×H∗+n (M̃ × Ñ),
x 7→ x × z, where G = π1M and H = π1N , is rationally injective. Then
IndH(z) ∈ Kn(C∗redH) is rationally non-zero.

Proof. — Suppose by contraposition that rationally IndH(z) = 0. For
every M , there is the following commutative diagram.

K∗+1(C∗redG) ∂M //

−×IndH(z)
��

SG∗ (M̃)

−×z
��

K∗+1+n (C∗red(G×H))
∂M×N

// SG×H∗+n (M̃ × Ñ)
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A construction of this diagram is provided in Section 3.2.
Since the left vertical arrow is rationally zero, we conclude that the image

of ∂M ⊗Q is contained in the kernel of

(−× z)⊗Q : SG∗ (M̃)⊗Q→ SG×H∗+n (M̃ × Ñ)⊗Q.

Thus to complete the proof it suffices to find a closed manifoldM such that
∂M ⊗Q 6= 0. Indeed, this happens for instance if M is such that G = π1M

is a non-trivial finite group. This is folklore but we briefly explain it for the
convenience of the reader.
Let G be finite. Then

Ki(C∗redG) = Ki(C[G]) ∼=

{
R(G) i = 0,
0 i = 1,

where R(G) denotes the Grothendieck group of finite-dimensional complex
G-representations. Elementary character theory shows that the rank of the
abelian group R(G) is the number of conjugacy classes of elements in G.
Hence it is greater than one because G is non-trivial. Moreover, since the
homology of a finite group is torsion in all positive degrees, it follows (for
instance by an application of the Atiyah–Hirzebruch spectral sequence) that

RKi(BG)⊗Q ∼= RKi(∗)⊗Q ∼=

{
Q i = 0,
0 i = 1,

where the isomorphism is induced by mapping onto the point. Thus, the
rational assembly map Q ∼= K0(BG) → K0(C[G]) ⊗ Q ∼= R(G) ⊗ Q is not
surjective for dimension reasons (in fact, the image is generated by the
left-regular representation of G). Putting these observations together, we
see that the rational Higson–Roe sequence of G collapses to the following
short exact sequence (with all other terms vanishing):

0→ RK0(BG)⊗Q︸ ︷︷ ︸
∼=Q

→ K0(C∗redG)⊗Q︸ ︷︷ ︸
∼= R(G)⊗Q

∂G⊗Q−−−−→ RSG1 (EG)⊗Q→ 0

Since the assembly map is not surjective, ∂G ⊗ Q 6= 0. Finally, for any M
with π1M = G, the boundary map ∂G factors as

∂G : K∗+1 (C∗redG) ∂M−−→ SG∗ (M̃)→ RSG∗ (EG).

Hence ∂G ⊗Q 6= 0 implies ∂M ⊗Q 6= 0. �

Remark 2.2. — In fact, the proof shows that injectivity of the external
product map SG∗ (M̃) −×z−−−→ S∗+n(M̃ × Ñ) for any M , where π1M = G is a
non-trivial finite group, suffices to obtain the conclusion of Theorem 2.1.
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3. External products

In this section we will revisit the construction of the external product
maps via localization algebras. The idea for this approach appeared first in
work of Xie and Yu [63, Section 2.3.3] and was fleshed out by Zeidler [66,
Section 3.3]. See also [60, Section 9.2]. We start in the setup without group
actions and discuss the equivariant situation thereafter.

3.1. Non-equivariant case

Let X be a proper metric space. An X-module is a separable Hilbert
space HX endowed with a non-degenerate ∗-representation ρX : C0(X) →
B(HX). Given an X module, the Roe algebra C∗(ρX) is defined as the sub-
C∗-algebra of B(HX) generated by all locally compact operators of finite
propagation. These notions are defined as follows.

• An operator T ∈ B(HX) is called locally compact, if for every f ∈
C0(X) the operators ρX(f)T and TρX(f) are compact operators.

• An operator T ∈ B(HX) is said to have finite propagation if there
exists an R > 0 such that ρX(f)TρX(g) = 0 whenever the supports
of f and g are further apart from each other than R. In this case,
the propagation is said to be bounded by R.

AnX-module (HX , ρX) is called ample, if no non-zero function from C0(X)
acts by a compact operator. From now on we shall assume that we have
fixed an ample X-module (HX , ρX).
The crucial fact about Roe algebras is that their K-theory is independent

of the choice of ample X-module [40, Corollary 6.3.13] [60, Theorem 5.1.15]
up to canonical isomorphism. Hence we usually suppress it from the nota-
tion by writing C∗X instead of C∗(ρX). Nevertheless, later on we will have
to consider the Roe algebras of X associated to different representations at
once. In those cases, we default to the notation C∗(ρX).
Further, one defines the localization algebra C∗LX as the sub-C∗-algebra

of Cb([1,∞),C∗X) generated by the bounded and uniformly continuous
functions L : [1,∞) → C∗X such that the propagation of L(t) is finite
for all t > 1 and tends to zero as t → ∞. If it is constructed using an
ample X-module, its K-theory is canonically isomorphic to the locally finite
K-homology of the space X, that is,

K∗ (C∗LX) ∼= KK∗(C0(X),C) ∼= K∗(X).
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This fact was originally established by Yu [65] for finite complexes and was
generalized to proper metric spaces by Qiao and Roe [52]. See also [60,
Chapters 6–7] for a self-contained development of analytic K-homology
based on localization algebras.(10) Related results that describe more gen-
eral KK-groups using different versions of the localization algebra can be
found in [22].

Finally, the ideal in C∗LX consisting of all such functions L with L(1) = 0
is denoted by C∗L,0X. Its K-theory is called the analytic structure group of
X and denoted S∗(X) := K∗(C∗L,0X).
These three C∗-algebras fit into a short exact sequence

0→ C∗L,0X → C∗LX
ev1−−→ C∗X → 0

and the induced long exact sequence is the Higson–Roe sequence

· · · → K∗+1(C∗X)→ S∗(X)→ K∗(X) Ind−−→ K∗(C∗X)→ . . .

with the map Ind = (ev1)∗ induced by evaluation at 1 being the index map.
Given another proper metric space Y , we consider the above-mentioned

C∗-algebras of Y and X × Y associated to a chosen ample representation
ρY : C0(Y )→ B(HY ) and the corresponding tensor product representation
ρX×Y : C0(X × Y ) → B(HX×Y ) on HX×Y := HX ⊗ HY which is again
ample.
Note that the tensor product of two locally compact operators of finite

propagation is again locally compact and of finite propagation. Hence

(3.1) C∗X ⊗ C∗Y ⊂ C∗(X × Y )

and this inclusion induces the external product

× : Km(C∗X)⊗Kn(C∗Y )→ Km+n(C∗(X × Y )) .

If L1 and L2 are functions in the generating subset of C∗LX, C∗LY , re-
spectively, then one readily verifies that the function

L : [1,∞)→ C∗(X × Y ), t 7→ L1(t)⊗ L2(t)

also satisfies the propagation condition and yields an element of C∗L(X×Y ).
If L1 ∈ C∗L,0X, then we will have L ∈ C∗L,0(X × Y ). This gives rise to
isometric ∗-homomorphisms

(10)Note, however, that the localization algebras considered in [60] are slightly bigger
and have somewhat better functoriality properties than the original versions. We use the
original version in this paper because it is more convenient for our subsequent construc-
tion of slant products at the cost of a slightly more awkward approach to functoriality,
see Remark 4.32.
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C∗LX ⊗ C∗LY → C∗L(X × Y )(3.2)
C∗L,0X ⊗ C∗LY → C∗L,0(X × Y )(3.3)

Remark 3.1. — The fact that this works with the minimal tensor product
on the left hand side can be seen as follows.
There are canonical faithful representations of C∗LX, C∗LY and C∗L(X ×

Y ) on the Hilbert spaces `2([1,∞))⊗HX , `2([1,∞))⊗HY and `2([1,∞))
⊗ HX×Y , respectively. By the definition of the minimal tensor product
we can thus see C∗LX ⊗ C∗LY as a sub-C∗-algebra of B(`2([1,∞)) ⊗ HX

⊗ `2([1,∞))⊗HY ). Now, conjugation by the Hilbert space projection

`2([1,∞))⊗HX ⊗ `2([1,∞))⊗HY → `2([1,∞))⊗HX×Y

onto the diagonal of [1,∞)× [1,∞) is a continuous linear map

B
(
`2([1,∞)

)
⊗HX ⊗ `2([1,∞))⊗HY )→ B

(
`2([1,∞))⊗HX×Y

)
which is not a ∗-homomorphism. But its restriction to the minimal tensor
product C∗LX⊗C∗LY is an isometric ∗-homomorphism and has image con-
tained in the cannonically embedded sub-C∗-algebra C∗L(X×Y ), as can be
seen on generators as above.

The two ∗-homomorphisms (3.2) and (3.3) give rise to external product
maps

× : Km(X)⊗Kn(Y )→ Km+n(X × Y ) ,
× : Sm(X)⊗Kn(Y )→ Sm+n(X × Y ) .

Remark 3.2. — The definitions of the three external products makes use
of the (maximal) external tensor product functor in K-theory, which we
denote by

� : Km(A)⊗Kn(B)→ Km+n (A⊗max B)
in order to distinguish it from our external products. Note that this func-
tor is subject to a sign convention, cf. [40, Remark 4.7.5](11) . We will use
the sign convention which usually is used in the literature and which has
the following compatibility with boundary maps, as seen in [40, Proposi-
tion 4.7.6(b)](12) . If

0→ I → A→ A/I → 0

(11)This reference treats only the minimal tensor product, but exactly the same is true
for the maximal tensor product.
(12) see Footnote 11.
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is a short exact sequence of C∗-algebras and B another C∗-algebra, then the
sequence

0→ I ⊗max B → A⊗max B → (A/I)⊗max B → 0

is also exact and the boundary maps of these two short exact sequences
and the external tensor products satisfy the equation

∂(x� y) = ∂(x)� y

for all x ∈ Km(A/J) and y ∈ Kn(B). Using the graded commutativity
of the external tensor product we see that the corresponding equation ob-
tained by tensoring the short exact sequence with B from the left and not
from the right is only true up to a sign:

∂(y � x) = (−1)n · y � ∂(x)

Note that this is the sign convention which makes the usual sign heuristics
work: exchanging the order of the symbol y of degree n and the symbol ∂
of degree −1 in the last equation gives rise to the sign (−1)n·(−1).

The ∗-homomorphisms obtained from (3.1), (3.2) and (3.3) by using the
maximal tensor product(13) fit into a commutative diagram:

0 // C∗L,0X ⊗max C∗LY //

��

C∗LX ⊗max C∗LY //

��

C∗X ⊗max C∗LY //

id⊗ ev1
��

0

C∗X ⊗ C∗Y

��

0 // C∗L,0(X × Y ) // C∗L(X × Y ) // C∗(X × Y ) // 0

Together with the fact that the external product of K-theory is functorial
and compatible with the connecting homomorphisms (cf. Remark 3.2) this
gives for any z ∈ Kn(Y ) rise to an external product morphism between
long exact sequences:

K∗+1(C∗X) ∂ //

−×Ind(z)
��

S∗(X) //

−×z
��

K∗(X) Ind //

−×z
��

K∗(C∗X)

−×Ind(z)
��

K∗+1+n(C∗(X × Y )) ∂ // S∗+n(X × Y ) // K∗+n(X × Y ) Ind // K∗+n(C∗(X × Y ))

(13)The maximal tensor product is needed here to make the upper row exact.
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3.2. Equivariant case

Let (HX , ρX) be an X-module as in Section 3.1. We suppose in addition
that X is furnished with a proper isometric action of a countable discrete
group G. Furthermore, we assume that we have a unitary representation
uG : G → U(HX) which turns (ρX , uG) into a covariant pair(14) . Given
this data, we say that (HX , ρX , uG) is an X-G-module. An X-G-module is
called locally free if for each finite subgroup F ⊆ G and any F -invariant
Borel subset E ⊆ X, there is a Hilbert space HE such that 1EHX and
`2(F ) ⊗ HE are isomorphic as F -Hilbert spaces, where `2(F ) is endowed
with the left-regular representation and HE is endowed with the trivial
representation. An X-G-module is ample if it is ample as an X-module
and locally free. Ample X-G-modules always exist [60, Lemma 4.5.5].

In the following, we let (HX , ρX , uG) be a fixed ample X-G-module. We
also fix an ample Y -H-module (HY , ρY , uH), where Y is another proper
metric space furnished with a proper isometric action of some countable
discrete group H.
We get C∗algebras C∗GX, C∗G,LX and C∗G,L,0X by considering equivariant

locally compact operators of finite propagation, respectively suitable fami-
lies L of them. Similarly as before, their K-theory groups do not depend on
the choice of ample X-G-module up to canonical isomorphism [60, Theo-
rems 5.2.6, 6.5.7, Proposition 6.6.2]. They fit into the short exact sequence

0→ C∗G,L,0X → C∗G,LX
ev1−−→ C∗GX → 0

and the induced long exact sequence is then denoted

· · · → K∗+1 (C∗GX)→ SG∗ (X)→ KG
∗ (X) Ind−−→ K∗ (C∗GX)→ . . .

Writing here KG
∗ (X) for K∗(C∗G,LX) is justified by the fact that K∗(C∗G,LX)

is naturally isomorphic to the equivariant K-homology of X, see [60, Propo-
sition 6.6.2]. If G acts freely on X, then we have

K∗
(
C∗G,LX

) ∼= KG
∗ (X) ∼= K∗(G\X),

compare Section 5.5.

(14)The group G acts on functions on X by (g · f)(x) = f(g−1x). Being a covariant pair
means that uG(g)ρX(f)uG(g)∗ = ρX(g · f) for all g ∈ G and f ∈ C0(X).
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As in the non-equivariant case we can construct now the external prod-
ucts and get a commutative diagram

0 // C∗G,L,0X ⊗max C∗H,LY //

��

C∗G,LX ⊗max C∗H,LY //

��

C∗GX ⊗max C∗H,LY //

id⊗ ev1
��

0

C∗GX ⊗ C∗HY

��

0 // C∗G×H,L,0(X × Y ) // C∗G×H,L(X × Y ) // C∗G×H(X × Y ) // 0

which induces for any z ∈ KH
n (Y ) the external product morphisms between

the corresponding long exact sequences:

K∗+1 (C∗GX) ∂ //

−×Ind(z)
��

SG∗ (X) //

−×z
��

KG
∗ (X) Ind //

−×z
��

K∗ (C∗GX)

−×Ind(z)
��

K∗+1+n
(
C∗G×H(X × Y )

) ∂ // SG×H∗+n (X × Y ) // KG×H
∗+n (X × Y ) Ind // K∗+n

(
C∗G×H(X × Y )

)
If G acts cocompactly on X, then C∗GX is Morita equivalent to C∗redG,

see [60, Proposition 5.3.4].
On the universal covers of finite complexes, the action is proper, free and

cocompact. In this way we get the diagram considered in Theorem 1.16.

4. Slant products

The goal of this section is to construct the various slant products and
prove Theorem 1.11. We start by giving the definition of the stable Higson
compactification and corona of a proper metric space Y (which is usually
non-compact) and of the coarse co-assembly map from [27].
If ϑ : Y → Z is a map into another metric space Z, then one defines for

each r > 0 the r-variation of ϑ as the function

Varr ϑ : Y → [0,∞) , x 7→ sup {d (ϑ(x), ϑ(y))|y ∈ Y with d(x, y) 6 r} .

The funtion ϑ is said to have vanishing variation if Varr ϑ converges to zero
at infinity for all r > 0.
Let K := K(`2) denote the compact operators on the standard Hilbert

space `2 := `2(N). The stable Higson compactification of Y , denoted by
c̄Y , is the C∗-algebra of all bounded, continuous functions of vanishing
variation Y → K. The stable Higson corona of Y is the quotient C∗-algebra
cY := c̄Y/C0(Y,K).
If Y is unbounded, the stable Higson compactification and corona c̄Y

and cY contain an isometrically embedded copy of K as the sub-C∗-algebra
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of constant functions. Their reduced K-theory is defined as

K̃∗(c̄Y ) := K∗(c̄Y )/ im (Z ∼= K∗(K)→ K∗(c̄Y ))

K̃∗(cY ) := K∗(cY )/ im (Z ∼= K∗(K)→ K∗(cY ))

though beware that this definition is only reasonable for unbounded metric
spaces [27, Remark 3.9].
There are reduced versions of the above two C∗-algebras whose K-theory

behaves better for bounded spaces: Let c̄redY be the C∗-algebra of all
bounded, continuous functions of vanishing variation Y → B(`2) with
f(x) − f(x′) ∈ K for all x, x′ ∈ Y . Let credY := c̄redY/C0(Y,K). We have
the isomorphisms

K∗
(
c̄redY

) ∼= K̃∗(c̄Y ) , K∗
(
credY

) ∼= K̃∗(cY )

if Y is unbounded [27, Proposition 5.5] and for bounded Y we simply define
the reduced K-theory by these isomorphisms.
The coarse co-assembly map is the connecting homomorphism

µ∗ : K∗
(
credY

)
→ K1−∗(Y )

associated to the short exact sequence

0→ C0(Y,K)→ c̄redY → credY → 0 .

In the rest of the paper, we will only use the reduced versions of the stable
Higson compactification and corona.

4.1. Construction of the slant products

From now on we assume that X and Y are proper metric spaces, and
that Y has bounded geometry (see Definition 4.1(a)). The representations
ρX , ρY and ρX×Y on the Hilbert spaces HX , HY and HX×Y := HX ⊗HY

shall be exactly as in Section 3.

Definition 4.1 (Bounded geometry). — The term bounded geometry
has in the literature different meanings depending to which kind of object
it refers to:

(a) A metric space Y is said to have bounded geometry if there exists
r > 0 and a subset Ŷ ⊂ Y such that Y =

⋃̂
y ∈ Ŷ Br(ŷ) and such

that for each R > 0 there exists a constant KR such that for every
y ∈ Y the number of elements #(Ŷ ∩ BR(y)) is bounded by KR.

Here Br(−) denotes the open ball and Br(−) denotes the closed
ball of radius r.
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(b) A metric space Y is said to have continuously bounded geometry
if for every r > 0 and R > 0 there exists a constant Kr,R > 0 such
that the following conditions hold.
• For every r > 0 there is a subset Ŷ r ⊂ Y such that Y =⋃̂

y∈ Ŷ r Br(ŷ) and such that for all r,R > 0 and y ∈ Y the
number #(Ŷ r ∩ BR(y)) is bounded by Kr, R.

• For all α > 0, we have Kα := lim supr→0Kr, α r <∞.
(c) A complete Riemannian manifold has bounded geometry if it has

uniformly positive injectivity radius and the curvature tensor and
all its covariant derivatives are uniformly bounded.(15)

(d) A simplicial complex is said to have bounded geometry if there is
a uniform bound on the number of simplices in the link of each
vertex.
Note that this is equivalent to the simplicial complex being uni-

formly locally finite and finite-dimensional.

Continuously bounded geometry implies bounded geometry. Bounded
geometry of Riemannian manifolds is an even stronger property: It im-
plies continuously bounded geometry of the underlying metric space [62,
Lemma 5.2]. Further, if a simplicial complex has bounded geometry, then
the underlying metric space will have continuously bounded geometry.

If a metric space Y is uniformly discrete (for instance, a countable dis-
crete group equipped with a proper, left-invariant metric), then it has
bounded geometry if and only if it has continuously bounded geometry
(and in this case we can take Ŷ r := Y for each r > 0).

4.1.1. Slant product for the Roe algebra

We begin by constructing the slant product

/ : Kp(C∗(X × Y ))⊗K1−q
(
credY

)
→ Kp−q(C∗X)

for X, Y proper metric spaces, and Y of bounded geometry (Definition
4.1(a)).
To construct this slant product we will take the Roe algebra C∗X on the

right hand side not to be the one associated to the representation ρX , that
is C∗(ρX), but the one associated to the representation

(4.1) ρ̃X := ρX ⊗ idHY ⊗`2 : C0(X)→ B(H̃X)

(15)Note that completeness is actually a redundant requirement here since it is implied
by having a uniformly positive injectivity radius.
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on H̃X := HX ⊗HY ⊗ `2, that is C∗(ρ̃X). Note that the representation ρ̃X
is ample and non-degenerate, since ρX is.
Let E∗(ρ̃X) ⊂ B(H̃X) denote the sub-C∗-algebra generated by all finite

propagation operators. Our notation comes from the fact that this C∗-
algebra is slightly bigger than the C∗-algebra generated by all pseudolocal
operators of finite propagation, which is usually denoted by D∗(X).

Lemma 4.2. — The Roe algebra C∗(ρ̃X) is an ideal in E∗(ρ̃X).

Proof. — Let S ∈ C∗(ρ̃X) and T ∈ E∗(ρ̃X) have finite propagation. Then
S ◦ T and T ◦ S both have finite propagation, too.
To show local compactness, let g ∈ C0(X). We may assume that the

support of g is compact and then choose a function g′ ∈ C0(X) which is
constantly equal to 1 on the R-neighborhood of the support of g, where
R > 0 is the propagation of T . Then the four operators

ρ̃X(g) ◦ (S ◦ T ) = (ρ̃X(g) ◦ S) ◦ T
(T ◦ S) ◦ ρ̃X(g) = T ◦ (S ◦ ρ̃X(g))
(S ◦ T ) ◦ ρ̃X(g) = (S ◦ ρ̃X(g′)) ◦ T ◦ ρ̃X(g)
ρ̃X(g) ◦ (T ◦ S) = ρ̃X(g) ◦ T ◦ ρ̃X(g′) ◦ S

are clearly compact, because S is locally compact. Density arguments finish
the proof. �

Observe that the tensor product of the representation ρY and the canoni-
cal representation of K on `2 is a non-degenerate representation of C0(Y,K)
on HY ⊗`2. Thus it extends uniquely to a strictly continuous representation

(4.2) ρ̄Y : M(C0(Y,K))→ B
(
HY ⊗ `2

)
of the multiplier algebra and subsequent tensoring with the identity on HX

gives us a representation

ρ̃Y := idHX ⊗ρ̄Y : M(C0(Y,K))→ B(H̃X)

whose image clearly commutes with the image of the representation ρ̃X .
Since C0(Y,K) is an essential ideal in Cb(Y,K), the latter embedds canon-
ically into M(C0(Y,K)) and we denote the restrictions of ρ̄Y and ρ̃Y to
Cb(Y,K) and C0(Y,K) by the same letters.

Lemma 4.3. — The images of the two representations

τ : C∗(ρX×Y )→ B(H̃X) given by S 7→ S ⊗ id`2 ,

ρ̃Y : M(C0(Y,K))→ B(H̃X) defined above ,

are contained in E∗(ρ̃X).

ANNALES DE L’INSTITUT FOURIER



SLANT PRODUCTS ON THE HIGSON–ROE EXACT SEQUENCE 943

Proof. — The propagation of each operator in the image of ρ̃Y is clearly
zero. For τ , the claim follows from the following important lemma. �

Lemma 4.4. — If S ∈ B(HX×Y ) has finite propagation bounded by
R > 0 with respect to ρX×Y , then the operator S ⊗ id`2 ∈ B(H̃X) has
finite propagation bounded by R with respect to ρ̃X .

Proof. — Let g, h ∈ C0(X) be functions whose supports are further apart
than R. Then ρ̃X(g) ◦ (S⊗ id`2) ◦ ρ̃X(h) can be written as a strong limit of
operators of the form (ρX×Y (g⊗ϕ)◦S◦ρX×Y (h⊗ϕ))⊗id`2 with ϕ ∈ C0(Y ),
but the latter are all zero, because the supports of g⊗ϕ, h⊗ϕ ∈ C0(X×Y )
are further apart than R. �

Lemma 4.5. — The image of the representation τ commutes up to
C∗(ρ̃X) with the image of c̄redY under the representation ρ̃Y .

Hence, by the universal property of the maximal tensor product, we get
an induced ∗-homomorphism

(4.3) Φ: C∗(ρX×Y )⊗max c̄redY → E∗(ρ̃X)/C∗(ρ̃X)

given by S ⊗ f 7→ [τ(S) ◦ ρ̃Y (f)].

Proof. — Let S ∈ C∗(ρX×Y ) and f ∈ c̄redY . We may assume that S
has finite propagation with respect to ρX×Y and hence τ(S) also has finite
propagation with respect to ρ̃X by the Lemma 4.4. As ρ̃Y (f) also has finite
propagation (namely zero) with respect to ρ̃X , so does the commutator
[τ(S), ρ̃Y (f)].
Therefore it remains to show that the commutator is also locally compact

with respect to ρ̃X . Here we need the bounded geometry of Y .
Choose a subset Ŷ ⊂ Y as in Definition 4.1 MK(a), i,e. with Y =⋃
y∈ Ŷ Br(ŷ) and such that for each R′ > 0 the number #(Ŷ ∩ BR′(y)) is

uniformly bounded in y ∈ Y by some constant KR′ > 0. In this proof, the
relevant value for R′ will be R′ = R + 2r, where R is the propagation of
the operator S.
By thinning out the open cover {Br(ŷ)}ŷ∈ Ŷ , we obtain a decomposition

of Y into a family {Zŷ}ŷ∈ Ŷ of pairwise disjoint Borel subsets such that
Zŷ ⊆ Br(ŷ) for all ŷ ∈ Ŷ . The representation ρY : C0(Y )→ B(HY ) extends
uniquely to the bounded Borel functions on Y subject to the condition that
pointwise converging uniformly bounded sequences of functions are taken
to strongly converging sequences of operators. For a Borel subset Z ⊆ Y ,
let 1Z ∈ B(HY ) denote the projection corresponding to the characteristic
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function of Z. Now consider the strongly convergent series

f̂ :=
∑
ŷ∈ Ŷ

1Zŷ ⊗ f(ŷ) ∈ B
(
HY ⊗ `2

)
.

The proof will be completed by showing first that the operators (idHX ⊗
f̂− ρ̃(f))◦τ(S) and τ(S)◦(idHX ⊗f̂− ρ̃(f)) are locally compact and second
that the commutator [τ(S), idHX ⊗f̂ ] is locally compact.
Let h1 6 h2 6 . . . be a sequence of compactly supported functions

Y → [0, 1] such that the compact subsets h−1
n {1} exhaust Y as n → ∞.

Furthermore, let Pn ∈ K denote the projection onto the span of the first n
basis vectors δ1, . . . , δn ∈ `2. It is clear from the construction of f̂ together
with the vanishing variation of f that

(
idHX ⊗f̂ − ρ̃Y (f)

)
= lim
n→∞

(
idHX ⊗f̂ − ρ̃Y (f)

)
◦ ρ̃Y (hn ⊗ Pn)

with convergence in norm. Using this, we find for every g ∈ C0(X) the
equation

ρ̃X(g) ◦
(

idHX ⊗f̂ − ρ̃Y (f)
)
◦ τ(S) =

= lim
n→∞

(
idHX ⊗f̂ − ρ̃Y (f)

)
◦
(
(ρX×Y (g ⊗ hn) ◦ S)⊗ Pn

)
where the right hand side is a norm limit of compact operators, hence itself
compact.
If g ∈ C0(X) has compact support, then as in the proof of Lemma 4.2

we can choose g′ : X → [0, 1] of compact support which is equal to 1 on the
R-neighborhood of the support of g and one similarly obtains compactness
the operator

(
idHX ⊗f̂ − ρ̃Y (f)

)
◦ τ(S) ◦ ρ̃X(g)

=
(

idHX ⊗f̂ − ρ̃Y (f)
)
◦ ρ̃X(g′) ◦ τ(S) ◦ ρ̃X(g) .

We have thus shown that (idHX ⊗f̂ − ρ̃Y (f)) ◦ τ(S) is locally compact and
analogously we obtain local compactness of τ(S) ◦ (idHX ⊗f̂ − ρ̃Y (f)), too.
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It remains to show local compactness of the commutator

[
τ(S), f̂

]
= τ(S) ◦

∑
ẑ ∈ Ŷ

idHX ⊗1Zẑ ⊗ f(ẑ)−
∑
ŷ ∈ Ŷ

(
idHX ⊗1Zŷ ⊗ f(ŷ)

)
◦ τ(S)

=
∑

ŷ,ẑ ∈ Ŷ

(
(idHX ⊗1Zẑ ) ◦ S ◦ (idHX ⊗1Zŷ )

)
⊗ (f(ẑ)− f(ŷ))

=
∑

ŷ, ẑ ∈ Ŷ
d(ŷ, ẑ)6R+2r

(
(idHX ⊗1Zẑ ) ◦ S ◦ (idHX ⊗1Zŷ )

)
⊗ (f(ẑ)− f(ŷ))

where the sums converge a priori in the strong operator topology. Let us
first show that the last sum converges even in norm. Because of the vanish-
ing variation of f there is a finite subset L ⊂ Ŷ such that ‖f(ẑ)−f(ŷ)‖ < ε

whenever ŷ, ẑ ∈ Ŷ \ L satisfy d(ŷ, ẑ) 6 R + 2r. For arbitrary v ∈ H̃X the
vectors vŷ := (idHX ⊗1Zŷ ⊗ id`2)v for ŷ ∈ Ŷ are pairwise orthogonal and
v =

∑
ŷ∈Ŷ vŷ, hence ‖v‖2 =

∑
ŷ∈Ŷ ‖vŷ‖2. Then the calculation

∥∥∥∥∥∥∥∥∥
∑

ŷ, ẑ∈ Ŷ \L
d(ŷ,ẑ)6R+2r

(
(idHX ⊗1Zẑ ) ◦ S ◦ (idHX ⊗1Zŷ )

)
⊗ (f(ẑ)− f(ŷ)) v

∥∥∥∥∥∥∥∥∥
2

=
∑

ẑ ∈ Ŷ \L

∥∥∥∥∥∥∥∥∥
∑

ŷ ∈ Ŷ \L
d(ŷ, ẑ)6R+2r

(
(idHX ⊗1Zẑ ) ◦ S ◦ (idHX ⊗1Zŷ )

)
⊗ (f(ẑ)− f(ŷ)) v

∥∥∥∥∥∥∥∥∥
2

6
∑

ŷ∈ Ŷ \L

(KR+2r · ‖S‖ · ε · ‖vŷ‖)2

6 K2
R+2r · ‖S‖2 · ε2 · ‖v‖2

shows the claimed norm convergence.
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Now, given g ∈ C0(X) and choosing for each ẑ ∈ Ŷ a compactly sup-
ported function hẑ which is constantly 1 on Br(ẑ), we find that

ρ̃X(g) ◦
[
τ(S), f̂

]
=

=
∑

ŷ, ẑ ∈ Ŷ
d(ŷ, ẑ)6R+2r

(idHX ⊗1Zẑ ) ◦ ρX×Y (g ⊗ hẑ) ◦ S︸ ︷︷ ︸
∈K(HX×Y )

◦
(
idHX ⊗1Zŷ

)

⊗

f(ẑ)− f(ŷ)︸ ︷︷ ︸
∈K


is a norm convergent sum of compact operators, hence itself compact. Anal-
ogously, [τ(S), f̂ ] ◦ ρ̃X(g) is compact, and hence the commutator [τ(S), f̂ ]
is locally compact. �

Lemma 4.6. — The ∗-homomorphism Φ from (4.3) factors through the
tensor product C∗(ρX×Y )⊗max c

redY . In other words, it defines a ∗-homo-
morphism

(4.4) Ψ: C∗(ρX×Y )⊗max credY → E∗(ρ̃X)/C∗(ρ̃X).

Proof. — Due to exactness of the maximal tensor product, the claim is
equivalent to Φ vanishing on C∗(ρX×Y )⊗C0(Y,K) = C∗(ρX×Y )⊗C0(Y )⊗
K. Therefore, given operators S ∈ C∗(ρX×Y ) and f ⊗ T ∈ C0(Y ) ⊗ K we
have to show that τ(S) ◦ ρ̃Y (f ⊗ T ) ∈ C∗(ρ̃X).
The finite propagation part of this statement is proven exactly as the

one in the preceding lemma. For local compactness we use the formula

τ(S) ◦ ρ̃Y (f ⊗ T ) ◦ ρ̃X(g) = (S ◦ ρX×Y (g ⊗ f))⊗ T ∈ K(HX×Y )⊗K
(
`2
)

and a similar one for ρ̃X(g) ◦ τ(S) ◦ ρ̃Y (f ⊗T ), involving the same function
g′ as in the previous lemma. �

Definition 4.7. — The slant product between K-theory of the Roe
algebra and the K-theory of the reduced stable Higson corona is now defined
as (−1)p times the composition
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(4.5) Kp(C∗(X × Y ))⊗K1−q
(
credY

)
= Kp(C∗(ρX×Y ))⊗K1−q

(
credY

)
→ Kp+1−q

(
C∗(ρX×Y )⊗max credY

)
Ψ∗−−→ Kp+1−q (E∗(ρ̃X)/C∗(ρ̃X))
∂−→ Kp−q (C∗(ρ̃X))
= Kp−q(C∗X),

where the first arrow is the external product on K-theory, and the third
arrow the boundary operator in the corresponding long exact sequence.

4.1.2. Slant products for the localization algebras

To construct the analogous slant products for the localization algebras
we use the same approach as for the construction of the slant product on
the Roe algebra in the previous section.

We define E∗L(ρ̃X) as the C∗-subalgebra of Cb([1,∞),E∗(ρ̃X)) generated
by the bounded and uniformly continuous functions S : [1,∞) → E∗(ρ̃X)
such that the propagation of S(t) is finite for all t > 1 and tends to zero
as t → ∞. Similarly we define E∗L,0(ρ̃X) as the ideal in E∗L(ρ̃X) consisting
of all maps that vanish at 1. Note that C∗L(ρ̃X) is an ideal in E∗L(ρ̃X)
and C∗L,0(ρ̃X) is even an ideal in all of the three E∗L(ρ̃X), E∗L,0(ρ̃X) and of
course C∗L(ρ̃X).

Lemma 4.8. — The following analogues of Lemmas 4.3, 4.5, 4.6 hold
true:

(1) The images of the two isometric ∗-homomorphisms

τL : C∗L (ρX×Y )→ Cb

(
[1,∞),B(H̃X)

)
,

which is obained by applying the functor Cb([1,∞),−) to τ , and

ρ̃Y,L : M(C0(Y,K)) ρ̃Y−−→ B(H̃X) inclusion−−−−−−−−−−−−→
as constant functions

Cb

(
[1,∞),B(H̃X)

)
,

are contained in E∗L(ρ̃X).
(2) The image of τL commutes up to C∗L(ρ̃X) with the image of c̄redY

under ρ̃Y, L and the image of C∗L,0(ρX×Y ) under τL commutes up to
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C∗L,0(ρ̃X) with the image of c̄redY under ρ̃Y, L. Hence they induce
∗-homomorphisms

ΦL : C∗L(ρX ×Y )⊗max c̄redY → E∗L(ρ̃X)/C∗L(ρ̃X)

ΦL,0 : C∗L,0(ρX ×Y )⊗max c̄redY → E∗L(ρ̃X)/C∗L,0(ρ̃X)

given by S ⊗ f 7→ [τL(S) ◦ ρ̃Y,L(f)] and the image of ΦL,0 is even
contained in E∗L,0(ρ̃X)/C∗L,0(ρ̃X).

(3) The ∗-homomorphisms ΦL and ΦL, 0 factor through C∗L(ρX×Y )⊗max
credY and C∗L,0(ρX ×Y )⊗maxc

redY , respectively. That is, they define
∗-homomorphisms

ΨL : C∗L(ρX×Y )⊗max credY → E∗L(ρ̃X)/C∗L(ρ̃X) ,

ΨL,0 : C∗L,0(ρX×Y )⊗max credY → E∗L,0(ρ̃X)/C∗L,0(ρ̃X) .

Proof. — The estimates on the propagation in these lemmas rely on
Lemma 4.4 and on the fact that the propagation of the composition of
operators is at most the sum of the propagations of the summands, and so
we are still fine in our situation here. And due to our definition of C∗L(−)
we have to check local compactness in the proofs of the analogous versions
of Lemma 4.5, 4.6 only point-wise in time, i.e. for fixed t ∈ [1,∞), and
hence we can directly use the corresponding arguments from the proofs of
the Lemmas 4.5, 4.6. �

Definition 4.9. — The slant products

Kp(X × Y )⊗K1−q
(
credY

)
→ Kp−q(X)

Sp(X × Y )⊗K1−q
(
credY

)
→ Sp−q(X)

are defined as (−1)p times compositions analogous to that of Definition 4.7
but using the maps ΨL and ΨL,0, respectively, instead of Ψ.

4.2. Compatibility with the Higson–Roe sequence

In this section we prove the following compatibility of the slant products
with the Higson–Roe sequence.

Theorem 4.10. — The diagram

Sp(X × Y ) //

/θ

��

Kp(X × Y ) //

/θ

��

Kp(C∗(X × Y ))

/θ

��

∂ // Sp−1(X × Y )

/θ

��

Sp−q(X) // Kp−q(X) // Kp−q(C∗X) ∂ // Sp−1−q(X)
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commutes for every θ ∈ K1−q(credY ).

Proof. — Consider the diagram

Kp

(
C∗L,0(X × Y )

)
//

�θ
��

Kp (C∗L(X × Y )) //

�θ

��

Kp (C∗(X × Y ))

�θ

��

∂ // Kp−1
(
C∗L,0(X×Y )

)
�θ
��

Kp+1−q
(
C∗L,0(X×Y )
⊗maxc

redY
) //

(ΨL, 0)∗
��

Kp+1−q (C∗L(X×Y )
⊗maxc

redY
) //

(ΨL)∗
��

Kp+1−q (C∗(X×Y )
⊗maxc

redY
)

Ψ∗
��

∂ //
Kp−q(C∗L,0(X×Y )

⊗maxc
redY )

(ΨL,0)∗
��

Kp+1−q

(
E∗L,0X
C∗L,0X

)
//

∂

��

Kp+1−q

(
E∗LX
C∗LX

)
//

∂

��

Kp+1−q

(
E∗X
C∗X

)
∂ //

∂

��

Kp−q

(
E∗L,0X
C∗L,0X

)
∂

��

Kp−q
(
C∗L,0X

)
// Kp−q (C∗LX) // Kp−q (C∗X) ∂ // Kp−1−q

(
C∗L,0X

)
whose rows are the long exact sequences in K-theory induced by the obvious
short exact sequences of C∗-algebras and whose vertical compositions are
the slant products defined in the previous section up to the signs (−1)p for
the left three columns and (−1)p−1 for the right column.
Commutativity of the upper three squares is a well known property of

the external tensor product in K-theory, i.e. functoriality for the left two
squares and the sign convention of Remark 3.2 for the square to the right.
Commutativity of the three squares in the middle row and the left two

squares in the bottom row are due to naturality of the long exact sequence
in K-theory, considering that the three ∗-homomorphisms ΨL,0, ΨL and
Ψ together comprise a morphism of short exact sequences and consider-
ing that we have the following commutative diagram with exact rows and
collumns:

0
��

0
��

0
��

0 // C∗L,0(X) //

��

C∗L(X) //

��

C∗(X) //

��

0

0 // E∗L,0(X) //

��

E∗L(X) //

��

E∗(X) //

��

0

0 // E∗L,0(X)/C∗L,0(X) //

��

E∗L(X)/C∗L(X) //

��

E∗(X)/C∗(X) //

��

0

0 0 0

It is an abstract fact that the outer boundary maps associated to such a
grid of exact sequences commute up to multiplication with −1. This proves
commutativity of the bottom right square up to −1, and this extra sign is
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exactly the one needed to match the difference of the signs implemented in
the slant products. �

4.3. The slant product on K-homology

In this section we are going to compare the slant product for the lo-
calization algebra C∗L with the usual slant product between K-homology
and K-theory. There are several ways to define the latter, so let us specify
that the definition which we want to work with is the one obained from
E-theory.
Recall that E-theory is a bivariant K-theory for C∗-algebras, i.e. it has

properties analogous to those of KK-theory, and it even agrees with KK-
theory on nuclear and separable C∗-algebras. One recovers the K-homology
and K-theory groups of a locally compact Hausdorff space X as the special
cases K∗(X) ∼= E∗(C0(X),C) and K∗(X) ∼= E−∗(C,C0(X)). The reason
why we prefer E-theory over KK-theory is that the localization algebras
are closely related to asymptotic morphisms as in the definition of E-theory.
Even more, the isomorphism between the K-theory of the localization al-
gebra and K-homology which is given in [52, Corollary 4.2 and Proposi-
tion 4.3] (see Proposition 4.14 below) is in fact given as an isomorphism

∆: K∗ (C∗LX)
∼=−→ E∗ (C0(X),C) .

Our standard references for E-theory are the papers [33, 34]. Note that
they actually only consider the E-theory groups E0(−,−) in degree zero,
but the higher E-theory groups are obtained from them in the usual way,
i.e. by tensoring suitably with C0(Rn) (or with the Z2-graded Clifford al-
gebras C`n), just as it is done in KK-theory. Therefore, also the same sign
heuristics as in KK-theory apply.

There is just one subtle difference between E-theory and KK-theory
which one has to get right to make the sign heuristics work: In KK-theory,
the Kasparov product of x ∈ KKm(A,B) and y ∈ KKn(B,C) is usually
written as x ⊗B y ∈ KKm+n(A,C), whereas in E-theory, the composition
product of x ∈ Em(A,B) and y ∈ En(B,C) is usually written like a compo-
sition of functions as y ◦ x ∈ Em+n(A,B). Comparing these two notations
one realizes that the order of x and y is exchanged and hence it should
be expected that they agree only up to a sign (−1)mn. This is indeed the
case, and it is due to the fact that in taking the products one has to choose
identifications C0(Rm) ⊗ C0(Rn) ∼= C0(Rm+n), and these identifications
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have to be chosen differently for E-theory than for KK-theory to make the
sign heurisics work.
Maybe the best way to visualize this is the commutative diagram

KKm(A,B)⊗KKn(B,C) ⊗B //

(−1)mn·flip
��

KKm+n(A,C)

��

En(B,C)⊗ Em(A,B) ◦ // Em+n(A,C)

where the left vertical arrow not only maps KK-theory to E-theory and
exchanges the two factors, but also multiplies by (−1)mn.
Note that this difference sticks out in the special case m + n = 0,

A = C = C and B = C0(X): For x ∈ Kn(X) and y ∈ Kn(X) the E-
theoretic pairing is 〈x, y〉 := x ◦ y ∈ E0(C,C) ∼= Z and the KK-theoretic
pairing is 〈y, x〉 := y ⊗C0(X) x ∈ KK0(C,C) ∼= Z and these two pairings
differ by (−1)−n2 = (−1)n,

〈y, x〉 = (−1)n〈x, y〉 ,

and thanks to the choice of the order of x, y in these notations of the
pairing, the formula is again compatible with the sign heuristics. We will
always use the E-theoretic version of the pairing in this paper.

Definition 4.11. — The slant product

Kp(X × Y )⊗Kq(Y )→ Kp−q(X)
x⊗ θ 7→ x/θ

is defined as

Ep(C0(X)⊗ C0(Y ),C)⊗ E−q(C,C0(Y )) → Ep−q(C0(X),C)
x⊗ θ 7→ x ◦

(
idC0(X)�θ

)
.

Note that for Y a one-point space and p = q one recovers the pairing as a
special case of the slant product: 〈x, θ〉 = x/θ.

The two properties of the following lemma are in accordance with the
sign heuristics and their proofs are straightforward.

Lemma 4.12. — For x ∈ Km(X), y ∈ Kp(Y × Z) and θ ∈ Kq(Z) we
have

(x× y)/θ = x× (y/θ)
and for x ∈ Kp(X × Y × Z), η ∈ Kq(Y ) and θ ∈ Kr(Z) we have

x/(η × θ) = (−1)qr · (x/θ)/η .
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The remainder of this section is devoted to proving the following compar-
ision theorem between the E-theoretic slant product and the slant product
which we had defined for the localization algebra.

Theorem 4.13. — Let Y have continuously bounded geometry. Then
the slant product on the localization algebra from Definition 4.9 and the E-
theoretic slant product are related via the coarse co-assembly map µ∗ : K1−q
(credY )→ Kq(Y ) and the isomorphisms

∆: K∗ (C∗L(−))
∼=−→ K∗(−)

by the commutative diagram

Kp (C∗L(X × Y ))⊗K1−q
(
credY

) /
//

∆⊗µ∗

��

Kp−q (C∗LX)

∆ ∼=
��

Kp (X × Y )⊗Kq(Y )
/

// Kp−q(X)

Let us begin by recalling the isomorphisms ∆ between the K-theory of
the localization algebra and the K-homology groups.

Proposition 4.14 (compare [52, Corollary 4.2 and Proposition 4.3]).
Let X be a proper metric space and (HX , ρX) an X-module. Then

δ(ρX) : C∗L(ρX)⊗ C0(X)→ Cb ([1,∞),K(HX)) /C0 ([1,∞),K(HX))

(Tt)t∈[1,∞) ⊗ f 7→
[
(Tt ◦ ρX(f))t∈[1,∞)

]
defines an asymptotic morphism and hence a canonical element of the group
E0(C∗L(ρX) ⊗ C0(X),C). The isomorphism between the K-theory of the
localization algebra constructed with an ample X-module (HX , ρX) and
K-homology is given by the E-theoretic composition product

∆(ρX) : Km (C∗L(ρX))
∼=−→ Em (C0(X),C) ∼= Km(X)

x 7→ δ(ρX) ◦
(
x� idC0(X)

)
.

For later purposes we note that δ(ρX) obviously factorizes through the
quotient (C∗L(ρX)/C0([1,∞),C∗(ρX)))⊗ C0(X).
The first part of this proposition is an easy corollary of the following

well-known technical Lemma 4.15, which we will also need to exploit several
further times below.
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Lemma 4.15 (compare [52, Proposition 4.1.], [60, Lemma 6.1.2]).
There exists a constant C > 0 such that the following holds. Let (HX , ρX)

be an X-module and ϑ : X → C a bounded Borel function. Then for every
operator T ∈ B(K) the estimate

‖[T, ρX(ϑ)]‖ 6 C · ‖T‖ ·
∥∥Varprop(T ) ϑ

∥∥
holds.

Note that ϑ is uniformly continuous iff ‖Varr ϑ‖ → 0 as r → 0.

Lemma 4.16. — Let (Tt)t∈ [1,∞) ∈ C∗L(ρX×Y ) and f ∈ C0(Y,K). Then

(4.6) lim
t→∞

[τ(Tt), ρ̃Y (f)] = 0.

Proof. — Since C0(Y,K) = C0(Y )⊗K, we assume by an approximation
argument without loss of generality that f = f̃ ⊗ K, where f̃ ∈ C0(Y )
and K ∈ K. Moreover, we can assume that limt→∞ prop(Tt) = 0. Then
Lemma 4.15 implies that there exists C > 0 such that∥∥∥[Tt, idHX ⊗ρY (f̃)

]∥∥∥ 6 C‖T‖ ∥∥∥Varprop(Tt) 1⊗ f̃
∥∥∥ .

We have ‖Varr 1⊗ f̃‖ → 0 asr → 0 because 1⊗ f̃ : X×Y → C is uniformly
continuous. Hence [Tt, idHX ⊗ρY (f̃)]→ 0 as t→∞. We conclude that

lim
t→∞

[τ(Tt), ρ̃Y (f)] = lim
t→∞

[
Tt ⊗ id`2 , idHX ⊗ρY (f̃)⊗K

]
= lim
t→∞

[
Tt, idHX ⊗ρY (f̃)

]
⊗K = 0. �

Lemma 4.15 only applies to scalar-valued functions. Therefore the tensor
product decomposition C0(Y,K) = C0(Y )⊗ K was a crucial aspect in the
argument above. In particular, this argument does not prove (4.6) for func-
tions in the stable Higson compactification, although it would work for the
usual (unstable) Higson compactification. However, under the assumption
of continuously bounded geometry, a more difficult argument yields (4.6)
also for functions in the stable Higson compactification, which is the con-
tent of the following proposition.

Proposition 4.17. — Suppose that Y has continuously bounded ge-
ometry. Let (Tt)t∈ [1,∞) ∈ C∗L(ρX×Y ) and f : Y → B(`2) bounded and
uniformly continuous. Then

(4.7) lim
t→∞

[τ(Tt), ρ̃Y (f)] = 0.
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Proof. — The argument is similar as in the proof of [62, Lemma 5.6] and
Lemma 4.5 above. First, we assume as usual that limt→∞ prop(Tt) = 0.
Now let ε > 0. Choose δ > 0 such that ‖f(y) − f(y′)‖ < ε if d(y, y′) < δ.
Let r := δ/4. Let Ŷ r ⊆ Y be a subset witnessing our conditions for con-
tinuously bounded geometry. After perhaps making δ = 4r smaller, we can
ensure that Kr, 4r 6 K4 + 1 <∞. By thinning out the cover (Br(ŷ))ŷ ∈ Ŷ r ,
we obtain a pairwise disjoint cover (Zŷ)ŷ∈ Ŷ r consisting of Borel sets such
that Zŷ ⊆ Br(ŷ) for all ŷ ∈ Ŷ r. The representation ρY : C0(Y ) → B(HY )
extends uniquely to the bounded Borel functions on Y subject to the con-
dition that pointwise converging uniformly bounded sequences of functions
are taken to strongly converging sequences of operators. For a Borel sub-
set Z ⊆ Y , let 1Z ∈ B(HY ) denote the operator corresponding to the
characteristic function of Z. Now consider the strongly convergent series
f̂ :=

∑
ŷ∈ Ŷ r 1Zŷ ⊗ f(ŷ) ∈ B(HY ⊗ `2). Then ‖ρ̄(f)− f̂‖ 6 ε. We can write

the commutator of τ(Tt) = Tt ⊗ id`2 and idHX ⊗f̂ as follows.

(4.8)
[
Tt ⊗ id`2 , idHX ⊗f̂

]
=

=
∑

ŷ, ẑ ∈ Ŷ r

(
(idHX ⊗1Zẑ )Tt

(
idHX ⊗1Zŷ

))
⊗ (f(ŷ)− f(ẑ)

=
∑

ŷ, ẑ ∈ Ŷ r,
d(ŷ, ẑ)6 prop(Tt)+2r

(
(idHX ⊗1Zẑ )Tt

(
idHX ⊗1Zŷ

))
⊗ (f(ŷ)− f(ẑ))

Let v ∈ HX ⊗ HY ⊗ `2 be an arbitrary vector. In the following we will
estimate the norm of the vector [Tt⊗id`2 , idHX ⊗f̂ ]v for large t. For each ŷ ∈
Ŷ r, let vŷ := (idHX ⊗1Zŷ⊗id`2)v. Then the family (vŷ)ŷ consists of pairwise
orthogonal vectors as (idHX ⊗1Zŷ⊗id`2)ŷ is a family of pairwise orthogonal
projections. The sum

∑
ŷ vŷ converges to v because

∑
ŷ idHX ⊗1Zŷ ⊗ id`2

strongly converges to the identity. Let t0 > 1 such that prop(Tt) < δ/2 for
all t > t0. In this case, prop(Tt) + 2r < δ/2 + δ/2 = δ. Recall that δ is
chosen to ensure ‖f(ŷ) − f(ẑ)‖ < ε whenever d(ŷ, ẑ) < δ. We now obtain
the following estimate for all t > t0.
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∥∥∥[Tt ⊗ id`2 , idHX ⊗f̂
]
v
∥∥∥2

=

=
(4.8)

∥∥∥∥∥∥∥∥∥
∑

ŷ, ẑ ∈ Ŷ r,
d(ŷ, ẑ)6 prop(Tt)+2r

((idHX ⊗1Zẑ )Tt ⊗ (f(ŷ)− f(ẑ))) vŷ

∥∥∥∥∥∥∥∥∥
2

=
∑
ẑ ∈ Ŷ r

∥∥∥∥∥∥∥∥∥
∑

ŷ ∈ Ŷ r,
d(ŷ, ẑ)6prop(Tt)+2r

((idHX ⊗1Zẑ )Tt ⊗ (f(ŷ)− f(ẑ))) vŷ

∥∥∥∥∥∥∥∥∥
2

6
∑
ẑ ∈ Ŷ r

Kr, δ

∑
ŷ∈ Ŷ r,
d(ŷ, ẑ)<δ

‖((idHX ⊗1Zẑ )Tt ⊗ (f(ŷ)− f(ẑ))) vŷ‖2

6
∑
ẑ ∈ Ŷ r

Kr, δ

∑
ŷ ∈ Ŷ r,
d(ŷ, ẑ)<δ

‖Tt‖2 ‖f(ŷ)− f(ẑ)‖2︸ ︷︷ ︸
<ε2

‖vŷ‖2

6 ε2Kr, δ‖Tt‖2
∑

ẑ, ŷ∈ Ŷ r,
d(ẑ, ŷ)<δ

‖vŷ‖2

︸ ︷︷ ︸
6Kr, δ‖v‖2

6 ε2K2
r, δ‖T‖2‖v‖2.

In the first and the last inequality above we use that the number of elements
in the set Ŷ r ∩Bδ(ẑ) is bounded by Kr, δ by the definition of continuously
bounded geometry. We obtain∥∥∥[Tt ⊗ id`2 , idHX ⊗f̂

]∥∥∥ 6 εKr,δ‖T‖ = εKr, 4r‖T‖ 6 ε(K4 + 1)‖T‖.

Finally, we conclude that for all t > t0 the estimate

‖[τ(Tt), ρ̃Y (f)]‖ 6 ε(K4 + 1)‖T‖+ 2‖T‖
∥∥∥ρ̄(f)− f̂

∥∥∥︸ ︷︷ ︸
6ε

6 ε‖T‖(K4 + 3)

holds. As ε > 0 was arbitrary, this proves the claim. �

Corollary 4.18. — Suppose that Y has continuously bounded geom-
etry. Let T ∈ C∗L(ρX×Y ) and f ∈ c̄redY . Then

(4.9) t 7→ [τ(Tt), ρ̃Y (f)] ∈ C0 ([1,∞),C∗(ρ̃X)) .
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Proof. — Combine Proposition 4.17 and Lemma 4.5. �

The first step towards the proof of Theorem 4.13 is to reformulate the
E-theoretic slant product in terms of the localization algebra as follows.
Consider the map

(4.10)
ΥL : C∗L(ρX×Y )⊗ C0(Y,K) → C∗L(ρ̃X)/C0([1, ∞),C∗ (ρ̃X)) ,

(Tt)t∈ [1,∞) ⊗ f 7→
[
(τ(Tt) ◦ ρ̃Y (f))t∈ [1,∞)

]
.

One verifies readily that the expression (τ(Tt)◦ ρ̃Y (f))t∈ [1,∞) defines an
element of the localization algebra C∗L(ρ̃X). Lemma 4.16 implies by the by
now familiar argument that ΥL is a well-defined ∗-homomorphism.

Lemma 4.19. — Under the isomorphism ∆(ρX×Y ) and ∆(ρ̃X) from
Proposition 4.14, the E-theoretic slant product of Definition 4.11 agrees
with the composition

Kp (C∗L(X × Y ))⊗Kq(Y ) ∼= Kp (C∗L(ρX×Y ))⊗K−q(C0(Y,K))
�−→ Kp−q (C∗L(ρX×Y )⊗ C0(Y,K))
(ΥL)∗−−−−→ Kp−q (C∗L(ρ̃X)/C0([1,∞),C∗(ρ̃X)))
∼=−→ Kp−q (C∗L(ρ̃X)) ∼= Kp−q (C∗L(X)) ,

where the third map is the inverse of the isomorphism induced on K-theory
by the canonical projection C∗L(ρ̃X)→ C∗L(ρ̃X)/C0([1,∞),C∗(ρ̃X)).

Proof. — First of all we notice that the composition in the statement
obviously gives the same map as its non-stabilized counterpart, i.e. the
analogous composition defined using the ∗-homomorphism

Υ′L : C∗L(ρX×Y )⊗ C0(Y ) → C∗L(ρ′X)/C0 ([1,∞),C∗(ρ′X)) ,

(Tt)t∈[1,∞) ⊗ f 7→
[
(Tt ◦ (ρ′Y (f)))t∈ [1,∞)

]
where ρ′X := ρX ⊗ idHY and ρ′Y := idHX ⊗ρY (f) denote the canonical
representations of C0(X) and C0(Y ) on HX×Y .
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Now the claim is equivalent to commutativity of the diagram

Kp (C∗L(ρX×Y ))⊗Kq(Y ) � //

∆(ρX×Y )⊗ id

��

Kp−q (C∗L(ρX×Y )⊗ C0(Y ))

(Υ′L)∗
��

Ep(C0(X × Y ),C)⊗ E−q(C,C0(Y ))

/

��

Kp−q

(
C∗L(ρ′X)

C0([1,∞),C∗(ρ′
X

))

)
∆(ρ′X)
∼=

tt

Ep−q(C0(X),C) Kp−q (C∗L(ρ′X))
∆(ρ′X)
∼=

oo

∼=

OO

in which the lower right triangle commutes tautologically.
The vertical left arrows take x⊗ θ to

δ(ρX×Y ) ◦
(
x� idC0(X×Y )

)
◦
(
idC0(X)�θ

)
= δ(ρX×Y ) ◦

(
x� idC0(X)�θ

)
whereas the composition of the right three arrows of the pentagon map
it to

δ(ρ′X) ◦
(
((Υ′L)∗ ◦ (x� θ))� idC0(X)

)
= δ(ρ′X) ◦

(
(Υ′L)∗ � idC0(X)

)
◦
(
x� θ � idC0(X)

)
.

Hence it suffices to show that the two asymptotic morphisms δ(ρX×Y )
and δ(ρ′X) ◦ (Υ′L ⊗ idC0(X)) agree up to precomposing with the homomor-
phism exchanging the two tensor factors C0(X) and C0(Y ) in the domain.
But this holds due to the equation

Tt ◦ ρX×Y (f ⊗ g) = Tt ◦ ρ′Y (g) ◦ ρ′X(f) . �

Proof of Theorem 4.13. — By combining Lemma 4.8 and Corollary 4.18
we get a ∗-homomorphism

ῩL : C∗L(ρX×Y )⊗max c̄redY → E∗L(ρ̃X)/C0 ([1,∞),C∗(ρ̃X)) ,

(Tt)t∈[1,∞) ⊗ f 7→
[
(τ(Tt) ◦ ρ̃Y (f))t∈ [1,∞)

]
.
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Its restriction to C∗L(ρX×Y )⊗max C0(Y,K) is ΥL, see (4.10). Therefore we
have the commutative diagram

0 //
C∗L(ρX×Y )
⊗C0(Y,K)

//

ΥL
��

C∗L(ρX×Y )
⊗maxc̄

red(Y )
ῩL��

//
C∗L(ρX×Y )
⊗maxc

red(Y )
ΨL
��

// 0

0 // C∗L(ρ̃X)
C0([1,∞),C∗(ρ̃X))

// E∗L(ρ̃X)
C0([1,∞),C∗(ρ̃X))

// E
∗
L(ρ̃X)

C∗L(ρ̃X)
// 0

0 // C∗L(ρ̃X) //

OOOO

E∗L(ρ̃X) //

OOOO

E∗L(ρ̃X)/C∗L(ρ̃X) // 0,

where the arrows directed upwards are the canonical projections. These ar-
rows induce isomorphisms on K-theory because C0([1,∞),C∗(ρ̃X)) is con-
tractible. It induces a diagram in K-theory

Kp(C∗L(ρX×Y ))⊗K1−q
(
cred(Y )

) id⊗µ∗
//

�
��

Kp (C∗L(ρX×Y ))⊗K−q(C0(Y,K))

�

��

Kp+1−q
(
C∗L(ρX×Y )⊗max cred(Y )

) ∂ //

(ΨL)∗
��

Kp−q (C∗L(ρX ×Y )⊗ C0(Y,K))

(ΥL)∗
��

Kp+1−q (E∗L(ρ̃X)/C∗L(ρ̃X)) ∂ // Kp−q (C∗L(ρ̃X))

in which the right hand vertical composition is the E-theoretic slant prod-
uct up to the isomorphisms ∆ by Lemma 4.19 and the composition of
the left vertical arrows with the bottom horizontal arrow is (−1)p times
the slant product from Definition 4.9. The lower square of the diagram
commutes and the upper square commutes only up to a sign (−1)p (see
Remark 3.2). �

4.4. Composing slant with external products

In analogy to the first part of Lemma 4.12 we shall now prove the fol-
lowing theorem, which says that the external and slant products which we
have constructed are compatible in the sense that (x× z)/θ = x× (z/θ). It
would also be nice to have an analogue of the second part of Lemma 4.12,
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but this would require the construction of a secondary(16) external product
of the form

K1−q
(
credY

)
⊗K1−r

(
credZ

)
→ K1−q−r

(
cred(Y × Z)

)
and it is completely unclear how such an external product could be con-
structed.

Theorem 4.20. — The compositions

Km(X) ×z
// Km+p(X × Y × Z)

/θ
// Km+p−q(X × Y )

Sm(X) ×z
// Sm+p(X × Y × Z)

/θ
// Sm+p−q(X × Y )

Km(C∗X) ×z
// Km+p(C∗(X × Y × Z))

/θ
// Km+p−q(C∗(X × Y ))

are equal to the external product with the apropriate slant product z/θ for
all m, p, q ∈ Z and all z, θ as follows:

• In the first two compositions z ∈ Kp(Y × Z) and in the third one
z ∈ Kp(C∗(Y × Z)).

• In the first composition either θ ∈ Kq(Z) or θ ∈ K1−q(credZ) and
in the other two θ ∈ K1−q(credZ).

Proof. — For the first of these three compositions and θ ∈ Kq(Z) this is
exactly the first part of Lemma 4.12. So it remains to show the cases where
θ ∈ K1−q(credZ) for the slant products we have constructed in Section 4.1.
We shall only consider the second composition, because everything else
goes through completely analogously.
Let ρX , ρY , ρZ be representations of C0(X), C0(Y ), C0(Z) on HX , HY ,

HZ , respectively. Denote by ρY×Z , ρX×Y×Z the tensor product represen-
tations of C0(Y × Z), C0(X × Y × Z) on HY ⊗ HZ , HX ⊗ HY ⊗ HZ ,
respectively. Furthermore, we define representations ρ̃X×Y of C0(X × Y )
and ρ̃Z ofM(C0(Z,K)) on HX ⊗HY ⊗HZ ⊗ `2 in complete analogy to the
definition of ρ̃X and ρ̃Y previously in this section and similarily we define
representations ρ̂Y of C0(Y ) and ρ̂Z ofM(C0(Z,K)) on HY ⊗HZ ⊗ `2.
Note that taking tensor products of operators pointwise in time gives

rise to ∗-homomorphisms

C∗L,0(ρX)⊗max E∗L(ρ̂Y )→ E∗L,0(ρ̃X×Y )
C∗L,0(ρX)⊗max C∗L(ρ̂Y )→ C∗L,0(ρ̃X×Y )

(16)The external product has to be a secondary one, i.e. one with a degree shift, to make
the degrees work out: if x, η, θ have degrees p, 1 − q, 1 − r, respectively, then (x/θ)/η
has degree p − q − r, and in order to let x/(θ × η) have the same degree, the external
product θ × η must have degree 1− q − r and not (1− q) + (1− r).
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with the second one being the restriction of the first one, and hence also a
quotient ∗-homomorphism

C∗L,0(ρX)⊗max
E∗L(ρ̂Y )
C∗L(ρ̂Y ) →

E∗L,0(ρ̃X×Y )
C∗L,0(ρ̃X×Y )

and these fit into the following diagram.

Km

(
C∗L,0(ρX)

)
⊗

Kp (C∗L(ρY×Z))
⊗K1−q

(
credZ

) �⊗id
//

id⊗�
��

Km+p

(
C∗L,0 (ρX)

⊗maxC∗L (ρY×Z)

)
⊗K1−q

(
credZ

) //

�
��

Km+p
(
C∗L,0(ρX×Y×Z)

)
⊗K1−q

(
credZ

)
�

��Km

(
C∗L,0(ρX)

)
⊗

Kp+1−q

(
C∗L (ρY×Z)
⊗maxc

redZ

) � //

id⊗(ΨL)∗
��

Km+p+1−q

 C∗L,0(ρX)
⊗maxC∗L (ρY×Z)
⊗maxc

redZ

 //

(id⊗ΨL)∗
��

Km+p+1−q

(
C∗L,0 (ρX×Y×Z)
⊗maxc

redZ

)
(ΨL,0)∗

��Km

(
C∗L,0(ρX)

)
⊗

Kp+1−q

(
E∗L(ρ̂Y )
C∗L(ρ̂Y )

) � //

id⊗∂
��

Km+p+1−q

(
C∗L,0 (ρX)
⊗max

E∗L(ρ̂Y )
C∗L(ρ̂Y )

)
//

∂

��

Km+p+1−q

(
E∗L,0(ρ̃X×Y )
C∗L,0(ρ̃X×Y )

)
∂

��Km(C∗L,0 (ρX))⊗
Kp−q(C∗L(ρ̂Y ))

� // Km+p−q

(
C∗L,0(ρX)
⊗C∗L(ρ̂Y )

)
// Km+p−q

(
C∗L,0(ρ̃X×Y )

)
All squares in this diagram commute, except the lower left one, which only
commutes up to a sign (−1)m due to our sign convention in Remark 3.2.
The top and bottom rows are the external products for the localization

algebras. The left column is (−1)p times the slant product while the right
column is (−1)m+p times the slant product. The signs match up perfectly,
thus proving the claim. �

Spezializing to the case where Y is a one-point space will give us Prop-
erty 1.13(ii) as a corollary, but first we have to introduce the pairings.

Definition 4.21. — The pairing

〈−,−〉 : Kp(C∗Y )⊗K1−q
(
credY

)
→ Kp−q (C∗{∗}) ∼=

{
Z p− q even
0 p− q odd

is defined as the special case of the slant products for the space X,Y where
X = {∗} is a single point. The same construction applied to the localization
algebra instead of the Roe algebra also yields a pairing

〈−,−〉 : Kp(Y )⊗K1−q
(
credY

)
→ Kp−q({∗}) ∼=

{
Z p− q even
0 p− q odd .
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Remark 4.22.
(1) It is easy to see that the first of these pairings agrees with the one

defined in [27, Section 6], but possibly only up to a sign (−1)p.
This is because Emerson and Meyer have not specified in detail
which sign conventions they use (cf. the remarks about signs at the
beginning of Section 4.3).

(2) Compatibility of the slant products with the assembly maps µY
and µ{∗} of Y and {∗} (see Theorem 4.10) shows that the second
pairing is a special case of the first one: We have 〈z, θ〉 = 〈µY (z), θ〉
for all z ∈ Kp(Y ) and θ ∈ K1−q(credY ).

(3) Recall from the beginning of Section 4.3 that the pairing of K-
homology with K-theory is also only a special case of the slant
product between them. Therefore, if Y has continuously bounded
geometry, then Theorem 4.13 also implies 〈z, θ〉 = 〈z, µ∗Y (θ)〉 for all
z ∈ Kp(Y ) and θ ∈ K1−q(credY ).

(4) Note that in the case X = {∗}, the K-theory of C∗(ρX) is iso-
morphic to the K-theory of C for any non-degenerate faithful rep-
resentation, because C∗(ρX) ∼= K(HX) with HX 6= 0. Hence we
don’t have to choose an ample representation for the construction
of the pairings, but we may take the non-ample representation of
C on HX = C by multiplication instead, simplifying the formulas
significantly.

Corollary 4.23. — The compositions

Km(X) ×z
// Km+p(X × Y )

/θ
// Km+p−q(X)

Sm(X) ×z
// Sm+p(X × Y )

/θ
// Sm+p−q(X)

Km(C∗X) ×z
// Km+p(C∗(X × Y ))

/θ
// Km+p−q(C∗X)

are equal to the multiplication with 〈z, θ〉, which is either an integer, if p−q
is even, or zero by construction, if p− q odd, for all m, p, q ∈ Z and all z, θ
as follows:

• In the first two compositions z ∈ Kp(Y ) and in the third one z ∈
Kp(C∗Y ).

• In the first composition either θ ∈ Kq(Y ) or θ ∈ K1−q(credY ) and
in the other two θ ∈ K1−q(credY ).

Now we also get Property 1.13(iii) as a corollary.

Corollary 4.24. — Denote by β ∈ K1−n(credRn) the Bott element of
the Euclidean space, i.e. µ∗(β) ∈ Kn(Rn) ∼= Z is the generator which pairs
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to one with the fundamental class [ /DRn ] ∈ Kn(Rn) of Euclidean space:
〈[ /DRn ], β〉 = 1. Then the slant products

Kp+n(X × Rn) −/β=−/µ∗(β)−−−−−−−−−→ Kp(X)

Sp+n(X × Rn) −/β−−−−−−−−−→ Sp(X)

Kp+n (C∗(X × Rn)) −/β−−−−−−−−−→ Kp (C∗X)

coincide with the n-fold Mayer–Vietories boundary maps.

Proof. — It was shown in [66, Theorem 5.5] that the external products

Kp(X)
×[ /DRn ]
−−−−−→ Kp+n (X × Rn) Sp(X) ,

×[ /DRn ]
−−−−−→ Sp+n (X × Rn) ,

which are also called suspension maps, are isomorphisms and that their
inverses are given by the n-fold Mayer–Vietoris boundary. Essentially the
same proof also shows that the external product

Kp(C∗X)
× Ind[ /DRn ]
−−−−−−−→ Kp+n (C∗(X × Rn))

is also an isomorphism whose inverse is given by the n-fold coarse Mayer–
Vietoris boundary map. Hence, it suffices to show that the slant products
with β are also inverses to these suspension maps.
By the preceding corollary, the composition of the external product fol-

lowed by the slant product is in each of these three cases equal to multi-
plication by 〈[ /DRn ], β〉 = 1. We conclude that the slant product by β is
the left inverse to the suspension map. Because the suspension map is an
isomorphism, this suffices to conclude the claim. �

4.5. Naturality of the slant products

Naturality of our slant products is of course a property that has to be
expected. We prove it in this section and use it directly in the next to
coarsify all of our previous statements.
Throughout this section letX,X ′, Y, Y ′ denote proper metric spaces with

Y and Y ′ having bounded geometry. We consider the Hilbert spaces HX ,
HY , HX×Y , H̃X and the ample representations ρX , ρY , ρX×Y , ρ̃X , ρ̄Y , ρ̃Y
as before and let the Hilbert spaces HX′ , HY ′ , HX′×Y ′ , H̃X′ and the ample
representations ρX′ , ρY ′ , ρX′×Y ′ , ρ̃X′ , ρ̄Y ′ , ρ̃Y ′ be chosen and constructed
in complete analogy.
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Definition 4.25 ([40, Definition 6.3.9]). — Let α : X → X ′ be a coarse
map. An isometry V : HX → HX′ covers a coarse map α : X → X ′, if

{(x′, α(x)) ∈ X ′ ×X ′|(x′, x) ∈ supp(V )}

is an entourage of X ′.

Proposition 4.26 ([40, Section 6.3]). — Any coarse map α : X → X ′

is covered by an isometry V : HX → HX′ . Conjugation by V yields a
∗-homomorphism

AdV : C∗(ρX)→ C∗(ρX′) , T 7→ V TV ∗

and the induced map in K-theory (AdV )∗ : K∗(C∗X) → K∗(C∗X ′) is in-
dependent of the choice of covering isometry V and depends functorial on
the coarse map α. For this reason we will denote it by α∗.

Proposition 4.27 (see [27]). — The reduced stable Higson corona—
and hence also its K-theory—is contravariantly functorial under coarse
maps. If β : Y → Y ′ is a coarse map and an element of [f ] ∈ credY ′ is
represented by a function f ∈ c̄redY ′, then the class β∗[f ] ∈ credY is repre-
sented by any function g ∈ c̄redY for which the (possibly non-continuous)
function g − f ◦ β converges to zero at infinity.

Theorem 4.28. — The slant product for the Roe algebra is natural
under pairs of coarse maps α : X → X ′ and β : Y → Y ′ in the sense that

α∗(x/β∗(θ)) = (α× β)∗(x)/θ

for all x ∈ K∗(C∗(X × Y )) and θ ∈ K∗(credY ′).

Proof. — Assume that V : HX → HX′ is an isometry covering α and
W : HY → HY ′ is an isometry covering β. Then V ⊗W : HX×Y → HX′×Y ′

covers α × β and V ⊗ W ⊗ id`2 : H̃X → H̃X′ covers α. The latter is in
complete analogy to Lemma 4.4.
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We have to show commutativity of the diagram

Kp (C∗(ρX×Y ))⊗K1−q
(
credY ′

)
id ⊗ β∗

ww

(AdV ⊗W )∗⊗ id

((

��

Kp (C∗(ρX×Y ))⊗K1−q
(
credY

)

��

Kp (C∗(ρX′×Y ′)) ⊗K1−q
(
credY ′

)

��

Kp+1−q
(
C∗(ρX×Y )⊗ credY ′

)
(id ⊗ β∗)∗

ww

(AdV⊗W ⊗ id)∗

((

Kp+1−q
(
C∗(ρX×Y )⊗ credY

)
Ψ∗
��

Kp+1−q
(
C∗(ρX′×Y ′)⊗ credY ′

)
Ψ′∗
��

Kp+1−q (E∗(ρ̃X)/C∗(ρ̃X))
(AdV ⊗W ⊗ id)∗

//

��

Kp+1−q (E∗(ρ̃X′)/C∗(ρ̃X′))

��

Kp−q (C∗(ρ̃X))
(AdV⊗W⊗id)∗

// Kp−q(C∗ (ρ̃X′))

where Ψ′ is defined in complete analogy to Ψ and we have used that the
conjugation by V ⊗W ⊗ id clearly also maps E∗(ρ̃X) to E∗(ρ̃X′).
The three quadrilaterals clearly commute. It remains to investigate the

pentagon and here it is sufficient to show commutativity of the underlying
pentagon of ∗-homomorphisms:

(4.11) C∗(ρX×Y )⊗ credY ′

id⊗β∗

ww

AdV⊗W ⊗ id

''

C∗(ρX×Y )⊗ credY

Ψ
��

C∗(ρX′×Y ′)⊗ credY ′

Ψ′

��

E∗(ρ̃X)/C∗(ρ̃X)
AdV⊗W⊗id

// E∗(ρ̃X′)/C∗(ρ̃X′)

Given S ∈ C∗(ρX×Y ) and f ∈ c̄redY ′, the left path along the pentagon
maps S ⊗ [f ] ∈ C∗(ρX×Y ) ⊗ credY ′ to the element of E∗(ρ̃X′)/C∗(ρ̃X′)
represented by the operator

T1 := (V ⊗W ⊗ id) ◦ (S ⊗ id) ◦
(
V ∗ ⊗ (ρ̄Y (g) ◦ (W ∗ ⊗ id))

)
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with g ∈ c̄redY as in Proposition 4.27. The right path, on the other hand,
maps it to the element represented by

T2 := (V ⊗W ⊗ id) ◦ (S ⊗ id) ◦
(
V ∗ ⊗ ((W ∗ ⊗ id) ◦ ρ̄Y (f))

)
.

It has to be shown that the difference of these two operators lies in C∗(ρ̃X′).
We already know that choosing different representatives f and g only

changes these T1 and T2 by elements of C∗(ρ̃X′). Hence it suffices to show
that the difference T1 − T2 can be made arbitrarily small by choosing suit-
able representatives f and g. This amounts to showing that the difference

(W ⊗ id) ◦ ρ̄Y (g)− ρ̄Y ′(f) ◦ (W ⊗ id)

can be made arbitrarily small, which will be done in the remaining part of
the proof.
Exploiting the bounded geometry of Y we choose Ŷ ⊂ Y , r > 0 and

KR > 0 for each R > 0 exactly as in 4.1.a, that is, such that

Y =
⋃
ŷ ∈ Ŷ

Br(ŷ)

and for each R > 0 the number of elements #(Ŷ ∩ BR(y)) is bounded by
KR uniformly in y. Furthermore, we choose Ŷ ′ ⊂ Y ′ and r′ > 0 such that
the family of balls {Br′(ŷ′)}ŷ′ ∈ Ŷ ′ is a locally finite open cover of Y ′. This
can be done due to the bounded geometry of Y ′, although we don’t need
the full strength of bounded geometry of Y ′ at this point.

Similar to what we have done in the proof of 4.5 we choose decomposi-
tions of Y and Y ′ into families {Zŷ}ŷ ∈ Ŷ and {Z ′ŷ′}ŷ′ ∈ Ŷ ′ of pairwise disjoint
Borel subsets which are subordinate to the open covers {Br(ŷ)}ŷ∈ Ŷ and
{Br′(ŷ′)}ŷ′ ∈ Ŷ ′ . Given Borel subsets Z ⊂ Y or Z ′ ⊂ Y ′, we again denote
by 1Z ∈ B(HY ) and 1Z′ ∈ B(HY ′) the projections corresponding to the
characteristic functions of Z and Z ′ under the canonical extensions of ρY
and ρY ′ to Borel functions, respectively.

Let s1 > 0 be such that d(β(y), β(z)) 6 s1 for all y, z ∈ Y with d(y, z) 6 r
and define the following number, which is finite, because W covers β:

s2 := sup {d(y′, β(y))|(y′, y) ∈ supp(W )} .

If ŷ ∈ Ŷ and ŷ′ ∈ Ŷ ′ are such that d(ŷ′, β(ŷ)) is bigger than

s := s1 + s2 + r′ ,

then the the distance between Z ′ŷ′ and β(Zŷ) is bigger than s2 and therefore
1Z′

ŷ′
◦W ◦ 1Zŷ = 0.

Finally, let ε > 0. We may assume that our element of credY ′ is repre-
sented by a function f ∈ c̄redY ′ whose s-variation Vars(f) is bounded by ε
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everywhere. A priori this is only the case outside of a compact subset, but
multiplying our function with a slowly varying function X → [0, 1] which
is 0 on a large compact set and 1 outside of an even larger compact yields
a new representative with the demanded property. We can furthermore use
a partition of unity {ϕŷ}ŷ∈ Ŷ subordinate to the open cover {Br(ŷ)}ŷ∈ Ŷ
to define the function

g :=
∑
ŷ∈ Ŷ

f(β(ŷ))ϕŷ ∈ c̄redY .

Clearly, g − f ◦ β converges to zero at infinity and g is therefore a valid
representative of β∗[f ].

Now define the strongly convergent series

f̂ :=
∑
ŷ′ ∈ Ŷ ′

1Z′
ŷ′
⊗ f(ŷ′) ∈ B

(
HY ′ ⊗ `2

)
,

ĝ :=
∑
ŷ∈ Ŷ

1Zŷ ⊗ f(β(ŷ)) ∈ B
(
HY ⊗ `2

)
.

It is clear from the the bound on the s-variation of f that ‖f̂ − ρ̄Y ′(f)‖ 6 ε
and ‖ĝ − ρ̄Y (g)‖ 6 ε. Our goal is to estimate the norm of the operator

T̂ := (W ⊗ id) ◦ ĝ − f̂ ◦ (W ⊗ id)

=
∑
ŷ∈ Ŷ
ŷ′ ∈ Ŷ ′

(
1Z′

ŷ′
◦W ◦ 1Zŷ

)
⊗ (f(β(ŷ))− f(ŷ′))

=
∑

ŷ∈ Ŷ , ŷ′ ∈ Ŷ ′
d(ŷ′, β(ŷ))6 s

(
1Z′

ŷ′
◦W ◦ 1Zŷ

)
⊗ (f(β(ŷ))− f(ŷ′)) .

Again as in the proof of Lemma 4.5 we decompose an arbitrary v ∈ H̃X

into the vectors vŷ := (idHX ⊗1Zŷ ⊗ id`2)v with ŷ ∈ Ŷ and calculate

∥∥∥T̂ v∥∥∥2
=
∑
ŷ′ ∈ Ŷ ′

∥∥∥∥∥∥∥∥∥
∑
ŷ∈ Ŷ

d(ŷ′, β(ŷ))6 s

(
1Z′

ŷ′
◦W ◦ 1Zŷ

)
⊗ (f(β(ŷ))− f(ŷ′))v

∥∥∥∥∥∥∥∥∥
2

6
∑
ŷ′ ∈ Ŷ ′

(Ks · ε · ‖vŷ‖)2 = K2
s · ε2 · ‖v‖2 .
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Hence we have the norm estimate

‖(W ⊗ id) ◦ ρ̄Y (g)− ρ̄Y ′(f) ◦ (W ⊗ id)‖ 6 2ε+ ‖T̂‖ 6 (2 +Ks)ε ,

proving the claim. �

The proof of Theorem 4.28 can easily be adapted to yield analogous
statements for the localization algebras. In order to do so, we first have to
recall the functoriality of their K-theories.

Definition 4.29. — Suppose that α : X → X ′ is a uniformly continu-
ous coarse map between proper metric spaces and ρX : C0(X) → B(HX),
ρX′ : C0(X ′) → B(HX′) representations on Hilbert spaces. A uniformly
continuous family of isometries V : [1,∞)→ B(HX , HX′), t 7→ Vt is said to
cover α if the number

ωα, V (t) := sup {d(y, α(x))|(y, x) ∈ supp(Vt)}

is finite for all t > 1 and satisfies ωα, V (t)→ 0 as t→∞.

Proposition 4.30 (compare [52, Proposition 3.2], [60, Theorem 6.6.3]).
If ρX : C0(X) → B(HX) is a representation and ρX′ : C0(X ′) → B(HX′)
an ample one, then any uniformly continuous coarse map α : X → X ′ is
covered by a uniformly continuous family of isometries V . Conjugation by
V yields a ∗-homomorphism

AdV : C∗L(ρX)→ C∗L(ρX′) , L 7→ [t 7→ Vt ◦ Lt ◦ V ∗t ]

which gives rise to a commutative diagram

0 // C∗L,0(ρX) //

AdV
��

C∗L(ρX) //

AdV
��

C∗(ρX) //

AdV1

��

0

0 // C∗L,0(ρX′) // C∗L(ρX′) // C∗(ρX′) // 0 .

The vertical maps in the induced commutative diagram in K-theory

K∗+1(C∗X) ∂ //

(AdV1 )∗
��

S∗(X) //

(AdV )∗
��

K∗(X) Ind //

(AdV )∗
��

K∗(C∗X)

(AdV1 )∗
��

K∗+1(C∗X ′) ∂ // S∗(X ′) // K∗(X ′)
Ind // K∗(C∗X ′)

are independent of the choice of the covering isometry and depend functo-
rial on α. For this reason they will all be denoted by α∗.

Note that this proposition implies the independence of the K-theory of
C∗LX, C∗LX, C∗X from the chosen ample module which we have mentioned
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earlier. Furthermore, it includes special cases of the usual functoriality of
the K-homology of spaces under proper continuous maps and of the K-
theory of the Roe algebra under coarse maps.

Theorem 4.31. — The slant products for the localization algebras are
natural under pairs of uniformly continuous coarse maps α : X → X ′ and
β : Y → Y ′ in the sense that

(4.12) α∗(x/β∗(θ)) = (α× β)∗(x)/θ

for all x ∈ K∗(X × Y ) or x ∈ S∗(X × Y ) and θ ∈ K∗(credY ′).

Proof. — The proof is completely analogous to the one of Theorem 4.28.
The main step is to show commutativity of the analogue versions of (4.11)
for C∗L and E∗L as well as for C∗L,0 and E∗L,0. To this end, one has to show
that the difference of two representatives in E∗L(ρ̃X′) or E∗L,0(ρ̃X′) differ by
an element of C∗L(ρ̃X′) or C∗L,0(ρ̃X′), respectively. But this is exactly the
commutativity of (4.11) applied pointwise to the family of operators at
each time in [1,∞). �

Remark 4.32. — We restricted ourselves in Proposition 4.30 and The-
orem 4.31 to functoriality under uniformly continuous coarse maps only,
because this is the functoriality which can be described easily in terms
of the localization algebras. But both statements of Theorem 4.31 can be
generalized further:

• As we have mentioned above, the functoriality of Proposition 4.30
is a special case of the functoriality of the K-homology groups
under proper continuous maps under the isomorphisms K∗(−) ∼=
K∗(C∗L(−)). Hence the results of Section 4.3 together with the nat-
urality of the coassembly map under continuous coarse maps and
the well-known naturality of the topological slant product between
K-homology and K-theory immediately implies that Formula (4.12)
even holds for all x ∈ K∗(X×Y ), θ ∈ K∗(credY ′), proper continuous
maps α : X → X ′ and all continuous coarse maps β : Y → Y ′, if Y
and Y ′ have continuously bounded geometry.

• By using a different picture of the structure group S∗(−) = K∗(C∗L,0
(−)) one can show that the functoriality extends to continuous
coarse maps [40, Section 12.4], [60, Chapter 6]. In this case we can
show that Formula (4.12) even holds for all x ∈ S∗(X × Y ), θ ∈
K∗(credY ′) and continuous coarse maps α : X → X ′ and β : Y → Y ′

by applying the following trick:
Given a continuous coarse map α : X → X ′ we define a new

proper metric space X ′′ as the set X equipped with the metric
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d′′ := max{d, α∗d′}, that is,

d′′(x, y) = max {d(x, y), d′(α(x), α(y))} ,

where d and d′ are the metrics on X and X ′, respectively. Consider
the commutative diagram

X
α // X ′

X ′′
α′

aa

α′′

==

where α′ is the identity map and α′′ is the same as α on the un-
derlying sets. It follows from d′′ > d and d′′ > (α′′)∗d′ that both
α′ and α′′ are uniformly continuous coarse maps. Furthermore, the
inverse (α′)−1 is continuous, because α is continuous, and it is a
coarse map, because α is a coarse map. Hence, α′ is both a home-
omorphism and a coarse equivalence and therefore induces an iso-
morphism between the structure groups. Similarily, the continuous
coarse map β can be decomposed into β = β′′ ◦ (β′)−1 with β′ and
β′′ being uniformly continuous coarse maps such that (β′)−1 is a
continuous coarse map. The naturality of the slant product under
the pair (α, β) now follows from the naturality of Theorem 4.31
under the pairs (α′, β′) and (α′′, β′′).

4.6. Coarsified versions of the external and slant products

In this section we first recall the notions of coarse K-homology KX∗ and
the coarse K-theory KX∗ and define the coarse structure group SX∗. Then
we use the results of the previous sections to construct coarsified versions
of the external and slant products

× : KXm(X)⊗KXn(Y ) → KXm+n(X × Y )
× : SXm(X)⊗KXn(Y ) → SXm+n(X × Y )
/ : KXp(X × Y )⊗KXq(Y ) → KXp−q(X)

/ : KXp(X × Y )⊗K1−q
(
credY

)
→ KXp−q(X)

/ : SXp(X × Y )⊗K1−q
(
credY

)
→ SXp−q(X)

and show their compatibility with the maps in a coarsified version of the
Higson–Roe analytic sequence

(4.13) · · · → K∗+1(C∗X)→ SX∗(X)→ KX∗(X) µ−→ K∗(C∗X)→ . . . ,
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the coarsification maps K∗(X) → KX∗(X), S∗(X) → SX∗(X) and the
co-coarsification map KX∗(Y ) → K∗(Y ), as well as with the co-assembly
map K1−q(cred(Y ))→ KXq(Y ). We also generalize our results obtained in
Section 4.4 to the coarsifications.

4.6.1. Definition of the coarse theories

The coarse K-homology KX∗ and the coarse structure groups SX∗ are
defined using the Rips complex construction. We first consider the case of
discrete proper metric spaces.

Definition 4.33. — Let X be a discrete proper metric space and R

> 0. The Rips complex of X at scale R is (the geometric realization of)
the simplicial complex PRX whose vertex set is X and whose simplices are
those spanned by the finite sets of vertices of diameter at most R.

The Rips complexes can be metrized by proper metrics such that all the
inclusions X ⊂ PRX ⊂ PSX for 0 6 R < S are isometric coarse equiv-
alences. These inclusions turn the Rips complexes into a directed system
indexed over R>0 and we can define

KX∗(X) := lim−→
R> 0

K∗ (PRX) and SX∗(X) := lim−→
R> 0

S∗ (PRX) .

If α : X → Y is a coarse map between discrete proper metric spaces then
for each R > 0 there exists S > 0 such that α extends linearily to a
continuous coarse map PRX → PSY which we denote by the same letter
α. If β : X → Y is another coarse map which is close to α and β : PRX →
PTY is its linear extension to the Rips complex, then the extensions of
α and β are homotopic after postcomposing them with the inclusion into
PUX for some U � max{S, T}. The homotopy is constructed by linear
interpolation between α and β and consists of uniformly continuous coarse
maps which all belong to the same closeness class. This property together
with the homotopy invariance of K-homology and the structure groups(17)
immediately implies functoriality of KX∗ and SX∗ under closeness classes
of coarse maps.

(17)By Proposition 4.30 we conclude that the structure group is homotopy invariant for
uniformly continuous coarse maps. By Remark 4.32 we can extend this to invariance for
continuous coarse map, and using (4.13) together with the invariance of K∗(C∗X) under
coarse homotopies [38] we can push this even further to invariance under maps which
are simultaneously proper continuous and coarse homotopies. But since we do not need
this generality here, we will not provide the details of these.
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Definition 4.34. — For any proper metric space X we define

KX∗(X) := lim−→
R> 0

K∗ (PRX ′) and SX∗(X) := lim−→
R> 0

S∗ (PRX ′)

where X ′ ⊂ X is any discrete coarsely equivalent subspace. These groups
are independent of the choice of discretization X ′ ⊂ X up to canonical
isomorphism and functorial under closeness classes of coarse maps.

Note that this coarsening procedure does not yield anything new for the
K-theory of the Roe algebra and the stable Higson corona, since the directed
systems of Rips complexes consist only of coarse equivalences and there-
fore K∗(C∗X) ∼= lim−→R> 0 K∗(C∗(PRX ′)) and K∗(credX) ∼= lim←−R> 0 K∗(cred

(PRX ′)). The definition of the coarse K-theory KX∗ is a bit more compli-
cated (cf. [27, Definition 4.3, Note 4.4]) but we note the following.

Lemma 4.35 (cf. [27, Remark 4.5]). — For any proper metric space X
with discrete coarsely equivalent subspace X ′ ⊂ X there is a Milnor-lim←−

1-
sequence

0→ lim←−
R> 0

1K∗+1 (PRX ′)→ KX∗(X)→ lim←−
R> 0

K∗ (PRX ′)→ 0

which is natural for coarse maps in the obvious way, i.e. the following holds:
If f : X → Y is a coarse map andX ′ ⊂ X, Y ′ ⊂ Y are coarsely equivalent

discrete subsets, then every coarse map f ′ : X ′ → Y ′ which is close to the
restriction of f to X ′ induces maps between the left and right terms of the
short exact sequences. These induced maps are up to canonical isomorphism
independent of the choices of X ′, Y ′ and f ′, and together with f∗ on the
middle term they constitute a map between short exact sequences.

Our slant products will factor through the limit on the right hand side
and hence we can ignore the lim←−

1-term for our purposes.

4.6.2. Maps between the coarse theories

Now that we have introduced all the relevant groups, let us describe
the maps relating them. We start with the coarsified Higson–Roe exact
sequence.

Definition 4.36. — The coarsified Higson–Roe sequence (4.13) is ob-
tained as the limit of the Higson–Roe sequences of the Rips complexes
PRX

′.
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It is again exact and it is clearly natural under coarse maps. Note by the
way that the coarse Baum–Connes conjecture for a space X is equivalent
to the vanishing of SX∗(X).
Second, there is the coarsified version of the co-assembly map, which

we do not define here in order to avoid having to define KX∗ precisely.
However, we have the following description.

Remark 4.37 ([27, Definition 4.6]). — For any proper metric space X
there is a coarsified co-assembly map

µ∗ : K1−∗
(
credX

)
→ KX∗(X)

whose composition with the homomorphism KX∗(X)→ lim←−R> 0 K∗(PRX ′)
is equal to the limit of the coassembly maps

K1−∗
(
credX

) ∼= K1−∗
(
cred (PRX ′)

) µ∗−→ K∗ (PRX ′) .

These maps are all natural under coarse maps.

Finally, there are also the coarsification and co-coarsification maps, which
are defined as follows. Given a proper metric space X, we choose a discrete
R-dense subset X ′ ⊂ X for some R > 0 and a partition of unity {ϕx′}x′ ∈X′
subordinate to the cover {BR(x′)}x′ ∈X′ of X. Then the map

(4.14) X → P2RX
′ , x 7→

∑
x′ ∈X′

ϕx′(x) · x′

is a continuous coarse equivalence. Furthermore, if a second map X →
P2SX

′′ is defined in exactly the same way using another S-dense discrete
subset X ′′ and another partition of unity, then the two maps become homo-
topic via a homotopy of continuous coarse equivalences after postcompos-
ing them with the inclusion into PT (X ′∪X ′′) for some T � max{2R, 2S}.
Therefore, the following maps are independent of all choices (using Re-
mark 4.32 to get homotopy invariance of the structure group for continuous
coarse maps).(18)

Definition 4.38. — The coarsification maps

c : K∗(X)→ lim−→
R> 0

K∗ (PRX ′) = KX∗(X)

c : S∗(X)→ lim−→
R> 0

S∗ (PRX ′) = SX∗(X)

(18)Under mild assumptions on the proper metric space X we can even arrange (4.14)
to be a uniformly continuous coarse equivalence [17, Section 7] and hence we would not
need the better homotopy invariance of the structure group discussed in Remark 4.32.
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and the co-coarsification map

c∗ : KX∗(X)→ lim←−
R> 0

K∗ (PRX ′)→ K∗(X)

are defined as the maps induced by any map X → P2RX
′ as above.

Lemma 4.39. — The coarsification and co-coarsification maps are nat-
ural under continuous coarse maps.

Proof. — Assume that a diagram

X

α

��

⊇ X ′

α′

��

Y ⊇ Y ′

is given, where α is a continuous coarse map between proper metric spaces
and α′ is a coarse map between discrete coarsely equivalent subsets such
that the diagram commutes up to closeness. Then for each sufficiently large
R > 0 there is S > 0 such that the diagram

X

α

��

// P2RX
′

α′

��

Y // P2SY
′

of continuous coarse maps commutes up to closeness. If S is chosen large
enough, then the diagram even commutes up to a homotopy via continuous
coarse maps which are close to α, the homotopy being defined by a linear
interpolation. The claim follows. �

The following important property follows immediately from the defini-
tion.

Lemma 4.40. — The coarse assembly and co-assembly maps decom-
pose into the compositions of their coarsified counterparts and the (co-
)coarsification maps, i.e. the diagrams

K∗(X)
µ

//

c
��

K∗(C∗X) K1−∗
(
credX

) µ∗
//

µ∗ ##

K∗(X)

KX∗(X)
µ

>>

KX∗(X)
c∗

@@

commute.
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Let us recall for future reference the well-known conditions under which
the (co-)coarsification maps are isomorphisms. To this end we first recall
the following definition:

Definition 4.41. — Let X be a metric space. We call X uniformly
contractible, if for every R > 0 there exists an S > R such that for every
point x ∈ X the inclusion BR(x) ↪→ BS(x) is nullhomotopic.

The proof of the following result can be found in several places in the
literature like [53, Chapter 2], [16, Proposition 6.105], [47, Theorem 7.6.2]
or [27, Theorem 4.8].

Proposition 4.42. — Let X be a proper metric space of bounded ge-
ometry. If X is uniformly contractible, then the (co-)coarsification maps
are isomorphisms.

4.6.3. The coarsified external and slant products

The construction of the coarsified external and slant products relies on
the following easy lemma, which essentially says that the products of Rips
complexes PRX ′ × PRY ′ can be seen as deformation retracts of the Rips
complex PR(X ′×Y ′) of the products, up to enlarging the scale of the Rips
complexes.

Lemma 4.43. — Let X ′ and Y ′ be discrete proper metric spaces. For
every R > 0 we define the continuous coarse equivalences

pR : PR(X ′ × Y ′)→ PRX
′ × PRY ′

iR : PRX ′ × PRY ′ → P2R(X ′ × Y ′)

by the formulas

pR

 ∑
(x′, y′)∈X′×Y ′

ν(x′, y′) · (x′, y′)

 :=

:=

 ∑
x′ ∈X′

∑
y′ ∈Y ′

ν(x′,y′) · x′,
∑
y′ ∈Y ′

∑
x′ ∈X′

ν(x′, y′) · y′


iR

 ∑
x′ ∈X′

κx′ · x′,
∑
y′ ∈Y ′

λy′ · y′
 :=

∑
(x′, y′)∈X′×Y ′

κx′λy′ · (x′, y′) .

Then p2R ◦ iR is equal to the inclusion PRX ′ × PRY ′ → P2RX
′ × P2RY

′

and the composition iR ◦ pR is homotopic to the inclusion PR(X ′ × Y ′)
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→ P2R(X ′ × Y ′) via a homotopy of continuous coarse maps which are all
close to the inclusion map.

Corollary 4.44. — Given proper metric spacesX and Y with discrete
coarsely equivalent subsets X ′ ⊂ X and Y ′ ⊂ Y , the maps pR and iR give
rise to natural isomorphisms

KX∗(X × Y ) = lim−→
R> 0

K∗ (PR(X ′ × Y ′)) ∼= lim−→
R> 0

K∗ (PRX ′ × PRY ′) ,

SX∗(X × Y ) = lim−→
R> 0

S∗ (PR(X ′ × Y ′)) ∼= lim−→
R> 0

S∗ (PRX ′ × PRY ′) .

The existence of the coarsified external and slant products are now a
direct consequence of this corollary and the naturality of the external and
slant products under the pairs of inclusions PRX ′ ⊂ PSX

′ and PRY
′

⊂ PSY ′ for R 6 S.

Definition 4.45. — The coarsified external products

× : KXm(X)⊗KXn(Y )→ KXm+n(X × Y )
× : SXm(X) ⊗KXn(Y )→ SXm+n(X × Y )

are obtained by taking the direct limit over the external products

× : Km (PRX ′)⊗Kn (PRY ′)→ Km+n (PRX ′ × PRY ′)
× : Sm (PRX ′) ⊗Kn(PRY ′) → Sm+n (PRX ′ × PRY ′)

and if Y has bounded geometry then the coarsified slant products

/ : KXp(X × Y ) ⊗KXq(Y ) → KXp−q(X)

/ : KXp(X × Y ) ⊗K1−q
(
credY

)
→ KXp−q(X)

/ : SXp(X × Y ) ⊗K1−q
(
credY

)
→ SXp−q(X)

are obtained by taking the direct limit over the slant products

/ : Kp (PRX ′ × PRY ′) ⊗KXq(Y )→
→ Kp (PRX ′ × PRY ′)⊗Kq (PRY ′)→ Kp−q (PRX ′)

/ : Kp (PRX ′ × PRY ′) ⊗K1−q
(
credY

) ∼=
∼= Kp (PRX ′ × PRY ′) ⊗K1−q

(
cred (PRY ′)

)
→ Kp−q (PRX ′)

/ : Sp (PRX ′ × PRY ′) ⊗K1−q
(
credY

) ∼=
∼= Sp (PRX ′ × PRY ′) ⊗K1−q

(
cred(PRY ′)

)
→ Sp−q (PRX ′) .
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In the special case that X is a single point we obtain the coarsified versions
of the pairings

〈−,−〉 : KXp(Y )⊗KXq(Y ) → Kp−q(C)

〈−,−〉 : KXp(Y )⊗K1−q
(
credY

)
→ Kp−q(C)

whose values lie in Z if p− q is even and who vanish if p− q is odd.

The following properties are obvious by applying the properties of the
uncoarsified external and slant products proven in Sections 4.2, 4.3, 4.4,
4.5 to the Rips complexes and taking limits.

Theorem 4.46. — The coarsified external and slant products are natu-
ral for pairs of coarse maps and compatible with the maps in the coarsified
Higson–Roe sequence (4.13), the coarsification maps K∗(X) → KX∗(X),
S∗(X)→ SX∗(X) and co-coarsification map KX∗(Y )→ K∗(Y ), as well as
the co-assembly map K1−q(credY )→ KXq(Y ).(19)
Further, taking first the external product with an element z ∈ KXm(Y ×

Z) and then the slant product with an element θ ∈ K1−n(credZ) or θ ∈
KXn(Z) is equal to the external product with z/θ ∈ KXm−n(Y ), and in
particular if Y = {∗} is a one-point space, then this composition is equal
to multiplication with 〈z, θ〉 = 〈z, µ∗(θ)〉 = 〈µ(z), θ〉. �

5. Equivariant slant products

We now generalize the results from the previous section to an equivariant
setup. Throughout this section let X,Y be proper metric spaces and let
G,H be countable discrete groups acting properly and isometrically on X
and Y , respectively. Furthermore we assume that Y has bounded geometry.
The cases where Y is required to even have continuously bounded geometry
will be pointed out explicitly.
We have already seen in Section 3.2 what the equivariant Higson–Roe

sequence

· · · → K∗+1 (C∗GX)→ SG∗ (X)→ KG
∗ (X) Ind−−→ K∗ (C∗GX)→ . . .

is and how the equivariant external products with elements of KH
∗ (Y ) and

K∗(C∗HY ) are constructed. This theory is already well established.

(19)For compatibility with the co-assembly map we have to note that if Y has bounded
geometry, then the Rips complex of any uniformly discrete, coarsely equivalent subset of
it has continuously bounded geometry since it will be a simplicial complex of bounded
geometry; see Definition 4.1.
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On the cohomological side we use crossed products to define equivariant
analogues of K∗(Y ) and K∗(credY ). First of all, we define the equivariant
K-theory of Y as

K∗H(Y ) := K−∗ (C0(Y ) oH) .
This definition is justified by [8, Theorem 6.8] which says that K0

H(Y ) is
naturally isomorphic to the Grothendieck group of H-equivariant vector
bundles on Y if the action of H on Y is cocompact. Moreover, if the action
of H on Y is free, then it is well known that C0(Y )oH is Morita equivalent
to C0(H\Y ) (see also Section 5.5 below) and therefore K∗H(Y ) ∼= K∗(H\Y ).
Note that since we assume H to act properly on Y , it follows from [26,

Remark 3.4.16] that the maximal crossed product of C0(Y ) by H coincides
with the reduced one, and consequently also with any other. Hence we only
write C0(Y ) oH.
At first sight it might look tempting to define K∗H(Y ) differently(20) as

the E-theory group EH−∗(C,C0(Y )) in order to define a slant product

(5.1) KG×H
p (X × Y )⊗Kq

H(Y )→ KG
p−q(X)

as in Definition 4.11 via E-theoretic products, but there is one big problem
with this attempt: There simply is no E-theoretic product which gets rid
of the H-equivariance as is needed for (5.1). The problem seems to be
that both entries of equivariant E-theory have to be C∗-algebras which are
being acted on by the same group, although we would prefer to consider C
without any action in this case. Perhaps it is possible to fix this issue by
generalizing the notion of equivariant E-theory groups to allow for different
equivariances in the two entries.

Question 5.1. — Let A be a G − C∗-algebra, B be a H − C∗-algebra
and α be a homomorphism between G and H. Is there a meaningful notion
of E-theory groups Eα∗ (A,B) which specialize to EG∗ (A,B) if G = H and
α is the identity?

Instead of going the E-theory path, we circumvent this problem by defin-
ing the equivariant slant product (5.1) in Definition 5.22 below for Y of
continuously bounded geometry ad hoc by turning an equivariant version
of Lemma 4.19 into a definition.
In order to construct the equivariant analogues of the other slant prod-

ucts, we use K∗(credY oµ H) as the equivariant analogue of K∗(credY ),
where oµ denotes any exact crossed product functor in the sense of

(20)Not only the definitions are different, but there is apparently not even an isomor-
phism between them.
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[7, Definition 3.1]. Natural choices for exact crossed product functors are
the maximal crossed product, the minimal exact crossed product [19], the
minimal exact and Morita compatible crossed product used in the recent
reformulation of the Baum–Connes conjecture due to Baum, Guentner and
Willett [7, Definition 4.1],(21) or the reduced crossed product in the case of
H being an exact group.

Before we construct these slant products in Section 5.3 and prove their
properties in Section 5.4, let us first explain in the next two sections how
the group K∗(credY oµH) appears in the theory of equivariant co-assembly
and show that it contains sufficiently many elements for our purposes.

5.1. Equivariant co-assembly maps

We have already mentioned that the maximal crossed product C0(Y )
omaxH coincides with the reduced crossed product C0(Y )oredH and hence
also with any other crossed product. As both the maximal and the reduced
crossed product are Morita compatible, the crossed products C0(Y,K)omax
H and C0(Y,K)oredH are both isomorphic to (C0(Y )oH)⊗K and hence
the same is true for any other crossed product C0(Y,K) oµ H. It follows
that K∗(C0(Y,K) oµ H) ∼= K−∗H (Y ) for all crossed product functors oµ.
Now, for any exact crossed product oµ we have a short exact sequence

(5.2) 0→ C0(Y,K) oµ H → c̄redY oµ H → credY oµ H → 0 ,

whose connecting homomorphism

µ∗H : K∗
(
credY oµ H

)
→ K1−∗

H (Y )

is an equivariant version of the coarse co-assembly map. Note that if oµ′
is another exact crossed product and if we have a natural transforma-
tion of crossed product functors oµ → oµ′ , then we get a transformation
between the corresponding short exact sequences (5.2) and consequently a
commuting triangle

(5.3) K∗
(
credY oµ H

)
//

��

K1−∗
H (Y )

K∗
(
credY oµ′ H

)
77

(21)Note that Buss, Echterhoff and Willett [19] claimed that the minimal exact and
Morita compatible crossed product functor coincides with the minimal exact one. But a
gap was found in their proof invalidating this claim, see the erratum in the appendix of
arXiv version 3 of [19].
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relating the two equivariant coarse co-assembly maps.
Emerson and Meyer constructed in [28], see also [29, Section 2.3], the

co-assembly map

µ∗EM : Ktop
∗
(
H, credY

)
→ K1−∗

H (Y ) ,

where the left hand side is defined as in the Baum–Connes conjecture for
the coefficient C∗-algebra credY . The Baum–Connes assembly map is, with
these coefficients and using oµ, a map µBC

∗ : Ktop
∗ (H, credY )→ K∗(credY oµ

H).(22) It is, by definition, the composition of the maximal version Ktop
∗ (H,

credY )→ K∗(credY omaxH) with the natural quotient map K∗(credY omax
H) → K∗(credY oµ H), [7, Display (2.2)]. We can form the following dia-
gram:

(5.4) Ktop
∗
(
H, credY

) µ∗EM //

µBC
∗ ((

K1−∗
H (Y )

K∗
(
credY oµ H

) µ∗H

77

Lemma 5.2. — If oµ is an exact crossed product functor,(23) then the
Diagram (5.4) commutes.

Proof. — Note that because of Diagram (5.3) it is sufficient to consider
the case of the maximal crossed product oµ = omax. Then this lemma is
basically true more or less directly by definition of the map µ∗EM as given
in [28]. For the convenience of the reader let us recall some of the details.
By [28, Definition 12] we have the following commutative diagram

K∗
((
credY ⊗max P

)
omax H

) ∂ //

OO

∼=
��

K∗−1 ((C0(Y )⊗max P) omax H)

∼= D∗
��

Ktop
∗
(
H, credY

) µ∗EM // K1−∗
H (Y )

which is used to define the map µ∗EM. Here ∂ is the boundary map induced
by a certain short exact sequence of C∗-algebras, and P is an H − C∗-
algebra which supports the so-called Dirac morphism D ∈ KKH(P,C). It is
known that the (maximal version of the) Baum–Connes assembly map with

(22)Note the slight technicality here that credY is in general not separable. We are
workig here with the convention that in the non-separable case we just take everywhere
directed limits over the separable sub-C∗-algebras.
(23)Note that it must be defined for non-separable C∗-algebras. One way to get such a
functor is to use again directed limits over separable sub-C∗-algebras [18, Lemma 8.11].
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coefficients in a C∗-algebra A is equivalent to the map D∗ : K∗((A ⊗max
P) omax H) → K∗(A omax H), and the left vertical isomorphism in the
previous diagram is the one which identifies the corresponding domains [45,
Theorem 5.2]. That the right vertical map in the above diagram is an
isomorphism is explained in [28, Beginning of Section 2.7].
Applying D∗ to the boundary map in the above diagram, we get

K∗
(
credY omax H

) ∂ // K1−∗
H (Y )

K∗
((
credY ⊗max P

)
omax H

) ∂ //

D∗

OO

K∗−1 ((C0(Y )⊗max P) omax H)

D∗∼=

OO

which commutes because Kasparov products are compatible with boundary
maps induced from short exact sequences.
The top horizontal map in the last diagram coincides with µ∗H , and the

composition

Ktop
∗
(
H, credY

) ∼=←→ K∗
((
credY ⊗max P

)
omax H

) D∗−→ K∗
(
credY omax H

)
identifies with the Baum–Connes assembly map µBC

∗ , which is a property
of the Dirac morphism D∗; see [45, Sections 4–6] or [28, Theorem 22]. �

Commutativity of Diagram (5.4) implies the next corollary stating that
in many cases we have enough elements to take equivariant slant products.

Before we go into the corollary, let us recall that EH denotes the classi-
fying space for proper H-actions. We say that it is H-finite, if it consists
only of finitely many H-orbits of cells. Models for EH are unique up to
equivariant homotopy, which implies that if we have two H-finite models
EH and EH ′, then

K∗H(EH) ∼= K∗H (EH ′) .

Furthermore, if we put any equivariant length metric on the H-finite
model EH and pick any point p ∈ EH, then the map H → EH,h
7→ hp is a coarse equivalence which is H-equivariant. Note that in gen-
eral a coarse inverse EH → H cannot be equivariant, because the action of
H on EH is not always free, but the above properties nevertheless ensure
that the induced map credEH → credH is an isomorphism of C∗-algebras
which is also H-equivariant, i.e. an isomorphism of H − C∗-algebras. This
isomorphism is even canonical, because the coarse equivalences H → EH
are pairwise close for different choices of the point p ∈ EH. Consequently,
we obtain a canonical isomorphism

ANNALES DE L’INSTITUT FOURIER



SLANT PRODUCTS ON THE HIGSON–ROE EXACT SEQUENCE 981

(5.5) K∗
(
credH oµ H

) ∼= K∗
(
credEH oµ H

)
for each H-finite model for EH.
In addition, any H-equivariant homotopy equivalence between two H-

finite models EH and EH ′ is automatically a quasi-isometry. Hence it in-
duces a canonical ismomorphisms K∗(credEH oµ H) ∼= K∗(credEH ′ oµ H)
which is compatible with (5.5).
Everything that has been said in the above paragraphs tells us that the

co-assembly map in the following corollaries is canonical.

Corollary 5.3. — Let H be a countable discrete group that admits a
H-finite classifying space for proper H-actions EH.

If H has a γ-element, then the equivariant coarse co-assembly map

µ∗H : K∗
(
credH oµ H

)
→ K1−∗

H (EH)

is surjective for any exact crossed product functor oµ.

Proof. — We consider Diagram (5.4) for the group H and the space EH.
It follows from [29, Proposition 13] that µ∗EM is an isomorphism since H
has a γ-element. Hence by Diagram (5.4) the map µ∗H is surjective. �

Let oµ be a correspondence crossed product functor. Without defining
what this is, we just note that such crossed product functors admit the
descent homomorphism KKH

∗ (A,B) → KK∗(A oµ H,B oµ H) which is
further compatible with Kasparov products [18, Proposition 6.1]. We as-
sume that H admits a γ-element. Then the assembly map µBC

∗ : Ktop
∗ (H,A)

→ K∗(A oµ H) is an isomorphism onto the summand γ · K∗(A oµ H) for
every H − C∗-algebra A, where γ acts as a projection via the Kasparov
product. Hence Corollary 5.3 refines to the statement that

µ∗H : γ ·K∗
(
credH oµ H

)
→ K1−∗

H (EH)

is an isomorphism. Hence, if γ acts as the identity, then µ∗H is an isomor-
phism.

Corollary 5.4. — Let H be a countable discrete group that admits
a H-finite classifying space for proper H-actions EH. Assume further that
H is exact and that it satisfies (the reduced version of) the Baum–Connes
conjecture with coefficients.
Then the equivariant coarse co-assembly map

µ∗H : K∗
(
credH ored H

)
→ K1−∗

H (EH)

is an isomorphism, where ored is the reduced crossed product functor.
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Proof. — If H is exact, then it has a γ-element and the reduced crossed
product is exact (and it is always a correspondence crossed product). There-
fore the claim follows from the discussion prior to the corollary, since satisfy-
ing (the reduced version of) the Baum–Connes conjecture with coefficients
gives that γ acts as the identity on K∗(credH ored H). �

Example 5.5. — Gromov hyperbolic groups satisfy the assumptions of
Corollary 5.4. For them EH can be taken as the Rips complex PR(H) of H
for a large enough R� 1 ([6, Section 2], [44]), the Baum–Connes conjecture
with coefficients was proven by Lafforgue [42, 51], and exactness follows
from them having finite asymptotic dimension ([31, Page 23][54]).

5.2. Exactness of groups and the stable Higson corona

In the previous sections we saw that the choice of crossed product credY

oµH matters, and that we have a connection to exactness of the group H.
In the present section we will investigate this connection further, and relate
it to the so-called weak containment property of credY , i.e., the question
in which cases we have credY omax H ∼= credY ored H. Most of the results
here were developed in discussions with Rufus Willett.(24)

5.2.1. The case of the (stable) Higson compactification

Before we can prove the main result of this section (Proposition 5.8 be-
low), we first need a technical result about the double dual of the stable
Higson compactification c̄redY of a metric space Y and its relation to the
(usual) Higson compactification of Y . Recall that the Higson compactifi-
cation is the compact space corresponding to Ch(Y ), the unital commu-
tative C∗-algebra of all bounded, continuous functions Y → C of vanish-
ing variation. The Higson corona ∂hY is the compact space defined via
C(∂hY ) := Ch(Y )/C0(Y ).

Lemma 5.6. — Let Y be a proper metric space.
Then there is an embedding of Ch(Y ) into the center of the double dual

of c̄redY , i. e., an injective and unital ∗-homomorphism

(5.6) Ch(Y )→ Z
((

c̄redY
)∗∗)

.

(24)One can prove similar results for cY instead of credY . But since we are mainly using
credY in this paper, we have restricted our attention to it in this section.
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If Y is further equipped with an isometric action(25) of a countable discrete
group H, then the map (5.6) is equivariant for the induced actions of H
on the corresponding C∗-algebras.

Proof. — Recall that the Banach space dual of the compact operators
K(H) are the trace class operators S1(H), and that the Banach space
dual of S1(H) is B(H), and hence K(H)∗∗ ∼= B(H) [10, Theorem I.8.6.1].
Further, B(H) can be equipped with the ultra-weak topology(26) whose
restriction to the closed unit ball of B(H) coincides with the corresponding
restriction of the weak operator topology [46, Theorem 4.2.4]. Hence, choos-
ing an orthonormal basis (ei)i∈N of H and setting pn ∈ K(H) to be the
orthogonal projection onto the linear span of e1, . . . , en, we get a sequence
(pn)n∈N of compact operators of norm 1 converging in the weak opera-
tor topology to the identity operator idH on H. Consequently, (pn)n∈N
converges ultra-weakly to idH .
Now choose any sequence of compact operators (kn)n∈N on `2 con-

verging ultra-weakly to the identity id`2 . The sequence (f ⊗ kn)n∈N for
f ∈ Ch(Y ), which is a sequence in c̄redY ⊂ (c̄redY )∗∗, converges ultra-
weakly in (c̄redY )∗∗. Its limit is, by definition, the image of f under the
sought map (5.6).
It is clear that (5.6) is an injective and unital ∗-homomorphism. It re-

mains to show that its image is contained in the center of (c̄redY )∗∗. Now
in general the extension of the product on A to the correct product on A∗∗
was achieved by Arens [3, 4]. Looking at the formulas, we see that indeed
the map (5.6) ends up in the center of the double dual.
That in the situation of Y being equipped with the action of a group H

the map (5.6) will be equivariant, is quickly seen. �

For a discrete group H we recall now the different notions of amenability
of H−C∗-algebra from Buss, Echterhoff and Willett [20, Definitions 2.1 and
4.13]. Note that there are also variants of some of these notions occuring
in, e.g., [2, 14]. How these variants are related to each other is explained
in [20, Remark 2.2].

Definition 5.7. — Let H be a discrete group and A be an H-C∗-
algebra.

(25)Note that we do not need the action to be proper.
(26)This is just the weak-∗ topology on B(H) if we consider it as the dual of S1(H),
i.e., a net (Tλ)λ∈Λ in B(H) converges ultra-weakly to T if and only if (| tr(STλ)|)λ∈Λ
converges to | tr(ST )| for every S ∈ S1(H).
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(a) A is called strongly amenable if there is a net

(θi : H → Z(M(A)))i∈ I

of positive type functions(27) such that
• each θi is finitely supported,
• for each i we have θi(e) 6 1, and
• for each h ∈ H we have θi(h)→ 1 strictly as i→∞.

(b) A is called amenable if there is a net (θi : H → Z(A∗∗))i∈ I of
positive type functions such that
• each θi is finitely supported,
• for each i we have θi(e) 6 1, and
• for each h ∈ H we have θi(h)→ 1 ultra-weakly(28) as i→∞.

Note that strong amenability implies amenability [20, Remark 2.2].

Proposition 5.8. — Let Y be a proper metric space equipped with an
isometric action of a discrete group H.(29)
Consider the following three statements:

(a) The group H acts amenably on the Higson compactification of Y .
(b) c̄redY is an amenable H − C∗-algebra.
(c) We have c̄redY omax H ∼= c̄redY ored H.

Then we have a ⇒ b ⇒ c and a additionally implies that H is exact.

Proof. — We start with the implication a ⇒ b and while doing this we
also establish that a implies exactness of H.

• We show that a implies b If H acts amenably on the Higson com-
pactification of Y , then by [2, Proposition 6.3] the H − C∗-algebra
Ch(Y ) is strongly amenable. Since Ch(Y ) is commutative, by [20,
Lemma 2.5] strong amenability of Ch(Y ) in the sense of [2] is equiv-
alent to strong amenability of it in the sense of [20, Definition 2.1].
Therefore there exists a net (θi : H → Z(M(Ch(Y ))))i∈ I of posi-
tive type functions satisfying the corresponding conditions listed in
Definition 5.7. But since Ch(Y ) is unital and commutative, we have

(27) In general, a function ϑ : H → B is of positive type if for any finite subset
{h1, . . . , hn} of H the matrix (αhi (ϑ(h−1

i hj)))i, j ∈ Mn(B) is positive, where α is
the action of H on B [1, Definition 2.1].
(28)Recall that a net (Tλ)λ∈Λ in A∗∗ converges ultra-weakly to T if and only if
(Tλ(ϕ))λ∈Λ converges to T (ϕ) for every ϕ ∈ A∗.
(29)Note that we do not need here the action of H on Y to be proper.
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Z(M(Ch(Y ))) = Ch(Y ). Composing with (5.6), we get a net (θi : H
→ Z((c̄redY )∗∗))i∈ I showing that c̄redY is amenable.(30)

• Since Ch(Y ) is unital, commutative and strongly amenable, this
implies that H is exact by [20, Theorem 5.3] (see also [39] for the
fact that amenable actions on compact Hausdorff spaces imply ex-
actness).

• The implication b ⇒ c is a completely general fact: amenability of
an H −C∗-algebra A implies Aomax H ∼= Aored H by [1, Proposi-
tion 4.8] (see also [20, Section 4]). �

Remark 5.9. — Note that c̄redY is a strongly amenable H − C∗-algebra
if and only if H is amenable.
First, because c̄redY is unital, the notions of strong amenability as intro-

duced by Anantharaman-Delaroche [2] and by Buss, Echterhoff and Wil-
lett [20] coincide for it [20, Lemma 2.5].
If the group H is amenable, then every H−C∗-algebra is strongly amena-

ble. Assume now that c̄redY is strongly amenable, that is, we have a net
(θi : H → Z(M(c̄redY )))i∈I of positive type functions satisfying the corre-
sponding conditions listed in Definition 5.7. Since c̄redY is unital we have
M(c̄redY ) = c̄redY , and we further have that Z(c̄redY ) ∼= C. Hence the net
(θi)i∈I maps actually into C. But this means that H is amenable.

Question 5.10. — The above results in combination with the results
of [20] suggest that for a proper metric space Y equipped with an isometric
action of a discrete group H the following conditions could be equivalent
to each other:

(a) The group H acts amenably on the Higson compactification of Y .
(b) c̄redY is an amenable H − C∗-algebra.
(c) The group H is exact and we have c̄redY omax H ∼= c̄redY ored H.

The corresponding version of the above question for the (stable) Higson
corona should also be true and is stated in the introduction as Conjec-
ture 1.25.

5.2.2. The case of the (stable) Higson corona

In this section we will adapt the results of the previous one to the (sta-
ble) Higson corona. We apply these results to the Gromov boundary of a
hyperbolic group in Example 5.13 below.

(30)Here one has to know the fact that if A is a unital C∗-algebra, then the strict topology
onM(A) = A coincides with the norm topology.
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To treat the case of the (stable) Higson corona, we use the following fact
about double duals of quotient C∗-algebras: if 0→ I → A→ A/I → 0 is any
short exact sequence of C∗-algebras, then we have canonical isomorphisms
(A/I)∗∗ ∼= A∗∗/I∗∗ and A∗∗ ∼= I∗∗ ⊕ (A/I)∗∗ [10, Section III.5.2.11].

The next lemma is an adaption of Lemma 5.6:

Lemma 5.11. — Let Y be a proper metric space.
Then there is an embedding of C(∂hY ) into the center of the double dual

of credY , i.e., an injective and unital ∗-homomorphism

(5.7) C (∂hY )→ Z
((

credY
)∗∗)

.

If Y is further equipped with an isometric action of a discrete group H,
then the map (5.7) is equivariant for the induced actions of H on the
corresponding C∗-algebras.

Proof. — We have C(∂hY ) ∼= Ch(Y )/C0(Y ) and credY ∼= c̄redY/C0(Y,K).
The *-homomorphism f 7→ f ⊗ id`2 inducing (5.6) maps the C∗-algebra

C0(Y ) to Z(C0(Y,K)∗∗). It extends by [10, Section III.5.2.10] to a nor-
mal *-homomorphism(31) C0(Y )∗∗ → Z(C0(Y,K)∗∗). Considering also the
analogous normal extension of (5.6) to Ch(Y )∗∗ we conclude that (5.6)
induces normal *-homomorphisms mapping the short exact sequence

0→ C0(Y )∗∗ → Ch(Y )∗∗ → C(∂hY )∗∗ → 0

to the short exact sequence

0→ C0(Y,K)∗∗ →
(
c̄redY

)∗∗ → (
credY

)∗∗ → 0

and the image of C(∂hY )∗∗ will be contained in Z((credY )∗∗). The restric-
tion of the map on C(∂hY )∗∗ to its C∗-subalgebra C(∂hY ) is the sought
map (5.7).
Let us show injectivity of (5.7). General theory [10, Section III.5.2.11]

tells us that there is a central projection p ∈ (c̄redY )∗∗ such that p·(c̄redY )∗∗
is C0(Y,K)∗∗ and such that (1 − p) · (c̄redY )∗∗ is (credY )∗∗. This central
projection is given as the supremum of an approximate unit (uλ)λ∈Λ in
C0(Y,K). Let f ∈ Ch(Y ) be non-zero in C(∂hY ). We have to show that it is
still non-zero in (credY )∗∗, i.e., that it does not lie in C0(Y,K)∗∗. Because f
is non-zero in C(∂hY ), there exists a point x ∈ ∂hY such that evx(f) 6= 0.
We choose any unit vector v in the Hilbert space H (the auxiliary Hilbert

(31)A normal *-homomorphism is one which is continuous for the respective ultra-weak
topologies [10, Section III.2.2].
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space used in the definition of c̄redY ) and define a linear functional η on
c̄redY by

η(g) := evx(gv) ,
where gv ∈ Ch(Y ) is the function given by gv(y) := ϕv(g(y)) using the
vector state ϕv(T ) := 〈Tv, v〉 on H. Because η : c̄redY → C is a positive
linear map, it extends to a normal positive linear map η∗∗ : (c̄redY )∗∗ →
C∗∗ ∼= C and we have η∗∗(f ⊗ id`2) = evx(f) 6= 0. For θ ∈ C0(Y,K)∗∗
we have η∗∗(θ) = 0 since (choosing (θµ)µ∈Λ′ ∈ C0(Y,K) approximating θ
ultra-weakly)

η∗∗(θ) = η∗∗(p · θ)

= η∗∗
(

lim
λ→∞

uλ · θ
)

= lim
λ→∞

η∗∗ (uλ · θ)

= lim
λ→∞

η∗∗
(
uλ · lim

µ→∞
θµ

)
= lim
λ→∞

lim
µ→∞

η∗∗ (uλ · θµ)

(where we used that η∗∗ is ultra-weakly continuous and multiplication sepa-
rately ultra-weakly continuous) and η∗∗(uλ·θµ) = 0 since uλ·θµ ∈ C0(Y,K).
Because η∗∗(f ⊗ id`2) 6= 0, this means that f /∈ C0(Y,K)∗∗ finishing the
proof that (5.7) is injective.
The other statements about the map (5.7) are straight-forward to prove,

which finishes this proof of Lemma 5.11. �

Proposition 5.12. — Let Y be a proper metric space equipped with
an isometric action of a discrete group H.
Consider the following three statements:
(a) The group H acts amenably on the Higson corona of Y .
(b) credY is an amenable H − C∗-algebra.
(c) We have credY omax H ∼= credY ored H.

Then we have a ⇒ b ⇒ c and a additionally implies that H is exact.

Proof. — Completely analogous to the proof of Proposition 5.8. �

Example 5.13. — Let H be a Gromov hyperbolic group.
It is known that in this caseH acts amenably on its Gromov boundary [2,

Example 2.7.4]. Since the Gromov boundary is dominated by the Higson
corona, i.e., there is a natural H-map ∂hH → ∂GromovH, it follows that H
also acts amenably on its Higson corona.
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Proposition 5.12 then implies that credH is an amenable H −C∗-algebra
and credH omax H ∼= credH ored H.

5.3. Construction of the equivariant slant products

Just like in Section 3.2 let us fix an ample X-G-module (HX , ρX , uG)
and an ample Y -H-module (HY , ρY , uH).

5.3.1. The slant product on the equivariant Roe algebra

We denote by ρ′Y : C0(Y,K) → B(HY ⊗ `2) the tensor product of the
given representation ρY and the canonical representation of K on `2. The
H-action on Y induces an H-action on C0(Y,K) and (ρ′Y , uH ⊗ id`2) be-
comes a covariant pair. Because every automorphism of a C∗-algebra ex-
tends uniquely to an automorphism of its multiplier algebra, we get a co-
variant pair (ρ̄Y , uH ⊗ id`2) for (M(C0(Y,K), H). Here ρ̄Y is precisely the
same as in (4.2). We amplify the latter covariant pair via the left-regular
representation λH : H → U(`2(H)) to obtain a covariant pair (ρ̂Y , ûH),
where ρ̂Y := id`2(H)⊗ρ̄Y and ûH := λH ⊗ uH ⊗ id`2 .

We consider c̄redY ⊂ B(`2(H) ⊗ HY ⊗ `2) via the representation ρ̂Y .
It follows from the above that the H − C∗-algebra c̄redY is covariantly
represented on `2(H)⊗HY ⊗`2. Moreover, by Fell’s absorption principle [14,
Proposition 4.1.7] this yields an embedding of the reduced crossed product
ρ̂Y o ûH : c̄redY ored H ↪→ B(`2(H)⊗HY ⊗ `2).

Let us redefine HX×Y := HX ⊗ `2(H) ⊗HY . The Hilbert space HX×Y
has a unitary representation uG×H of G×H via g, h 7→ uG(g)⊗ λH(h)⊗
uH(h) and a representation ρX×Y of C0(X × Y ) via f ⊗ f ′ 7→ ρX(f) ⊗
id`2(H)⊗ρY (f ′). This turns HX×Y into an ample (X×Y )-(G×H)-module.
Similarly as in (4.1), we define H̃X := HX×Y ⊗ `2 = HX ⊗ `2(H)⊗HY ⊗ `2
and

ρ̃X := ρX ⊗ id`2(H)⊗HY ⊗`2 : C0(X)→ B(H̃X) .
In addition, let ρ̃Y := idHX ⊗ρ̂Y and ũH := idHX ⊗ûH . Then we obtain
ρ̃Y o ũH = idHX ⊗(ρ̂Y o ûH) : c̄redY ored H ↪→ B(H̃X). Note that the
definitions of ρ̃Y and ρ̃X are slightly different than in Section 4.1.1 because
here we use `2(H) as an additional tensor factor in H̃X . This allows us to
use the reduced crossed product.
Now the following equivariant versions of the lemmas from Section 4.1.1

hold. Here we let E∗G(ρ̃X) ⊂ B(H̃X) denote the C∗-algebra generated by
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all the G-equivariant operators of finite propagation. Then by the same
argument as for Lemma 4.2, the C∗-algebra C∗G(ρ̃X) is an ideal in E∗G(ρ̃X).

Lemma 5.14. — The images of the two representations

τ : C∗G×H(ρX×Y )→ B(H̃X) given by S 7→ S ⊗ id`2 ,

ρ̃Y o ũH : c̄redY ored H → B(H̃X) defined above ,

are contained in E∗G(ρ̃X).

Proof. — The operators considered here are clearly G-equivariant. Thus
for the first part the argument is the same as for Lemma 4.3. For the second
part, we use in addition that the operators ũH(h) for h ∈ H commute with
the image of ρ̃X and hence have propagation zero. �

Lemma 5.15. — The images of the ∗-homomorphisms C∗G×H(ρX×Y )
→ E∗G(ρ̃X) and c̄redY oredH → E∗G(ρ̃X) obtained from the previous lemma
commute up to C∗G(ρ̃X).

Proof. — The image of ρ̃Y o ũH : c̄redY ored H → E∗G(ρ̃X) has a dense
subset consisting of linear combinations of products of operators of the
form ρ̃Y (f) = idHX ⊗ id`2(H)⊗ρ̄Y (f), where f ∈ c̄red(f), with operators
of the form ũH(h) = idHX ⊗λH(h) ⊗ uH(h) ⊗ id`2 , where h ∈ H. Thus it
suffices to show that the commutators[

S ⊗ id`2 , idHX ⊗ id`2(H)⊗ρ̄Y (f)
]
,(5.8)

[S ⊗ id`2 , ũH(h)](5.9)

are contained in C∗G(ρ̃X) for S ∈ C∗G×H(ρX×Y ), f ∈ c̄red(Y ) and h ∈ H.
We may also assume that S has finite propagation. Then the proof of
Lemma 4.5 (applied to the Y -module `2(H)⊗HY with the representation
id`2(H)⊗ρY ) shows that (5.8) is an element of C∗(ρ̃X) with finite propa-
gation. It is also G-equivariant because S is. Hence (5.8) is an element of
C∗G(ρ̃X). Finally, S ⊗ id`2 is H-equivariant because S is. That is, it com-
mutes with ũH(h) and thus (5.9) is zero. �

Hence as an analogue of (4.3) we get an induced ∗-homomorphism

Φ: C∗G×H(ρX×Y )⊗max
(
c̄redY ored H

)
→ E∗G(ρ̃X)/C∗G(ρ̃X)

given by S ⊗ fδh 7→ [τ(S) ◦ ρ̃Y (f) ◦ ũH(h)].
A slight elaboration of the proof of Lemma 4.6 shows the following.

Lemma 5.16. — The above ∗-homomorphism Φ factors through the
C∗-algebra

C∗G×H(ρX×Y )⊗max
c̄redY ored H

C0(Y,K) ored H
.

TOME 71 (2021), FASCICULE 3



990 Alexander ENGEL, Christopher WULFF & Rudolf ZEIDLER

That is, it defines a ∗-homomorphism

(5.10) C∗G×H(ρX×Y )⊗max
c̄redY ored H

C0(Y,K) ored H
→ E∗G(ρ̃X)/C∗G(ρ̃X).

Unfortunately, in general we cannot use credY ored H in the above due
to a potential failure of exactness in the sequence C0(Y,K) ored H →
c̄red(Y )oredH → cred(Y )oredH. If H is an exact group, then this presents
no issues. More generally, we can remedy this by using an exact crossed
functor oµ in the sense of [7, Definition 3.1] instead of ored. Indeed, we
deduce the next proposition immediately from (5.10).

Proposition 5.17. — Let oµ be an exact crossed product functor.
Then there is a homomorphism

(5.11) Ψµ : C∗G×H(ρX×Y )⊗max
(
credY oµ H

)
→ E∗G(ρ̃X)/C∗G(ρ̃X)

induced by S ⊗ [f ]δh 7→ [τ(S) ◦ ρ̃Y (f) ◦ ũH(h)].

Definition 5.18. — By the same construction as in Definition 4.7, we
obtain the slant product

(5.12) Kp

(
C∗G×H(X × Y )

)
⊗K1−q

(
credY oµ H

)
→ Kp−q (C∗GX)

for any exact crossed product functor oµ. If H is an exact group, we also
obtain (5.12) for µ = red.

5.3.2. The slant product on the equivariant localization algebras

We define E∗G,L(ρ̃X) as the C∗-subalgebra of Cb([1,∞),E∗G(ρ̃X)) gen-
erated by the bounded and uniformly continuous functions S : [1,∞) →
E∗G(ρ̃X) such that the propagation of S(t) is finite for all t > 1 and tends
to zero as t→∞. Similarly we define E∗G,L,0(ρ̃X) as the ideal in E∗G,L(ρ̃X)
consisting of all maps that vanish at 1. Note that C∗G,L(ρ̃X) is an ideal
in E∗G,L(ρ̃X) and C∗G,L,0(ρ̃X) is even an ideal in all of the three E∗G,L(ρ̃X),
E∗G,L,0(ρ̃X) and of course C∗G,L(ρ̃X).

Lemma 5.19. — The following analogue of Lemma 4.8 holds.
(1) The images of the two isometric ∗-homomorphisms

τL : C∗G×H,L(ρX×Y )→ Cb

(
[1,∞),BH̃X)

)
,

which is obtained by applying the functor Cb([1,∞),−) to τ , and

ρ̃Y,H,L : c̄redY ored H
ρ̃Y oredũH−−−−−−−→ B(H̃X) inclusion−−−−−−→

as constant
functions

Cb

(
[1,∞),B(H̃X)

)
,

are contained in E∗G,L(ρ̃X).
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(2) The image of τL commutes up to C∗G,L(ρ̃X) with the image of
c̄redY ored H under ρ̃Y,H,L and the image of C∗L,0(ρX×Y ) under
τL commutes up to C∗L,0(ρ̃X) with the image of c̄redY under ρ̃Y,L.
Hence they induce ∗-homomorphisms

ΦL : C∗G×H,L(ρX ×Y )⊗max c̄redY ored H → E∗G,L(ρ̃X)/C∗G,L(ρ̃X)

ΦL, 0 : C∗G×H,L,0(ρX ×Y )⊗max c̄redY ored H → E∗G,L(ρ̃X)/C∗G,L,0(ρ̃X)

given by S⊗ f 7→ [τL(S) ◦ ρ̃Y,H,L(f)] and the image of ΦL,0 is even
contained in E∗G,L,0(ρ̃X)/C∗G,L,0(ρ̃X).

(3) Let µ be an exact crossed product functor. Then the ∗-homomor-
phisms ΦL and ΦL,0 factor through C∗L(ρX×Y )⊗max c

redY oµH and
C∗L,0(ρX×Y ) ⊗max credY oµ H, respectively. In other words, they
define ∗-homomorphisms

ΨL : C∗G×H,L(ρX ×Y )⊗max credY oµ H → E∗G,L(ρ̃X)/C∗G,L(ρ̃X) ,

ΨL, 0 : C∗G×H,L,0(ρX ×Y )⊗max credY oµ H → E∗G,L,0(ρ̃X)/C∗G,L,0(ρ̃X) .

Definition 5.20. — Let µ be an exact crossed product functor. By
Lemma 5.19 we obtain the following slant products analogously as in Def-
inition 4.9.

KG×H
p (X × Y )⊗K1−q

(
credY oµ H

)
→ KG

p−q(X),

SG×Hp (X × Y )⊗K1−q
(
credY oµ H

)
→ SGp−q(X).

If the group H is exact, we also obtain the above for µ = red.

5.4. Properties of the equivariant slant products

In this section we state the properties of the equivariant slant products
which are analogous to those of the non-equivariant one.

The following compatibility of the slant products with the equivari-
ant Higson–Roe sequence is proven in exactly the same way as its non-
equivariant counterpart Theorem 4.10 by decorating everything with the
groups G and H.

Theorem 5.21. — The diagram

SG×Hp (X × Y ) //

/θ

��

KG×H
p (X × Y ) //

/θ

��

Kp

(
C∗G×H(X × Y )

)
/θ

��

∂ // SG×Hp−1 (X × Y )

/θ

��

SGp−q(X) // KG
p−q(X) // Kp−q (C∗GX) ∂ // KG

p−1−q(X)
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commutes for every θ ∈ K1−q(credY oµ H).

In Section 4.3 we had shown that our non-equivariant slant product for
the localization algebra factors through co-assembly and the usual slant
product between K-homology and K-theory. Now we shall show that our
slant product for the equivariant localization algebra also factors through
our version of co-assembly from Section 5.1. The first part of Section 4.3
goes through equivariantly. That is, one obtains an isomorphism

K∗
(
C∗G,L(X)

) ∼= EG∗ (C0(X),C)

and the latter group is, by definition, the equivariant K-homology group
KG
∗ (X) in the E-theory picture. However, there is no already well known

slant product between equivariant K-homology and equivariant K-theory
defined via equivariant E-theory, as explained earlier. Instead we turn an
equivariant version of Lemma 4.19 into a definition.
Consider the map

ΥL : C∗G×H,L(ρX ×Y )⊗ C0(Y,K) oH→ C∗G,L(ρ̃X)/C0([1,∞),C∗(ρ̃X)),

(Tt)t∈ [1,∞) ⊗ f 7→
[
(τ(Tt) ◦ (ρ̃Y o ũH) (f))t∈ [1,∞)

]
.

By enriching the reasoning in Section 4.3 with the ideas of the proofs of
Lemmas 5.14 and 5.15 we get that ΥL is a well-defined ∗-homomorphism.

Definition 5.22. — The slant product between equivariant K-homolo-
gy and equivariant K-theory is defined as the composition

KG×H
p (X × Y )⊗Kq

H(Y ) ∼= Kp

(
C∗G×H,L(ρX×Y )

)
⊗K−q(C0(Y,K) oH)

�−→ Kp−q
(
C∗G×H,L(ρX×Y )⊗ C0(Y,K) oH

)
(ΥL)∗−−−−→ Kp−q

(
C∗G,L(ρ̃X)/C0([1,∞),C∗G(ρ̃X))

)
∼=−→ Kp−q

(
C∗G,L(ρ̃X)

) ∼= KG
p−q(X),

where the third map is the inverse of the isomorphism induced on K-theory
by the canonical projection C∗G,L(ρ̃X)→ C∗G,L(ρ̃X)/C0([1,∞),C∗G(ρ̃X)).

The proofs of Proposition 4.17, Corollary 4.18 and Theorem 4.13 in Sec-
tion 4.3 now generalize to the equivariant case to yield the following equi-
variant version of Theorem 4.13.

Theorem 5.23. — Let Y have continuously bounded geometry. The
slant product on the localization algebra from Definition 5.20 and the slant
product from Definition 5.22 are related to each other via the co-assembly
map

µ∗H : K∗
(
credY oµ H

)
→ K1−∗

H (Y )
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in the sense that x/θ = x/µ∗Hθ for all x ∈ KG×H
∗ (X × Y ) and θ ∈

K∗(credY oµ H).

Next, Theorem 4.20 and Corollary 4.23 can also be generalized to the
equivariant cases.

Theorem 5.24. — Let G,H,K be countable discrete groups acting
properly and isometrically on proper metric spaces X,Y, Z and assume
that Z has bounded geometry. Then the compositions

KG
m(X) ×z

// KG×H×K
m+p (X × Y × Z)

/θ
// KG×H

m+p−q(X × Y )

SGm(X) ×z
// SG×H×Km+p (X × Y × Z)

/θ
// SG×Hm+p−q(X × Y )

Km (C∗GX) ×z // Km+p
(
C∗G×H×K(X × Y × Z)

) /θ
// Km+p−q

(
C∗G×H(X × Y )

)
are equal to the external product with the appropriate slant product z/θ
for all m, p, q ∈ Z and all z, θ as follows:

• In the first two compositions z ∈ KH×K
p (Y × Z) and in the third

one z ∈ Kp(C∗H×K(Y × Z)).
• In the first composition either θ ∈ Kq

K(Z) or θ ∈ K1−q(credZoµK)
and in the other two θ ∈ K1−q(credZ oµ K).

Outline of proof. — The proof works almost word by word the same,
just that one has to replace the Hilbert space HZ by `2(K)⊗HZ at several
places within the constructions. The only difference is the case θ ∈ Kq

K(Z),
because we didn’t define the equivariant version of this slant product via
E-theory and hence it does not follow from abstract properties of E-theory.
Instead one has to prove it along the lines of the other cases, but using the
map ΥL instead of Ψ,ΨL or ΨL, 0. �

Definition 5.25. — The pairing

〈−,−〉 : Kp (C∗HY )⊗K1−q
(
credY oµ H

)
→ Kp−q(C∗{∗}) ∼=

{
Z p− q even
0 p− q odd

is defined as the special case of the equivariant slant product whereX = {∗}
is a single point equipped with the action of the trivial group. The same
construction applied to the localization algebra instead of the Roe algebra
also yields a pairing

〈−,−〉 : KH
p (Y )⊗K1−q

(
credY oµ H

)
→ Kp−q({∗}) ∼=

{
Z p− q even
0 p− q odd
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and similarily we also have a pairing

〈−,−〉 : KH
p (Y )⊗Kq

H(Y )→ Kp−q({∗}) ∼=

{
Z p− q even
0 p− q odd.

Corollary 5.26. — The compositions

KG
m(X) ×z

// KG×H
m+p (X × Y )

/θ
// KG

m+p−q(X)

SGm(X) ×z
// SG×Hm+p (X × Y )

/θ
// SGm+p−q(X)

Km (C∗GX) ×z
// Km+p

(
C∗G×H(X × Y )

) /θ
// Km+p−q (C∗GX)

are equal to the multiplication with 〈z, θ〉, which is either an integer, if p−q
is even, or zero by construction, if p− q odd, for all m, p, q ∈ Z and all z, θ
as follows:

• In the first two compositions z ∈ KH
p (Y ) and in the third z ∈

Kp(C∗HY ).
• In the first composition either θ ∈ Kq

H(Y ) or θ ∈ K1−q(credY oµH)
and in the other two θ ∈ K1−q(credY oµ H).

Next on the list is naturality.

Definition 5.27. — Let X,X ′ be proper metric spaces equipped with
proper isometric actions by the same countable discrete group G and fix an
ample X-G-module (HX , ρX , uG) and an ample X ′-G-module (HX′ , ρX′ ,

u′G). An isometry V : HX → HX′ is said to equivariantly cover an equivari-
ant coarse map α : X → X ′ if it covers α in the sense of Definition 4.25 and
is in addition equivariant with respect to uG and u′G. Similarily, a uniformly
continuous family of isometries V : [1,∞)→ B(HX , HX′) is said to equiv-
ariantly cover an equivariant uniformly continuous coarse map α : X → X ′

if it covers α in the sense of Definition 4.29 and is in addition equivariant.

Proposition 5.28 (see [60, Proposition 4.5.12, Theorems 5.2.6 and
6.6.3]). — Equivariantly covering (uniformly continuous families of) isome-
tries as in the previous definition always exist. Conjugation with an isome-
try V which equivariantly covers a coarse map α yields a ∗-homomorphism

AdV : C∗G(ρX)→ C∗G(ρX′)

and conjugation with a uniformly continuous family of isometries V which
equivariantly covers a unifomly continuous equivariant coarse map α yields
∗-homomorphisms

AdV : C∗G,L(ρX)→ C∗G,L(ρX′) , AdV : C∗G,L,0(ρX)→ C∗G,L,0(ρX′) .
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The induced maps on K-theory

K∗ (C∗GX)→ K∗ (C∗GX ′) , KG
∗ (X)→ KG

∗ (X ′) , SG∗ (X)→ SG∗ (X ′)

are independent of all choices, depend functorial on α and will all be de-
noted by α∗. Furthermore, they make the diagram

K∗+1 (C∗GX) ∂ //

α∗

��

SG∗ (X) //

α∗

��

KG
∗ (X) Ind //

α∗

��

K∗ (C∗GX)

α∗

��

K∗+1 (C∗GX ′)
∂ // SG∗ (X ′) // KG

∗ (X ′) Ind // K∗ (C∗GX ′)

commute.

Again, functoriality of KG
∗ (−) can be extended to G-equivariant proper

continuous maps and functoriality of SG∗ (−) can be extended to G-equiva-
riant continuous coarse maps by using different pictures of these groups.
This functoriality can be dealt with in exactly the same way as in the
non-equivariant case as described in Remark 4.32.
On the other side, contravariant functoriality of K∗(cred(−) o H) un-

der H-equivariant coarse maps and of K∗H(−) under H-equivariant proper
continuous maps is clear.
The equivariance can be implemented very easily into the proofs of The-

orem 4.28 and Theorem 4.31 and the proof can also be adapted to the
slant product between equivariant K-homology and equivariant K-theory
defined in Definition 5.22 by using the map ΥL instead of ΨL. One obtains
the following.

Theorem 5.29. — All the equivariant slant products are natural in the
sense that the formula

α∗(x/β∗(θ)) = (α× β)∗(x)/θ

holds in each of the following cases:
• α : X → X ′ and β : Y → Y ′ are equivariant coarse maps, x ∈

K∗(C∗G×H(X × Y )) and θ ∈ K∗(credY ′ oµ H).
• α : X → X ′ is an equivariant proper continuous map and β : Y →
Y ′ is a equivariant continuous coarse maps, x ∈ KG×H

∗ (X×Y ) and
θ ∈ K∗(credY ′ oµ H).

• α : X → X ′ and β : Y → Y ′ are equivariant continuous coarse maps,
x ∈ SG×H∗ (X × Y ) and θ ∈ K∗(credY ′ oµ H).

• α : X → X ′ and β : Y → Y ′ are equivariant proper continuous
maps, x ∈ KG×H

∗ (X × Y ) and θ ∈ K∗H(Y ′).
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Finally, using equivariant functoriality we get the same coarsification
results as in Section 4.6. More precisely, given any proper metric space X
equipped with a proper isometric action by a countable discrete group G,
it is possible to choose the discrete coarsely equivalent subspace X ′ ⊂ X to
be G-invariant. Then each Rips complex PRX ′ inherits a canonical proper
isometric G-action such that all the inclusion maps PRX ′ → PSX

′ for
R 6 S are equivariant continuous coarse equivalences.
Then we can define the equivariant coarse K-homology and the equivari-

ant coarse structure group as

KXG
∗ (X) := lim−→

R> 0
KG
∗ (PRX ′) and SXG

∗ (X) := lim−→
R> 0

SG∗ (PRX ′)

and similarily there is also a equivariant coarse K-theory which fits into a
Milnor-lim←−

1-sequence

0→ lim←−
R> 0

1K∗+1
G (PRX ′)→ KX∗G(X)→ lim←−

R> 0
K∗G (PRX ′)→ 0 .

All of the above groups are functorial under equivariant coarse maps in the
obvious way and the Milnor-lim←−

1-sequence is natural.
Again, the construction does not yield anything new for the K∗(C∗GX)

and K∗(credX oµ G). There is a natural equivariant coarsified version of
the Higson–Roe sequence

· · · → K∗+1 (C∗GX)→ SXG
∗ (X)→ KXG

∗ (X) µG−−→ K∗ (C∗GX)→ · · ·

and also a natural equivariant coarse co-assembly map

µ∗G : K1−∗
(
credX oµ G

)
→ KX∗G(X) .

Furthermore, the map X → P2RX
′ defined in (4.14) can also be assumed

to be equivariant by using an equivariant partition of unity {ϕx′}x′ ∈X , i.e.
one for which ϕgx′(gx) = ϕx′(x) forall x ∈ X, x′ ∈ X ′ and g ∈ G, and it
is unique up to equivariant homotopy equivalence which stays close to the
identity. Therefore we have canonical equivariant coarsification maps

cG : KG
∗ (X)→ KXG

∗ (X) and cG : SG∗ (X)→ SXG
∗ (X)

and a canonical equivariant co-coarsification map

c∗G : KX∗G(X)→ K∗G(X)
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which are natural under equivariant continuous coarse maps and make the
diagrams

KG
∗ (X)

µG
//

cG
��

K∗ (C∗GX) K1−∗
(
credX oµ G

) µ∗G //

µ∗G $$

K∗G(X)

KXG
∗ (X)

µG

>>

KX∗G(X)
c∗G

AA

commute.
Inserting the equivariance into the constructions of Section 4.6.3 now

gives rise to equivariant coarsified external and slant products

× : KXG
m(X)⊗KXH

n (Y ) → KXG×H
m+n (X × Y )

× : SXG
m(X)⊗KXH

n (Y ) → SXG×H
m+n (X × Y )

/ : KXG×H
p (X × Y )⊗KXq

H(Y ) → KXG
p−q(X)

/ : KXG×H
p (X × Y )⊗K1−q

(
credY oµ H

)
→ KXG

p−q(X)

/ : SXG×H
p (X × Y )⊗K1−q

(
credY oµ H

)
→ SXG

p−q(X)

and pairings

〈−,−〉 : KXH
p (Y )⊗KXq

H(Y ) → Kp−q(C)

〈−,−〉 : KXH
p (Y )⊗K1−q

(
credY oµ H

)
→ Kp−q(C)

which are natural under pairs of equivariant coarse maps, compatible with
the maps in the equivariant coarsified Higson–Roe sequence, the equivariant
coarsification and co-coarsification maps and co-assembly.
Furthermore, if Z is a third proper metric space of bounded geometry

with a proper isometric action by a countable discrete groupK, then taking
first the external product with an element z ∈ KXH×K

m (Y × Z) and then
the slant product with an element θ ∈ K1−n(credZ oµ K) or θ ∈ KXn

K(Z)
is equal to the external product with z/θ ∈ KXH

m−n(Y ), and in particular
if Y = {∗} is a one-point space trivially acted on by H = 1, then this
composition is equal to multiplication with 〈z, θ〉 = 〈z, µ∗(θ)〉 = 〈µ(z), θ〉,
if Z has continuously bounded geometry.

5.5. Compatibility with the non-equivariant version

In this section, we describe two ways in which the equivariant slant prod-
ucts from Section 5 are compatible with the construction in Section 4.

TOME 71 (2021), FASCICULE 3



998 Alexander ENGEL, Christopher WULFF & Rudolf ZEIDLER

To formulate the first type of compatibility concisely, we use the symbol
C∗? as a placeholder to denote either C∗, C∗L or C∗L,0. We consider the
canonical forgetful map

F : C∗G,?X → C∗?X

which is the inclusion map if C∗G,?X is defined on a given (X,G)-module
and C∗?X is defined on the underlying X-module. On the level of K-theory,
this induces a map

F∗ : HRG∗ (X)→ HR∗(X),

where we use the notation from Remark 1.12.
Recall that in Section 4 we have constructed slant products

/ : HRp(X × Y )⊗K1−q
(
credY

)
→ HRp−q(X)

and from Section 5 we have

/ : HRG×Hp (X × Y )⊗K1−q
(
credY oµ H

)
→ HRGp−q(X).

Moreover, there is the ∗-homomorphism

ι : credY → credY oµ H , f 7→ fδe ,

which is well-defined because H is discrete. Then we have the following
observation:

Proposition 5.30. — Let x ∈ HRG×Hp (X × Y ) and y ∈ K1−q(credY ).
Then

F∗(x/ι∗(y)) = F∗(x)/y ∈ HRp−q(X).

Proof. — Follows directly by comparing definitions. �

The second and more intricate type of compatibility deals with the case
of a free action. Indeed, if G acts freely on X, then there are canonical
induction isomorphisms for K-theory

(5.13) ZX : K∗G(X)
∼=−→ K∗(G\X),

and K-homology

(5.14) IX : KG
∗ (X)

∼=−→ K∗(G\X).

The isomorphism (5.13) follows from a canonical Morita equivalence
given by Green’s imprimitivity theorem, see [61, Corollary 4.11] for a text-
book reference. For (5.14) see [60, Theorem 6.5.15]. The main result of this
subsection is the following comparison theorem.
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Theorem 5.31. — Let X and Y be proper metric spaces which are
endowed with proper and free actions of countable discrete groups G and
H, respectively. Then the equivariant slant product on K-homology agrees
with the usual slant product on the corresponding quotient spaces up to
the isomorphisms (5.13), (5.14). In other words, the following diagram com-
mutes.

KG×H
p (X × Y )⊗Kq

H(Y ) KG
p−q(X)

Kp(G\X ×H\Y )⊗Kq(H\Y ) Kp−q(G\X)

/

IX×Y ⊗ZY IX
/

In view of Lemma 4.19 and our definitions of equivariant K-homology and
K-theory, Theorem 5.31 is equivalent to the following technical proposition.

Proposition 5.32. — Suppose we are in the setup of Theorem 5.31.
Then the equivariant slant product from Definition 5.22 agrees with the de-
scription of the slant product in Lemma 4.19 up to the isomorphisms (5.13),
(5.14). In other words, the following diagram commutes.

Kp

(
C∗G×H,L(X × Y )

)
⊗K−q(C0(Y ) oH) Kp−q

(
C∗G,LX

)
Kp (C∗L(G\X ×H\Y ))⊗K−q(C0(H\Y )) Kp−q (C∗L(G\X))

Def. 5.22

IX×Y ⊗ZY IX

Lem.4.19

To prove Theorem 5.32, we need an explicit description of the induc-
tion isomorphisms (5.13), (5.14). Start with an explicit Morita equivalence
which implements (5.13). We exhibit the construction from [61, Corol-
lary 4.11] for convenience of the reader. The expression

〈f |f ′〉C0(G\X) (Gx) :=
∑
g ∈G

f(g−1y)f ′(g−1y), f, f ′ ∈ Cc(X),

yields a (right) inner product on Cc(X) with values in Cc(G\X). Moreover,
Cc(G\X) acts on Cc(X) from the right by

(f · g)(x) = f(x)g(Gx), f ∈ Cc(X), g ∈ Cc(G\X).

Similarly, there is a left inner product on Cc(X) with values in Cc(X)oalgG

defined by

C0(X)oG〈f
′ | f〉 :=

∑
g ∈G

f ′ g · f δg, f ′, f ∈ Cc(X).
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and the crossed product Cc(X) oalg G acts from the left on Cc(X) by∑
g∈G

fg δg

 · f =
∑
g ∈G

fg(g · f).

The right action of Cc(G\X) commutes with the left action of Cc(X)oalgG.
Simultaneously completing Cc(X) and the coefficient algebras, we obtain
an C0(X)oG-C0(G\X)-Morita equivalence bimodule which we denote by
ZX . The isomorphism (5.13) is given by the ∗-isomorphism

φ : C0(X) oG
∼=−→ KC0(G\X)(ZX)

that is induced by the left action.
We denote the conjugate module of ZX by Z̄X . Then we have canonical

identifications

(5.15) ZY ⊗C0(G\X) Z̄X ∼= KC0(G\X)(ZX) ∼= C0(X) oG,

see [11, Corollary 8.2.15] for the first isomorphism. Similarly,

(5.16) Z̄X ⊗C0(X)oG ZX ∼= KC0(X)oG(Z̄X) ∼= C0(G\X).

Next, we describe the isomorphism (5.14) in a way that is compatible
with the above Morita equivalence. If we start with an ample G\X-module
HG\X , then ZX ⊗C0(G\X) HG\X is an ample (X,G)-module.(32) Similarly,
if HX is an ample (X,G)-module, then Z̄X ⊗C0(X)oG HX is an ample
G\X-module. Moreover, by (5.15), (5.16) these constructions are mutually
inverse up to canonical isomorphisms. Hence we will assume that the rep-
resentations on HX and HG\X have been chosen in such a way that we can
identify HX = ZX ⊗C0(G\X) HG\X and thus HG\X = Z̄X ⊗C0(X)oG HX .
We introduce the following auxilliary concept to describe (5.14).

Definition 5.33. — Let (St) ∈ C∗L(G\X) and (Tt) ∈ C∗G,L(X). We
say that (Tt) is a lift of (St) (or, alternatively, (St) is pushdown of (Tt)) if
for each z ∈ ZX we have

(Tz ◦ St − Tt ◦ Tz)t∈ [1,∞) ∈ C0
(
[1,∞),B(HG\X , HX)

)
,

(St ◦ T∗z − T∗z ◦ Tt)t∈ [1,∞) ∈ C0
(
[1,∞),B(HX , HG\X)

)
,

where

Tz : HG\X → HX = ZX ⊗C0(G\X) HG\X , ξ 7→ z ⊗ ξ.

(32)The proof that HX constructed in this way is ample can be reduced to the trivial
product situation X = G×X, compare the proof of Lemma 5.35.
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Notation 5.34. — To work with the defining conditions of lifts and push-
downs more conveniently, we will use the following notation: For two fami-
lies of linear operators (Tt)t∈ [1,∞) and (T̃ t)t∈ [1,∞) with the same domain
and target space, we write Tt ∼ T̃ t if Tt − T̃ t → 0 in operator norm. Then
the conditions from Definition 5.33 are equivalent to Tz ◦ St ∼ Tt ◦Tz and
St ◦ T∗z ∼ T∗z ◦ Tt.

In our constructions below, we will use the following ideal in the local-
ization algebra.

N∗G,L(X) :={
(Tt) ∈ C∗G,L(X)

∣∣∣∀ f ∈ C0(X) : lim
t→∞

TtρX(f) = lim
t→∞

ρX(f)Tt = 0
}

An Eilenberg swindle as in [60, Lemma 6.4.11] shows that the K-theory
of N∗G,L(X) vanishes. Hence the canonical map C∗G,L(X)→ C∗G,L(X)/N∗G,L
(X) induces an isomorphism on K-theory.

Lemma 5.35.
(i) Every (St) ∈ C∗L(G\X) admits a lift and every (Tt) ∈ C∗G,L(X)

admits a pushdown.
(ii) Let (Tt) ∈ C∗G,L(X) be a lift of (St) ∈ C∗L(G\X). Then we have

(Tt) ∈ N∗G,L(X) if and only if (St) ∈ N∗L(G\X).

Proof.
(i) The argument here is essentially the same construction as in [60,

Construction 6.5.14]. Let U ⊆ G\X be an open subset over which the
canonical projection π : X → G\X is trivialized, that is, π−1(U) ∼= G×U .
Let Zπ−1(U) be the closure of C0(π−1(U)) · ZX . Note that this is at the
same time the closure of ZX ·C0(U) and this module implements the Morita
equivalence from C0(π−1(U)) o G to C0(U). Since π−1(U) ∼= G × U , we
have

(5.17) Zπ−1(U) ∼= `2(G)⊗ C0(U)

and

(5.18) 1π−1(U)HX = Zπ−1(U) ⊗C0(U) 1UHG\X ∼= `2(G)⊗ 1UHG\X

Suppose for the moment that St has support inside U . That is, there
exists a continuous function χ : G\X → [0, 1] with supp(χ) ⊆ U such that
χSt = Stχ = St. Then set Tt := 1π−1(U)(id`2(G)⊗St)1π−1(U) ∈ C∗G,L(X),
where we implicitly use (5.18). We claim that Tt is a lift of St. Let z ∈
Cc(X) ⊆ ZX . Then, by construction, Tt ◦ Tz = Tt ◦ T(χ◦π)z, T∗z ◦ Tt =
T∗(χ◦π)z ◦ Tt, Tz ◦ St = T(χ◦π)z ◦ St and St ◦ T∗z = St ◦ T∗(χ◦π)z. Hence
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it suffices to check the defining condition of a lift for z ∈ Cc(π−1(U)) ⊆
Zπ−1(U) ⊆ ZX . In view of (5.17), we are then further reduced to checking
it for elements of the form z = δg ⊗ ϕ, where g ∈ G, ϕ ∈ Cc(U). Then

Tz ◦ St − Tt ◦ Tz =

ξ 7→ δg ⊗ [ϕ, St]︸ ︷︷ ︸
→0

ξ

→ 0

considered as a map HG\X → `2(G) ⊗ 1UHG\X ∼= 1π−1(U)HX ⊆ HX .
Similarly,

St ◦ T∗z − T∗z ◦ Tt =

δγ ⊗ ξ 7→ 〈δg|δγ〉 [St, ϕ]︸ ︷︷ ︸
→0

ξ

 ◦ 1π−1(U) → 0,

where the right-hand side is viewed as a composition

HX

1π−1(U)−−−−−→ 1π−1(U)HX
∼= `2(G)⊗ 1UHG\X → HG\X .

This shows that (Tt) is a lift of (St).
In general, we take a locally finite covering U of G\X such that π : X →

G\X is trivial over each U ∈ U . Then choose an `2-partition(33) of unity
(φU )U ∈U subordinate to U . Then for each U ∈ U , the element (φUStφU )
is supported inside U . Take the corresponding lift which was constructed
in the previous paragraph and denote it by (TUt ) ∈ C∗G,L(X). Then define
Tt :=

∑
U ∈U T

U
t . This is a strongly converging sum since the covering U

is locally finite and one can easily verify that (Tt) ∈ C∗G,L(X). We again
claim that (Tt) is the desired lift of (St). To prove this, now take z ∈ ZX ,
ϕ ∈ Cc(G\X). Then

Tzϕ
∑
U ∈U

φUStφU

= Tz
∑
U ∈U

ϕφUStφU ∼ Tz
∑
U ∈U

ϕφ2
USt = TzϕSt = Tz ϕSt,

where we use that [St, φU ] → 0 and the fact that the sums in the middle
terms have only finitely many non-zero entries because the covering U is
locally finite. Thus

Tzϕ ◦ St ∼
∑
U ∈U

Tz ϕ ◦ φUStφU ∼
∑
U ∈U

TUt ◦ Tz ϕ = Tt ◦ Tz ϕ,

(33)That means that (φ2
U ) is a partition of unity.
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where we again have used that the sums have only finitely many non-zero
entries. Since elements of the form zϕ are dense in ZX , we actually obtain

Tz ◦ St ∼ Tt ◦ Tz

for all z ∈ ZX . An analogous argument shows that St ◦ T∗z ∼ T∗z ◦ Tt. This
completes the proof that (Tt) is a lift of (St).
The existence of pushdowns is proved analogously by first solving the

problem for operators which are supported inside π−1(U) ∼= G × U . In-
deed, if an operator on `2(G) ⊗ 1UHG\X ⊆ HX is G-equivariant and has
sufficiently small propagation in X, then it is necessarily of the form id⊗S,
and hence has a pushdown. The general case can again be reduced to this
via an `2-partition of unity.

(ii) Suppose that (St) ∈ N∗L(G\X) and (Tt) ∈ C∗G,L(X) is a lift of (St).
Let z1, z2 ∈ ZX and ϕ ∈ C0(G\X). Then with f := C0(X)oG〈z1ϕ | z2〉 ∈
C0(X) oG, we have

fTt = Tz1ϕ ◦ T∗z2
◦ Tt ∼ Tz1ϕ ◦ St ◦ T∗z2

= Tz1 ◦ ϕSt︸︷︷︸
→0

◦T∗z2
→ 0.

and

Ttf = Tt ◦ Tz1ϕ ◦ T∗z2
∼ Tz1ϕ ◦ St ◦ T∗z2

= Tz1 ◦ ϕSt︸︷︷︸
→0

◦T∗z2
→ 0.

Since the left-module structure on ZY is full, this is enough to check that
(Tt) ∈ N∗G,L(X). The converse implication is proved analogously. �

The following proposition is an immediate consequence of Lemma 5.35.

Proposition 5.36. — Choosing pushdowns induces a well-defined
∗-isomorphism

IX :
C∗G,L(X)
N∗G,L(X)

∼=−→ C∗L(G\X)
N∗L(G\X) ,

with inverse given by choosing lifts. Together with the canonical isomor-
phisms K∗(C∗−,L(−) → K∗(C∗−,L(−)/N∗−,L(−)), this yields the isomor-
phism (5.14).

Since the construction of lifts and pushdowns in Lemma 5.35 is the same
as in [60, Construction 6.5.14], the isomorphism IX is indeed the same as
the one given by [60, Theorem 6.5.15].
To compose our slant product with the Morita equivalence, we need a

slightly more general version of the construction from Definition 5.22. To
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that end, let us fix “a—for the moment arbitrary—countably” generated
Hilbert C0(Y ) oH-module E. We will construct a ∗-homomorphism

(5.19) ΥL : C∗G×H,L(X × Y )⊗max KC0(Y )oH(E)→
C∗G,L(ρ̃X)

C0([1,∞),C∗G(ρ̃X)) ,

where we redefine H̃X := HX ⊗ (E ⊗C0(Y )oH HY ) and

ρ̃X o ũG := (ρX o uG)⊗ id⊗ id : C0(X) oG→ B(H̃X) .

Note that if E = (C0(Y ) o H) ⊗ `2 and we also replace HY by `2(H) ⊗
HY , then this reduces to our previous definitions. There is a canonical
∗-homomorphism

κE : KC0(Y )oH(E)→ E∗G,L(ρ̃X), K 7→
(
idHX ⊗K ⊗C0(Y )oH idHY

)
,

viewed as constant functions. Unfortunately, in general there is no canonical
map C∗G×H,L(X × Y ) → E∗G,L(ρ̃X) which would be required to precisely
mimic Definition 5.22. Instead, we use a similar scheme as in the con-
struction of the induction isomorphisms. The next definition, along with
its name, is inspired by the notion of “connection” which appears in the
construction of the Kasparov product (see for instance [9, Section 18.3]).

Definition 5.37. — Let (Tt) ∈ C∗G×H,L(X × Y ). We say (Ft) ∈ E∗G,L
(ρ̃X) is a connection for (Tt), if for each K ∈ KC0(X)oH(E), we have

(Ft ◦ κE(K))t∈ [1,∞) ∈ C∗G,L(ρ̃X),
(κE(K) ◦ Ft)t∈ [1,∞) ∈ C∗G,L(ρ̃X),

and for each e ∈ E we have

(Te ◦ Tt − Ft ◦ Te)t∈ [1,∞) ∈ C0

(
[1,∞),B

(
HX ⊗HY , H̃X

))
,

(Tt ◦ T∗e − T∗e ◦ Ft)t∈ [1,∞) ∈ C0

(
[1,∞),B

(
H̃X , HX ⊗HY

))
,

where

Te : HX ⊗HY → H̃X
∼= E ⊗id⊗(C0(Y )oH) (HX ⊗HY ), ξ 7→ e⊗ ξ.

Lemma 5.38.
(i) Every (Tt) ∈ C∗G×H,L(X×Y ) admits a connection (Ft) ∈ E∗G,L(ρ̃X).
(ii) If (Ft) ∈ E∗G,L(ρ̃X) is a connection for (Tt) ∈ C∗G×H,L(X × Y and

K ∈ KC0(Y )oH(E), then [Ft, κE(K)] ∈ C0([1,∞),C∗G(ρ̃X)).
(iii) Let (Ft) ∈ E∗G,L(ρ̃X) be a connection for (Tt) ∈ C∗G×H,L(X × Y )

and K ∈ KC0(Y )oH(E).
• If (Tt) ∈ C0([1,∞),C∗G×H(X × Y )), then

(Ft ◦ κE(K)) ∈ C0 ([1,∞),C∗G(ρ̃X)) .
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• If (Tt) ∈ N∗G×H,L(X × Y ), then (Ft ◦ κE(K)) ∈ N∗G,L(ρ̃X).

Proof.
(i) We start with the case that E = (C0(Y ) o H) ⊗ `2 is the standard

Hilbert module over C0(Y ) oH. In this case, H̃X = HX ⊗HY ⊗ `2 and a
connection for (Tt) ∈ C∗G×H,L(X × Y ) is given by Ft := Tt ⊗ id`2 . This is
because for e = f ⊗ v ∈ E = (C0(Y ) oH)⊗ `2, we have

Te ◦ Tt − Ft ◦ Te =

ξ 7→ [(id⊗f) , Tt]︸ ︷︷ ︸
→ 0

ξ ⊗ v

→ 0

as an operatorHX⊗HY → HX⊗HY ⊗`2 and, similarly, Tt◦T∗e−T∗e◦Ft → 0.
Moreover, if K = f ⊗ L ∈ KC0(Y )oH(E) ∼= (C0(Y ) oH)⊗K(`2), then

Ft ◦ κE(K) = (Tt ◦ (idHX ⊗f))⊗ L ∈ C∗G,L(ρ̃X)

and similarly for κE(K) ◦ Ft.
In general, we apply Kasparov’s stabilization theorem to embed E into

(C0(Y ) o H) ⊗ `2 such that there exists an adjointable projection P on
(C0(Y ) o H) ⊗ `2 whose image is E. To complete the argument, observe
that if (F̂ t) is a connection for (Tt) with respect to the standard Hilbert
module, then Ft := PF̂ tP yields a connection with respect to E.
(ii) By the definition of the compact operators on a Hilbert module, the

image of κE is the closed linear span of elements Te1 ◦ T∗e2
= κE(|e1〉〈e2|),

where e1, e2 ∈ E. Hence the desired statement follows from the defining
conditions of a connection:

Ft ◦ Te1 ◦ T∗e2
∼ Te1 ◦ Tt ◦ T∗e2

∼ Te1 ◦ T∗e2
◦ Ft.

(iii) Suppose that (Tt) ∈ C0([1,∞),C∗G×H(X × Y )). As in the previous
part, we can assume that κE(K) = Te1 ◦ T∗e2

. Then

Ft ◦ κE(K) = Ft ◦ Te1 ◦ T∗e2
∼ Te1 ◦ Tt︸︷︷︸

→0

◦T∗e2
→ 0,

as required. If (Tt) ∈ N∗G×H,L(X × Y ), then let ϕ ∈ C0(Y ) and assume
κE(K) = Te1ϕ ◦ T∗e2

. This is justified because C0(Y ) contains an approxi-
mate identity of C0(Y ) oH. Then for each f ∈ C0(X), we have

ρ̃X(f) ◦ Ft ◦ κE(K) = ρ̃X(f) ◦ Ft ◦ Te1ϕ ◦ T∗e2

∼ ρ̃X(f) ◦ Te1ϕ ◦ Tt ◦ T∗e2

= Te1 ◦ (f ⊗ ϕ)Tt︸ ︷︷ ︸
→0

◦T∗e2
→ 0

and hence Ft ◦ κE(K) ∈ N∗G,L(ρ̃X). �
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We now can define (5.19) by

(Tt)⊗K 7→
[
(Ft ◦ κE(K))t∈ [1,∞)

]
,

where we choose a connection (Ft) for each (Tt). This is well-defined by
Lemma 5.38. In fact, it shows that this yields a well-defined ∗-homomor-
phism

(5.20) ΥL :
C∗G×H,L(X × Y )
N∗G×H,L(X × Y ) ⊗max KC0(Y )oH(E)→

C∗G,L(ρ̃X)
N∗G,L(ρ̃X) .

Since the K-theory of N∗L vanishes, this still defines a map

(5.21) Kp

(
C∗G×H,L(X × Y )

)
⊗K−q

(
KC0(Y )oH(E)

)
→ Kp−q

(
C∗G,L(X)

)
by a completely analogous recipe as Definition 5.22. If E is a full Hilbert
C0(Y ) oH-module, then K∗(KC0(Y )oH) ∼= K∗(C0(Y ) oH). In this case,
it can be verified that (5.21) agrees with the previous definition (5.22) by
embedding E into the standard module (C0(Y )oH)⊗ `2 via the Kasparov
stabilization theorem and replacing HY by `2(H)⊗HY .
Proof of Theorem 5.32. — We start with an arbitrary countably gen-

erated Hilbert-C0(Y ) o H-module EY that is full. Then let EH\Y :=
EY ⊗C0(Y )oHZY and φ : KC0(Y )oH(EY )→ KC0(H\Y )(EH\Y ) be the cano-
nical map S 7→ S ⊗ id. The map φ implements the isomorphism (5.13) in
this setup. In view of the previous discussion, it suffices to prove that the
following diagram commutes.

C∗G×H,L(X×Y )
N∗
G×H,L(X×Y ) ⊗max KC0(Y )oH(EY ) C∗G,L(ρ̃X)

N∗
G,L(ρ̃X)

C∗L(G\X×H\Y )
N∗L(G\X×H\Y ) ⊗max KC0(H\Y )(EH\Y ) C∗L(ρ̃G\X)

N∗L(ρ̃G\X)

ΥL

IX×Y ⊗φ IX

ΥL

Note that we have a canonical identification

(5.22)
EH\Y ⊗C0(H\Y ) HH\Y =

(
EY ⊗C0(Y )oH ZY

)
⊗C0(H\Y ) HH\Y

= EY ⊗C0(Y )oH
(
ZY ⊗C0(H\Y ) HH\Y

)
= EY ⊗C0(Y )oH HY

and hence

ZX ⊗C0(G\X) H̃G\X =
(
ZX ⊗C0(G\X) HG\X

)
⊗
(
EH\Y ⊗C0(H\Y ) HH\Y

)
= HX ⊗

(
EY ⊗C0(Y )oH HY

)
= H̃X .

Therefore it makes sense to consider the arrows entering the lower right
corner to land in the same C∗-algebra.
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Now let (Tt) ∈ C∗G×H,L(X × Y ) and K ∈ KC0(Y )oH(EY ). Choose a
pushdown (St) ∈ C∗L(G\X × H\Y ) for (Tt). Moreover, choose a connec-
tion (Ft) ∈ E∗G,L(ρ̃X) for (Tt) and a connection (Gt) ∈ E∗L(ρ̃G\X) for
(St). To prove the desired commutativity, we need to verify that Gt ◦
κEH\Y (φ(K)) is a pushdown of Ft ◦ κEY (K). First observe that (5.22)
identifies φ(K) ⊗C0(H\Y ) id with K ⊗C0(Y )oH id. Then let z ∈ ZX , w ∈
ZY , e ∈ EY and fix the following notation as in Definitions 5.33, 5.37.

Tz : HG\X → HX

Tw : HH\Y → HY

Te : HY → EY ⊗C0(Y )oH HY

We have e ⊗ w ∈ EY ⊗C0(Y )oH ZY = EH\Y and up to the identifica-
tion (5.22) the following maps are equal.

Te⊗w = Te ◦ Tw : HH\Y → EH\Y ⊗C0(H\Y ) HH\Y = EY ⊗C0(Y )oH HY

As before, the image of κEY is the closed linear span of operators of the
form Te1 ◦ T∗e2

, where e1, e2 ∈ EY . Thus we can assume without loss of
generality that

K ⊗C0(Y )oH idHY = φ(K)⊗C0(H\Y ) idHY = Te1 ◦ T∗e2
.

Hence

Ft ◦ κEY (K) ◦ (Tz ⊗ id) = Ft ◦
(
id⊗Te1 ◦ T∗e2

)
◦ (Tz ⊗ id)

= Ft ◦ (id⊗Te1) ◦
(
Tz ⊗ T∗e2

)
∼ (id⊗Te1) ◦ Tt ◦

(
Tz ⊗ T∗e2

)
because (Ft) is a connection for (Tt). We can furthermore assume that
e2 = e′2 C0(Y )oH〈w′ | w〉, where e′2 ∈ EY , w,w′ ∈ ZY because such elements
are dense. Then Te2 = Te′2 ◦ Tw′ ◦ T

∗
w and we continue

(id⊗Te1) ◦ Tt◦
(
Tz ⊗ T∗e2

)
= (id⊗Te1) ◦ Tt ◦ (Tz ⊗ Tw) ◦

(
id⊗T∗w′ ◦ T∗e′2

)
∼ (id⊗Te1) ◦ (Tz ⊗ Tw) ◦ St ◦

(
id⊗T∗w′ ◦ T∗e′2

)
= (Tz ⊗ id) ◦

id⊗Te1 ◦ Tw︸ ︷︷ ︸
Te1⊗w

 ◦ St ◦ (id⊗T∗w′ ◦ T∗e′2
)

∼ (Tz ⊗ id) ◦Gt ◦ (id⊗Te1 ◦ Tw) ◦
(

id⊗T∗w′ ◦ T∗e′2
)
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= (Tz ⊗ id) ◦Gt ◦
(
id⊗Te1 ◦ T∗e2

)
= (Tz ⊗ id) ◦Gt ◦ (id⊗φ(K)⊗ id)
= (Tz ⊗ id) ◦Gt ◦ κEH\Y (φ(K)) .

because (St) is a pushdown of (Tt) and (Gt) is a connection for (St). Hence

Ft ◦ κEY (K) ◦ (Tz ⊗ id) ∼ (Tz ⊗ id) ◦Gt ◦ κEH\Y (φ(K)).

A completely analogous argument also proves that

(T∗z ⊗ id) ◦ Ft ◦ κEY (K) ∼ Gt ◦ κEH\Y (φ(K)) ◦ (T∗z ⊗ id) .

Thus (Gt) is a pushdown of (Ft), as required. �

This finishes the proof of Theorem 5.31.

6. Injectivity of external products

In this section, we deduce our injectivity results for external product
maps using the machinery developed in Sections 4, Section 5. In the fol-
lowing statements, we fix an exact crossed product functor µ or µ = red if
H is exact. Here and in the following, we will use the notation convention
from Remark 1.12. We start with an injectivity result for the external prod-
uct with a single element. This is a direct consequence of our equivariant
slant products.

Theorem 6.1. — Let Y be a proper metric space of continuously boun-
ded geometry endowed with a proper action of a countable discrete group
H. Let y ∈ KH

n (Y ) be such that there exists ϑ ∈ K1−n(credY oµ H) with
〈y, µ∗Hϑ〉 = 1 (or with 〈y, µ∗Hϑ〉 6= 0).
Then for every proper metric space X endowed with a proper action of

a countable discrete group G, the external product

HRG∗ (X) ×y−−→ HRG×H∗+n (X × Y )

is (rationally) split-injective.

Proof. — It follows from Corollary 5.26 that a retraction for ×y is given
by (a rational multiple of) the map

HRG×Hp+n (X × Y ) /ϑ−→ HRGp (X).

�

If the equivariant coarse co-assembly map is rationally surjective, then
we obtain rational injectivity of the entire external product map in the
presence of a free action on the second factor.
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Theorem 6.2. — Let Y be a proper metric space of continuously boun-
ded geometry endowed with a proper and free action of a countable discrete
group H. Suppose that the equivariant coarse co-assembly map

µ∗H : K1−∗
(
credY oµ H

)
→ K∗H(Y )

is rationally surjective.
Then for every proper metric space X endowed with a proper action of

a countable discrete group G, the external product

HRGm(X)⊗KH
n (Y )→ HRG×Hm+n (X × Y )

is rationally injective for every m,n ∈ Z.

Proof. — First observe that the universal coefficient theorem implies
that the pairing between K-theory and homology induces an isomorphism

Kn(H\Y )⊗Q ∼= Hom (Kn(H\Y ),Q) .

Since the action of H on Y is free, it follows from Definition 5.25, Theo-
rem 5.31 that the pairing between KH

n (Y ) and Kn
H(Y ) is equivalent to the

pairing between Kn(H\Y ) and Kn(H\Y ). Thus we also have an isomor-
phism

(6.1) KH
n (Y )⊗Q ∼= Hom (Kn

H(Y ),Q) .

Now pick a Q-basis (θi)i∈ I for Kn
H(Y ) ⊗ Q. By exploiting the rational

surjectivity of the equivariant coarse co-assembly map and possibly mul-
tiplying the basis elements with integers, we can assume that there are
elements ϑi ∈ K1−n(credY oµH) with µ∗(ϑi) = θi for all i ∈ I. We use the
equivariant slant products with all ϑi simultaneously. By Corollary 5.26,
this yields a commutative diagram

HRGm(X)⊗KH
n (Y )⊗Q HRG×Hm+n (X × Y )⊗Q

HRGm(X)⊗
∏
i∈ I Q

∏
i∈I
(
HRGm(X)⊗Q

)
.

×

∼= id⊗
∏

i∈ I
〈−,θi〉

∏
i∈ I

/ϑi

The left vertical arrow is an isomorphism by (6.1) and the lower horizontal
arrow is injective for abstract reasons. Consequently, this proves that the
external product map is injective. �

Remark 6.3. — At first glance, one might also hope for a coarse version
of the previous theorem using the definitions given in Section 4.6. That
is, for a proper metric space Y of bounded geometry such that the coarse
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co-assembly map µ∗ : K1−∗(credY ) → KX∗(Y ) is rationally surjective, the
external product maps

× : KXm(X) ⊗ KXn(Y )→ KXm+n(X × Y )
× : SXm(X) ⊗ KXn(X)→ SXm+n(X × Y )
× : Km(C∗X) ⊗ KXn(Y )→ Km+n(C∗(X × Y ))

should be rationally injective.(34) However, there seems to be little hope.
The proof of Theorem 6.2 does not work in this situation because the
pairing between KXn(Y ) and KXn(Y ) can be degenerate in general.

6.1. Proper metric spaces that are scaleable, combable or
coarsely embeddable

In this section we show that in many situations, where one can prove
the coarse Novikov conjecture, one can also prove injectivity of external
products on the non-equivariant version of the Higson–Roe sequence. In
the following, the space Y will come without a group action. In effect, we
will apply Theorem 6.2 for the case that H is the trivial group.

We refrain from recalling here the notions occuring in the following corol-
lary (like scaleable or combing) because they do not appear anywhere else
in this paper. The interested reader can find the relevant definitionsin the
references provided in the proof below. The corollary is stated as Corol-
lary 1.14 in the introduction.

Corollary 6.4. — Let Y be either
(a) a uniformly contractible, proper metric space of continuously boun-

ded geometry which is scaleable,
(b) a uniformly contractible, proper metric space of continuously boun-

ded geometry which admits an expanding and coherent combing,
or

(c) the universal cover EH of the classifying space BH of a group H, if
BH is a finite complex and H is coarsely embeddable into a Hilbert
space.

Then for every proper metric space X endowed with a proper action of
a countable discrete group G, the external product

HRGm(X)⊗Kn(Y )→ HRGm+n(X × Y )

(34)The external product × : Km(C∗X)⊗KXn(Y )→ Km+n(C∗(X×Y )) is the external
product of the Roe algebras composed with the coarsified assembly map KXn(Y ) →
Kn(C∗Y ).
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is rationally injective for each m,n ∈ Z.

Proof. — In either case we will reduce to Theorem 6.2, where we take
H to be the trivial group. Then we need to show that the ordinary coarse
co-assembly map µ∗ : K1−∗(credY )→ K∗(Y ) is rationally surjective.

(a) Emerson and Meyer [27, Corollary 8.10] proved that under these
assumptions on Y its coarse co-assembly map is an isomorphism.

(b) Engel and Wulff proved that under these assumptions on the space
Y the coarse co-assembly map µ∗ : K1−∗(credY ) → KX∗(Y ) is sur-
jective [30, Theorem 5.10]. Because uniform contractibility of Y
implies KX∗(Y ) ∼= K∗(Y ), see Proposition 4.42, the claim follows.

(c) Emerson and Meyer [27, Section 9] proved that under these as-
sumptions on H its coarse co-assembly map µ∗ : K1−∗(credEH) →
KX∗(EH) is an isomorphism. In this case, EH is uniformly con-
tractible and so we get KX∗(H) ∼= K∗(EH) by Proposition 4.42.
Moreover, EH has continuously bounded geometry. �

6.2. Groups with a γ-element

The following result is also a consequence of Theorem 6.2 and was stated
as Theorem 1.7 in the introduction.

Corollary 6.5. — Let N be a finite aspherical complex, and assume
that H = π1N has a γ-element.
Then for every proper metric space X endowed with a proper action of

a countable discrete group G, the external product map

HRGm(X)⊗Kn(N)→ HRG×Hm+n (X × Ñ)

is rationally injective for each m,n ∈ Z.

Proof. — Since N is assumed to be a finite aspherical complex, the group
H is torsion-free and Ñ is an H-finite model for EH = EH. Hence by
Corollary 5.3 we conclude that the equivariant coarse co-assembly map

µ∗H : K1−∗

(
credÑ omax H

)
→ K∗H(Ñ) ∼= K∗(N)

is surjective. Thus we can apply Theorem 6.2 together with the isomor-
phism K∗(N) ∼= KH

∗ (Ñ). �

In the case of K-homology the above injectivity statement follows from
the Künneth formula and is therefore valid in full generality, that is, without
assuming the existence of a γ-element. But for the K-theory of the reduced
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group C∗-algebras, the Künneth formula is only known to hold if π1M

satisfies the Baum–Connes conjecture with coefficients in any C∗-algebras
with trivial π1M -action [21], which is a considerably stronger assumption
than the existence of a γ-element. We explore this in Section 7 below.

6.3. Higson-essentialness and hypereuclidean manifolds

We restate the definition of a Higson-essential manifold which was given
in Definition 1.4.

Definition 6.6. — We say that a complete Riemannian spinc-manifold
X of dimension m is Higson-essential if there exists ϑ ∈ K1−m(credX) such
that 〈[ /DX ], µ∗(ϑ)〉 = 1, where [ /DX ] ∈ Km(X) denotes the K-homological
fundamental class of the spinc-structure. If the condition is relaxed to
merely 〈[ /DX ], µ∗(ϑ)〉 6= 0, then X is called rationally Higson-essential.

Start with an immediate observation.

Proposition 6.7. — Let X be a complete Riemannian spinc-manifold
X of dimension m such that the coarse co-assembly map µ∗ : K1−m(credX)
→ Km(X) is (rationally) surjective. ThenX is (rationally) Higson-essential.

Proof. — This follows from the definition because there always exists a
class βX ∈ Km(X) such that 〈[ /DX ], βX〉 = 1. Indeed, βX can be taken to
be the Bott generator inside a coordinate patch Rm ⊂ X. �

Remark 6.8. — In particular, a complete spinc-manifold which is also a
space of a type considered in Corollary 6.4 is Higson-essential.

Higson-essentialness is an analytic condition. We will contrast it with the
following coarse geometric property which is a generalization of hypereucli-
dan manifolds from Definition 1.2.

Definition 6.9 (compare [15, Definition 2.11]). — We say a complete
oriented Riemannian manifoldX of dimensionm is coarsely hypereuclidean
if there exists a coarse map ϕ : X → Rm such that ϕ∗(c[X]) ∈ HXm(Rm) is
a generator, where HX∗ denotes coarse homology and c : Hlf

∗ (X)→ HX∗(X)
is the coarsification map. If the condition is relaxed to merely ϕ∗(c[X]) 6=
0 ∈ HXm(Rm), then X is called rationally coarsely hypereuclidean.

Moreover, we say that X is (rationally) stably coarsely hypereuclidean
if there is k ∈ N such that X × Rk is (rationally) coarsely hypereuclidean.

ANNALES DE L’INSTITUT FOURIER



SLANT PRODUCTS ON THE HIGSON–ROE EXACT SEQUENCE 1013

Since any proper Lipschitz map is coarse and the coarsification map is
an isomorphism for Rm, it is immediate that (rationally, stably) hyper-
euclidean in the sense of Definition 1.2 implies (rationally, stably) coarsely
hypereuclidean.

6.3.1. Coarsely hypereuclidean implies Higson-essential

In this subsection, we prove that stably coarsely hypereuclidan spinc-
manifolds are Higson-essential. To deal with the stable aspect, we need to
work with the suspension isomorphism for the stable Higson corona. We
discuss this in the following remark.

Remark 6.10 (Suspension for the stable Higson corona). — Let R− :=
(−∞, 0] and R+ := [0,∞). Then X × R = X × R− ∪X × R+ is a coarsely
excisive cover by closed subsets. We then have three pull-back diagrams of
C∗-algebras of the form

C(X × R) //

��

C(X × R+)

��

C(X × R−) // C(X),

where C ∈ {C0(−,K), c̄red, cred}. Moreover, all maps in these diagrams are
surjections. These properties follow from [59, Lemmas 3.3 and 3.4]. Asso-
ciated to each of these pullback diagrams we have a long exact Mayer–
Vietoris sequence in K-theory [9, Section 21.2]. As X × R± is flasque,
K∗(C(X × R±)) = 0. Thus the boundary maps in the Mayer–Vietoris se-
quences yield isomorphisms Σ: K∗(C(X))

∼=−→ K∗−1(C(X × R)). Applying
the functorial exact sequence 0 → C0(−,K) → c̄red(−) → cred(−) → 0
yields an exact sequence of pullback diagrams. Thus the co-assembly map,
which is the boundary map associated to 0 → C0(−,K) → c̄red(−) →
cred(−) → 0, commutes with the Mayer–Vietoris boundary map up to a
sign. In other words, we have the diagram

K∗(X) Σ // K∗+1(X × R)

K1−∗
(
credX

) Σ //

µ∗

OO

K1−(∗+1)
(
cred(X × R)

)µ∗

OO

which commutes up to multiplication with −1.

We are now ready to to prove the main theorem of this subsection.
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Theorem 6.11. — Let X be anm-dimensional (rationally) stably coar-
sely hypereuclidean spinc-manifold. ThenX is (rationally) Higson-essential.

Proof. — By assumption, we have a coarse map ϕ : X×Rk → Rm+k such
that ϕ∗c[X × Rk] = dc[Rm+k], where d = (or d 6= 0 ∈ Z, respectively). We
first observe that then the same applies to the K-homological fundamental
clases, that is,

ϕ∗c
[
/DX×Rk

]
= dc

[
/DRm+k

]
∈ KXm+k

(
Rm+k) .

This follows from the Chern character. Indeed,

ch∗
([
/DX×Rk

])
∈
⊕
i∈N

Hlf
m+k−2i

(
X × Rk;Q

)
is the Poincaré dual of the Todd class Td(X ×Rk) of X ×Rk. Since Rm+k

has coarse and locally finite homology only in degree m + k, only the top
degree component of ch∗([ /DX×Rk ]) contributes to ch∗(ϕ∗c[ /DX×Rk ]). As the
degree zero part of Td(X × Rk) is 1, this component is [X × Rk] and we
conclude that

ch∗
(
ϕ∗c

[
/DX×Rk

])
= ϕ∗c

[
X × Rk

]
= dc

[
Rm+k] ∈ HXm+k

(
Rm+k;Q

)
.

This also implies the desired integral equality because the transformation
Z ∼= HX∗(Rm+k)→ HX∗(Rm+k;Q) ∼= Q is injective.
Next, we consider the following commutative diagram (up to signs).

Km(X) Σk

∼=
// Km+k (X × Rk

)
Km+k (Rm+k)

KXm(X) Σk

∼=
//

c∗

OO

KXm+k (X × Rk
)c∗

OO

KXm+k (Rm+k)ϕ∗
oo

c∗ ∼=

OO

K1−m
(
credX

)µ∗

OO

Σk

∼=
// K1−m−k

(
cred(X × Rk)

)µ∗

OO

K1−m−k
(
credRm+k)ϕ∗

oo

µ∗ ∼=

OO

Here Σk signifies the k-fold application of the suspension ismorphism from
Remark 6.10. Let βRm+k ∈ Km+k(Rm+k) be the Bott generator and ϑRm+k

∈ K1−m−k(credRm+k) such that c∗µ∗ϑRm+k = βRm+k . Further, we set ϑ ∈
K1−m(credX) to be the unique element such that Σkϑ = ϕ∗ϑRm+k . To prove
that X is (rationally) Higson-essential, we need to verify that 〈[ /DX ], c∗µ∗ϑ〉
= ±d. Indeed, Σkµ∗ϑ = ±µ∗Σkϑ = ±µ∗ϕ∗ϑRm+k = ±ϕ∗µ∗ϑRm+k and
therefore
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〈[
/DX

]
, c∗µ∗ϑ

〉
=
〈[
/DX

]
×
[
/DRk

]
,Σkc∗µ∗ϑ

〉
=
〈[
/DX

]
×
[
/DRk

]
, c∗Σkµ∗ϑ

〉
= ±

〈[
/DX ×Rk

]
, c∗ϕ∗µ∗ϑRm+k

〉
= ±

〈
ϕ∗c

[
/DX×Rk

]
, µ∗ϑRm+k

〉
= ±

〈
dc
[
/DRm+k

]
, µ∗ϑRm+k

〉
= ±

〈
d
[
/DRm+k

]
, c∗µ∗ϑRm+k

〉
= ±

〈
d
[
/DRm+k

]
, βRm+k

〉
= ±d . �

6.3.2. Injectivity of external products

The following result explains why the notion of Higson-essentialness is
useful for our purposes. It was stated as Theorem 1.5 in the introduction.

Corollary 6.12. — Let Y be an n-dimensional spinc-manifold of con-
tinuously bounded geometry. Suppose that Y is (rationally) Higson-essen-
tial (in particular, this is satisfied if Y is (rationally) stably coarsely hyper-
euclidean). Assume furthermore that Y is endowed with a proper action of
a countable discrete group H which preserves the spincstructure.
Then for every proper metric space X which is endowed with a proper

action of a countable discrete group G, the external product

HRG∗ (X) ×[ /DY ]−−−−→ HRG×H∗+n (X × Y )

is (rationally) split-injective.

Proof. — If [ /DY ] ∈ KH
n (Y ) denotes the equivariant fundamental class of

Y , then F∗[ /DY ] ∈ Kn(Y ) is the fundamental class of the underlying non-
equivariant spinc-manifold, where we used the notation from Section 5.5.
By assumption, there exists ϑ ∈ K1−n(credY ) with 〈F∗[ /DY ], µ∗ϑ〉 = d,
where d = 1 (or d 6= 0, respectively). Let ι : credY → credY oµ H be
the map which was also considered in Section 5.5. Then Definition 5.25,
Theorem 5.23, Lemma 5.30 imply that〈[

/DY

]
, µ∗Hι∗ϑ

〉
=
〈
F∗
[
/DY

]
, µ∗ϑ

〉
= d.

Thus we can apply Theorem 6.1. �
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6.3.3. Contractible manifolds

Assuming that the non-compact manifold is contractible (for instance,
consider the universal cover of an aspherical manifold), we get the following
stronger results.

Proposition 6.13. — Let Y be a contractible n-dimensional spinc-
manifold. Suppose that Y is (rationally) Higson-essential (in particular,
this is satisfied if Y is (rationally) stably coarsely hypereuclidean).

Then the coarse co-assembly map µ∗ : K1−∗(credY ) → K∗(Y ) is (ratio-
nally) surjective.

Proof. — Because Y is contractible, Poincaré duality for spinc-manifolds
(see for instance [40, Exercise 11.8.11]) implies

Kp(Y ) ∼= RKn−p(Y ) ∼= RKn−p(∗) ∼=

{
Z p ≡ n mod 2,
0 otherwise.

If Y is Higson-essential, by definition there exists a class in the image of the
co-assembly map which pairs to 1 with [ /DY ]. Such a class must generate
Kn(Y ) ∼= Z. If Y is only rationally Higson-essential, the co-assembly map
is still rationally non-trivial and hence rationally surjective as the target is
one-dimensional. �

Corollary 6.14. — Let Y be a contractible n-dimensional spinc-
manifold of continuously bounded geometry. Suppose that Y is rationally
Higson-essential (in particular, this is satisfied if Y is rationally stably
coarsely hypereuclidean).
Then for every proper metric space X endowed with a proper action

of a countable discrete group G, the external product

HRGm(X)⊗Kp(Y )→ HRGm+p(X × Y )

is rationally injective for each m, p ∈ Z.

Proof. — Combine Proposition 6.13, Theorem 6.2. �

7. Künneth theorems for the structure group

In this final section—which does not use the methods of the rest of the
paper—we deduce a full Künneth-like theorem for the analytic structure
group in the case that the Baum–Connes conjecture is satisfied.
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Theorem 7.1. — Let H be a countable discrete group. Assume that H
is torsion-free and satisfies the Baum–Connes conjecture for all coefficient
C∗-algebras with trivial H-action.(35)
Then for any simplicial complex M , the external product map

RSG∗ (M̃)⊗ RK∗(BH)→ RSG×H∗ (M̃ × EH),

where G = π1M , is rationally an isomorphism. If RK∗(BH) is torsion-free,
then it is integrally an isomorphism.

Proof. — We consider the following commutative diagram which is part
of a map between rationally exact sequences.

RSG∗ (M̃)⊗ RK∗(BH) //

��

RK∗(M)⊗ RK∗(BH) //

��

K∗ (C∗redG)⊗ RK∗(BH)

��

RSG×H∗ (M̃ × EH) // RK∗(M × BH) // K∗ (C∗red(G×H))

Indeed, the top sequence is the analytic exact sequence (1.7) for the space
M̃ tensored with RK∗(BH). The functor −⊗RK∗(BH) is rationally exact
and hence the top sequence is rationally an exact sequence. The lower
sequence is the analytic exact sequence (1.7) for the space M̃ × EH.

The middle vertical arrow is rationally an isomorphism due to the Kün-
neth formula for K-homology. Note that in general for any ring spectrum we
have a Künneth spectral sequence. But in the case of the complex K-theory
spectrum one can show that the spectral sequence degenerates suitably to
give rise to a short exact sequence. This follows by similar arguments as
presented in the remark on top of [43, page 62].
Because we assume H to be torsion-free and to satisfy the Baum–Connes

conjecture, the assembly map RK∗(BH)→ K∗(C∗redH) is an isomorphism.
Also, the reduced group C∗-algebra C∗redH satisfies the Künneth formula,
because we assume that H satisfies (the reduced version of) the Baum–
Connes conjecture for all coefficient C∗-algebras with trivial H-action.(36)
Hence the right vertical arrow in the diagram is rationally an isomorphism.
It follows from the five lemma that the left vertical arrow must also be

rationally an isomorphism.
If RK∗(BH) is torsion-free, then the functor −⊗RK∗(BH) is integrally

exact, that is, the top sequence in the above diagram is exact. Furthermore,

(35)For example, H could be a-T-menable [36] or it could be hyperbolic [42, 51].
(36)Tu [56] proved that if H is amenable, then C∗redH lies in the bootstrap class and
hence satisfies the Künneth formula. That C∗redH satisfies the Künneth formula if H
satisfies the Baum–Connes conjecture was proven by Chabert, Echterhoff and Oyono-
Oyono [21].

TOME 71 (2021), FASCICULE 3



1018 Alexander ENGEL, Christopher WULFF & Rudolf ZEIDLER

the Tor-terms in the Künneth formulas for the middle and right vertical
arrows vanish in this case and therefore these arrows are isomorphisms.
Therefore the left vertical arrow is also an isomorphism by the five-lemma.

�
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