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THE DENSITY OF FIBRES WITH A RATIONAL
POINT FOR A FIBRATION OVER HYPERSURFACES

OF LOW DEGREE

by Efthymios SOFOS & Erik VISSE-MARTINDALE

Abstract. — We prove asymptotics for the proportion of fibres with a rational
point in a conic bundle fibration. The base of the fibration is a general hypersurface
of low degree.
Résumé. — Nous établissons une formule asymptotique concernant la propor-

tion de fibres possédant un point rationnel dans le cas d’une fibration en coniques,
la base de la fibration étant une hypersurface générique de bas degré.

1. Introduction

Serre’s problem [15] regards the density of elements in a family of va-
rieties defined over Q that have a Q-rational point. Special cases have
been considered by Hooley [5, 6] Poonen–Voloch [11], Sofos [17], Browning–
Loughran [2], and Loughran–Takloo-Bighash–Tanimoto [9]. The recent in-
vestigation of Loughran [7] and Loughran–Smeets [8] provides an appro-
priate formulation of the problem and proves the conjectured upper bound
in considerable generality.
Assume that X is a variety over Q equipped with a dominant morphism

φ : X → PnQ. Letting H denote the usual Weil height on Pn(Q), Loughran
and Smeets conjectured [8, Conj. 1.6] under suitable assumptions on φ,
that for all large enough positive t, the cardinality of points b ∈ Pn(Q)
with height H(b) 6 t and such that the fibre φ−1(b) has a point in R and
Qp for every prime p, has order of magnitude

#{b ∈ Pn(Q) : H(b) 6 t}
(log t)∆(φ)

Keywords: Hardy-Littlewood circle method, Serre’s problem, fibres with a rational point.
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680 Efthymios SOFOS & Erik VISSE-MARTINDALE

for a non-negative quantity ∆(φ) that is defined in [8, (1.3)].
The cardinality of fibres of height at most t and possessing a Q-rational

point is bounded by the quantity they considered, while the two quantities
coincide if every fibre satisfies the Hasse principle. The problem of obtaining
the conjectured lower bound for the number of fibres of bounded height with
a Q-rational point when φ is general is considered rather hard because there
is no general machinery for producing Q-rational points on varieties.
There are only two instances in the literature of the subject where asymp-

totics have been proved unconditionally:
• the base of the fibration is a toric variety (Loughran [7]),
• the base of the fibration is a wonderful compactification of an
adjoint semi-simple algebraic group (Loughran–Takloo-Bighash–
Tanimoto [9]).

Our aim in this article is to extend the list above by proving asymptotics
in a case of a rather different nature. The base of the fibration of our main
theorem will be a generic hypersurface of large dimension compared to its
degree.

1.1. The set-up of our results

Let f1 and f2 be homogeneous forms in Z[t0, . . . , tn−1], of equal and even
degree d > 0 subject to some assumptions which are to follow.

We assume that both the projective varieties defined by f1(t) = 0 and
f2(t) = 0 are smooth and irreducible. Moreover we assume that the variety
defined by f1(t) = f2(t) = 0 is a complete intersection. This is satisfied
for generic f1 and f2 of fixed degree and in a fixed number of variables.
The next condition is artificial in nature but its presence allows to adapt
the arguments of Birch [1] to our problem. Letting σ(f1, f2) denote the
dimension of the variety given by

rk
(
∂fi
∂tj

)16i62

06j6n−1
(t) 6 1

when considered as a subvariety in AnC, we shall demand the validity of

(1.1) n− σ(f1, f2) > 3(d− 1)2d.

With more work along the lines of the present article, most of these
assumptions may be removed. However, the assumption that deg(f1) is
even seems necessary and (1.1) is vital for the entire strategy of the proof.
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THE DENSITY OF FIBRES WITH A RATIONAL POINT 681

Remark 1.1. — We assume that the varieties defined by fi(t) = 0 are
smooth, so they are also irreducible since smooth hypersurfaces in Pn−1

Q
are irreducible if n > 3 holds. In particular we have n > 12 by (1.1).

Let B ⊂ Pn−1
Q be the hypersurface given by f2(t) = 0. We recall that

by the work of Birch [1], B satisfies the Hasse principle, and moreover it
satisfies weak approximation by work of Skinner [16]. From now on we also
assume B(Q) 6= ∅.
For every i ∈ {0, . . . , n − 1} consider the subvariety Xi of P2

Q × An−1
Q

defined by

x2
0 + x2

1 = f1(t0, . . . , ti−1, 1, ti+1, . . . , tn−1)x2
2,

f2(t0, . . . , ti−1, 1, ti+1, . . . , tn−1) = 0.

The maps gi : Xi → B ⊂ Pn−1
Q sending a pair

((x0 : x1 : x2), (t0, . . . , ti−1, 1, ti+1, . . . , tn−1))

to (t0 : . . . : ti−1 : 1 : ti+1 : . . . : tn−1) glue together, defining a conic bundle
X over the base B – this uses that f1 has even degree. By assumption, f1
is not a multiple of f2, so the generic fibre of X is smooth.
If we were interested in counting Q-rational points on X then it would be

necessary to make a further study into the equations defining a projective
embedding of X (as in [3, §2]). Currently however, we are only interested
in counting how many fibres of the conic bundle have a Q-rational point.
A conic bundle is a dominant morphism all of whose fibres are conics and
whose generic fibre is smooth. In this article we consider the conic bundle

(1.2) φ : X → B

defined locally by gi. We shall estimate asymptotically the probability with
which the fibre φ−1(b) has a Q-point as b ranges over B(Q). For this, we
define

N(φ, t) := #
{
b ∈ B(Q) : H(b) 6 t, b ∈ φ(X(Q))

}
, t ∈ R>0,

where H is the usual naive Weil height on Pn−1(Q).

Remark 1.2. — Since the degree of f1 is even, the question if for a given
b ∈ B the fibre φ−1(b) contains a rational point is independent of a chosen
representative.

Consider the small quantity

(1.3) εd := 1
5(d− 1)2d+5 .
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682 Efthymios SOFOS & Erik VISSE-MARTINDALE

Theorem 1.3. — In the set-up above there exists a constant cφ such
that for t > 2 we have

N(φ, t) = cφ
tn−d

(log t) 1
2

+O

(
tn−d

(log t) 1
2 +εd

)
.

If φ has a smooth fibre with a Q-point then cφ is positive. This will be
shown in Theorem 5.4, where we shall also provide an interpretation for the
leading constant cφ. The proof of Theorem 1.3 will be given in Section 4.3.
The main idea is to feed sieve estimates coming from the Rosser–Iwaniec
half-dimensional sieve into the major arcs of the Birch circle method.
Theorem 1.3 settles the first case in the literature of an asymptotic for

the natural extension of Serre’s problem to fibrations over a base that does
not have the structure of a toric variety nor a wonderful compactification of
an adjoint semi-simple algebraic group. Fibrations that have a base other
than the projective space were also studied in the recent work of Browning
and Loughran [2, §1.2.2]. In light of the work of Birch [1], our assumptions
imply

#
{
b ∈ B(Q) : H(b) 6 t

}
� tn−d.

A very special case of [2, Thm. 1.4] proves limt→∞N(φ, t)/tn−d = 0,
whereas Theorem 1.3 provides asymptotics.

1.2. The logarithmic exponent

The power of log t occurring in our result is the one expected in the
literature. Indeed, in the works of Loughran and Smeets [8, (1.4)], and
Browning and Loughran [2, (1.3)], one may find the expected power ∆(φ)
defined as follows. For any b ∈ B with residue field κ(b), the fibre Xb =
φ−1(b) is called pseudo-split if every element of Gal(κ(b)/κ(b)) fixes some
multiplicity-one irreducible component of Xb × Spec(κ(b)). The fibre Xb is
called split if it contains a multiplicity-one irreducible component that is
also geometrically irreducible. Note that a split fibre is always pseudo-split
and further note that for conic bundles these two notions are the same as
the singular fibres are either double lines, or two lines intersecting.

Now for every codimension one point D ∈ B(1) choose a finite group ΓD
through which the action of Gal(κ(D)/κ(D)) on the irreducible components
of X

κ(D) factors. Let Γ◦D be the subset of elements of ΓD which fix some
multiplicity one irreducible component. One sets δD = #Γ◦D/#ΓD and

∆(φ) =
∑

D∈B(1)

(
1− δD

)
.

ANNALES DE L’INSTITUT FOURIER
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By considering the possible singular fibres, it is clear that for a conic bundle,
δD is different from 1 if and only if D is non-split.
In all the cases in the literature so far the power of (log t)−1 turns out to

be ∆. Indeed, this is also the case here. The only relevant codimension one
point to take into account is D := Z(f1, f2); every other fibre is smooth and
hence split. Suppose thatD is geometrically reducible, then the intersection
between any two geometrically irreducible components lies in the singular
locus of D, say Dsing. Being the intersection between varieties in projective
space of codimension at most 2, its codimension is at most 4.
The affine cone above Dsing is a subvariety of the affine variety defined by

rk
(
∂fi
∂tj

)16i62

06j6n−1
(t) 6 1.

As a subvariety, the affine cone over Dsing is at most σ(f1, f2), so its
codimension is at least n−σ(f1, f2). Hence the codimension of Dsing in PnQ
is at least n− σ(f1, f2)− 1. Hence we are led to an inequality

4 > n− σ(f1, f2)− 1 > 3(d− 1)2d − 1 > 11,

violating the combined assumptions (1.1) and d > 2. We conclude that D
is geometrically irreducible.
The fibre aboveD is given by x2

0+x2
1 = 0 over the function field κ(D) and

it is split if and only if −1 is a square in κ(D). However, it is well known
that the function field of a geometrically irreducible variety contains no
non-trivial separable algebraic extensions of the base field. Since −1 is not
a square in Q, neither is it in κ(D). Therefore, under the assumptions of
Theorem 1.3 we conclude that ∆(φ) = δD = 1

2 .
Alternatively, it was kindly remarked by the referee that one can prove

that D is geometrically integral by applying the Lefschetz hyperplane sec-
tion theorem to the hypersurface f1(t) = 0. Its divisor D can only be
reducible if the variety defined by f2(t) = 0 is also reducible, which con-
tradicts our assumptions on f2.

Notation. — The symbol N will denote the set of strictly positive inte-
gers. As usual, we denote the divisor, Euler and Möbius function by τ , ϕ
and µ. We shall make frequent use of the estimates

(1.4) τ(m)� m
1

log logm

and

(1.5) ϕ(m)� m/ log logm

TOME 71 (2021), FASCICULE 2



684 Efthymios SOFOS & Erik VISSE-MARTINDALE

valid for all integers m > 3 and found in [18, Thm. 5.4] and [18, Thm. 5.6]
respectively.
We consider the forms f1 and f2 constant throughout our paper, thus the

implied constants in the Vinogradov/Landau notation�, O( · ) are allowed
to depend on φ, f1, f2, n and d without further mention. Any dependence
of the implied constants on other parameters will be explicitly recorded by
the appropriate use of a subscript. For z ∈ C we let

e(z) := exp(2πiz).

The symbol vp(m) will refer to the standard p-adic valuation of an integer
m. Lastly, we shall use the Ramanujan sum, defined for a ∈ Z and q ∈ N
as

(1.6) cq(a) :=
∑

x∈(Z/qZ)∗
e(ax/q).

Denoting the indicator function of a set A by 1A, we have the following
equality,

(1.7) cpm(a) = pm−1(p1{vp(a)>m} − 1{vp(a)>m−1}
)
,

(p prime, a ∈ Z,m > 1).

Lastly, we shall make frequent use of the constant

(1.8) C0 :=
∏

p prime
p≡3(mod 4)

(
1− 1

p2

)1/2
.
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2. Using the Hardy–Littlewood circle method for Serre’s
problem

We begin by estimating the main quantity in Theorem 1.3 by averages
of an arithmetic function over a thin subset of integer vectors. Let us first
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THE DENSITY OF FIBRES WITH A RATIONAL POINT 685

define ϑQ : Z → {0, 1} as the indicator function of those integers m such
that the curve x2

0 + x2
1 = mx2

2 has a point over Q. For P ∈ R>0 we let

(2.1) ΘQ(P ) :=
∑

x∈Zn∩P [−1,1]n
f1(x)6=0,f2(x)=0

ϑQ(f1(x)).

In order to go from Q-solutions to coprime Z-solutions, we perform a stan-
dard Möbius transformation, where we cut off the range of summation at
the price of an error term. This is the content of the following lemma.

Lemma 2.1. — Under the assumptions of Theorem 1.3 we have for
t > 1,

N(B,φ, t) = 1
2

∑
l∈N∩[1,log(2t)]

µ(l)ΘQ(t/l) +O(tn−d(log 2t)−1).

Proof. — For any b ∈ Pn−1(Q) there exists a unique, up to sign, y ∈ Zn
with gcd(y0, . . . , yn−1) = 1 and b = [±y]. Recalling that the degree of f1 is
even, allows to infer that the fibre φ−1(b) has a rational point if and only
if ϑQ(f1(y)) = 1, hence

N(B,φ, t) = 1
2#

{
y ∈ Zn ∩ t[−1, 1]n :

gcd(y0, . . . , yn−1) = 1,
f2(y) = 0, ϑQ(f1(y)) = 1

}
.

If f1(y) = 0 then ϑQ(f1(y)) = 1 (since (0 : 0 : 1) is a point in φ−1([y]))
and, therefore, the quantity above is
1
2

∑
y∈Zn∩t[−1,1]n

gcd(y0,...,yn−1)=1
f2(y)=0,f1(y)6=0

ϑQ(f1(y)) +O(#{y ∈ Zn ∩ [−t, t]n : f1(y) = f2(y) = 0}).

The assumption (1.1) allows to apply [1, Thm. 1, p. 260] with R = 2 to
immediately obtain

#{y ∈ Zn ∩ t[−1, 1]n : f1(y) = f2(y) = 0} � tn−2d, (t > 1).

Thus we obtain equality with
1
2

∑
y∈Zn∩t[−1,1]n

gcd(y0,...,yn−1)=1
f1(y)6=0,f2(y)=0

ϑQ(f1(y)) +O(tn−2d).

Using Möbius inversion and letting y = lx we see that the sum over y
equals ∑

y∈Zn∩t[−1,1]n
f1(y)6=0,f2(y)=0

ϑQ(f1(y))
∑
l∈N
l|y

µ(l) =
∑
l6t

µ(l)
∑

x∈Zn∩ tl [−1,1]n
f1(x)6=0,f2(x)=0

ϑQ(f1(x)),

TOME 71 (2021), FASCICULE 2



686 Efthymios SOFOS & Erik VISSE-MARTINDALE

because ϑQ(f1(y)) = ϑQ(f1(x)) holds due to deg(f1) being even. Hence

N(B,φ, t) = 1
2

∑
l∈N∩[1,t]

µ(l)ΘQ(t/l) +O(tn−2d),

and now, using that both f1 and f2 are smooth, (1.1) and [1, Thm. 1,
p. 260] for R = 1 yields

|ΘQ(t)| 6 #{y ∈ Zn ∩ t[−1, 1]n : f2(y) = 0} � tn−d,

which shows that the collective contribution from large l is∣∣∣∣∣∣
∑

l∈N∩((log 2t),t]

µ(l)ΘQ(t/l)

∣∣∣∣∣∣
�

∑
l>log(2t)

(t/l)n−d � tn−d
∑

l>log(2t)

l−2 � tn−d(log 2t)−1,

where we used that n− d > 2 holds due to (1.1). �

For m < 0 the curve x2
0 +x2

1 = mx2
2 has no R-point, and therefore no Q-

point, hence ϑQ(m) = 0. Thus, denoting max{f1([−1, 1]n)} := max{f1(t) :
t ∈ [−1, 1]n}, it is evident that we have the equality

ΘQ(P ) =
∑
m∈N

m6max{f1([−1,1]n)}Pd

ϑQ(m)
∑

x∈Zn∩P [−1,1]n
f1(x)=m,f2(x)=0

1.

Writing dα for dα1dα2 and using the identity∫
α∈[0,1)2

e(α1(f1(x)−m)+α2f2(x))dα =
{

1, if f1(x) = m and f2(x) = 0,
0, otherwise,

shows the validity of

(2.2) ΘQ(P ) =
∫

α∈[0,1)2
S(α)EQ(α1)dα,

where one uses the notation

(2.3) S(α) :=
∑

x∈Zn∩P [−1,1]n
e(α1f1(x) + α2f2(x))

and

(2.4) EQ(α1) :=
∑
m∈N

m6max{f1([−1,1]n)}Pd

ϑQ(m)e(α1m).

One has the obvious bound EQ(α1)� P d from the triangle inequality. Re-
call the notation [1, p. 251, (4)–(7)], that we repeat here for the convenience

ANNALES DE L’INSTITUT FOURIER
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of the reader. For each a1, a2, q, the interval M(a1,a2),q(θ) consists of those
α ∈ [0, 1]2 satisfying

2|qαi − ai| 6 P−d+2(d−1)θ

for all i = 1, 2. For each 0 < θ 6 1 denote the set of “major arcs” by

M (θ) =
⋃

16q6P 2(d−1)θ

⋃
a

M(a1,a2),q(θ)

where the second union is over those a1, a2 satisfying both gcd(a1, a2, q) = 1
and 0 6 ai < q for all i = 1, 2.
Let us now deal with the complement of M (θ) that is usually referred

to as the “minor arcs”. In our case the number of equations, denoted by R
in [1], satisfies R = 2. For small positive θ0 and δ as in [1, p. 251, (10)–(11)],
that is 1 > δ + 16θ0 and n−σ

2d−1 − 6(d− 1) > 2δθ−1
0 we have∫

α/∈M (θ0)

∣∣S(α)EQ(α1)
∣∣dα 6

(∫
α/∈M (θ0)

|S(α)|dα

)
max

α1∈[0,1)
|EQ(α1)|,

hence, applying the result of [1, Lem. 4.4] on the first factor, and using the
trivial bound EQ(α1) � P d leads to the following bound on the integral
away from M (θ0):∫

α/∈M (θ0)

∣∣S(α)EQ(α1)
∣∣dα� Pn−d−δ.

By (2.2) this shows

ΘQ(P ) =
∫

α∈M (θ0)
S(α)EQ(α1)dα +O(Pn−d−δ).

Consistently modifying the setup, the following lemma is analogous to [1,
Lem. 4.5] and its proof is the same, using the notation introduced above.

Lemma 2.2. — For any θ0, δ satisfying [1, p. 251, (10)–(11)] and under
the assumptions of Theorem 1.3 we have

ΘQ(P ) =
∑

q6P 2(d−1)θ0

∑
a∈(Z∩[0,q))2

gcd(a1,a2,q)=1

∫
M ′

a,q(θ0)
S(α)EQ(α1)dα +O(Pn−d−δ),

where the modified set M ′
a,q(θ0) is defined in [1, p. 253] and consists of

those α ∈ [0, 1]2 satisfying |qαi − ai| 6 qP−d+2(d−1)θ0 .

For a ∈ (Z ∩ [0, q))2, write

(2.5) Sa,q :=
∑

x∈(Z∩[0,q))n
e
(
a1f1(x) + a2f2(x)

q

)

TOME 71 (2021), FASCICULE 2



688 Efthymios SOFOS & Erik VISSE-MARTINDALE

and for Γ ∈ R2 define

(2.6) I(Γ) :=
∫

ζ∈[−1,1]n
e(Γ1f1(ζ) + Γ2f2(ζ))dζ.

Recalling the notation η = 2(d− 1)θ0 of [1, p. 254, (2)], we now employ [1,
Lem. 5.1] with ν = 0 to evaluate S(α) and to see that under the assump-
tions of Lemma 2.2 we have

ΘQ(P )− Pn
∑

q6P 2(d−1)θ0

q−n

×
∑

a∈(Z∩[0,q))2

gcd(a1,a2,q)=1

Sa,q

∫
|β|6P−d+η

I(P dβ)EQ(β1 + a1/q)dβ

� Pn−d−δ + Pn−1+2η
∑
q6Pη

∑
a∈(Z∩[0,q))2

gcd(a1,a2,q)=1

∫
|β|6P−d+η

|EQ(β1 + a1/q)|dβ.

By using EQ(α)� P d once more we infer that the sum over q in the error
term above is

�
∑
q6Pη

q2P 2(−d+η)P d � P−d+5η,

hence we have proved the following lemma.

Lemma 2.3. — Under the assumptions of Lemma 2.2 the quantity
ΘQ(P )P−n+d equals∑

q6Pη

q−n
∑

a∈(Z∩[0,q))2

gcd(a1,a2,q)=1

Sa,q

∫
|β|6P−d+η

P dI(P dβ)EQ(β1 + a1/q)dβ

+O(P−δ + P−1+7η).

3. Exponential sums with terms detecting the existence of
rational points

As made clear by Lemma 2.3, to verify Theorem 1.3 we need to asymp-
totically estimate

EQ

(a1

q
+ β1

)
=

∑
m∈N∩[1,T ]

x2
0+x2

1=mx2
2 has a Q-point

e2πi( a1
q +β1)m,

for integers a1, q and β1 ∈ R and T = max{f1([−1, 1]n)}P d. It suffices
to first study the case β1 = 0, and then apply Lemma 3.6 at the end of

ANNALES DE L’INSTITUT FOURIER
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this section. To study EQ(a1/q) we shall rephrase the condition on m in
a way that it only regards the prime factorisation of m and then use the
Rosser–Iwaniec sieve.
We begin by alluding to the formulas regarding Hilbert symbols in [14,

Ch. III, Thm. 1], which show that for strictly positive integers m one has

(3.1) ϑQ(m) =
{

1, if p ≡ 3 (mod 4)⇒ vp(m) ≡ 0 (mod 2) ,
0, otherwise.

Indeed, for m ∈ Z>0, the curve x2
0 +x2

1 = mx2
2 defines a smooth conic in P2

with an R-point and the Hasse principle combined with Hilbert’s product
formula [14, Ch. III, Thm. 3] proves (3.1). The function in (3.1) is the
characteristic function of those integers m that are sums of two integral
squares, see [18, §4.8]. Landau [18, (4.90)] proved the following asymptotic:

(3.2)
∑

16m6x

ϑQ(m) = 1
21/2C0

x

(log x)1/2 +O

(
x

(log x)3/2

)
, x ∈ R>1,

but this is not sufficient for us, since we will need a similar result restricted
to those m in an arithmetic progression. Observe that the following holds
due to periodicity,

EQ

(a1

q

)
=

∑
m∈Z∩[1,T ]

x2
0+x2

1=mx2
2 has a Q-point

e2πi a1
q m =

∑
`∈Z∩[0,q)

e(a1`/q)
∑

16m6T
m≡`(mod q)

ϑQ(m).

The work of Rieger [12, Satz 1] could now be invoked to study the sum over
m ≡ ` (mod q) when gcd(`, q) = 1. One could attempt to use this to get
asymptotic formulas for the cases with gcd(`, q) > 1, however, we found it
more straightforward to work instead with the function $ in place of ϑQ.
This function $ : Z>0 → {0, 1} is defined as

(3.3) $(m) :=
{

1, if p | m⇒ p ≡ 1 (mod 4) ,
0, otherwise.

It is obvious that for all m, k ∈ Z>0 we have

(3.4) $(mk) = $(m)$(k),

while a similar property does not hold for ϑQ (to see this take m = k = p,
where p is any prime which is 3 (mod 4)). This is the reason for choosing to
work with $ rather than ϑQ. Our next lemma shows how one can replace
ϑQ by $, while simultaneously restricting the summation at the price of
an error term.
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Lemma 3.1. — For x, u ∈ R>1, q ∈ Z>0, a1 ∈ Z ∩ [0, q) we have∑
16m6x

ϑQ(m)e(a1m/q)

=
∑

(k,t)∈Z>0×Z>0
2tk26u

p|k⇒p≡3(mod 4)

∑
`∈Z∩[0,q)

e(a1`/q)
∑
r∈Z>0

2tk2r≡`(mod q)
16r6x2−tk−2

$(r) +O

(
x√
u

)
,

with an absolute implied constant.

Proof. — It is easy to see that for positive m one has ϑQ(m) = 1 if and
only if m = 2tk2r for t ∈ Z>0, k a positive integer all of whose primes are
3 (mod 4) and r is such that $(r) = 1. This shows that the sum over m is∑

(k,t)∈Z>0×Z>0
p|k⇒p≡3(mod 4)

∑
r∈Z>0

r6x2−tk−2

$(r)e(a12tk2r/q).

The contribution of the pairs (k, t) with 2tk2 > u is at most∑
t>0

∑
k>
√
u2−t

x2−tk−2 � x
∑
t>0

2−t√
u2−t

� x√
u
.

Noting that e(a12tk2r/q) as a function of r is periodic modulo q allows to
partition all r in congruences ` ∈ Z/qZ, thus concluding the proof. �

The terms in the sum involving $ in Lemma 3.1 are in an arithmetic pro-
gression that is not necessarily primitive. We next show that we can reduce
the evaluation of these sums to similar expressions where the summation
is over an arithmetic progression that is primitive. The property (3.4) will
be necessary for this.

Lemma 3.2. — Let t ∈ Z>0, q ∈ Z>0, ` ∈ Z ∩ [0, q) and k ∈ Z>0 such
that every prime divisor of k is 3 (mod 4). For y ∈ R>0 consider the sum∑

r∈Z>0∩[1,y]
2tk2r≡`(mod q)

$(r).

The sum vanishes if gcd(2tk2, q) - `, and it otherwise equals

$

(
gcd(`, q)

gcd(2tk2, q)

) ∑
s∈Z>0∩[1,y gcd(2tk2,q) gcd(`,q)−1]

2tk2
gcd(2tk2,q)

s≡ `
gcd(`,q)

(
mod q

gcd(`,q)

)$(s).
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Proof. — If gcd(2tk2, q) - ` then the congruence 2tk2r ≡ ` (mod q) does
not have a solution r, in which case the sum over r vanishes. If it holds
then we see that the congruence for r can be written equivalently as

2tk2

gcd(2tk2, q)r ≡
`

gcd(2tk2, q)

(
mod q

gcd(2tk2, q)

)
.

Note that any solution r of this must necessarily satisfy

gcd
(

`

gcd(2tk2, q) ,
q

gcd(2tk2, q)

)∣∣∣∣ 2tk2

gcd(2tk2, q)r

and the fact of

gcd
(

gcd(`, q)
gcd(2tk2, q) ,

2tk2

gcd(2tk2, q)

)
= 1

shows that r must be divisible by gcd(`, q) gcd(2tk2, q)−1. Therefore there
exists an s ∈ Z>0 with

r = gcd(`, q)
gcd(2tk2, q)s

and substituting this into the sum over r in our lemma concludes the proof
because

$(r) = $

(
gcd(`, q)

gcd(2tk2, q)

)
$(s)

holds due to the complete multiplicativity seen in (3.4). �

We are now in a position to apply [4, Thm. 14.7], which is a result on
the distribution of the function $ along primitive arithmetic progressions
and which we include as a proposition for the convenience of the reader.
We first introduce the following notation for Q ∈ Z>0,

(3.5) Q̇ :=
∏

p≡1(mod 4)

pvp(Q) and Q̈ :=
∏

p≡3(mod 4)

pvp(Q).

Proposition 3.3 ([4, Thm. 14.7]). — Assume that Q is a positive inte-
ger that is a multiple of 4, that a is an integer satisfying gcd(a,Q) = 1, a ≡
1 (mod 4) and let z be any real number with z > Q. Then

∑
r∈Z>0∩[1,z]
r≡a(mod Q)

$(r) = 21/2C0
Q̈

ϕ(Q̈)
z

Q
√

log z

{
1 +O

((
logQ
log z

)1/7)}
,

where the implied constant is absolute.
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Remark 3.4. — This result was proved using the semi-linear Rosser–
Iwaniec sieve. We should remark that there is a typo in the reference,
namely [4, (14.22)] should instead read

V (D) =
∏

2<p<D

(
1− 1

p

) 1
2 ∏
p<D

(
1− χ(p)

p

)− 1
2 ∏

2<p<D
p≡3(mod 4)

(
1− 1

p2

) 1
2

,

and as a result, [4, (14.39)] must be replaced by the asymptotic in Proposi-
tion 3.3. After fixing this typo, one can show, as in the proof of [4, (14.24)],
that for D > 2, we have

(3.6)
∏
p<D

p≡3(mod 4)

(
1− 1

p

)
=
√
π√

2eγ
C0

1√
logD

+O

(
1

(logD)3/2

)
.

There is a further typo in [4, (14.26)], namely, c
√

2 should be replaced by
21/2C0/4.

We will now proceed to the application of Proposition 3.3. For q ∈
Z>0, a1 ∈ Z ∩ [0, q) define

(3.7) F(a1, q) :=
∑

(k,t)∈Z>0×Z>0
p|k⇒p≡3(mod 4)

gcd(2tk2, q)
2tk2

×
∑

`∈Z∩[0,q)
gcd(2tk2,q)|`,(3.8)

$
( gcd(`,q)

gcd(2tk2,q)
)
e
(
a1`
q

)
gcd(`, q) lcm

(
4, q

gcd(`,q)
) ∏
p≡3(mod 4)
vp(q)>vp(`)

(
1− 1

p

)−1
,

where ` in the summation satisfies

(3.8) 2tk2

gcd(2tk2, q) ≡
`

gcd(`, q)

(
mod gcd

(
4, q

gcd(`, q)

))
.

The result of the following lemma aims to separate out the dependence on
x from the apparent pandemonium that is hidden in F(a1, q).

Lemma 3.5. — For x ∈ R>1, A ∈ R>0, q ∈ Z>0, a1 ∈ Z ∩ [0, q) with
q 6 (log x)A we have∑

m∈Z∩[1,x]
x2

0+x2
1=mx2

2 has a Q-point

e2πia1
m
q = 21/2C0F(a1, q)

x

(log x)1/2 +O
(

q3x

(log x)1/2+1/7

)
,

where the implied constant depends at most on A.
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Proof. — Combining Lemma 3.1 with u = (log x)100 and Lemma 3.2
shows that, up to an error term which is � x(log x)−50, the sum over m in
our lemma equals

∑
(k,t)∈Z>0×Z>0
2tk26(log x)100

p|k⇒p≡3(mod 4)

∑
`∈Z∩[0,q)

gcd(2tk2,q)|`

$
( gcd(`, q)

gcd(2tk2, q)

)
e(a1`/q)

×
∑

s∈Z>0∩[1,x2−tk−2 gcd(2tk2,q) gcd(`,q)−1]
2tk2

gcd(2tk2,q)
s≡ `

gcd(`,q)

(
mod q

gcd(`,q)

) $(s).

We note that $(s) vanishes unless s ≡ 1 (mod 4). This means that we can
add the condition s ≡ 1 (mod 4) in the last sum over s, thus resulting with
the double congruence

s ≡ 1 (mod 4) , 2tk2

gcd(2tk2, q)s ≡
`

gcd(`, q)

(
mod q

gcd(`, q)

)
.

By the Chinese remainder theorem this has a solution if and only if (3.8)
is satisfied. Assuming that this happens, the solution is unique modulo

Q := lcm
(

4, q

gcd(`, q)

)
,

hence by Proposition 3.3 we get that the sum over m in our lemma equals

MT := 21/2C0
∑

(k,t)∈Z>0×Z>0
2tk26(log x)100

p|k⇒p≡3(mod 4)

∑
`∈Z∩[0,q),(3.8)
gcd(2tk2,q)|`

$
( gcd(`, q)

gcd(2tk2, q)

)
e(a1`/q)

× Q̈

ϕ(Q̈)
1

lcm(4, q/ gcd(`, q))
x2−tk−2 gcd(2tk2, q) gcd(`, q)−1√

log(x2−tk−2 gcd(2tk2, q) gcd(`, q)−1)

up to an error term which is

(3.9) � x

(log x)50 +
∑

(k,t)∈Z>0×Z>0
2tk26(log x)100

p|k⇒p≡3(mod 4)

×
∑

`∈Z∩[0,q),(3.8)
gcd(2tk2,q)|`

(log log Q̈)x2−tk−2 gcd(2tk2, q)
gcd(`, q)

√
log x

(
logQ
log x

)1/7
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owing to (1.5), which gives Q̈/ϕ(Q̈)� log log Q̈ 6 log logQ. Note that we
have made use of

(3.10) log(x2−tk−2 gcd(2tk2, q) gcd(`, q)−1) = log x+OA(log log x),

which follows from
x

(log x)100+A 6
x

2tk2q
6 x2−tk−2 gcd(2tk2, q) gcd(`, q)−1 6 xq 6 x(log x)A.

The bound Q̈ 6 Q 6 4q shows that the sum over t, k in (3.9) is

� (log log q)(log q)1/7 x

(log x)1/2+1/7

∑
(k,t)∈Z>0×Z>0

∑
`∈Z∩[0,q)

2−tk−2 gcd(2tk2, q)

� (log log q)(log q)1/7 x

(log x)1/2+1/7 q
2

∑
(k,t)∈Z>0×Z>0

2−tk−2

� q3 x

(log x)1/2+1/7 ,

which is satisfactory. To conclude the proof, it remains to show that the
quantity MT gives rise to the main term as stated in our lemma. By (3.10)
we see that

1√
log(x2−tk−2 gcd(2tk2, q) gcd(`, q)−1)

= 1√
log x

+O

(
log log x

(log x)3/2

)
,

hence MT = M′ + R, where M′ is defined by

x21/2C0

(log x)1/2

∑
(k,t)∈Z>0×Z>0
2tk26(log x)100

p|k⇒p≡3(mod 4)

gcd(2tk2, q)
2tk2

×
∑

`∈Z∩[0,q)
gcd(2tk2,q)|`,(3.8)

$(gcd(`, q)/ gcd(2tk2, q))e(a1`/q)Q̈
gcd(`, q) lcm(4, q/ gcd(`, q))ϕ(Q̈)

and R is a quantity that satisfies

R�
∑

(k,t)∈Z>0×Z>0

∑
`∈Z∩[0,q)

Q̈

ϕ(Q̈)
x2−tk−2 gcd(2tk2, q)
(log log x)−1(log x)3/2 � q3x log log x

(log x)3/2 .

To complete the summation over t, k in M′ we use the bound∑
(k,t)∈Z>0×Z>0
2tk2>(log x)100

gcd(2tk2, q)
2tk2

∑
`∈Z∩[0,q),(3.8)
gcd(2tk2,q)|`

Q̈

ϕ(Q̈)
� q3

∑
(k,t)∈N×Z>0

2tk2>(log x)100

1
2tk2 �

q3

(log x)50 ,
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while the observation
Q̈

ϕ(Q̈)
=

∏
p≡3(mod 4)

p|q(gcd(`,q))−1

(
1− 1

p

)−1
=

∏
p≡3(mod 4)
vp(q)>vp(`)

(
1− 1

p

)−1

allows to remove Q̈ from M′. �

We note that one immediate corollary of the last lemma is the bound

(3.11) F(a1, q)� 1,

with an absolute implied constant. Indeed, this can be shown by taking A =
1/100 in Lemma 3.5, dividing throughout by x/

√
log x in the asymptotic

it provides and alluding to (3.2) to obtain

21/2C0F(a1, q)�
(log x)1/2

x

∣∣∣ ∑
16m6x

ϑQ(m)e(a1m/q)
∣∣∣+ q3

(log x)1/7

� 1 + (log x)3/100

(log x)1/7 .

As announced at the beginning of this section, studying EQ
(
a1
q + β1

)
is

first done in the case β1 = 0 as above. The following lemma shows that
this is sufficient, up to introducing an extra factor.

Lemma 3.6. — For Γ1 ∈ R, A ∈ R>0, q ∈ Z>0, a1 ∈ Z ∩ [0, q) with
q 6 (logP )A we have

EQ

(
a1

q
+ Γ1

P d

)
= 21/2C0F(a1, q)

(∫ max{f1([−1,1]n)}Pd

2

e(Γ1P
−dt)√

log t
dt
)

+OA

(
q3(1 + |Γ1|)P d

(logP )1/2+1/7

)
,

with an implied constant depending at most on A.

Proof. — To ease the notation we temporarily put c := 21/2C0F(a1, q).
Fix β ∈ R. By partial summation

∑
m6x ϑQ(m)e(m(β + a1/q)) equals∑

m6x

ϑQ(m)e(a1m/q)

 e(xβ)−
∫ x

0
e(βt)′

∑
m6t

ϑQ(m)e(a1m/q)

 dt.

If q 6 (log x)A then Lemma 3.5 shows that this equals

c

(
x√

log x
e(xβ)−

∫ x

2

t√
log t

e(βt)′dt
)

+O

(
q3x(1 + |β|x)
(log x)1/2+1/7

)
,
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with an implied constant depending at most on A. Using partial integration
this is plainly

c

(∫ x

2

( t√
log t

)′
e(βt)dt

)
+O

(
q3(1 + |β|x)x
(log x)1/2+1/7

)
,

and using (t(log t)−1/2)′ = (log t)−1/2 − 2−1(log t)−3/2 shows that the last
integral can be evaluated as

∫ x
2 e(βt)(log t)−1/2dt+O(x(log x)−3/2). Invok-

ing the bound c� 1 (that is implied by (3.11)) we obtain∑
m6x

ϑQ(m)e(m(β + a1/q)) = c

(∫ x

2

e(βt)√
log t

dt
)

+O

(
q3(1 + |β|x)x
(log x)1/2+1/7

)
.

Using this for x = max{f1([−1, 1]n)}P d and putting β = Γ1P
−d concludes

the proof. �

4. Proof of the asymptotic

We are ready to prove the asymptotic in Theorem 1.3. We shall do so
with different leading constants than those given in Theorem 1.3; showing
equality of the constants is delayed until Section 5.

4.1. Restricting the range in the major arcs

The first reasonable step for the proof of the asymptotics would be to
inject Lemma 3.6 into Lemma 2.3. However, this would give poor results
because the error term in Lemma 3.6 is only powerful when Γ1 is close to
zero and q is small in comparison to P . For this reason we restrict the sum
over q and the integration over β in Lemma 2.3. For its proof we shall need
certain bounds. First, by (3.2), one has

(4.1) EQ(α1)� P d(logP )−1/2.

Next, letting K := (n− σ(f1, f2))2−d+1, we use [1, Lem. 5.2, Lem. 5.4] to
obtain the following bounds for every ε > 0, Γ ∈ R2 and a ∈ Z2, q ∈ N
satisfying gcd(a1, a2, q) = 1:

I(Γ)�ε min{1, |Γ|−K/(2(d−1))+ε} and Sa,q �ε q
n−K/(2(d−1))+ε.

By our assumption (1.1), we have

(4.2) I(Γ)� min{1, |Γ|−5/2},

and, furthermore, that for all 0 < λ < 2−d(d− 1)−1 we have

(4.3) Sa,q �λ q
n−3−λ.
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Lemma 4.1. — Keep the assumptions of Lemma 2.2 and let Q1, Q2 ∈
R>1 with Q1, Q2 6 P η. Then for any λ satisfying

(4.4) 0 < λ < min
{

1, 1
2

(n− σ(f1, f2)
2d(d− 1) − 3

)}
,

we have

∑
q6Pη

q−n
∑

a∈(Z∩[0,q))2

gcd(a1,a2,q)=1

Sa,q

∫
|β|6P−d+η

P dI(P dβ)EQ(β1 + a1/q)dβ

=
∑
q6Q1

q−n
∑

a∈(Z∩[0,q))2

gcd(a1,a2,q)=1

Sa,q

∫
|Γ|6Q2

I(Γ)
P d

EQ(Γ1P−d + a1/q)dΓ

+Oδ,λ,θ0

(
(logP )−1/2 min

{
Q−λ1 , Q

−1/2
2

})
.

Proof. — Using the change of variables P dβ = Γ we obtain

∫
P−dQ2<|β|6P−d+η

P dI(P dβ)EQ(β1 + a1/q)dβ

= P−d
∫
Q2<|Γ|6Pη

I(Γ)EQ(Γ1P−d + a1/q)dΓ

and combining (4.1) with (4.2) shows that

(4.5)
∫
P−dQ2<|β|6P−d+η

P dI(P dβ)EQ(β1 + a1/q)dβ � 1√
Q2 logP

.

This shows that the sum over q 6 P η in the statement of our lemma equals

∑
q6Pη

q−n
∑

a∈(Z∩[0,q))2

gcd(a1,a2,q)=1

Sa,q

∫
|Γ|6Q2

I(Γ)
P d

EQ(Γ1P−d + a1/q)dΓ,

up to a term that is

� 1√
Q2 logP

∑
q6Pη

∑
a∈(Z∩[0,q))2

gcd(a1,a2,q)=1

|Sa,q|
qn

�
∑
q6Pη q

−1−λ
√
Q2 logP

� 1√
Q2 logP

,
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where (4.3) has been utilised. Note that the bound
∫
R2 |I(Γ)|dΓ < ∞ is a

consequence of (4.2). Using this with (4.1) shows that∑
q>Q1

∑
a∈(Z∩[0,q))2

gcd(a1,a2,q)=1

Sa,q

qn

∫
|β|6P−dQ2

P dI(P dβ)EQ(β1 + a1/q)dβ

�
∑
q>Q1

q−1−λ
√

logP
� Q−λ1√

logP
,

where we have alluded to (4.3). This concludes the proof of the lemma. �

Lemma 4.2. — Keep the assumptions of Lemma 2.2, fix any two positive
A1, A2 and let

(4.6) λ0 := 1
2 min

{
1, 1

2

(
n− σ(f1, f2)

2d(d− 1) − 3
)}

.

Then for all sufficiently large P the quantity ΘQ(P )P−n+d equals∑
q6(logP )A1

∑
a∈(Z∩[0,q))2

gcd(a1,a2,q)=1

Sa,q

qn

∫
|Γ|6(logP )A2

I(Γ)
P d

EQ

(
a1

q
+ Γ1

P d

)
dΓ

+OA1,A2

(
(logP )−1/2−min{A1λ0,A2/2}

)
.

Proof. — The proof follows immediately by using Lemma 4.1 with Qi =
(logP )Ai and Lemma 2.3 with some fixed η and θ0 satisfying [1, p. 251,
(10)–(11)] and η < 1/7. �

4.2. Injecting the sieve estimates into the restricted major arcs

We are now in position to inject Lemma 3.6 into Lemma 4.2. It will be
convenient to start by studying the archimedean density. Recall (2.6) and
define for P > 3/min{f1([−1, 1]n)},

(4.7) Jφ(P ) :=
∫

Γ∈R2

I(Γ)
P d

(∫ max{f1([−1,1]n)}Pd

3

e(−Γ1P
−dt)√

log t
dt
)

dΓ.

The assumptions of Theorem 1.3 ensure that the integral converges abso-
lutely, since by (4.2) we have∫

Γ∈R2

|I(Γ)|
P d

∫ max{f1([−1,1]n)}Pd

2

dt√
log t

dΓ

�
∫

Γ∈R2

min{1, |Γ|−5/2}
P d

P d√
logP

� 1√
logP

.
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Lemma 4.3. — Under the assumptions of Theorem 1.3 we have

Jφ(P ) = 1√
log(P d)

∫
Γ∈R2

I(Γ)
(∫ max{f1([−1,1]n)}

0
e(−Γ1µ)dµ

)
dΓ

+O((logP )−3/2).

Proof. — Observe that the change of variables µ = P−dt in (4.7) shows
that

Jφ(P ) =
∫

Γ∈R2
I(Γ)

(∫ max{f1([−1,1]n)}

3P−d

e(−Γ1µ)√
log(µP d)

dµ
)

dΓ.

It is easy to verify that (1 + x)−1/2 = 1 +O(x) for |x| < 1, hence for µ and
P in the range 0 < µ < P d we have

(
log(µP d)

)−1/2 =
(

log(P d)
)−1/2

(
1 + logµ

log(P d)

)−1/2

=
(

log(P d)
)−1/2 +O

(
logµ

(logP )3/2

)
.

Using this for 0 < µ 6 max{f1([−1, 1]n)}, we infer the following estimate
for all sufficiently large P ,

Jφ(P )− 1√
log(P d)

∫
Γ∈R2

I(Γ)
∫ max{f1([−1,1]n)}

3P−d
e(−Γ1µ)dµdΓ

� 1
(logP )3/2

∫
Γ∈R2

|I(Γ)|dΓ,

which is � (logP )−3/2 due to (4.2). �

Define

(4.8) J :=
∫

Γ∈R

∫
{t∈[−1,1]n:x2

0+x2
1=f1(t)x2

2 has an R-point}
e(Γf2(t))dtdΓ

and note that the integral converges absolutely owing to the smoothness
of f1 and f2, (1.1) and [1, Lem. 5.2] with R = 1. The arguments in [1, §6]
show that if there is a non-singular real point of f2 = 0 contained in the
set {t ∈ [−1, 1]n : f1(t) > 0} then J > 0. In the situation of Theorem 1.3
this condition holds, because its assumptions include that B(Q) 6= ∅ and
that f2 is non-singular.

Lemma 4.4. — Under the assumptions of Theorem 1.3 we have∫
Γ∈R2

I(Γ)
(∫ max{f1([−1,1]n)}

0
e(−Γ1µ)dµ

)
dΓ = J.
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Proof. — Define for m ∈ N the function ϕm : R→ R through ϕm(x) :=
π−1/2m exp(−m2x2). First one may show

lim
m→+∞

∫
Γ∈R2

I(Γ)
eπ2Γ2

1m
−2

∫ max{f1([−1,1]n)}

0
e(−Γ1µ)dµdΓ

=
∫

Γ∈R2
I(Γ)

∫ max{f1([−1,1]n)}

0
e(−Γ1µ)dµdΓ,

for example by considering the difference between the right-hand side of
this equality and each individual member of the limit on the left-hand
side. Then one shows that this difference is o(1) independently of m, by
splitting the integral over Γ1 up into the ranges 0 < |Γ1| < logm and
logm < |Γ1| and showing that the two resulting integrals are both o(1).
One will need (4.2) for this.
Recalling (2.6) and using the following formula with x = f1(t)− µ,

ϕm(x) =
∫
R

e−π
2Γ2

1m
−2

e(xΓ1)dΓ1,

that can be established by Fourier’s inversion formula, allows us to rewrite
the integral inside the limit as∫

t∈[−1,1]n:f1(t) 6=0
f1(t) 6=max{f1([−1,1]n)}

(∫
0
ϕm(f1(t)− µ)dµ

)(∫
Γ2∈R

e(Γ2f2(t))dΓ2

)
dt.

Note that we used (2.6) with [−1, 1]n replaced by the range of integration
for t in the expression above; this is clearly allowable as it only removes a
set of measure zero from the integration in (2.6). It is now easy to see that
the limit

lim
m→+∞

∫ c2

c1

ϕm(µ)dµ

equals 1 if c1 < 0 < c2 and that it vanishes when c1 > 0. This proves that
if t ∈ [−1, 1]n satisfies f1(t) > 0, then the limit

lim
m→+∞

∫ max{f1([−1,1]n)}

0
ϕm(f1(t)− µ)dµ

equals 1, while, if f1(t) < 0 then the limit vanishes. The dominated con-
vergence theorem then gives∫

Γ∈R2
I(Γ)

∫ max{f1([−1,1]n)}

0
e(−Γ1µ)dµdΓ

=
∫

t∈[−1,1]n:f1(t)6=0
f1(t)6=max{f1([−1,1]n)}

(∫
Γ2∈R

e(Γ2f2(t))dΓ2

)
dt,

which concludes the proof. �
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Having dealt with the integral part of Lemma 2.3, we now turn our atten-
tion to the summation. Recall the definition of Sa,q and F(a1, q) respectively
in (2.5) and (3.7) and let

(4.9) Lφ :=
∑
q∈N

q−n
∑

a∈(Z∩[0,q))2

gcd(a1,a2,q)=1

Sa,qF(a1, q).

Under the assumptions of Theorem 1.3 the sum Lφ converges absolutely,
since by (3.11) and (4.3) we have for all x > 1,

(4.10)
∑
q∈N
q>x

q−n
∑

a∈(Z∩[0,q))2

gcd(a1,a2,q)=1

∣∣Sa,qF(a1, q)
∣∣

�
∑
q∈N
q>x

q−n
∑

a∈(Z∩[0,q))2

gcd(a1,a2,q)=1

qn−3−λ0 6
∑
q∈N
q>x

q−1−λ0 � x−λ0 .

Lemma 4.5. — Under the assumptions of Theorem 1.3 we have for all
P > 2,

ΘQ(P ) = C0J
Lφ

√
2

d1/2
Pn−d

(logP )1/2 +O

(
(logP )−

1
40

1
(d−1)2d+2 Pn−d

(logP )1/2

)
.

Proof. — Combining Lemmas 3.6 and 4.2 shows that

(4.11) ΘQ(P )
Pn−d

= 21/2C0R1R2 + R3 +O
(
(logP )−1/2−min{A1λ0,A2/2}

)
,

where

R1 :=
∑

q6(logP )A1

q−n
∑

a∈(Z∩[0,q))2

gcd(a1,a2,q)=1

Sa,qF(a1, q),

R2 :=
∫
|Γ|6(logP )A2

I(Γ)
P d

(∫ max{f1([−1,1]n)}Pd

2

e(−Γ1P
−dt)√

log t
dt
)

dΓ,

and R3 is a quantity that satisfies

R3 �
∑

q6(logP )A1

∑
a∈(Z∩[0,q))2

gcd(a1,a2,q)=1

|Sa,q|
qn

∫
|Γ|6(logP )A2

|I(Γ)|
P d

q3(1 + |Γ1|)P d

(logP )1/2+1/7 dΓ.

We can easily see that

R3 �A2

(logP )3A1+A2

(logP )1/2+1/7

∑
q6(logP )A1

∑
a∈(Z∩[0,q))2

gcd(a1,a2,q)=1

|Sa,q|
qn

∫
|Γ|6(logP )A2

|I(Γ)|dΓ.
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By (4.2) and (4.3) the sum over q is convergent, and so is the integral over
Γ, therefore

(4.12) R3 �A2 (logP )3A1+A2−1/2−1/7.

Using (4.2) we infer that∫
|Γ|>(logP )A2

|I(Γ)|
P d

(∫ max{f1([−1,1]n)}Pd

2

e(−Γ1P
−dt)√

log t
dt
)

dΓ

�
∫
|Γ|>(logP )A2

|I(Γ)| 1√
logP

dΓ�A2 (logP )−1/2−A2/2,

therefore

(4.13) R2 = Jφ(P ) +OA2((logP )−1/2−A2/2).

Furthermore, by (4.10) we deduce

(4.14) R1 = Lφ +OA1((logP )−A1λ0).

By Lemmas 4.3 and 4.4 we have Jφ(P )� (logP )−1/2, thus injecting (4.12),
(4.13) and (4.14) into (4.11) provides us with

ΘQ(P )
Pn−d

= 21/2C0Jφ(P )Lφ +O((logP )−1/2−β),

where β := min{A1λ0, A2/2,−3A1−A2+1/7}. Amoment’s thought affirms
that assumption (1.1) ensures the validity of λ0 > (d − 1)−12−d−2 and
choosing A1 = 1

40 = A2/2 gives β > (40(d − 1)2d+2)−1. Finally, using
Lemmas 4.3 and 4.4 concludes the proof. �

4.3. Proof of Theorem 1.3

Define

(4.15) cφ := J

d1/2
21/2

ζ(n− d)
Lφ

2 C0.

By Lemmas 2.1 and 4.5 the quantity N(B,φ, t) equals
√

2
2 C0JLφ

tn−d

d1/2

∑
l6log t

µ(l)
ln−d(log(t/l))1/2

up to an error term that is

� tn−d

log t +
∑
l6log t

(t/l)n−d

(log(t/l))
1
2 + 1

40
1

(d−1)2d+2
� tn−d

(log t)
1
2 + 1

40
1

(d−1)2d+2
.
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Note that for l 6 log t we have (log(t/l))−1/2 = (log t)−1/2 + O((log t)−1),
hence∑

l6log t

µ(l)
ln−d(log(t/l))1/2 = (log t)−1/2

( ∑
l6log t

µ(l)
ln−d

)
+O((log t)−1).

Assumption (1.1) implies n − d > 2. Denoting the Riemann zeta function
by ζ, we use the standard estimate∑

l6log t

µ(l)
ln−d

= ζ(n− d)−1 +O

(
1

(log t)n−d−1

)
to obtain∑

l6log t

µ(l)
ln−d(log(t/l))1/2 = ζ(n− d)−1(log t)−1/2 +O((log t)−1).

Thus,

(4.16) N(B,φ, t)
tn−d(log t)−1/2 −

JLφC0

ζ(n− d)
√

2d
� 1

(log t)εd ,

which concludes our proof. �

5. The leading constant

The circle method and the half-dimensional sieve allowed us to obtain a
proof of the asymptotic, however, this came at a cost because the leading
constant cφ in (4.15) is complicated. In this section we shall simplify cφ
by relating it to a product of p-adic densities.

We begin by factorising Lφ. One can use a version of the Chinese Remain-
der Theorem to show that complete exponential sums form a multiplicative
function of the modulus. In the context of the circle method this is very
standard and it occurs when one factorises the singular series, see [1, (2),
§7], for example. Before stating the factorisation of Lφ we introduce the
necessary notation for the p-adic factors. For a prime p define

τf2(p) := lim
N→+∞

#
{
t ∈ (Z ∩ [0, pN ))n : f2(t) ≡ 0

(
mod pN

) }
pN(n−1) .

For a ∈ Z>0 and q, k ∈ N we let

Wa,q(k) :=
∑

`∈Z∩[0,q)
gcd(`,q)=gcd(k2,q)

e(−a`/q)
∏

p prime
vp(q)>vp(`)

(
1− 1

p

)−1
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and for p ≡ 3 (mod 4) we define

Eφ(p) :=
∑

κ,m∈Z>0

gcd(p2κ, pm)
p2κ+m(n+1)

∑
a∈(Z∩[0,pm))2

gcd(a1,a2,p
m)=1

Sa,pmWa1,pm(pκ).

We furthermore define

Eφ(2) := 1
4
∑

t,%∈Z>0

1
2t+%n

∑
b∈(Z∩[0,2%))2

gcd(b1,b2,2%)=1

Sb,2%e(−b12t−%)1{v2(b1)>%−t−2}.

Lemma 5.1. — Keep the assumptions of Theorem 1.3. Then

Lφ = Eφ(2)

 ∏
p≡1(mod 4)

τf2(p)

 ∏
p≡3(mod 4)

Eφ(p)

 ,

where both infinite products over p converge absolutely.

The proof of Lemma 5.1 is based on the repeated use of explicit expres-
sions for Ramanujan sums. It is relatively straightforward but tedious and
we thus omit the details. The complete proof is given in the Ph.D. thesis
of the second named author [19, §3.5.1].

We next relate the exponential sums modulo prime powers that the circle
method gives to limits of counting functions related to p-adic solubility.

Proposition 5.2. — Let p be a prime number with p ≡ 3 (mod 4).
Under the assumptions of Theorem 1.3 the following limit exists,

`p := lim
N→+∞

#
{

t ∈ (Z ∩ [0, pN ))n :
f2(t) ≡ 0

(
mod pN

)
,

x2
0 + x2

1 = f1(t)x2
2 has a Qp-point

}
pN(n−1) .

Furthermore, we have Eφ(p) =
(
1− 1/p

)−1
`p.

Proposition 5.3. — Under the assumptions of Theorem 1.3, the fol-
lowing limit exists,

`2 := lim
N→+∞

#
{

t ∈ (Z ∩ [0, 2N ))n :
f2(t) ≡ 0

(
mod 2N

)
,

x2
0 + x2

1 = f1(t)x2
2 has a Q2-point

}
2N(n−1) .

Furthermore, we have Eφ(2) = `2.

The proofs of Propositions 5.2-5.3 are straightforward in the context of
the circle method and are not given here. Full details can be found in [19,
§3.5.2–3.5.3].
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For every prime p we define the number

τp :=
(1− 1

pn−d
)

(1− 1
p )

lim
N→+∞

#
{

t∈(Z ∩ [0, pN ))n :
pN | f2(t),
x2

0+x2
1 =f1(t)x2

2 has a Qp-point

}
pN(n−1) .

This is well-defined because for p ≡ 1 (mod 4) the limit coincides with
τf2(p) and for p 6≡ 1 (mod 4) the limit coincides with `p and `2. The def-
inition of τp is motivated by the construction of the Tamagawa measure
by Loughran in [7, §5.7.2]. It is useful to recall that if one was counting
Q-rational points on the hypersurface f2 = 0 then the corresponding Peyre
constant would involve a p-adic density that is the same as the number τp
except for the condition on Qp-solubility, see [10, Cor. 3.5]. For s ∈ C with
<(s) > 1 let

(5.1) L(s) :=
√
ζ(s),

denote the p-adic factor of L(s) by Lp(s) and write λp for Lp(1), i.e.,

λp :=
(

1− 1
p

)−1/2
.

Recall the definition of the real density J in (4.8) and that d denotes the
degrees of f1 and f2 (which are equal by the assumption of Theorem 1.3).

Theorem 5.4. — Keep the assumptions of Theorem 1.3.
(1) If φ has a smooth fibre with a Q-point then the constant cφ in

Theorem 1.3 is strictly positive.
(2) The infinite product

∏
p
τp
λp

taken over all non-archimedean places
converges.

(3) The constant cφ in Theorem 1.3 satisfies

cφ =
1√
d
J
∏
p
τp
λp√

π
.

Remark 5.5. — Recalling that
√
π is the value of the Euler Gamma func-

tion at 1/2 and noting that

1 = lim
s→1+

(s− 1)1/2L(s)

allows for a comparison of Theorem 5.4 with the case of [7, Thm. 5.15] that
corresponds to

ρB(X) = 1
2 .
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Proof of Theorem 5.4. — To prove (1) observe that due to (4.15), it
suffices to show that if φ has a smooth fibre with a Q-point then

J > 0 and Lφ > 0.

For the former part, we recall that it is standard that if B ⊂ [−1, 1]n is a
box with sides parallel to the coordinate axes and the hypersurface f2 = 0
has a non-singular real point inside B then the corresponding singular
integral that is given by ∫

Γ∈R

∫
t∈B

e(Γf2(t))dtdΓ

is strictly positive. This is proved in [1, §6], for example, but see also [13,
§4]. Here, the fact that φ has a smooth fibre with a Q-point implies that
there exists b ∈ Pn(Q) such that f2(b) = 0 and the curve x2

0 +x2
1 = f1(t)x2

2
is smooth and has a Q-point, hence in particular, an R-point. Picking t0 ∈
Znprim with b = [t0] we get that there exists t0 ∈ Rn with f2(t0) = 0
and f1(t0) > 0. Note that f2 is smooth at t0 due to the assumptions of
Theorem 1.3. Thus, by the Implicit Function Theorem there is a non-empty
box B with sides parallel to the axes such that every t with f2(t) = 0 and
in the interior of B satisfies f1(t) > 0. From this, one infers that J > 0
upon recalling the definition of J in (4.8).
To prove that Lφ > 0, we invoke Lemma 5.1 to see that it is enough to

show

(5.2) Eφ(2) > 0, p ≡ 1 (mod 4)⇒ τf2(p) > 0
and p ≡ 3 (mod 4)⇒ Eφ(p) > 0.

For this, note that for every prime p the point t0 can be viewed as a
smooth Qp-point on the hypersurface f2 = 0 and such that the curve
x2

0 + x2
1 = f1(t0)x2

2 has a point Qp-point. If p ≡ 1 (mod 4) this forces no
condition on f1(t0), thus τf2(p) > 0 because, as mentioned in [1, §7], one
can use Hensel’s lemma to prove that if f2 = 0 has a smooth Qp-point
then the analogous p-adic density is strictly positive. If p ≡ 3 (mod 4) or
if p = 2 then the existence of such a t0 can be used with Hensel’s lemma
to prove that the quantities `2 and `p are strictly positive. The equalities
Eφ(p) = `p/(1 − 1/p) and Eφ(2) = `2 (proved in Propositions 5.2–5.3)
then show the validity of (5.2), which concludes the proof of (1).
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Let us now commence the proof of (2). Denoting the limit in the defini-
tion of τp by `p we see that

lim
t→+∞

∏
p6t

τp
λp

= lim
t→+∞

∏
p6t

(1− 1
pn−d

)
(1− 1

p )
`p

(
1− 1

p

)1/2

= `221/2

ζ(n− d) lim
t→+∞

∏
p6t

`p

(1− 1p≡3(mod 4)
p )

(
(1− 1p≡3(mod 4)

p )

(1− 1p≡1(mod 4)
p )

)1/2

.

We now let χ stand for the non-trivial Dirichlet character (mod 4) to obtain
that ∏

p6t

(1− 1p≡3(mod 4)
p )

(1− 1p≡1(mod 4)
p )

=
(∏
p6t

1
1− χ(p)

p

) ∏
p6t

p≡3(mod 4)

(
1− 1

p2

)

and therefore, alluding to the well-known fact that the Euler product for
the Dirichlet series L(s, χ) of χ converges to π/4 for s = 1, we get via
Definition (1.8) that

lim
t→+∞

∏
p6t

(
(1− 1p≡3(mod 4)

p )

(1− 1p≡1(mod 4)
p )

)1/2

= π1/2

2 C0.

We have so far shown that

lim
t→+∞

∏
p6t

τp
λp

= `221/2

ζ(n− d)

(
lim

t→+∞

∏
p6t

`p

(1− 1p≡3(mod 4)
p )

)
π1/2

2 C0.

It is clear that if p ≡ 1 (mod 4) then `p = τf2(p), and thus,

lim
t→+∞

∏
p≡1(mod 4)

p6t

`p =
∏

p≡1(mod 4)

τf2(p).

By Proposition 5.2 one gets∏
p≡3(mod 4)

p6t

`p

(1− 1
p )

=
∏

p≡3(mod 4)
p6t

Eφ(p).

It is now clear from Lemma 5.1 that the last product converges as t→ +∞,
therefore the product

∏
p τp/λp is convergent, which proves (2).

For the proof of (3) we note that the arguments at the end of the proof
of (2) provided us with the equality∏

p

τp
λp

= `221/2

ζ(n− d)

( ∏
p≡1(mod 4)

τf2(p)
)( ∏

p≡3(mod 4)

Eφ(p)
)
π1/2

2 C0.

TOME 71 (2021), FASCICULE 2



708 Efthymios SOFOS & Erik VISSE-MARTINDALE

We have Eφ(2) = `2 due to Proposition 5.3, and alluding to Lemma 5.1
we get ∏

p

τp
λp

= 21/2

ζ(n− d)Lφ
π1/2

2 C0.

A comparison with (4.15) makes the proof of (3) immediately apparent. �
Let us remark that the arguments in the present section can be easily

rearranged to show that
∏
p6t τp diverges and therefore, the numbers λp

can be viewed as “convergence factors”. We are very grateful to Daniel
Loughran for suggesting this choice for λp, as well as for the L-function
in (5.1).
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