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MULTIPLIER CONDITIONS FOR BOUNDEDNESS
INTO HARDY SPACES

by Loukas GRAFAKOS, Shohei NAKAMURA,
Hanh Van NGUYEN & Yoshihiro SAWANO (*)

ABSTRACT. — In the present work we find useful and explicit necessary and
sufficient conditions for linear and multilinear multiplier operators of Coifman—
Meyer type, finite sum of products of Calderén-Zygmund operators, and also of
intermediate types to be bounded from a product of Lebesgue or Hardy spaces into
a Hardy space. These conditions state that the symbols of the multipliers

a(&1,---,&m)
and their derivatives vanish on the hyperplane £1 +--- + &, = 0.

RESUME. —

Dans ce travail, on donne des conditions utilisables et explicites pour que des
multiplicateurs linéaires et multilinéaires de type Coifman-Meyer, des sommes de
produits d’opérateurs de Calderon-Zygmund, et aussi des opérateurs de type in-
termédiaire, soient bornés de produits d’espaces de Lebesgue ou de Hardy dans un
espace de Hardy. Ces conditions affirment que les symboles des multiplicateurs

(€1, -, &m)

et leurs dérivées s’annulent sur 'hyperplan &1 + - - - + &, = 0.

1. Introduction

Hardy spaces are spaces of distributions on R™ whose smooth maximal
functions lie in LP(R™), for 0 < p < oco. These spaces coincide with LP(R"™)
if 1 <p<oo. Let 0 <p < 1and N be a prescribed integer satisfying
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N > Ln(% —1)] 4+ 1, where |s| denotes the largest integer less than or
equal to s. An L°° function a is said to be a (p, 0o)-atom, if a is supported
on some cube () and satisfies

lla||lLe <1, / z%a(z)dr =0
]Rn

for all @ € Nj such that |a] < N, see [7, 16]. The space HP(R™) can be
characterized as the set of all tempered distributions which can be expressed
as a sum of the form Z;‘;l Ajaj, where a; are (p, 0o)-atoms and (\;)32; is
a sequence of non-negative numbers such that

oo
Z AiXQ;
i=1

In this note we study linear or multilinear multiplier operators that map
products of Hardy spaces into other Hardy spaces. These operators have
the form

(11) TO’(fl7"'7fm)(l')
= /mn 627ri:c‘(51 +"'+§m)(j(§17 .. ’gm)]?l(fl) - fn\m(gm) d§1 - d§m7

~

where o is a bounded function on R™". Here f(&) denotes the Fourier trans-
form of a Schwartz function f defined by fRn f(z)e 2= dx. We are inter-
ested in explicit conditions on the symbol ¢ that characterize boundedness

< 0.
Lp

into a Hardy space. These conditions reflect the amount of oscillation the
symbols contain. For instance, the boundedness into H'(R™) for m-linear
operators is characterized by the vanishing condition o (&1, ...,&,) =0 on
the hyperplane A,,, where A,, is given by

Ap={(&,. . ,&mn) ER™ & +---+ &, =0}

For a multiindex a = (i1,...,%,) we set O = 21,91 -~'8§:n, where & =
(Ek1y- -+, &kn) € R™ A symbol o(&q,...,&n) on R™ is called of Coifman—
Meyer type if

(1.2) |ofr---0gmo(&e,. .. &m)

< Coppoan (1] 4 - 4 [y~ FlamD

for any n-tuples « of nonnegative integers «; with |a;| < N, where N is
large enough, henceforth called multiindices. Here |a| = iy + -+ + iy, is
the size of a multiindex o = (i1,...,4,) € Nj. The associated operators
T, are called multilinear Calderén—Zygmund operators; these were initially
introduced in [5] and were extensively studied in [14]. These operators map
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MULTIPLIER CONDITIONS FOR BOUNDEDNESS 1049

products LP*(R™) x - - - x LP= (R™) of Lebesgue spaces into another Lebesgue
space LP(R™), where 1 < p; < o0, j =1,2,...,m, and 0 < p < oo satisfy
(1.3) 1:i+"‘+i.

b b1 Pm
Boundedness into a Lebesgue space also holds if the initial spaces are Hardy
spaces, as shown in [10]; the range 0 < p; < oo is included in [10]. Addi-
tionally, it was shown by the authors [12] that T,, maps a product of Hardy
spaces into another Hardy space if the action of T, on atoms has vanishing
moments, i.e.

(1.4) /n 2Ty (ar,...,am)(x)de =0

for all (p;,00)-atoms a; and for all |a| < Ln(% —1)]. Condition (1.4) ap-
peared in [3] and also in [1].

Remarkably, the vanishing moment condition (1.4) is only required to
hold for all smooth functions with compact support a; € On(R™), where

ONR" = () {feCﬁO(R"):/nxﬁf(x)dxzo}.

BENG,|BISN

Here, Ny denotes the set of all nonnegative integers.
We have the following theorem concerning operators associated with
Coifman—Meyer symbols.

THEOREM 1.1. — Let o be a bounded function on R™" and let o €
C>® (Rm”\{(o, . 7O)}) that satisfies (1.2). Fix 0 < p; < 00, 0 < p < 1 that
satisfy (1.3). Then the following two statements are equivalent:

(1) T, maps HP*(R™) x --- x HPm(R"™) to HP(R™).
(2) For all multiindices « with |a| < Ln(% — 1)J we have
(1.5) (050,0)(&1, - &m) =0
for all (&1,...,&m) € A\ {(0,...,0)}.

We also consider symbols of the product form

M
(1.6) o6, &m) =D 0j1(&) ojm(Em)
j=1

where the o;;’s are Fourier transforms of sufficiently smooth Calderén—
Zygmund kernels on R™. For such symbols with m = 2 it was shown in [3]
(see also [11, 13]) that the associated operators are bounded from a product
of Hardy spaces into another Hardy space if and only if (1.4) holds. For
symbols of the form (1.6) we prove the following analogous result:

TOME 71 (2021), FASCICULE 3
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THEOREM 1.2. — Let 05, 1 < j < M,1 < k < m, be the Fourier
transforms of Calderén-Zygmund kernels on R™, and let o be a function
on R™" given by (1.6). Fix 0 < p; < 00, 0 < p < 1 satisfying (1.3). Then
the following two statements are equivalent:

(1) T, maps HP*(R™) x --- x HPm(R"™) to HP(R™).
(2) For all multiindices o with || < Ln(% —1)|, condition (1.5) holds,
ie.

(O0) (153 &m) =0
for all (&1,...,&n) € (R*\ {0})™NA

Note that for symbols of both types (1.2) and (1.6) we always have

(1.7) ’310‘1 N A (ST 7§m)| < Coy am|£1|—\a1\ |§m‘—|am|

for all o; € Nij and all {; € R", j = 1,...,m, under the assumption that
laj| > 01if & # 0. It turns out that condition (1.7) suffices for verifying the
equivalence between (1) and (2) in both Theorems 1.1 and 1.2, although
it is not strong enough to imply boundedness on any product of Lebesgue
spaces (see [9]).

By symmetry, we note that in condition (1.5) the derivative 0% can be
replaced by O for any k € {1,...,m — 1} in Theorems 1.1 and 1.2.

Boundedness into HP(R™) for operators T, is often expressed in terms
of cancellation of the action of the operator on tuples of atoms. Let x®* =

xi gl if o = (i1,...,in). In order for the integral
/ 2Ty (a1,...,am)(z)de
to be absolutely convergent, it is necessary for T, (ay, ..., an)(x) to have

decay, where a; are (p;,00)-atoms. Precisely, we assume that for any m-
tuple of (p;, 00)-atoms a; there exists a function b € LP3 (R™) which decays
like |z|~™"~N~1 as |z| — oo, such that for all x € R

(1.8) |To (a1, ... am)(x)] < b(x).

We note that condition (1.8) is valid for a large class of multilinear op-
erators such as those in Theorems 1.1 and 1.2. Indeed, for operators with
symbols of the form (1.6) we can take

Qul' 7 gy ()

el 7T X gy (@

:ZH |T0' )|XQ*( ) :_;'_M ’
i=1k=1 (lz = el +€(Qr)" ™

where @ is a cube that contains the support of ay, £(Q)) denotes the

length of Q.

ANNALES DE L’INSTITUT FOURIER



MULTIPLIER CONDITIONS FOR BOUNDEDNESS 1051

Condition (1.8) is also valid for Coifman—Meyer multipliers (1.2). Indeed,
we can choose

m 1—_L 4 N+1
Qul" 7 xqp)e(x)
n Nt
i=1 (Jo—cp| +0(Qu)"

See [12] for estimate (1.8) via (1.9) and (1.10).

To state the main equivalence result between cancellation of multipliers
and cancellation of the action of an operator on m tuples of atoms we
introduce some notation. For 0 < ¢ < 1 and 1 <7 < m, we denote

(1.10) b(x) = \To(ah~~,am)($)|Xu;j:1Q; (z)+

(111) i (R™) ={(&1, ..., &m) ER™ 1 |&] <€}, Te(R™)=| i c(R™).
i=1

We also set

(112) Ti(R™) = {(£r,.,Em) ER™ & & =0}, D(R™) = | JT;(R™).
i=1

We will derive both Theorems 1.1 and 1.2 via the following general result.
THEOREM 1.3. — Let 0 € L>®(R™)NC>® (]Rm” \ T'(R™")) satisfying
(1.7). Assume that T, satisfies (1.8) for all a; € On(R™) and
. 1 1 1
0<pj<oo, 1<jsm, 0<p<Ll, —=—+ 4+ —.
p P1 Pm
Then the following two statements are equivalent:
(1) For all multiindices o with || < {n(% —1)|, condition (1.5) holds,
ie.

(O20) (€ s Em) = 0, ¥ (&1, &m) € g \ DR™).

(2) For all a; € On(R™), 1 < i < m, condition (1.4) holds, i.e.
/ 2Ty (a1,...,am)(z)de =0

for all a with |o| < Ln(% -1)].

Throughout this paper, we denote multiindices by letters «, 3, =, etc
and use the abbreviation o < [ to denote that a; < g; for all j if
a = (a1,...,ap) and 8 = (B,...,Bn). We also let C' denote a constant
independent of crucial parameters whose value may vary on different oc-
currences.

TOME 71 (2021), FASCICULE 3
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2. The linear case

In the linear case, assumption (1.4) holds automatically via the following
lemma:

LEMMA 2.1. — For any a € On(R"™) and |o| < N, we have that
/ 2T, (a)(z) dx = 0.
Proof. — We write

/ (~2mia)" T, (o)) d

o [T.(@)] (0)]

= lim
e—0

JRGEEEBE

integrating by parts. Now, we notice that by the Taylor expansion and the
vanishing moments of a,

a(§) = Z C307a(0)e” + O(j¢[lel+1y = O(g| I~ +1)
[BI<]e]

as €] — 0. Hence, we see that

[ 2mio) T (@) do ()l 1om ) (©)]| e

< Oy lim
<=0.JQ(0.¢)

S Co “me/Qm Iot@ A (€ d¢

e—0

< Cy lim €l|o]| Lo ||0p] L2 = 0. O
e—0

As a result, the linear Fourier multipliers satisfying the suitable decay
condition map product of Hardy spaces into Hardy spaces.

3. The bilinear case

For the sake of clarity of exposition, we first discuss the bilinear case of
Theorem 1.3.

THEOREM 3.1. — Let 0 € L*°(R"xR"®)NC®(R"xR™\{(&,n): ¢||n|=0})
and suppose that o satisfies (1.7), so that T, satisfies (1.8). Then for a given
N € Ny the following conditions are equivalent:

(1) For all « € Nfj with |a| < N and & € R™\ {0}, we have
(3.1) 830(51,—51) =0.

ANNALES DE L’INSTITUT FOURIER



MULTIPLIER CONDITIONS FOR BOUNDEDNESS 1053

(2) For any smooth functions a1, as € On(R"™),
(3.2) / 2Ty (ar,az)(x)de =0, V|af < N.

To obtain Theorem 3.1 we need a couple of lemmas. Here and below by
B(z,r) we denote the open ball centered at x of radius r > 0.

LEMMA 3.2. — Assume that o is a bounded function on R" x R"™ and
smooth away from the axes that satisfies (1.7). Fix N € Ng. Then for all
a € Ni with |a| < N there is a constant C,, such that

(3.3)  sup sup
0<e<1 ¢ €R™\ B(0,2¢)

[ ste - eoterns - e)olod e de| < Cu

where g is a smooth function with bounded derivatives 9°g and 9°g(0) = 0
for all |B] < N.

Proof. — Fix any € < 1 and any & € R™\ B(0, 2¢). We will show that

(3.4) [ ste - eotene - c)orlod(©)ae| < G

where C,, is independent of € and &;. Note that the function £ — o (&1,£—&1)
is smooth on the domain of integrand |£| < ¢, since & ¢ B(0, 2¢) and thus
|€ — &1 = e. With this in mind, involving the Taylor expansion of g, we
notice that

Lénmg_gﬂaﬁhﬁ—ﬁﬂaﬂwJGMK‘

o o

<oy (ﬁ> \ | 96 -5 a6 — )enl® ds'

B<a R
<Callpllpimax  sup (0796 - €)05 Mo (61, €~ &)

BSa ¢eRM\B(£1,¢)

<Céﬁﬂh{mwsm>I&%@—&Hé—&W“m]Ziﬂa

’ B gern\ (£} 79
< 00,

for any o € Njj with |a| < N. Here we used assumption (1.7) and the fact
that 9%g are bounded and vanishing at 0 for all |3| < N. a

LEMMA 3.3. — Given aj,az € On(R™) and o in L*®(R" x R") N
C®R™ x R™\ {(&,m) : |€]In| = 0}) that satisfies (1.7), if T,(a1,a2) has

TOME 71 (2021), FASCICULE 3
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sufficient decay (1.8), then we have

(3.5) /n (—2miz)*Ty (a1, az)(x) dx

- <g> Rn51(51)8%/3@(—51)850(517_51)0151.
BLa g

Proof. — First, we write

/n(—Zwix)aTg(al,ag)(a:) dz = 0¢ [Tg(al,ag)} (0)

(3. — tim(-1)" [ Tofana) (©0° [ (€) e

e—0

using integration by parts. In view of the identity

61 Tlaa(© = [ 6ol - ao.¢ - &) d,

the expression on the right in (3.6) equals

38 im0 [ ([ - ot - 0o de)de.

e—0

Now, we decompose (3.8) as lim._,o(I. + II.), where

o= el [ e[ ate - ot - 0%l @ Jass

I, = (~1)l° / " )aq@l)( / B(E-6)7(6,6 - 602 ](6) d£> g

For the first term, using the vanishing moment condition for a;, we have
that

LI < Cl@le=lolimlonla [ feal¥e g < oeN et o
)

0,2¢

as € — 0. For the second term, inequality (3.3) gives us

(3.9)

[ e~ eotane - )00 d < o,
for any € € (0,1) and any & € R™\ B(0,2¢) where the constant C,, is

independent of € and &;. Recall 0y is the derivative with respect to the
second variable of a function of two variables. Integrating by parts, we

ANNALES DE L’INSTITUT FOURIER
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rewrite 11, as

(3.10) 116:(—1)““/ a1(&1)

R\ B(0,2¢)

x Z<a)/ 9By (e— )00 o (61, € —€)pe(€) de | dey.
et B) Jrn

The Lebesgue dominated convergence theorem and the approximation to
identity, combined with the fact that (3.9) holds and that @3 € L'(R"™),
yields

lim Il = > (Z) / ai(6)0" P ax(—£0) B0 (6, —€1) dér.

Ba
This completes the proof of the lemma. O
LEMMA 3.4. — There exists a function ¢ € C§°(R™) such that
(3.11) {¢€B(0,1)  {(¢&) =0} = {o}.
Proof. — The Fourier transform of the function (%)Wr1 on R" is

known to be compactly supported; see [2, Lemma 3.1] and bounded but
may not be smooth. Let ® be a smooth and compactly supported function
with non-vanishing integral. Then ¢ = ® * ((%)nﬂ) lies in C5°(R™)
and satisfies ¢ (&) # 0 for all 0 # ¢ in a neighborhood of the origin, since o
and cos |[£] — 1 do not vanish near zero and cos [€| — 1 vanishes only at zero.
It remains to dilate ¢ to make it satisfy (3.11). a

LEMMA 3.5. — Let N € N be fixed and F € L>®(R"). Assume for all
functions G € L¥(R™) with G € L*(R™) satisfying
/ z*G(x)dz =0 Vol < N,

we have

G(&)F(€)de =0,

R’n
Then FF =0 a.e..
Proof. — Denote
aw(®") = { e L@ Fe @, |

First, we observe that if G € Qn(R™), then G, € Qn(R™), where G, =
G(- — xp) for given xy € R™. To check this observation for G € Qx(R™),
we can easily see that G, is a bounded function with bounded support.

2 f(x)de =0, V|a| < N}.

n

TOME 71 (2021), FASCICULE 3
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Also Gy (€) = 2™ €G(£); and hence G,, € L'(R"), since G € L' (R™).
Next we want to show that

(3.12) / 2°Ga, (@) dz =0,  V|a| < N.
In fact, we have

/n %Gy, (z)dr = /n(a: + 29)G(z) dz

= Z C%@(xo)/ PG(z)dz =0, V]a|<N.
Ba :
Thus (3.12) is verified, and we are done with checking that G, € Qn(R").
As a consequence of the above observation, we claim that GF =0 ae.
and for all G € Qx(R™). Indeed, fix G € Qn(R™). For each zy € R, the
above observation showed that G, = G(- — z9) € Qn(R™). Therefore,

[ Ger@eia = [ GLoF©E -0
ie, (éF)(mo) = 0 for each zp € R", and for all G € Qxn(R™). This com-
pletes our claim GF = 0 a.e. and for all G € Qn(R™).

The rest of the proof is to verify that ' = 0 a.e. by showing F' = 0 a.e.
on B(0,1). By Lemma 3.4, we can find a function ¢ € C§°(R™) such that

o~ o~

¢(0) =0 and ¢(§) # 0 for all 0 < |¢] < 1. Define
G=(x---x(.
N—_——

N+1 times
It is clear that G € C§°(R™) and

ae) = ¢,

which satisfies condition 9*G(0) = 0 for all |a| < N. Thus G € Qy(R™).
By our claim, we have GF = 0 a.e. Noting that é(g) #0for 0 < [¢] <1,
we deduce F' =0 a.e. on B(0,1). By a suitable dilation, we can show that
F=0a.e. onR" g

Proof of Theorem 3.1. — We first assume (3.1), and then prove (3.2).
This direction can be obtained easily by Lemma 3.3.

Next we consider the inverse implication, i.e., assume (3.2) and then
prove (3.1). We first focus on the case of « = 0. By Lemma 3.3, condi-
tion (3.2) is equivalent to

/ RE)B(-E)o (6, ~61) d& =0

ANNALES DE L’INSTITUT FOURIER
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for all HP*-atoms a; and for all HP2-atoms as. Now Lemma 3.5 implies
that
(3.13) az(—&€1)o(€1,—61) =0, V& #0.

Fix & € R", & # 0. Choose az € C§°(R™), such that ax(—&1) > 0, and
hence (3.13) deduces o (&1, —¢&1) = 0, which implies (3.1) for a = 0.

Next, we discuss the case of |o| > 1 by induction on its order. Indeed,
assume inductively that (3.1) holds for all |a| < k < N. We want to show
that it also holds for || = k+ 1 < N. The inductive hypothesis together
with Lemma 3.3 deduces

[ -, ) =o.

Repeat the argument in the case o = 0, we obtain (3.1) for || = k + 1.
The proof of the theorem is now completed. O

4. The multilinear case

In this section we prove Theorem 1.3.

LEMMA 4.1. — Let N € N and a be a multi-index with |o| < N. Let o
and a; be functions as stated in Theorem 1.3. Then we have

(4.1) /n(—27rix)o‘Ta(a1, s ) () de

= Z (g) /R(m_l)nd\l(ﬁ) @ Eme )0 P (—E — = Emt)

BLa
X 0L o(Eryesbmats—E — = ) dEy - Aoy

Proof. — Recall the function ¢ is supported in the unit ball and $(0) =
1. Fix a; € O(R™), 1 < j < m. Now we have

(4.2) /n(—Zm'x)o‘Tg(al, ey ) (z) de

= 0" [To(ar, . oam) | (0) = lim [ To(ar,.. am) (€0 [pc](€) d

e—0 Rn

m

~ iy [ TGE)0(E 6026+ + ) a6
WA

e—0

Let
AT ={(6, . &m) ER™ ¢ 6+ -+ o] < 26,

TOME 71 (2021), FASCICULE 3



1058 L. GRAFAKOS, S. NAKAMURA, H. Van NGUYEN & Y. SAWANO
and denote
m—1
= U Die@®m) Juar,
i=1

where I'; ((R™") is defined in (1.11). Also set X! = R™" \ X2 and hence
R™" = ¥2 U X!, The last integral in (4.2) can be decomposed into two
parts: I. + I, where

I = /20 @ (&) am(Em)o(Er, . Em)O%[@e (€1 + -+ - + &) dEL - - dEpn
and

L= [ @) T (en)oln o )0 (6 o+ €0 d6r -

Next we will show that lim._,qI. = 0. Indeed, we can estimate

m—1
|15\<Z/ TL€)0 (0 E)0 (€1 -+ ) dEr- e

T, E(R n) —]_

/ Ha] (D)0 (€ Em) O[] (€1 ) Ay |-

e

Thus, it is enough to show that forall 1 <i<m—1
(4.3)

/1‘ R Ha] &) | o(&ry o Em)0%@e)(§1 + - + &m)dér -+ - dEn — 0,

as e/ 0, and

(4.4)

lgr(l) Am—1 H d;(fj) 0(51» cee ,£m)3a[ap5](§1 +e +£m)d§1 T dgm =0.
€ j=1

Without loss of generality, we have only to prove (4.3) for ¢ = 1. In this
case, we have

|@1(€)] < Clar) min(1, [¢]¥) < Clar)fg] 1

ANNALES DE L’INSTITUT FOURIER
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and hence

o ) EREo(Er - &) 6 4+ Emes - dgy)

/ Ha'] fj 51,...,£,n)8a[<p6](§1+---+§m) dép---d&n,
Flg(Rmn ,7
< C(a)||0%¢llre<ll@zllzr - - l@m=illallamll o o e
xelon [ gl ag
B(0,2¢)
< Cla)]|0%pll L=l e - - llam=1 1 ll@m| 2 [lo ]| L=,

which tends to 0 as e approaches to 0.

Notice that ¢ is supported in the unit ball, therefore ¢ (&1 + -+ + &n)
survives only if |& + -+ 4 &, | < €. Identity (4.4) can be proved sunllarly
by making use of the fact that for all (&,...,&y,) € A™7L

lem| < &1+ +&m|+ &+ + Emo1] < 3e

and the vanishing moments of a,,.
Now we turn into II. and rewrite it in the following form

Le= fese (e @) am i (Em1) [ an(€ &= = )
/H%t'i.:;é',i”ai; J.
X 0(517 cee 7§m—1a§ - 51 - fm—l)aa [(pe] (f) df d§1 . dgm—l-

Fix &1,...,&m-1 so that & + - 4+ &mo1] > 2¢, and that |§;]| > € for all
1 <4< m—1. We easily see that the function £ — o(&1,...,&m—1,§ — &1 —
-+ —&m—1) is smooth on B(0, €). Integrating by parts, we have

/ﬁ”“*fl e )0 (Er e s E— 1 — e — Em1)0% [0 (6) dE

-y (g) /R 0P (E— & o — )

Ba

X OB o(r,. o a1, € — &1 — = &) pe(€) dE
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Thus

=2 <g> /&be,m,\sm_lbe @1 (&) -+ am=1(§m-1)

Bsa [€1++Em—1]>2¢

{/naaﬁmfsl )

arﬁ:zo-(gla-“agm—lvg_gl - "'_fm—l)goe(g) df} dfl"'dfm—L

An argument similar to Lemma 3.2 allows us to use the Lebesgue dominated
convergence theorem to pass the limit inside the above integral. Together
with the use of the approximate identity we obtain

lim IT,
e—0
«a m—1
= i (&5 OBy — e —
- Z <B> /§1\>07,_,\5m_1‘>0 H aj(gj) 0 am(—&1 Em—1)
Aa €1+ +Em-1]|>0 \ 7=1
aTIBYLo-(fh s 7€m—1a _51 - = §m_1) dgl ce dfm_l.
This identity completes the proof of the lemma. a

Proof of Theorem 1.3. — By Lemma 3.3, it is clear that if (1.5) is
valid then (1.4) holds automatically. For the reverse direction, we use an
analogous extension of Lemma 3.5 and repeat the proof of Theorem 3.1. O

5. Proof of Theorems 1.1 and 1.2

Let N € N be fixed and let o be a bounded function in R™ that satisfies
either (1.2) or (1.6), and let T}, be the multilinear multiplier operator asso-
ciated to o. As showed in [12], T, is bounded from HP' (R™)x- - -x HP™ (R™)

11 1o
to HP(R™), where 0 < p < 1,0 < p; < oo and =t ot if (1.4)
holds, i.e.,

/ 2Ty (a1,...,am)(x)dz =0,

for all a; € Ox(R™) and all 0 < || < Ln(% — 1)|. Therefore, the reverse
direction from (2) to (1) of Theorem 1.1 follows from Theorem 1.3.

To obtain the other direction, since T, satisfies (1.8), ||V T, (a1, ..., am)
is an integrable function. Therefore if T, (aq, ..., am) € HP(R™), then (1.4)
is valid. This is a consequence of a result in [16, p. 128, 5.4 (c)]. Similarly,
we can prove Theorem 1.2 by repeating the above argument.
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6. Remarks, Examples, and Applications

It is noteworthy to mention that our results are also valid for symbols of
intermediate or mized type, i.e., of the form

G(p)

(6.1) (&1, ém) = Z Z H 015({§l}leI§)a

p=117,... T8 )921

where for each p = 1,...,T, I7, ... IG(p) is a partition of {1,...,m} and
each T, i is an [I]|- hnear Coifman—Meyer multiplier operator We write

I’+-- +I Glp) = ={1,...,m} to denote such partitions. There is an analogous
theorem for these general symbols.

THEOREM 6.1. — Let o be as in (6.1). Fix 0 < p; < 00, 0 < p < 1 that
satisfy (1.3). Then the following two statements are equivalent:
(1) T, maps HP*(R™) x --- x HPm(R™) to HP(R™).
(2) For all |a| < Ln(% —1)| condition (1.5) holds, i.e.

a'?na’(flv"'afm) =0

for all (&1,...,&yn) on the hyperplane A,, away from the points of
singularity of o.

For the sake of brevity we don’t include the proof of Theorem 6.1 in this
note, but we point out that similar techniques can be used to obtain it.

Next, we provide examples of functions that satisfy conditions (3.1);
some of these examples are inspired by those given in [8]: On R? x R? with
coordinates (€1, 12,11, m2) consider the multipliers

§1m2 — Eam
€112 + &2 + [ 2 + [m2]?

(61752”717”2)

= ! det (61 52).
16112 + |&212 + | |2 + |n2)? N1

An alternative example is obtained by considering the multiplier

§1m2 — amn
VIEE + &2V m? + [nef?

o1(&1,82,m,m2) =

1
_ det <51 §2>.
VIEP + &P VImP + [n2f? mo 2
It is easy to verify that for (£1,&2) # (0,0) we have

00(617527 _§17 _62) = 01(617527 _517 _62) =0
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For higher order cancellation consider the examples

&in3 — 26&amme + E317
€112 + &2 + [ | + [n2]?)?

o2(&1, 82,1, m2) = (

and
&in3 — 26&amm + &30

611+ 1&2*) (Im ? + [n2?)

0'3(51,§2,771,7']2) = (
both of which satisfy:
Of 0,03(E1, &0, —E1, —&2) = OF 0, 04(&1, &2, €1, —&2) = 0
for (k,1) € {(0,1),(1,0),(0,0)} and &, &, satisfying |€1]% + |&2| # 0. The
symbols o1 and o3 are inspired by [8] and arise by expansions of the Hessian
or by combinations of the Riesz transforms. Examples of oy and o are of
Coifman-Meyer type (case (i) in the introduction) while oy and o3 are as

in case (ii), i.e., sums of products of Calderén-Zygmund operators.
We generalize this example as follows:

oan—2(&1,&2, M1, 12)

N ) .
- 1 fae (57 €7)
(€[ + [&2 + [m|* + [no[?)rrfnat o dnw m ")’

j=1
where each n; is positive integer. By the Leibniz rule we can check that
Of 0t,03(E1, 60, —E1, —&2) = OF 0,04 (&1, &2, €1, —E2) = 0
aslong as k+1 < N —1and [&]* + |&]? #0.
Finally, we address the following question!) and give a partial answer:
Find a condition on a bilinear multiplier B(f, g) such for any two sequences

fx — f weakly and gr — ¢ weakly, then B(fx,gx) — B(f,g) weakly.
Suppose that B is given in multiplier form by

Bl = [ [ Feamote.mer= e

where f, g are defined on R™ and o(&,7) is a Coifman—Meyer multiplier,
i.e., it satisfies:

|02050(€,m)] < Ca,p(I€] + [n]) 711~ 17!

for |a,|f] < N with N > 1. We provide a condition on ¢ so that the
associated operator preserves weak convergence. Obviously the product
B(f,g9) = fg does not preserve weak convergence because the symbol
o(&1,&2) =1 fails to satisty condition (5) below.

) posed by R. R. Coifman by personal communication
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THEOREM 6.2. — Let 1 < p < oo and let B be as above. Suppose that
fr, 95, f, g, k=1,2,... are functions on R" that satisfy:

(1) supg |l fellLr@ny < C.

(2) SupchngLP’(R”) <C.

(3) fx — f weakly in LP(R™).
(4) gi — g weakly in L?' (R™).
(5)
(6)

w

5) o(§,—&) =0 for all £ # 0.
6) B(fr,gr) converges a.e. to B(f,g).

Then B(fx, gr) converges to B(f,g) weakly in H'(R™) in the sense that

(62 | Btz [ B(roeds

for all functions ¢ € VMO(R™).

Proof. — The boundedness of B from LP(R™) x L? (R™) to H'(R™) can
proved by combining condition (5) with Theorem 3.1 (N = 1) and the
result in [12]; a version of this result was also proved by Dobyinski [6,
Lemme 3.8]; see also [4]. It follows that

SllipHB(fkvgk)”Hl <0y Sl;p”kaLP”ngLp’ < CC2.

Thus the sequence B(fx,gx),k = 1,2,... is uniformly bounded in H!(R")
and converges a.e. to B(f, g). Then we obtain (6.2) as a consequence of the
result in [15]. O
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