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STATIONARY SCATTERING THEORY ON
MANIFOLDS

by Kenichi ITO & Erik SKIBSTED (*)

Abstract. — Based on our previous work we develop a stationary scattering
theory for the Schrödinger operator on a manifold possessing an escape function.
A particular class of examples are manifolds with Euclidean and/or hyperbolic
ends. Scattering by obstacles, possibly non-smooth and/or unbounded in a certain
manner, is included in the theory. We develop the theory largely along the classical
lines of Jäger, Saitō and Constantin, and derive in particular WKB-asymptotics
of minimal generalized eigenfunctions. As an application we prove a conjecture of
Hempel, Post and Weder on cross-ends transmissions in its natural and strong form
within the framework of our theory.
Résumé. — Sur la base de nos travaux antérieurs, nous développons une théorie

stationnaire de la diffusion pour l’opérateur de Schrödinger sur une variété possé-
dant une fonction d’échappement. Une classe particulière d’exemples sont les varié-
tés à extrémités euclidiennes et/ou hyperboliques. La diffusion par des obstacles,
éventuellement non lisses et/ou non bornés d’une certaine manière, est incluse dans
la théorie. Nous développons la théorie en grande partie selon les idées classiques
de Jäger, Saitō et Constantin, et dérivons en particulier les asymptotiques WKB
des fonctions propres généralisées minimales. Comme application, nous prouvons
une conjecture de Hempel, Post et Weder sur les transmissions transversales sous
sa forme naturelle et forte dans le cadre de notre théorie.
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1. Introduction

Let (M, g) be a connected Riemannian manifold. In this paper we study
stationary scattering theory for the geometric Schrödinger operator

H = H0 + V ; H0 = − 1
2∆ = 1

2p
∗
i g
ijpj , pi = −i∂i,

on the Hilbert space H = L2(M). The potential V is real-valued and
bounded, and the self-adjointness ofH is realized by the Dirichlet boundary
condition. We shall develop a long-range stationary scattering theory to a
large extent along the lines of Saitō [27] and Constantin [4], in turn based on
works by Jäger [21, 22]. Saitō studies scattering theory for the Schrödinger
operator on L2(Rd) with a long-range potential, and Constantin studies
scattering by an unbounded obstacle in Rd including a short-range po-
tential, while Jäger develops an abstract theory that he applies to obtain
an eigenfunction expansion for a Schrödinger operator. For other previous
works on scattering by an unbounded obstacle in Rd including a short-range
potential we refer to [13, 14, 15]; see [30] for a review and comparison of [4]
and [13, 14, 15]. We develop a time-dependent scattering theory from the
stationary theory of this paper elsewhere [19]. For previous time-dependent
short-range scattering theories on manifolds we refer to [4, 15, 17, 18] al-
though this list of references is not complete.
The main goal of this paper is to develop a non-perturbative entirely geo-

metric scattering theory. Whence there are no assumptions like “asymptot-
ically Euclidean” or “asymptotically hyperbolic”. Rather our assumptions
are stated in terms of an intrinsic “escape function” in a spirit somewhat
similar to [5], although our assumptions are considerably weaker than those
of [5]. One virtue of this approach, besides its cleanness of being mani-
festly coordinate-invariant and stable under perturbations, is that a given
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STATIONARY SCATTERING THEORY ON MANIFOLDS 1067

concrete manifold can possess several such functions potentially entailing
useful freedom, meaning that one such function might be better or easier to
work with than another one. Of course, there are manifolds not possessing
“good” escape functions (for example, this is the case for the parabolic ob-
stacle model of Example 1.20), but they certainly exist for a wide class of
manifolds, including those with perturbed Euclidean and hyperbolic ends.
In this paper we demonstrate several consequences of the bare existence of
a sufficiently good escape function on a manifold.
Our main results are Theorem 1.17, the asymptotic completeness or the

existence of unitarily diagonalizing distorted Fourier transforms for H, and
Theorem 1.18, a characterization of an associated class of minimum gen-
eralized eigenfunctions in terms of (zeroth order) WKB-asymptotics. As
an application we prove a conjecture of [9] on cross-ends transmissions. It
is stated in a strong form in Corollary 1.19. The results of the paper are
obtained in terms of an intrinsic escape function geometrically controlled
by parameters. This means more precisely that a “good” escape function
is one having certain parameters of geometric nature located in a certain
region. At the border of these parameter constraints we construct a coun-
terexample for which the minimum generalized eigenfunctions do not have
WKB-asymptotics, see Example 1.20. Whence our somewhat technical con-
ditions are more natural than a first reading might indicate and in a sense
optimal.

1.1. Setting and results from the previous work

Our paper is a continuation of [20], and we start by recalling the setting
and various results there partly to fix notation and terminologies. This
subsection exhibits only a minimal review, and we refer to [20, Subsec-
tion 1.1] for more details and to [20, Subsection 1.2] for several examples
of manifolds satisfying the abstract conditions appearing below.

1.1.1. Basic setting

We assume an end structure on M in a somewhat disguised form.

Condition 1.1. — Let (M, g) be a connected Riemannian manifold of
dimension d > 1. There exist a function r ∈ C∞(M) with image r(M) =
[1,∞) and constants c > 0 and r0 > 2 such that:

TOME 71 (2021), FASCICULE 3



1068 Kenichi ITO & Erik SKIBSTED

(1) The gradient vector field ω = grad r ∈ X(M) is forward complete
in the sense that the forward integral curve (x(t))t>0 of ω is defined
for any initial point x = x(0) ∈M .

(2) The bound |dr| = |ω| > c holds on {x ∈M | r(x) > r0/2}.

Under Condition 1.1 each component of the subset E = {x ∈M | r(x) >
r0} is called an end ofM , and, along with Condition 1.2 below, the function
r may model a distance function there. The forward completeness condition
is our version of the “illumination condition” used in [4] and [13, 14, 15]
for the Euclidean unbounded obstacle model (imposed with r(x) = |x| at
infinity and requiring C2-regularity of the boundary, see Subsection 1.2 for
an elaboration). We note that by Condition 1.1(2) and the implicit function
theorem the r-spheres

SR = {x ∈M | r(x) = R}; R > r0/2,

are submanifolds of M . We will construct the spherical coordinates on E
in Subsection 1.2.
Let us impose more conditions on the geometry of E in terms of the

radius function r. Choose χ ∈ C∞(R) such that

χ(t) =
{

1 for t 6 1,
0 for t > 2,

χ > 0, χ′ 6 0,
√

1− χ ∈ C∞,(1.1)

and set

η = 1− χ(2r/r0), η̃ = |dr|−2η = |dr|−2(1− χ(2r/r0)
)
.(1.2)

We introduce a “radial” differential operator A:

A = Re pr = 1
2
(
pr + (pr)∗

)
; pr = −i∇r, ∇r = ∇ω = gij(∇ir)∇j ,(1.3)

and also the “spherical” tensor ` and the associated differential operator L:

` = g − η̃ dr ⊗ dr, L = p∗i `
ijpj .(1.4)

As we can see easily, in the spherical coordinates introduced in Subsec-
tion 1.2 the tensor ` may be identified with the pull-back of g to the r-
spheres. We call L the spherical part of −∆. Note that if |dr| = 1 then −L
acts as the Laplace–Beltrami operator on Sr (in general as a kind of per-
turbation of this operator, see (2.11)). We remark that the tensor ` clearly
satisfies

0 6 ` 6 g, `•i(∇r)i = (1− η)dr,(1.5)

where the first bounds of (1.5) are understood as quadratic form estimates
on the fibers of the tangent bundle of M . The quantities of (1.4) will play
a major role in this paper.

ANNALES DE L’INSTITUT FOURIER
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Let us recall a local expression of the Levi-Civita connection ∇: If we
denote the Christoffel symbol by Γkij = 1

2g
kl(∂iglj + ∂jgli − ∂lgij), then for

any smooth function f on M

(∇f)i = (∇if) = (df)i = ∂if, (∇2f)ij = ∂i∂jf − Γkij∂kf.(1.6)

Note that ∇2f is the geometric Hessian of f .

Condition 1.2. — There exist constants τ, C > 0 such that globally
on M

|∇|dr|2| 6 Cr−1−τ/2,
∣∣`•i∇i∇r|dr|2∣∣ 6 Cr−1−τ/2,

|∇kr| 6 C for k ∈ {1, 2},
∣∣`•i∇i∆r∣∣ 6 Cr−1−τ/2.

(1.7a)

In addition, there exists σ′ > 0 such that for all R > r0/2, and as quadratic
forms on fibers of the tangent bundle of SR,

R ι∗R∇2r > 1
2σ
′|dr|2ι∗Rg,(1.7b)

where ιR : SR ↪→M is the inclusion map.

We remark that here Condition 1.2 is formulated slightly differently
from [20]. Firstly, the second bound of (1.7a) is added here. It is not nec-
essary for the results of [20], but it is for those of this paper, see the proofs
of Corollaries 2.7 and 2.10. Secondly, (1.7b) is written in a more practical
manner in [20], but they are in fact equivalent: Condition 1.2 above and
the identity

(∇2r)ij(∇r)j = 1
2 (∇|dr|2)i(1.8)

actually imply that for any σ ∈ (0, σ′) there exists C > 0 such that globally
on M

r
(
∇2r − 1

2 η̃
2(∇r|dr|2)dr ⊗ dr

)
> 1

2σ|dr|
2`− Cr−τg.(1.9)

This coincides with the inequality assumed in [20].
Next we introduce an effective potential:

q = V + 1
8 η̃
[
(∆r)2 + 2∇r∆r

]
.(1.10)

Condition 1.3. — There exists a splitting by real-valued functions:

q = q1 + q2; q1 ∈ C1(M) ∩ L∞(M), q2 ∈ L∞(M),

such that for some ρ′, C > 0 the following bounds hold globally on M :

∇rq1 6 Cr
−1−ρ′ , |q2| 6 Cr−1−ρ′ .(1.11)

TOME 71 (2021), FASCICULE 3



1070 Kenichi ITO & Erik SKIBSTED

We remark that in this paper only derivatives of r of order at most five
are used quantitatively.
Now let us explain the self-adjoint realizations of H and H0. Since (M, g)

can be incomplete, the operators H and H0 are not necessarily essentially
self-adjoint on C∞c (M). We realize H0 as a self-adjoint operator by im-
posing the Dirichlet boundary condition, i.e. H0 is the unique self-adjoint
operator associated with the closure of the quadratic form

〈H0〉ψ = 〈ψ,− 1
2∆ψ〉, ψ ∈ C∞c (M).

We denote the form closure and the self-adjoint realization by the same
symbol H0. Define the associated Sobolev spaces Hs by

Hs = (H0 + 1)−s/2H, s ∈ R.(1.12)

Then H0 may be understood as a closed quadratic form on Q(H0) = H1.
Equivalently, H0 makes sense also as a bounded operator H1 → H−1,
whose action coincides with that for distributions. By the definition of the
Friedrichs extension the self-adjoint realization of H0 is the restriction of
such distributional H0 : H1 → H−1 to the domain:

D(H0) = {ψ ∈ H1 |H0ψ ∈ H} ⊆ H.

Since V is bounded and self-adjoint by Conditions 1.1–1.3, we can realize
the self-adjoint operator H = H0 + V simply as

H = H0 + V, D(H) = D(H0).

In contrast to (1.12) we introduce the Hilbert spaces Hs and Hs± with
configuration weights:

Hs = r−sH, Hs+ =
⋃
s′>s

Hs′ , Hs− =
⋂
s′<s

Hs′ , s ∈ R.

We consider the r-balls BR = {r(x) < R} and the characteristic functions

Fν = F (BRν+1 \BRν ), Rν = 2ν , ν > 0,(1.13)

where F (Ω) = 1Ω is used for the characteristic function of a subset Ω ⊆M .
Define the associated Besov spaces B and B∗ by

B = {ψ ∈ L2
loc(M) | ‖ψ‖B <∞}, ‖ψ‖B =

∞∑
ν=0

R1/2
ν ‖Fνψ‖H,

B∗ = {ψ ∈ L2
loc(M) | ‖ψ‖B∗ <∞}, ‖ψ‖B∗ = sup

ν>0
R−1/2
ν ‖Fνψ‖H,

(1.14)

ANNALES DE L’INSTITUT FOURIER



STATIONARY SCATTERING THEORY ON MANIFOLDS 1071

respectively. We also define B∗0 to be the closure of C∞c (M) in B∗. Recall
the nesting:

H1/2+ ( B ( H1/2 ( H ( H−1/2 ( B∗0 ( B∗ ( H−1/2−.

Using the function χ ∈ C∞(R) of (1.1), define χn, χn, χm,n ∈ C∞(M)
for n > m > 0 by

χn = χ(r/Rn), χn = 1− χn, χm,n = χmχn.(1.15)

Let us introduce an auxiliary space:

N = {ψ ∈ L2
loc(M) |χnψ ∈ H1 for all n > 0}.

This is a space of functions that intuitively satisfy the Dirichlet boundary
condition, although possibly with infinite H1-norm on M . Note that under
Conditions 1.1–1.3 the manifold M may be, e.g. a half-space in the Eu-
clidean space (see [20, Subsection 1.2]), and there could be a “boundary”
even for large r, which in our framework appears “invisible” from inside M
(see the discussion after Condition 1.12). Recall a similar interpretation of
the space H1.

1.1.2. Review of the previous results

Now we gather and review the main results of [20]. Note that all the
theorems in this subsection are already proved there.

Our first theorem is Rellich’s theorem, the absence of B∗0 -eigenfunctions
with eigenvalues above a certain “critical energy” λ0 ∈ R defined by

λ0 = lim sup
r→∞

q1 = lim
R→∞

(
sup{q1(x)

∣∣ r(x) > R}
)
.(1.16)

For the Euclidean and the hyperbolic spaces and many other examples the
critical energy λ0 can be computed explicitly, and the essential spectrum
is given by σess(H) = [λ0,∞). The latter is usually seen in terms of Weyl
sequences, see [23].

Theorem 1.4. — Suppose Conditions 1.1–1.3, and let λ > λ0. If a
function φ ∈ L2

loc(M) satisfies that
(1) (H − λ)φ = 0 in the distributional sense,
(2) χmφ ∈ N ∩B∗0 for all m > 0 large enough,

then φ = 0 in M .

Next we discuss the limiting absorption principle and the radiation con-
dition related to the resolvent R(z) = (H−z)−1.We state a locally uniform
bound for the resolvent as a map: B → B∗. For that we need a compactness
condition.

TOME 71 (2021), FASCICULE 3



1072 Kenichi ITO & Erik SKIBSTED

Condition 1.5. — In addition to Conditions 1.1–1.3, there exists an
open subset I ⊆ (λ0,∞) such that for any n > 0 and compact interval
I ⊆ I the mapping

χnPH(I) : H → H

is compact, where PH(I) denotes the spectral projection onto I for H.

Due to Rellich’s compact embedding theorem [26, Theorem XIII.65],
“boundedness” of r-balls provides a criterion for Condition 1.5: If each r-
ball BR, R > 1, is isometric to a bounded subset of a complete manifold,
Condition 1.5 is satisfied for I = (λ0,∞). Condition 1.5 in fact includes
more general situations where M has multiple ends of different critical
energies and r-balls are unbounded as in [24].
We fix any σ ∈ (0, σ′) and then large enough C > 0 in agreement

with (1.9), and introduce the positive quadratic form

h := ∇2r − 1
2 η̃

2(∇r|dr|2)dr ⊗ dr + 2Cr−1−τg > 1
2σr

−1|dr|2`+ Cr−1−τg.

For any subset I ⊆ I we denote

I± = {z = λ± iΓ ∈ C |λ ∈ I, Γ ∈ (0, 1)},

respectively. We also use the notation 〈T 〉φ = 〈φ, Tφ〉.

Theorem 1.6. — Suppose Condition 1.5 and let I ⊆ I be a compact
interval. Then there exists C > 0 such that for any φ = R(z)ψ with z ∈ I±
and ψ ∈ B

‖φ‖B∗ + ‖prφ‖B∗ + 〈p∗i hijpj〉
1/2
φ + ‖H0φ‖B∗ 6 C‖ψ‖B .(1.17)

In our theory the Besov boundedness (1.17) does not immediately imply
the limiting absorption principle, and for the latter we need also radia-
tion condition bounds implied by minor additional regularity and decay
conditions.

Condition 1.7. — In addition to Condition 1.5 there exist splittings
q1 = q11 + q12 and q2 = q21 + q22 by real-valued functions

q11 ∈ C2(M) ∩ L∞(M), q12, q21 ∈ C1(M) ∩ L∞(M), q22 ∈ L∞(M)

and constants ρ, C > 0 such that for k = 0, 1

|∇rq11| 6 Cr−(1+ρ/2)/2, |`•i∇iq11| 6 Cr−1−ρ/2, |d∇rq11| 6 Cr−1−ρ/2,

|dq12| 6 Cr−1−ρ/2, |(∇r)kq21| 6 Cr−k−ρ, q21∇rq11 6 Cr
−1−ρ,

|q22| 6 Cr−1−ρ/2.

ANNALES DE L’INSTITUT FOURIER



STATIONARY SCATTERING THEORY ON MANIFOLDS 1073

Our radiation condition bounds are stated in terms of the distributional
radial differential operator A defined in (1.3) and an asymptotic complex
phase a given below. Pick a smooth decreasing function rλ > 2r0 of λ > λ0
such that

λ+ λ0 − 2q1 > 0 for r > rλ/2,(1.18)

and that rλ = 2r0 for all λ large enough. Then we set

ηλ = 1− χ(2r/rλ),

and for z = λ± iΓ ∈ I ∪ I±
b = ηλ|dr|

√
2(z − q1), b̃ = η̃b,(1.19a)

a = b± 1
4ηλ(prq11)

/
(z − q1),(1.19b)

respectively, where the branch of square root is chosen such that Re
√
w > 0

for w ∈ C \ (−∞, 0]. Note that for z ∈ I there are two values of a which
could be denoted a±. For convenience we prefer to use the shorter notation
in the bulk of this paper. Note also that the phase a of (1.19b) is an
approximate solution to the radial Riccati equation

±pra+ a2 − 2|dr|2(z − q1) = 0(1.20)

in the sense that it makes the quantity on the left-hand side of (1.20)
small for large r > 1. The quantity b of (1.19a) alone already gives an
approximate solution to the same equation, however with the second term
of (1.19b) a better approximation is obtained, cf. Lemma 2.3. Set

βc = 1
2 min{σ, τ, ρ}.(1.21)

Here and henceforth we consider σ ∈ (0, σ′) as a fixed parameter.

Theorem 1.8. — Suppose Condition 1.7, and let I ⊆ I be a compact
interval. Then for all β ∈ [0, βc) there exists C > 0 such that for any
φ = R(z)ψ with ψ ∈ r−βB and z ∈ I±

‖rβ(A∓ a)φ‖B∗ + 〈p∗i r2βhijpj〉1/2φ 6 C‖rβψ‖B ,(1.22)

respectively.

The limiting absorption principle reads.

Corollary 1.9. — Suppose Condition 1.7, and let I ⊆ I be a compact
interval. For any s > 1/2 and ε ∈ (0,min{s−1/2, βc, (2+ρ)/4}) there exists
C > 0 such that for k = 0, 1 and any z, z′ ∈ I+ or z, z′ ∈ I−

‖pkR(z)− pkR(z′)‖B(Hs,H−s) 6 C|z − z
′|min{ε,1}.(1.23)

TOME 71 (2021), FASCICULE 3
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In particular, the operators pkR(z), k = 0, 1, attain uniform limits as I± 3
z → λ ∈ I in the norm topology of B(Hs,H−s), say denoted

pkR(λ± i0) := lim
I±3z→λ

pkR(z), λ ∈ I,(1.24)

respectively. These limits pkR(λ ± i0) ∈ B(B,B∗), and R(λ ± i0) : B →
N ∩B∗.

Given the limiting resolvents R(λ ± i0) the radiation condition bounds
for real spectral parameters follow directly from Theorem 1.8.

Corollary 1.10. — Suppose Condition 1.7, and let I ⊆ I be a com-
pact interval. Then for all β ∈ [0, βc) there exists C > 0 such that for any
φ = R(λ± i0)ψ with ψ ∈ r−βB and λ ∈ I

‖rβ(A∓ a±)φ‖B∗ + 〈p∗i r2βhijpj〉1/2φ 6 C‖rβψ‖B ,(1.25)

respectively.

For the Euclidean and the hyperbolic spaces without potential V we can
assume βc > 1 − ε for any given (small) ε > 0. Hence in these cases the
bound (1.25) hold for any β ∈ [0, 1). We remark that for the Euclidean space
and a sufficiently regular potential the bound (1.25) is well-known for β ∈
[0, 1), cf. [10, 16, 27]. However in this case one can actually allow β ∈ [1, 2),
cf. [10]. If β > 1 is allowed the existence of the distorted Fourier transform
follows easily, cf. [10, 11, 28]. This is demonstrated in Subsection 3.1.
As another application of the radiation condition bounds we have char-

acterized the limiting resolvents R(λ± i0). For the Euclidean space such a
characterization is usually referred to as the Sommerfeld uniqueness result,
see for example [16].

Corollary 1.11. — Suppose Condition 1.7, and let λ∈I, φ∈L2
loc(M)

and ψ ∈ r−βB with β ∈ [0, βc). Then φ = R(λ ± i0)ψ holds if and only if
both of the following conditions hold:

(i) (H − λ)φ = ψ in the distributional sense.
(ii) φ ∈ N ∩ rβB∗ and (A∓ a±)φ ∈ r−βB∗0 .

1.2. Extended framework

Let r > r0, dAr be the naturally induced measure on Sr and

Gr = L2(Sr,dÃr); dÃr = |dr|−1dAr.(1.26)

ANNALES DE L’INSTITUT FOURIER
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Recall the co-area formula, cf. [7, Theorem C.5], implying that for all
integrable functions φ supported in E

(1.27)
∫
E

φ(x)
(
det g(x)

)1/2 dx =
∫ ∞
r0

dr
∫
Sr

φdÃr,

in particular that for square integrable functions

‖1Eφ‖2 =
∫ ∞
r0

‖φ|Sr‖
2
Gr dr.

We can describe the measure dÃr in some details using the following con-
dition.

Condition 1.12. — Let (M, g) be the manifold, r be the function and c
and r0 be the constants of Condition 1.1. Let M0 = {x ∈M | r(x) > r0/2}.
There exists a Riemannian manifold (M ex, gex) of dimension d in which
the manifold (M0, g) is isometrically embedded. There exists an extension
rex ∈ C∞(M ex) of the restriction r|M0 such that the extended vector field
ωex := grad rex is complete in M ex and |ωex| > c on {x ∈ M ex | rex(x) >
r0/2}. Let ω̃ex = η̃exωex be the complete vector field defined with η̃ex =
|ωex|−2(1 − χ(2rex/r0)

)
, and let ỹex(t, ·) = exp(tω̃ex) denote the corre-

sponding flow. Then

∀ σ ∈ S : {ỹex(t, σ) | t > 0} ∩M 6= ∅,

where S = Sex
r0

= {x ∈M ex| rex(x) = r0}.

For many examples, cf. [20, Subsection 1.2], the vector field ω of Con-
dition 1.1 is forward as well as backward complete (i.e. complete) and we
can take (M ex, gex, rex) = (M, g, r). The typical origin for non-backward
completeness for a sub-manifold M ⊆ M ′, M open in M ′, is “crossing” of
integral curves of ω at the boundary ∂M ⊆M ′. The reader might prefer to
think about (M ex, gex) and rex as given from the outset. Then M0 ⊆M ex

would be an invariant subset under the forward flow of the vector field ωex.
However since most of our conditions are needed for M only (in fact (1.33)
is the only quantitative exception) we have pursued the given presentation.
The framework of [4] where M ⊆ Rd fits into ours by taking r(x) =
|x| for |x| > r0/2 with r0 > 2 sufficiently big (and defining the function
suitably for |x| 6 r0/2). We can then use the conic subset M ex = R+M

of Rd and rex(x) = (1 − χ(4|x|/r0))|x|, x ∈ M ex. We also remark that for
the Euclidean unbounded obstacle model the illumination condition of [4]
and [13, 14, 15] appears stronger than needed since it corresponds to using
this function r only (the reader may consult Examples 1.16 1) and 2) in
[19] for examples of Euclidean unbounded obstacle models that fit into our
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framework but not into the ones of [4] and [13, 14, 15]). On the other hand
the short-range conditions P1, P2 and P3 of [4] do not directly compare to
our conditions in the short-range case, say defined by taking q11 = q12 = 0
and ρ > 1 in Condition 1.7, although the difference appears minimal.
We note

∀ σ ∈ S ∀ t > 0 : rex(ỹex(t, σ)) = r0 + t,(1.28)

and that any x ∈ Eex := {x ∈M ex | rex(x) > r0} has spherical coordinates
defined as

(r, σ) = (rex(x), ỹex(r0 − rex(x), x)) ∈ (r0,∞)× S.

In particular any x ∈ E has spherical coordinates defined in this way.
Mimicking the constructions (1.26) we introduce

G = L2(S, dÃ), dÃ = dÃex = |ωex|−1dAex,(1.29)

in terms of the naturally induced measure dAex on S. Now, indeed in
spherical coordinates

dÃr = exp
(∫ r

r0

(div ω̃ex)(s, σ) ds
)

dÃ for x = ỹex(r − r0, σ) ∈ Sr.

This leads to the isometrical embedding Gr ⊆ G, r > r0, given by mapping
Gr 3 ξr → ξex ∈ G where

ξex(σ) =

exp
(∫ r

r0
1
2 (div ω̃ex)(s, σ) ds

)
ξr(x) for x = ỹex(r − r0, σ) ∈ Sr,

0 otherwise.

(1.30)

The formula (1.30) can be understood in terms of (a group of) trans-
lations on the extended Hilbert space Hex = L2(M ex, gex). We introduce
the normalized extended radial translation T̃ ex(τ) : Hex → Hex, τ ∈ R, in
terms of the self-adjoint operator

Ã = Ãex = Re
(
−i∇ω̃ex

)
by T̃ ex(τ) = eiτÃ. Then (1.30) is naturally rewritten as ξex = ei(r−r0)Ãξr
since for ψ ∈ Hex and x ∈M ex

(T̃ ex(τ)ψ)(x) = exp
(∫ τ

0

1
2 (div ω̃ex)(ỹex(t, x)) dt

)
ψ(ỹex(τ, x)),(1.31)

cf. a similar formula in [20] (proven there).
We also note that the relation x = ỹex(r − r0, σ) of (1.30) naturally

defines an embedding Sr ⊆ S given as the map Sr 3 x→ σ ∈ S. We shall
sometimes slightly abuse notation and write σ ∈ Sr, leaving it to the reader
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to decide from the context whether σ should be thought of as a point in
the subset Sr of M or rather as a point in the image of this map.

1.3. Main results

1.3.1. Distorted Fourier transform

We need additional assumptions. The following one suffices for construct-
ing the distorted Fourier transform (this terminology is motivated by The-
orem 1.17 stated below).

Condition 1.13. — Along with Condition 1.12, Condition 1.7 holds
with

2βc = min{σ, τ, ρ} > 1.(1.32)

In addition, the function b̃ = b̃(λ, x) has a real C1-extension to I ×M ex,
say denoted by b̃

ex
(or by b̃ again for short), and the following bound holds

uniformly in the spherical coordinates on E and locally uniformly in λ ∈ I:

sup
r06ř6r

∣∣∣∣`•i∇i ∫ r

ř

b̃ex(s, σ) ds
∣∣∣∣ 6 Cr−1/2.(1.33)

If M ex = M the technical bound (1.33) is a consequence of (parts of)
the other conditions and Lemma 2.6. The bound is only used in the proof
of Lemma 3.5, and we note that it is not needed if we impose the strength-
ening (1.40) of (1.32) (however we do need it for the alternative Condi-
tion 1.16(2)).
For any ψ ∈ H1+ and r > r0 we introduce a function ξ(r) ∈ G using the

mapping (1.30), omitting here (and often henceforth) the superscript “ex”:

ξ(r)(σ) = exp
(∫ r

r0

(
∓ĩb+ 1

2 div ω̃
)

(s, σ) ds
)

[
√
bR(λ± i0)ψ](r, σ),(1.34)

(and = 0 for σ /∈ Sr) or, alternatively,

ξ(r) = ei(r−r0)(Ã∓b̃)[√bR(λ± i0)ψ
]
|Sr
.(1.35)

The notation (1.35) is motivated by (1.31) and the formula

(eiτ(Ã∓b̃)ψ)(x) = exp
(
∓i
∫ τ

0
b̃(ỹ(t, x)) dt

)
(eiτÃψ)(x).

Then we define the “distorted Fourier transform” by

F±(λ)ψ = G–lim
r→∞

ξ(r); ψ ∈ H1+.(1.36)
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Theorem 1.14. — Suppose Condition 1.13. Then for any ψ ∈ H1+
there exist the limits (1.36). The maps I 3 λ 7→ F±(λ)ψ ∈ G are continu-
ous. Moreover, putting δ(H − λ) = π−1 ImR(λ+ i0),

‖F±(λ)ψ‖2 = 2π〈ψ, δ(H − λ)ψ〉.(1.37)

By definition the function F±(λ)ψ ∈ G = L2(S,dÃ), and we note that
our construction of F±(λ)ψ is non-canonical primarily due to the freedom
in choosing G. In fact for M ex = M the only non-canonical feature comes
from the dependence of r0 (determining G in that case), while in general
there is an additional freedom in choosing extended functions.
Due to (1.37) the operators F±(λ) extend as continuous operators B →

G, and for any ψ ∈ B the maps F±( ·)ψ ∈ G are continuous. In Proposi-
tion 1.15 stated below we give a formula for these extensions.
Introduce

HI = PH(I)H, H̃I = L2(I, (2π)−1dλ;G),

set HI = HPH(I) and let Mλ be the operator of multiplication by λ on
H̃I . We define

F± =
∫
I

⊕
F±(λ) dλ : B → C(I;G).

These operators can be extended to proper spaces which is stated as the
first part of the following result.

Proposition 1.15. — Suppose Condition 1.13. The operators F± con-
sidered as maps B ∩ HI → H̃I extend uniquely to isometries HI → H̃I .
These extensions obey F±HI ⊆ MλF

±. Moreover for any ψ ∈ B the vec-
tors F±(λ)ψ are given as averaged limits. More precisely introducing for
any such ψ the integral −

∫
R
ξ(r) dr := R−1 ∫ 2R

R
ξ(r) dr, these vectors are

given as

(1.38) F±(λ)ψ = G–lim
R→∞

−
∫
R

ξ(r) dr

= G–lim
R→∞

−
∫
R

exp
(∫ r

r0

(
∓ĩb+ 1

2 div ω̃
)

(s, ·) ds
)

[
√
bR(λ± i0)ψ](r, ·) dr,

and the limits (1.38) are attained locally uniformly in λ ∈ I.

The above extended isometries F± : HI → H̃I are actually unitary un-
der an additional condition, and for this reason we call them the Fourier
transformations associated with HI . The new condition consists of two al-
ternatives. The first one is a partial strengthening of Condition 1.13. The
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other one is primarily a set of bounds on higher order derivatives of various
quantities defined on M .

For simplicity for any smooth function f on M let us set

∇′f = ∇f − (∇ω̃f)∇r, ∇′2f = ∇2f − (∇ω̃f)∇2r.(1.39)

Note that in E the quantity ∇′f involves spherical derivatives only, which
may be seen as a consequence of the formula ∇′f = `•i(∇f)i. Although
we do not verify it in this paper, in E the spherical part of ∇′2f , i.e.
`•i`•j(∇′2f)ij , coincides with the second order derivative (∇′f is the first
order derivative) computed by the Levi-Civita connections on the r-spheres
Sr associated with the induced Riemannian metrics gr := ι∗rg.

Condition 1.16. — In addition to Condition 1.13 one of the following
two properties holds:

(1)

min{σ, τ, ρ} > 2.(1.40)

(2) The extension b̃
ex

of Condition 1.13 is in C2. The restriction q1|E
belongs to C2(E), and there exists C > 0 such that∣∣`•i`•j`•k(∇3r)ijk

∣∣ 6 Cr−1−τ/2,(1.41a)

|`•i`•j(∇′2q1)ij | 6 Cr−1−ρ,(1.41b)

and∣∣`•i`•j(∇′2|dr|2)ij
∣∣ 6 Cr−1−τ ,

∣∣`•i`•j(∇′2∇r|dr|2)ij
∣∣ 6 Cr−1−τ ,∣∣`•i`•j(∇′2∆r)ij

∣∣ 6 Cr−1−τ .
(1.41c)

We remark that there does not appear r-derivatives in (1.41b) and hence
for q1 it suffices to assume additional C2-smoothness only in the spherical
directions. The bounds (1.41b) and (1.41c) allow us to estimate

`•i`•j
(
∇′2
(
±ĩb− 1

2 div ω̃
))
ij

= O(r−1−min{τ, ρ}),(1.42)

to be used in our verification of (2.36).

Theorem 1.17. — Suppose Condition 1.16. Then the operators F± :
HI → H̃I are unitarily diagonalizing transforms for HI , that is, they are
unitary and

F±HI = MλF
±,

respectively.
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Remark. — For the conclusion of Theorem 1.17 it suffices to assume
Condition 1.13 and (3.23) of Lemma 3.8. In fact, Condition 1.16 is here
and henceforth used only for the verification of (3.23).

1.3.2. Scattering matrix and generalized eigenfunctions

Next for any ξ ∈ G let us introduce purely outgoing/incoming approxi-
mate generalized eigenfunctions φ±[ξ] ∈ B∗ by, using the spherical coordi-
nates,

(1.43) φ±[ξ](r, σ)

= ηλ
[
2|dr|2(λ− q1)

]−1/4 exp
(∫ r

r0

(
±ĩb− 1

2 div ω̃
)

(s, σ) ds
)
ξ(σ),

cf. Theorem 1.14. Of course these quantities are well-defined independently
of all the estimates of Conditions 1.13 and 1.16. We remark that formulas
like (1.43) in the context of Schrödinger operators are referred to as (zeroth
order) WKB-approximations. We remark that, although only the real part
Re a is employed in (1.43) instead of the full complex phase a, the imagi-
nary part Im a is already somehow taken into account in the front factor
ηλ[2|dr|2(λ − q1)]−1/4. In fact for M ex = M , letting ã = |dr|−2a, we can
see this from

Re
∫ r

r0

±iãds = − 1
4

∫ r

r0

[
ηλ∂s ln(λ− q1) + ηλ|dr|−2(∇rq12)

/
(λ− q1)

]
ds

by an integration by parts. The spherical waves (1.43) will work as free
comparison waves in our theory.
If we denote the oscillatory part of the phase by

S(x) = ±
∫ r(x)

r0

b̃(s, σ(x)) ds,

then Condition 1.7 and (1.32) of Condition 1.13 imply that for M ex = M

1
2 |dS(x)|2 + q1 − λ = O(r−1−ε) for all ε < 2βc − 1,

see Lemma 2.6. Whence in this case S( ·) is an approximate solution to
the eikonal equation with the effective potential q1 and a short-range error.
In the general case of Condition 1.13 the bound (1.33) is barely too weak
to give a uniform short-range error, however due to Lemma 2.6 we still
have pointwise short-range bounds (i.e. short-range bounds that are not
uniform in σ ∈ S). Although such a property is basic for the WKB-method
(in particular for obtaining higher order expansions) it will only be used
in a disguised form in this paper. We remark that under Condition 1.13
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for any ξ ∈ C∞c (S) ⊆ G the vectors φ±[ξ] ∈ N (here possibly needed
cutoff further at infinity), and under Condition 1.16 they are approximate
generalized eigenfunctions in the sense R(i)(H−λ)φ±[ξ] ∈ B∩H1 which is
a consequence of (3.23), cf. the proof of Lemma 3.9 (see also Example 1.20
where this property just barely does not hold).
Under Condition 1.16 and for any λ ∈ I the scattering matrix S(λ) : G →

G is defined by the identity

F+(λ)ψ = S(λ)F−(λ)ψ; ψ ∈ B.(1.44)

It follows from (3.28b) that C∞c (S) ⊆ RanF±(λ), and hence (seen in com-
bination with Theorem 1.14, Proposition 1.15 and a density argument) S( ·)
is a well-defined strongly continuous unitary operator. We obtain a charac-
terization of the generalized eigenfunctions in N ∩B∗, i.e. the elements of

Eλ := {φ ∈ N ∩B∗ | (H − λ)φ = 0}.

Due to Theorem 1.4 these eigenfunctions may be called minimum eigen-
functions.

Theorem 1.18. — Suppose Condition 1.16. Then for any λ ∈ I the
following assertions hold.

(i) For any one of ξ± ∈ G or φ ∈ Eλ the two other quantities in
{ξ−, ξ+, φ} uniquely exist such that

φ− φ+[ξ+] + φ−[ξ−] ∈ B∗0 .(1.45a)

(ii) The correspondences in (1.45a) are given by the formulas (recall
(1.35))

φ = iF±(λ)∗ξ±, ξ+ = S(λ)ξ−,(1.45b)

ξ± = 2−1 G–lim
R→∞

−
∫
R

ei(r−r0)(Ãex∓b̃ex)[b−1/2(A± b)φ
]
|Sr

dr.(1.45c)

In particular the wave matrices F±(λ)∗ : G → Eλ are linear isomor-
phisms.

(iii) The wave matrices F±(λ)∗ : G → Eλ (⊆ B∗) are bi-continuous. In
fact

2‖ξ±‖2G = lim
R→∞

R−1
∫
B2R\BR

|b1/2φ|2 (det g)1/2dx.(1.45d)

(iv) The operators F±(λ) : B → G and δ(H − λ) : B → Eλ are onto.

We remark that parts of this theorem overlap with [1, 2, 4, 8, 25, 29].
Finally we give an application of our results to channel scattering theory

addressed, but treated very differently, in [9]. Suppose M ex has N > 2
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number of ends, i.e. Eex = {x ∈M ex | rex(x) > r0} has N > 2 components
Ei, i = 1, . . . , N . (Note that this implies that M ∩Ei, i = 1, . . . , N , are the
components of E = M ∩ Eex.) Then the Hilbert space G splits as

G = G1 ⊕ · · · ⊕ GN ; Gi = L2(Si), Si = S ∩ Ei,

and, accordingly, the scattering matrix S(λ) has a matrix representation

S(λ) = (Sij(λ))16i,j6N , Sij(λ) ∈ B(Gj ,Gi).

Corollary 1.19. — Suppose under Condition 1.16 that Eex has N
number of ends. Decomposing as above for any λ ∈ I the scattering matrix
S(λ) into components the off-diagonal ones, Sij(λ) with i 6= j, are one-to-
one mappings.

Proof. — If ξ− = (ξ1
−, . . . , ξ

N
− ) ∈ G is given with ξj− = 0 for j 6= 2 and

ξ1
+ = 0 then φ = iF+(λ)∗ξ− obeys that 1M∩E1φ ∈ B∗0 . By using a suitable
cutoff of the function r (essentially defined by making it vanish inM∩Ej for
j > 2) we then obtain from Theorem 1.4 that φ = 0. For example we could
redefine r and r0 of Condition 1.1 as follows (using the notation (1.1)):
First replace r by the function r1M∩E1

(
1− χ(r/r0)

)
and then replace the

parameter r0 by 4r0. With these modifications Conditions 1.1–1.3 are ful-
filled (with the other parameters there unchanged), and therefore indeed
Theorem 1.4 applies. In particular we deduce that ξ2

− = 0, showing that
kerS12(λ) = {0}. We can argue in the same way for all other off-diagonal
components of the scattering matrix. �

We note that Corollary 1.19 may be seen as a stationary solution to
conjectures of [9], see [9, Remark 5.7]. We develop the time-dependent
version of our results in [19]. In particular this includes a time-dependent
version of Corollary 1.19 directly proving conjectures of [9] in a strong form.
The proof is based on Corollary 1.19.

For some examples for which our theory applies we refer the reader to [20,
Subsection 1.2]. We close this section with a counterexample for which we
can not apply our theory. This counterexample means that our theory is
in a sense optimal. For a detailed discussion see also Subsection 3.5.

Example 1.20. — Consider a subset M ⊆ R2 equipped with the Eu-
clidean metric and an end consisting of the “interior” of a parabola, say
x2 < y, and r2 := x2/2 + y2 > r2

0. We consider only V = 0. The orbits of
ω = grad r are the branches of parabolas cy1/2 = x where −1 < c < 1, and
Condition 1.7 is fulfilled for any σ < 1, τ = 1 and ρ = 2 (and similarly for
Condition 1.16(2)), in particular we can take βc = 1/2 − ε for any small
ε > 0. However the barely stronger condition (1.32) is not fulfilled and
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whence the example is not covered by the theory of this paper (in contrast
to [20]). Moreover we can in fact show that the generalized eigenfunctions
in N ∩B∗ are not of WKB-type as in the theorem stated above, see Sub-
section 3.5. Let us here note, as an indication of this result, that for any
0 6= ξ ∈ C∞c (S) ⊆ G

(H − λ)φ±[ξ] ∈ H1/2− \B,

which technically prevents us to construct WKB-solutions.

2. Separation of variables and free comparison waves

This is a preliminary section for the proofs of our main results. Here
we investigate properties of the purely outgoing/incoming spherical waves
φ±[ξ], which was introduced in Subsection 1.3 as free comparison waves.
The later parts of the section rely on geometric estimates for the tensor `.
These estimates are rather complicated in the general coordinates, however,
they can be much simplified by separation of the radial and the angular
variables in the spherical coordinates. Similarly the Hamiltonian H simpli-
fies in the spherical coordinates.

2.1. Elementary tensor analysis

Here we fix our convention for the covariant derivatives. We formulate
and use them always in local expressions, but for a coordinate-independent
representation, see [3, p. 34].

2.1.1. Derivatives of functions and tensors

We shall denote two tensors by the same symbol if they are related to each
other through the canonical identification TM ∼= T ∗M , and distinguish
them by super- and subscripts. We denote TM ∼= T ∗M by T for short,
and set T p = T⊗p. The covariant derivative ∇ acts as a linear operator
Γ(T p)→ Γ(T p+1) and is defined for t ∈ Γ(T p) by

(∇t)ji1···ip = ∇jti1···ip = ∂jti1···ip −
p∑
s=1

Γkjisti1···k···ip .(2.1)

Here Γkij = 1
2g
kl(∂iglj + ∂jgli − ∂lgij) is the Christoffel symbol and t is

considered as a section of the p-fold cotangent bundle, and we adopt the
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convention that a new subscript is always added to the left as in (2.1). By
the identification TM ∼= T ∗M it suffices to discuss an expression only for
the subscripts. In fact, we have the compatibility condition

∇igjk = ∂igjk − Γlijglk − Γlikgjl = 0,(2.2)

and then by (2.1) and (2.2) the covariant derivative can be computed for
the tensors of any type. For example, for t ∈ Γ(T ) = Γ(T 1)

(∇t)ji = gik(∇t)jk = gik
(
∂jtk − Γljktl

)
= gik

(
∂jgklt

l − Γljkglmtm
)

= ∂jt
i + Γijktk,

(2.3)

and this extends to the general case with ease. The covariant derivative
acts as a derivation with respect to tensor product, i.e. for t ∈ Γ(T p) and
u ∈ Γ(T q)

(∇(t⊗ u))ji1···ip+q = (∇t)ji1···ipuip+1···ip+q + ti1···ip(∇u)jip+1···ip+q .(2.4)

The formal adjoint ∇∗ : Γ(T p+1)→ Γ(T p) is defined to satisfy∫
uji1···ip(∇t)ji1···ip(det g)1/2 dx =

∫
(∇∗u)i1···ipti1···ip(det g)1/2 dx

for u ∈ Γ(T p+1) and t ∈ Γ(T p) compactly supported in a coordinate neigh-
bourhood. Actually we can write it in a divergence form: For u ∈ Γ(T p+1)

(∇∗u)i1···ip = −(div u)i1···ip = −(∇u)jji1···ip = −gjk(∇u)jki1···ip .

Finally let us give several remarks. It is clear that for any function
f ∈ Γ(T 0) = C∞(M) the second covariant derivative ∇2f = ∇∇f is
symmetric, i.e.

(∇2f)ij = (∇2f)ji = ∂i∂jf − Γkij∂kf,(2.5)

and we have expressions for the Laplace–Beltrami operator ∆:

∆f = (∇2f)ii = gij(∇2f)ij = tr∇2f = div∇f.

We note that covariant differentiation and contraction are commuting op-
erations. Whence we have, for example, for t ∈ Γ(T ) and u ∈ Γ(T p+1)

∇ktjuji1···ip = (∇t)kjuji1···ip + tj(∇u)kji1···ip ,

∇j(∇t)ii = (∇2t)jii = gik(∇2t)jik.
(2.6)
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2.1.2. Derivatives of mappings

Next let us present a short description of the derivatives of a mapping
(not of a function). Let y : M → N be a general mapping from a Rie-
mannian manifold (M, g) to another (N,h). In geometric literatures the
k-th derivatives ∇ky, k = 1, 2, . . . , are tensors defined to satisfy the “chain
rule”. For instance, the derivatives ∇y and ∇2y are required to satisfy in
local coordinates that for any function f ∈ C∞(N)

[∇(f(y))]i = (∇y)αi(∇f)α(y),

[∇2(f(y))]ij = (∇2y)αij(∇f)α(y) + (∇y)αi(∇y)βj(∇2f)αβ(y).
(2.7)

Here we used the Roman and the Greek alphabets to denote the indices
of coordinates x ∈ M and y = y(x) ∈ N , respectively. Although we are
not going to verify this, the above definition is indeed well-justified, and
we have the following local expressions for such derivatives:

(∇y)αi = ∂iy
α, (∇2y)αij = ∂i∂jy

α − Γkij∂kyα + Γαβγ(∂iyβ)(∂jyγ).(2.8)

Note that we adopted the same convention on the Roman and Greek indices
as above: In particular, Γkij and Γαβγ denote the Christoffel symbols for
(M, g) and (N, g), respectively. As for (2.8), we refer e.g. to [6, Section 3].

2.2. Separation of radial and angular variables

Using spherical coordinates allows us to decompose various quantities
into radial and angular parts. It is clear from (1.27) that we naturally have
the identification

L2(E) ∼= L2([r0,∞)r;Gr), 〈ψ, φ〉L2(E) =
∫ ∞
r0

〈ψ, φ〉Gr dr.

Such a decomposition holds also for the Riemannian metric, and hence for
the Laplace–Beltrami operator.

Lemma 2.1. — Suppose Condition 1.1. Then in the spherical coordi-
nates (r, σ) = (r, σ2, . . . , σd) in E one has

gij(∂ir)(∂jr) = |dr|2, gij(∂ir)(∂jσα) = 0,(2.9)

or

g = |dr|−2 dr ⊗ dr + gαβ dσα ⊗ dσβ ,
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where the Greek indices run over 2, . . . , d. In particular, by the defini-
tion (1.4), the tensor ` coincides with the spherical part of g:

` = gαβ dσα ⊗ dσβ on E,

and the operator L can be identified with a direct sum:

L ∼=
∫ ∞
r0

⊕
Lr dr as quadratic forms on C∞c (E),(2.10)

where Lr is the Laplace–Beltrami operator on Sr with respect to the in-
duced metric gr := ι∗rg and the (non-Riemannian) density dÃr, i.e.,

Lr = p∗αg
αβ
r pβ ; p∗α = |dr|(det gr)−1/2pα|dr|−1(det gr)1/2.(2.11)

Proof. — The first identity of (2.9) is clear by definition, and hence we
prove the second. By differentiating the identity σα(ỹ(t, x)) = σα(x) with
respect to t we obtain

(∂tỹi(t, x))(∂iσα)(ỹ(t, x)) = 0,

which combined with the flow equation ∂tỹ
i(t, x) = ω̃i(ỹ(t, x)) implies

(∇r)i(∂iσα) = 0, which is nothing but the second identity of (2.9).
The rest of the assertions are clear. �

Let us comment on the operator Lr given by the expression (2.11). De-
note the spherical part of the derivative p by p′, or p′ = −i∇′, cf. (1.39).
The operator p′ is well-defined on C1(Sr) as well as on C1(M), and we do
not distinguish them. It is clear from (2.11) that for any ξ, ζ ∈ C∞c (Sr)

〈ζ, Lrξ〉Gr =
∫
Sr

gijr (piζ)(pjξ) dÃr = 〈p′ζ, p′ξ〉Gr .

We can at this point use local coordinates of S to define and implement the
integration, since in any case clearly the radial derivative ∂r does not enter.
Hence in what follows we may consider Lr as a self-adjoint operator on Gr
defined by the Friedrichs extension of (2.11) from C∞c (Sr) ⊆ Gr. Then by
an approximation argument it follows that for any φ ∈ H1 the restriction
φ|Sr ∈ D(L1/2

r ) = D(p′) for almost every r > r0. In fact, we have for all
r > r0∫ r

r0

‖p′φ|Ss‖
2
Gs ds =

∫
Br\Br0

`ij(piφ)(pjφ)(det g)1/2 dx 6 ‖φ‖2H1 .

ANNALES DE L’INSTITUT FOURIER



STATIONARY SCATTERING THEORY ON MANIFOLDS 1087

2.3. Decomposition of Hamiltonian

Throughout this subsection we impose Condition 1.7. In Section 3 we
will extensively use the notation

κ = min{1 + τ/2, 1 + ρ/2, ρ}

and η̃ of (1.2). Let us recall two results, [20, (1.9)] and [20, Lemma 5.1],
respectively. (Recall for Lemma 2.3 that a has two values for z ∈ I, say
a = a±.)

Lemma 2.2. — As quadratic forms on H1,

H = 1
2Aη̃A+ 1

2L+ q1 + q4; q4 = q2 + 1
4 (∇rη̃)(∆r).

Lemma 2.3. — Let I ⊆ I be a compact interval. There exist C > 0
such that uniformly in z ∈ I ∪ I+ or z ∈ I ∪ I−

|a| 6 C,
∣∣±pra+ a2 − 2|dr|2(z − q1)

∣∣+
∣∣`•i∇ia∣∣ 6 Cr−κ.

We may consider Lemma 2.2 as a decomposition ofH into a sum of radial
and angular components (see the discussion at the end of Subsection 2.2).
In the next section we shall use similar decompositions:

Lemma 2.4. — Let I ⊆ I be a compact interval. Then as a quadratic
form on χnH1 ⊆ H1 for any large n and uniformly in z = λ± iΓ ∈ I ∪ I±

H−z = 1
2 (A± a)η̃(A∓ a) + 1

2L+O(r−κ),(2.12a)

H−z = 1
2b

1/2(Ã± b̃)b−1/2(A∓a)+ 1
2L+O(r−κ)(A∓a)+O(r−κ),(2.12b)

H−z = 1
2
a√
b
(Ã± b̃)

√
b
a (A∓ a) + 1

2L+O(r−κ)(A∓ a) +O(r−κ).(2.12c)

Proof. — Using Lemma 2.2 we can write

H − z = 1
2 (A± a)η̃(A∓ a)± 1

2 (prη̃a) + 1
2 η̃a

2

+ 1
2L+ q1 + q2 + 1

4 (∇rη̃)(∆r)− z.

Hence the first identity (2.12a) is obtained applying Lemma 2.3 to the
remainder written

1
2 η̃
[
±(pra) + a2 − 2|dr|2(z − q1)

]
− (1− η)(z − q1) + q2 + 1

4 (∇rη̃)(∆r ∓ 2ia) = O(r−κ).

This is valid with or without the factor χn. However for (2.12b) and (2.12c)
we need this factor to avoid dividing by zero. We use (2.12a) and the
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identities

Aη̃ = Ã− i
2 (∇rη̃),(2.13a)

(A± a)η̃ = b1/2(Ã± b̃)b−1/2 +O(r−κ),(2.13b)

(A± a)η̃ = ab−1/2(Ã± b̃)a−1b1/2 +O(r−κ).(2.13c) �

The identities

(A∓ b)b1/2 = b1/2(A∓ b− i
2∇

r ln b) = b1/2(A∓ a+O(r−κ))(2.14)

would provide more symmetric versions (2.12b) and (2.12c), however these
are not useful under our conditions.

2.4. First order derivatives of spherical waves

We estimate the first order derivatives of the purely outgoing/incoming
spherical waves φ±[ξ], ξ ∈ G.

The following estimates are almost clear by their definition.

Lemma 2.5. — Suppose Condition 1.13, and let I ⊆ I be a compact
interval. Then there exists C > 0 such that for any λ ∈ I and ξ ∈ G one
has that

‖φ±[ξ]‖B∗ 6 C‖ξ‖G ,(2.15)

and that for (r, σ) ∈ E, r > maxλ∈I rλ,∣∣(A∓ a)φ±[ξ](r, σ)
∣∣ 6 Cr−1−min{τ,ρ}/2∣∣φ±[ξ](r, σ)

∣∣.(2.16)

Proof. — We introduce the restriction to r-spheres

φr = φ±[ξ]|Sr for r > r0,(2.17)

and estimate recalling the embedding (1.30),

‖ξ‖2G > R−1
∫ R

r0

‖ξ|Sr‖
2
G dr > (CR)−1

∫ R

r0

‖φr‖2Gr dr.

We obtain (2.15) by taking the supremum over all R > r0.
For r > maxλ∈I rλ we can calculate

(A∓ a)φ±[ξ](r, σ) =
[
− 1

2 (prb)
/
b± |dr|2b̃+ (pr|dr|2)

/
|dr|2 ∓ a

]
φ±[ξ](r, σ)

= 1
4

[
(prq12)

/
(z − q1) + 3(pr|dr|2)

/
|dr|2

]
φ±[ξ](r, σ),

and this implies (2.16). �
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Next we consider the spherical derivatives. Their estimates depend on a
“decay rate” of the spherical part ` of g. To be precise, in general we can
not directly compare two tensors on different base points, but we are going
to compare the tensor `(ỹ(t, x)) and the push-forward `∗(t, x) of `(x) under
the map ỹ(t, ·), defined by

`∗(t, x) =
(
`ij(x)[∂iỹα(t, x)][∂j ỹβ(t, x)]

)
α,β
.

Here the Roman and the Greek indices are used for quantities concerning
x and ỹ = ỹ(t, x), respectively, differently from those in Lemma 2.1. Let us
first formulate and verify such a comparison in technical geometric termi-
nology, although in the spherical coordinates it actually reduces to a mere
matrix inequality.
Let us introduce a “backwards hitting time” for x ∈ E by

rbht(x) = sup
{
s 6 r(x)− r0

∣∣ ỹ(−s, x) ∈M
}
.

Recall the notation (1.21), βc = 1
2 min{σ, τ, ρ}.

Lemma 2.6. — Suppose Conditions 1.1 and 1.2 (and σ ∈ (0, σ′)). Then
for all x ∈ E and t ∈ (−rbht(x), 0]

`∗(t, x) 6 (d− 1)
[
(r(x) + t)

/
r(x)

]σ′
`(ỹ(t, x))(2.18)

as quadratic forms on the fibers of the cotangent bundle. In spherical co-
ordinates the estimate (2.18) reads: For any r > s > r0 and σ ∈ Ss ⊆ S

`(r, σ) 6 (d− 1)(s/r)σ
′
`(s, σ).(2.19)

Suppose Condition 1.7. Then for any compact interval I ⊆ I there exists
C > 0 such that for all λ ∈ I and (r, σ) ∈ E in the spherical coordinates∫ r

r−rbht(r,σ)

∣∣p′b̃(s, σ)
∣∣
gr

ds 6 Cr−βc .(2.20)

Proof. — To prove the inequality (2.18) let us consider the trace

F (t) = gαβ(ỹ(t, x))`αβ∗ (t, x) = gαβ(ỹ(t, x))`ij(x)[∂iỹα(t, x)][∂j ỹβ(t, x)],

and compute its derivative in t. Differentiate the expression

(g∗)ij(t, x) := gαβ(ỹ(t, x))[∂iỹα(t, x)][∂j ỹβ(t, x)]

and use the compatibility condition (2.2) and the flow equation ∂tỹi = ω̃i,
and then we have

∂
∂t (g

∗)ij = [Γδγαgδβ + Γδγβgαδ]ω̃γ(∂iỹα)(∂j ỹβ)

+ gαβ(∂γω̃α)(∂iỹγ)(∂j ỹβ) + gαβ(∂γω̃β)(∂iỹα)(∂j ỹγ)

= 2(∇ω̃)αβ(∂iỹα)(∂j ỹβ),

(2.21)
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which yields

F ′(t) = 2`ij(x)
(
∇ω̃(ỹ(t, x))

)
αβ

[∂iỹα(t, x)][∂j ỹβ(t, x)].

Next we decompose ∇ω̃ = |dr|−2∇2r+(d|dr|−2)⊗dr and substitute it into
the above formula. The second term does not contribute, which is verified
easily in the spherical coordinates. Whence using (1.7b) we obtain

F ′(t) > σ′(r(x) + t)−1F (t).

This implies that for t ∈ (−rbht(x), 0]

F (0) >
[
r(x)

/
(r(x) + t)

]σ′
F (t),

or that

`∗(t, x) 6 (d− 1)
[
(r(x) + t)

/
r(x)

]σ′
g(ỹ(t, x)).

If we write the last inequality in the spherical coordinates, then there does
not appear radial components on the left-hand side, so that we can remove
radial components also from the right-hand side. Thus the inequality (2.18)
follows.
Now for (2.20) we use the spherical coordinates and (2.19) estimating∫ r

r−rbht(r,σ)

∣∣p′b̃(s, σ)
∣∣
gr

ds

6 C1

∫ r

r−rbht(r,σ)
(s/r)σ

′/2s−1−min{τ,ρ}/2 ds 6 C2r
−βc . �

We apply Lemma 2.6 to estimates of the spherical waves φ±[ξ]. Recall
the abbreviated notation φr for the restriction of φ±[ξ] to r-spheres (2.17).

Corollary 2.7. — Suppose Condition 1.13, and let I ⊆ I be a com-
pact interval. There exists C > 0 such that for any λ ∈ I, r > s >
maxλ∈I rλ and ξ ∈ G with ỹ(s − r0, supp ξ) ⊆ Ss, the functions φs ∈ Gs,
φr ∈ Gr and

‖φr‖Gr 6 C‖φs‖Gs .(2.22a)

If in addition ξ ∈ C1
c (S) (so that φs ∈ C1

c (Ss)) then

‖p′φr‖Gr 6 C
(
r−βc‖φs‖Gs + (s/r)σ/2‖p′φs‖Gs

)
.(2.22b)

Proof. — Using the expression (1.43) and the supported property of ξ,
we can write

φr(σ) = B(s, r, σ)eY (s,r,σ)φs(σ)(2.23)
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with

B(s, r, σ) =
[
b(s, σ)

/
b(r, σ)

]1/2
, Y (s, r, σ) =

∫ r

s

(
±ĩb− 1

2 div ω̃
)

(t, σ) dt.

Then (2.22a) is a direct consequence of it.
For the latter assertion we can differentiate as

p′φr =
[
p′B(s, r, ·)

]
eY (s,r,·)φs +

[
p′Y (s, r, ·)

]
φr +B(s, r, ·)eY (s,r,·)p′φs.

By (2.19) the contributions from the first and the third terms on the right-
hand side above satisfy the desired estimate. As for the second term we use
again (2.19) proceeding as in the proof of (2.20), whence estimating as

(2.24) `ij(r, ·)
[
piY (s, r, ·)

][
pjY (s, r, ·)

]
6 C1

(∫ r

s

(t/r)σ
′/2
∣∣∣p′(±ĩb− 1

2 div ω̃
)

(t, ·)
∣∣∣dt)2

6 C2r
−min{σ,τ,ρ}.

Then by div ω̃ = |dr|−2∆r + (∇r|dr|−2) and (2.22a) we obtain the
assertion. �

2.5. Second order derivatives of spherical waves

Next, we estimate the second order spherical derivative Lrφr of the re-
striction of φ±[ξ] to r-spheres. The main result of this subsection is Corol-
lary 2.10.
We are going to make use of the following formula, which reduces the

estimate of Lrφr to that of a geometric second derivative of the mapping
ỹ(t, ·).

Lemma 2.8. — For any f ∈ C2(M), if one abbreviates ỹ = ỹ(t, ·), then

L[f(ỹ)] = −`ij(∂iỹα)(∂j ỹβ)(∇′2f)αβ(ỹ) + (Lỹ)α(∂αf)(ỹ),(2.25)

where ∇′2f is defined in (1.39), and

(2.26) Lỹα = −`ij(∇2ỹ)αij − η̃`ij(∇r)α(∂iỹβ)(∂j ỹγ)(∇2r)βγ

+
[
(∇rη̃)(∇r)j + η̃(∆r)(∇r)j + 1

2 η̃(∇|dr|2)j
]
∂j ỹ

α.

Here the Roman and the Greek indices are those concerning x and ỹ =
ỹ(t, x), respectively. In addition, in the spherical coordinates in E the first
term on the right-hand side of (2.25) does not contain an r-derivative of
f , and neither does the second term.
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Proof. — For any f ∈ C2(M) we have, cf. (2.6),

L[f(ỹ)] = −`ij
(
∇2f(ỹ)

)
ij
− (∇`)iij

(
∇f(ỹ)

)
j
.

Here note that

(∇`)iij = −
[
∇
(
η̃ dr ⊗ dr

)]
i
ij

= −(∇rη̃)(∇r)j − η̃(∆r)(∇r)j − 1
2 η̃(∇|dr|2)j ,

and hence we have

[Lf(ỹ)] = −`ij
(
∇2f(ỹ)

)
ij

+
[
(∇rη̃)(∇r)j + η̃(∆r)(∇r)j + 1

2 η̃(∇|dr|2)j
](
∇f(ỹ)

)
j
.

Now we use the formulas (2.7), (2.8) and (1.39), and then the expres-
sion (2.25) follows.
Let us verify the latter assertion. By (1.39) and (1.6) we have in the

spherical coordinates on E

(∇′2f)αβ = ∂α∂βf − Γγαβ∂γf − (∂rf)(∇2r)αβ .(2.27)

In the first term on the right-hand side of (2.25) the terms corresponding
to α = r or β = r vanish, and hence the r-derivative of f could appear
only from the latter two terms of (2.27). However, they cancel each other
out since by (1.6)

−Γrαβ = (∇2r)αβ .(2.28)

As for the second term to the right in (2.25) we note that the left-hand
side does not contain an r-derivative due to (2.11). Whence it does not
contain an r-derivative neither. Let us give an alternative more direct proof
of the fact that Lỹr = 0. Recalling (2.8), we can compute

Lỹr = −`ij∂i∂j ỹr + `ijΓkij∂kỹr − `ijΓrβγ(∂iỹβ)(∂j ỹγ)

− η`ij(∂iỹβ)(∂j ỹγ)(∇2r)βγ

+
[
(∇rη̃)(∇r)j + η̃(∆r)(∇r)j + 1

2 η̃(∇|dr|2)j
]
∂j ỹ

r.

Then the first term above vanishes (since ỹr(t, r, σ) = r+ t). The third and
the fourth terms cancel out by (2.28). Similarly, the second and the fifth
cancel out due to (2.28). �

Lemma 2.8 motivates us to estimate the tensor Lỹ defined by (2.26). We
remark for any x ∈ E and t ∈ (−rbht(x), 0] the quantity (Lỹα(t, x))α=1,...,d
defines a tangent vector at ỹ(t, x) ∈ E, and that it is in fact tangent to the
r-sphere Sỹ(t,x) = Sr(x)+t since Lỹr = 0.
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Lemma 2.9. — Suppose Conditions 1.1 and 1.2 (and σ ∈ (0, σ′)) along
with (1.41a). Then there exists C > 0 such that uniformly in x ∈ E and
t ∈ (−rbht(x), 0]

|Lỹ(t, x)| 6 C
[
(r(x) + t)1/2/r(x)

]min{σ,τ}
.(2.29)

Proof. — Fix x ∈ E, and set

F (s) = |Lỹ(s, x)|2 = gαβ [Lỹα(s, x)][Lỹβ(s, x)].

To prove (2.29) we shall establish a differential inequality for F (s), cf. the
proof of Lemma 2.6. Obviously, we have

F ′(s) = (∂sgαβ)(Lỹα)(Lỹβ) + 2gαβ(∂sLỹα)(Lỹβ).(2.30)

In the sequel we use the spherical coordinates. Since Lỹr = 0, we may let
the indices α, β 6= r on the right-hand side above. Then we can compute
the first term of (2.30) as

∂sgαβ = ω̃γ(∂γgαβ) = ∂rgαβ = 2|dr|−2(∇2r)αβ .(2.31)

Here we have used

ω̃γ = δγr, ∂rgαβ = −2|dr|−2Γrαβ = 2|dr|−2(∇2r)αβ .(2.32)

The latter follows by letting γ = r and α, β 6= r in

gγδΓδαβ = 1
2 (∂αgγβ + ∂βgγα − ∂γgαβ).(2.33)

On the other hand, as for the second term of (2.30), we use (2.26) and (2.8)
amounting to the formula for α 6= r

Lỹα = `ijΓkij∂kỹα − `ijΓαβγ(∂iỹβ)(∂j ỹγ) + 1
2 η̃(∇|dr|2)j∂j ỹα.

Note that the quantities only with Roman indices do not depend on s, and
so are ∂iỹα. Whence

∂sLỹ
α = −`ij(∂rΓαβγ)(∂iỹβ)(∂j ỹγ),(2.34)

and it remains to compute ∂rΓαβγ . Differentiate (2.33) in r for α, β, γ 6= r,
and then use (2.32) to obtain

2|dr|−2(∇2r)γδΓδαβ − 2|dr|−2(∇2r)γrΓrαβ + gγδ∂rΓδαβ
= ∂α|dr|−2(∇2r)γβ + ∂β |dr|−2(∇2r)γα − ∂γ |dr|−2(∇2r)αβ ,

or

∂rΓδαβ = [∇|dr|−2(∇2r)]αδβ +[∇|dr|−2(∇2r)]βδα−|dr|−2(∇3r)δαβ .(2.35)

Now by (2.30), (2.31), (2.34), (2.35), (2.19) and the assumptions we obtain

F ′(s) > σ′(r(x) + s)−1F (s)− C
[
(r(x) + s)−1+σ′−τ/2/r(x)σ

′]
F (s)1/2.
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Hence, noting that F (0) = 1
4 |dr|

−4|∇′|dr|2|2, we obtain (2.29) by Gron-
wall’s inequality. �

Corollary 2.10. — Suppose Condition 1.13 and Condition 1.16(2).
Let I ⊆ I be a compact interval, and fix δ ∈ (0, 2βc). Then there exists
C > 0 such that for any λ ∈ I, r > s > maxλ∈I rλ and ξ ∈ C2

c (S) ⊆ G with
ỹ(s− r0, supp ξ) ⊆ Ss

(2.36) ‖Lrφr‖Gr 6 C
(

(1/r)δ‖φs‖Gs + (s1/2/r)δ‖∇′φs‖Gs

+ (s/r)δ‖`•i(s, ·)`•j(s, ·)(∇′2φs)ij‖Gs
)
.

Proof. — Using the expression (2.23) we can write

(2.37) Lrφr =
[
LrB(s, r, ·)

]
eY (s,r,·)φs +

[
LrY (s, r, ·)

]
φr

+`ij(r, ·)
[
piY (s, r, ·)

][
pjY (s, r, ·)

]
φr+B(s, r, ·)eY (s,r,·)Lrφs

+2`ij(r, ·)
[
piB(s, r, ·)

][
piY (s, r, ·)

]
eY (s,r,·)φs

+2`ij(r, ·)B(s, r, ·)
[
piY (s, r, ·)

]
eY (s,r,·)pjφs

+2`ij(r, ·)
[
piB(s, r, ·)

]
eY (s,r,·)pjφs.

The third term of (2.37) satisfies the desired estimate due to (2.24)
and (2.22a). The sixth term of (2.37) can be treated using the Cauchy–
Schwarz inequality, (2.24) and (2.22b). By the proof of Corollary 2.7

`ij(r, ·)
[
piB(s, r, ·)

][
piB(s, r, ·)

]
6 C3/r

δ.

Then, using the Cauchy–Schwarz inequality, the fifth and seventh terms
of (2.37) satisfy the desired estimate.
Next, we consider the second term of (2.37). We can compute by (2.10)

and Lemma 2.8 that

LrY (s, r, ·) = −`αβ(r, ·)
∫ r

s

[
∇′2
(
±ĩb− 1

2 div ω̃
)]
αβ

(t, σ) dt

+
∫ r

s

(Lỹ)α(t− r, r, σ)
[
∇′
(
±ĩb− 1

2 div ω̃
)]
α

(t, σ) dt.

Then by Condition 1.16(2), (1.42), (2.19) and Lemma 2.9 we obtain∣∣LrY (s, r, ·)
∣∣ 6 C4/r

δ.

This and (2.22a) implies that the second term of (2.37) fits with (2.36).
The remaining first and fourth terms of (2.37) are treated similarly; we
omit the details of proof. �
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3. Distorted Fourier transform and stationary scattering
theory

In this section we impose Condition 1.13. The first problem is to verify
the existence of the limit (1.36) which needs preparation. We state various
preliminary results. Of course we need to show that ξ(r) ∈ G for all large
r before taking the limit, and this is in fact doable for all ψ ∈ B. More
generally the following four results are valid with φ = R(λ ± i0)ψ for any
λ ∈ I and ψ ∈ B.

Lemma 3.1. — For all ψ ∈ B and r > r0 the quantity ξ(r) ∈ G.

Proof. — Introduce ξ ∈ C∞c (Sr), 0 6 ξ 6 1 and look at the push-forward
given by ξr′ = ξ(ỹ(r − r′, ·)) ∈ C∞c (Sr′), r′ > r > r0.
Note that the Gr-valued function

u(r′) := ei(r′−r)Ã{ξr′ [√bφ]|Sr′
}

; r′ ∈ [r,∞),

is a well-defined absolutely continuous function. In particular by the fun-
damental theorem of calculus

u(r) =
∫ r+1

r

u(s)ds−
∫ r+1

r

∫ s

r

d
dr′u(r′)dr′ds,

yielding upon computing the derivative
d

dr′u(r′) = ei(r′−r)Ã{ξr′ [iÃ√bφ]|Sr′
}
,

taking the norm inside and using the Cauchy–Schwarz inequality the bound

‖ξ[
√
bφ]|Sr‖Gr 6 ‖1Br+1

√
bφ‖+ 3−1/2‖1Br+1Ã

√
bφ‖.(3.1)

By taking ξ ↗ 1 we obtain a concrete bound of the trace [
√
bφ]|Sr ∈ Gr. �

In the above proof we only used the property that qφ :=
√
bφ ∈ N which

follows from the fact that φ ∈ N . The latter property suffices for the next
result too. Note that for any such qφ and r > r0 we may for any Rν > r+ 1
approximate χν qφ ∈ H1 by a sequence (qφn) ⊆ C∞c (M) ⊆ H1. Then it
follows from (3.1) that [qφn]|Sr → qφ|Sr in Gr for n→∞.

Lemma 3.2. — The quantity ξ( ·) ∈ G (possibly considered for an arbi-
trary φ ∈ N ) is an absolutely continuous G-valued function on [r0,∞).

Proof. — We fix any r1 > r0 and write for r ∈ [r0, r1]

ξ(r) = ei(r−r0)(Ã∓b̃)[√bR(λ± i0)ψ
]
|Sr

= ei(r1−r0)(Ã∓b̃)ei(r−r1)(Ã∓b̃)[√bφ]|Sr .
TOME 71 (2021), FASCICULE 3
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It suffices to show that the Gr1 -valued function

[r0, r1] 3 r → v(r) = ei(r−r1)(Ã∓b̃)[√bφ]|Sr
is absolutely continuous. Formally

v′(r) = ei(r−r1)(Ã∓b̃)[i(Ã∓ b̃)√bφ]|Sr ,(3.2)

i.e. v(r) = v(r1)−
∫ r1
r
v′(s) ds with v′(s) given by this formula. If we replace√

bφ =: qφ ∈ N by an approximating sequence (qφn) ⊆ C∞c (M) as in the
remark preceding the lemma (used with r = r1) indeed (3.2) holds true for
all n. Therefore (3.2) also holds in the limit n→∞. �

The above proof gives the following formula for the derivative (omitting
“ex”):

ξ′(r) = d
dr ξ(r)(3.3)

= exp
(∫ r

r0

(
∓ĩb+ 1

2 div ω̃
)

(s, ·) ds
)

[i(Ã∓ b̃)
√
bφ](r, ·) ∈ G.(3.4)

Lemma 3.3. — The following limit exists and is given as

lim
R→∞

−
∫
R

‖[
√
bφ]|Sr‖

2
Gr dr = ±2 Im〈ψ, φ〉.(3.5)

Proof. — Consider for convenience only the upper sign.

∫ 2R

R

‖[
√
bφ]|Sr‖

2
Gr dr =

∫ 2R

R

(
Re〈φ, (b−A)φ〉Gr + Im〈φ,∇ωφ〉Gr

)
dr.

By Corollaries 1.9 and 1.10

−
∫
R

Re〈φ, (b−A)φ〉Gr dr → 0.

Next we introduce for any R > r0 a smooth approximation of the charac-
teristic function of the ball BR of the form (employing (1.1))

χε,s(r) = χ((r −R− s)/ε); ε > 0, s ∈ [0, R].
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We compute a Green’s identity

(3.6)
∫ 2R

R

Im〈φ,∇ωφ〉Gr dr

= lim
ε→0

Im
∫ ∞
r0

(
χ(r − 2R)/ε)− χ((r −R)/ε

)
〈φ,∇ωφ〉Gr dr

= − lim
ε→0

Im
∫ ∞
r0

(∫ R

0
χ′ε,s(r) ds

)
〈φ,∇ωφ〉Gr dr

= − lim
ε→0

Im
∫ R

0

∫
M

(∂iχε,s)φgij(∂jφ)(det g)1/2 dxds

= − lim
ε→0

Im
∫ R

0

∫
M

(∂iχε,sφ)gij(∂jφ)(det g)1/2 dxds

= −2 lim
ε→0

∫ R

0
Im〈χε,sφ, (H − λ)φ〉H ds

= −2
∫ R

0
Im〈1BR+sφ, ψ〉H ds.

It follows that

−
∫
R

Im〈φ,∇ωφ〉Gr dr → 2 Im〈ψ, φ〉. �

We remark that a small modification of the computation (3.6) yields the
more familiar Green’s identity

Im〈φ,∇ωφ〉Gr = −2 Im〈1Brφ, ψ〉H for almost all r > r0,(3.7a)

yielding in particular that r → Im〈φ,∇ωφ〉Gr is absolutely continuous.
A similar computation shows that in fact r → 〈qφ,∇ωφ〉Gr is absolutely
continuous for any qφ ∈ N as it follows from the resulting Green’s identity

〈qφ,∇ωφ〉Gr = 〈1Brpiqφ, gijpjφ〉+2
〈
1Br qφ, (V−λ)φ−ψ

〉
for r > r0.(3.7b)

However, in comparison, we do not know continuity or even local bound-
edness of the function r → ‖∇ωφ‖Gr .

The following technical result will play a major role (see the proofs of
Lemmas 3.5–3.7). Recall that the factor χn of Lemma 2.4 was introduced
to avoid zeros of a and b. This is also the role of the factor χn below.

Lemma 3.4. — Let I ⊆ I be a compact interval. Then we introduce for
any large n a function fř(r), r > ř, depending on any ř > r0 as well as on
any λ ∈ I and qφ ∈ N as follows: Using spherical coordinates we define for
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r > ř

ě = exp
(∫ r

ř

±2ĩb(s, ·) ds
)
,

Dξ(r) = exp
(∫ r

r0

(
∓ĩb+ 1

2 div ω̃
)

(s, ·) ds
)

[
√
bi(A∓ a)φ](r, ·) ∈ G,

qξ(r) = exp
(∫ r

r0

(
∓ĩb+ 1

2 div ω̃
)

(s, ·) ds
)

[
√
bqφ](r, ·) ∈ G,

fř(r) = 〈qξ(r), (ěb−1χn)(r, ·)Dξ(r)〉G .

Then the function fř( ·) is absolutely continuous on [ř,∞) with derivative

f ′ř(r) = T1 + · · ·+ T5;

T1 = 〈(Ã∓ b̃)
√
bqφ, ěb−1/2χn(A∓ a)φ〉Gr ,

T2 = −2〈qφ, ěχnψ〉Gr ,

T3 = 〈p′ěqφ, χnp
′φ〉Gr ,

T4 = 〈qφ,O(r−κ)(A∓ a)φ〉Gr ,

T5 = 〈qφ,O(r−κ)φ〉Gr ,

(3.8)

where the bounds of T4 and T5 are uniform in λ ∈ I and ř > r0.

Proof. — First we proceed using (2.12b) somewhat unjustified. Compute
(formally)

f ′ř(r) = 〈(Ã∓ b̃)
√
bφ̌, ěb−1/2χn(A∓ a)φ〉Gr

− 〈
√
bqφ, (Ã∓ b̃)ěb−1/2χn(A∓ a)φ〉Gr ,

and then substituting for the second term
√
b(Ã∓ b̃)ěb−1/2χn(A∓ a)

= ě
√
b(Ã± b̃)b−1/2χn(A∓ a)

= 2ěχn
(
H − λ− 1

2L
)

+O(r−κ)(A∓ a) +O(r−κ).

This yields (3.8). Note that T3 is well-defined since in fact ěqφ ∈ N due
to (1.33). By the product rule

p′ěqφ = ∓
(
p′
∫ r

ř

2ĩb(s, ·) ds
)
ěqφ+ ěp′φ̌,(3.9)

yielding that T3 ∈ L1
loc as a function of r. Similarly for the other terms show-

ing explicitly that f ′ř ∈ L1
loc. The required (pointwise) uniformity property
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for T4 and T5 is trivial since the ř-dependence is through the oscillatory
factor ě only.
Next we give a rigorous derivation of (3.8) using (2.12b) differently (this

argument will not be repeated for the derivation of similar formulas in the
proof of Lemmas 3.6 and 3.7). We already argued that all of the above
terms make sense and agree with the conclusion of the lemma. We claim
that indeed fř is absolutely continuous. Note that due to (3.7b) and the
fact that ěφ̌ ∈ N we have the representation

(3.10) fř(r) = 〈1Brpiχněqφ, gijpjφ〉+ 2
〈
1Brχněqφ, (V − λ)φ− ψ

〉
+
〈
χněqφ, ( 1

2∆r ∓ ia)φ
〉
Gr
.

Clearly the first and second terms are absolutely continuous, and by Lem-
ma 3.2 the last one is too.
It is of course doable to compute f ′ř using (3.10). However the result

is not immediately consistent with the representation from our informal
computation. Instead we shall proceed as follows: It remains to show that
for r1 > ř

fř(r1) =
∫ r1

(T1 + T2 + T3 + T4 + T5) dr.(3.11)

Let for r1 > ř

χε(r) = χ((r − r1)/ε); ε > 0.

We compute on one hand

〈(Ã± b̃)b1/2χεχněqφ, b−1/2(A∓ a)φ〉

= 〈χ′εχněqφ, i(A∓ a)φ〉+ 〈χε(Ã± b̃)b1/2χněqφ, b−1/2(A∓ a)φ〉

=
∫
χ′ε(r)fř(r) dr + 〈χε(Ã± b̃)b1/2χněqφ, b−1/2(A∓ a)φ〉,

and on the other hand using (2.12b) (considering L as a form)

〈(Ã± b̃)b1/2χεχněqφ, b−1/2(A∓ a)φ〉

= 〈χεχněqφ, 2ψ − 2
( 1

2L+O(r−κ)(A∓ a) +O(r−κ)
)
φ〉.
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Since fř is continuous at r1 we obtain using that the right-hand sides are
equal and by letting ε→ 0 that

− fř(r1) + 〈1Br1
(Ã± b̃)b1/2χněqφ, b−1/2(A∓ a)φ〉

= 〈1Br1
χněqφ, 2ψ − 2

( 1
2L+O(r−κ)(A∓ a) +O(r−κ)

)
φ〉

= 2〈1Br1
qφ, ěχnψ〉 − 〈1Br1

p′ěqφ, χnp
′φ〉

− 〈1Br1
qφ,O(r−κ)(A∓ a)φ〉 − 〈1Br1

qφ,O(r−κ)φ〉.

Moreover

〈1Br1
(Ã± b̃)b1/2χněqφ, b−1/2(A∓ a)φ〉

= 〈1Br1
(Ã∓ b̃)b1/2χnqφ, ěb−1/2(A∓ a)φ〉

= 〈1Br1
(Ã∓ b̃)b1/2 qφ, ěχnb

−1/2(A∓ a)φ〉+ 〈1Br1
qφ,O(r−κ)(A∓ a)φ〉.

We conclude (3.11). �

3.1. Proof of Theorem 1.14 in the easy case

Suppose in addition to Condition 1.13 that Condition 1.16(1) holds and
consider only ψ ∈ H3/2+. We show that (1.36) exists. For convenience we
consider only the upper sign. Note that the estimate of Corollary 1.10 holds
for some β > 1.

We compute, cf. (2.14) and (2.13a),

(Ã− b̃)b1/2 = b1/2(Ã− b̃− i
2 ω̃

i∇i ln b)

= b1/2(Ã− ã+O(r−2))

= b1/2η̃(A− a+O(r−2)).

Using then in turn (3.3) and the Cauchy–Schwarz inequality we obtain for
β slightly bigger than 1∫ ∞

r0

‖ d
dr ξ(r)‖G dr

6 Cβ

(∫ ∞
r0

r2β−1∥∥[
√
b|dr|−2(A− a+O(r−2)

)
φ]|Sr

∥∥2
Gr

dr
)1/2

6 C1‖
(
A− a

)
φ‖β−1/2 + C2

6 C3 <∞.

Whence the existence of (1.36) follows by integration.
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The constant C3 can be chosen locally uniform in λ > λ0 and arbitrary
small if we replace

∫∞
r0

by
∫∞
R

, R > r0 big. Whence the limit (1.36) is
attained locally uniformly in (λ0,∞). In addition, since for finite r the
map λ → ξ(r) is continuous (cf. (3.1)), we obtain continuity of the map
(λ0,∞) 3 λ→ F+(λ)ψ ∈ G.
Let us also note that due to Lemma 3.3

‖F+(λ)ψ‖ = 2 Im〈ψ, φ〉

follows from the computation

‖F+(λ)ψ‖2G = lim
R→∞

R−1
∫ 2R

R

‖ξ(r)‖2G dr = lim
R→∞

−
∫
R

‖[
√
bφ]|Sr‖

2
Gr dr.

3.2. Proof of Theorem 1.14 in the general case

In this subsection we prove the existence of the limit (1.36) for ψ ∈ H1+
under Condition 1.13 and then the remaining assertions of Theorem 1.14.
We shall consider only the upper sign, since the lower sign can be dealt
with in parallel. Throughout the subsection we fix any compact interval
I ⊆ I.

For the remaining part of this section let ψ ∈ H1+ and φ = R(λ+ i0)ψ,
λ ∈ I ⊆ I.

Lemma 3.5. — The following limit exists and is given as

lim
r→∞

‖ξ(r)‖2G = 2 Im〈ψ, φ〉H.(3.12)

Proof. — We use Lemma 3.4 taking there qφ = φ. By evaluating at r = ř

and integrating the derivative on the interval [ř,∞) we then obtain that

lim
r→∞

fr(r) = 0.

At this point note that all of the terms T1, . . . , T5 are integrable due to the
Cauchy–Schwarz inequality, Corollaries 1.9 and 1.10, (1.33) and (3.9) (note
that ifM ex = M the bound (1.33) follows from (2.20)). Next by taking the
imaginary part and using (3.7a) we obtain

0 = lim
r→∞

Im〈φ,∇ωφ− ibφ〉Gr = 2 Im〈ψ, φ〉H − lim
r→∞

‖
√
bφ(r)‖2Gr .

Whence indeed

lim
r→∞

‖ξ(r)‖2G = lim
r→∞

‖
√
bφ(r)‖2Gr = 2 Im〈ψ, φ〉H. �
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Remark. — It follows from the above proof that the limit (3.12) is at-
tained uniformly in λ ∈ I. This property will be used in the proof of
Proposition 1.15.

Next decompose

ξ = ξ(r) = exp
(∫ r

r0

(
−ĩb+ 1

2 div ω̃
)

(s, ·) ds
)

[
√
bφ](r, ·)

as
ξ = a−1ξ+ + a−1ξ−;

ξ± = 2−1 exp
(∫ r

r0

(
−ĩb+ 1

2 div ω̃
)

(s, ·) ds
)

[
√
b(a±A)φ](r, ·).

(3.13)

At this point the reader is WARNED about our use of notation: The quan-
tities a and φ are considered with the upper sign only in this subsection,
so for the cases ± in (3.13) these quantities are the same (not to be mixed
up with the convention of Lemmas 2.4 and 3.4).

Lemma 3.6. — There exists the weak limit

F := w–G–lim
r→∞

ξ(r).

Proof. — Let g ∈ C∞c (S) ⊆ G be given. Due to Lemma 3.5 it suffices to
show the existence of

C± := lim
r→∞
〈g, a−1(r)ξ±(r)〉G .

Step I (C− = 0). — Writing

g = exp
(∫ r

r0

1
2 div ω̃(s, ·) ds

)
u(r)

we note that u(r′) ∈ C∞c (Sr′) for r′ > Rn with n large enough. We can
write u(r) = ei(r′−r)Ãu(r′) ∈ C∞c (Sr) for r > r′. Let χn = 1− χ(r/Rn) so
that χnu ∈ N (and such that all zeros of a and b are in BRn). Introduce
then for r > r0

qφ = exp
(∫ r

r0

ĩb(s, ·) ds
)
b−1/2χnu(r),

qξ = exp
(∫ r

r0

(
−ĩb+ 1

2 div ω̃
)

(s, ·) ds
)

[
√
bqφ](r, ·) ∈ G.

Note that we can consider qφ as an element of N and that qξ(r) = g. Also
note that ξ− = i2−1Dξ in terms of notation of Lemma 3.4. We introduce
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as in Lemma 3.4

ě = exp
(∫ r

ř

2ĩb(s, ·) ds
)

; r > ř > r0.

By the proof of Lemma 3.4 with this choice of qφ (and by using (2.12c) rather
than (2.12b)) it follows by evaluating at r = ř > 2Rn and integrating the
derivative

2
i

d
dr 〈qξ(r), ěa

−1ξ−(r)〉G = 〈(Ã− b̃)
√
bqφ, ěa−1

√
b(A− a)φ〉Gr

− 〈
√
bqφ, (Ã− b̃)ěa−1

√
b(A− a)φ〉Gr

= −〈
√
bqφ, ě(Ã+ b̃)a−1

√
b(A− a)φ〉Gr

on the interval [ř,∞) that C− = limr→∞〈g, a−1ξ−(r)〉G exists and in fact is
given by C− = 0. Note that the analogue of the expression T1 of Lemma 3.4
of the derivative vanishes, and that the corresponding terms T2, . . . , T5 are
integrable (uniformly in ř). For example it follows from Lemma 2.6 and
Corollary 2.7 that

‖p′ě bā qφ‖Gr 6 C
(
(r′)1/2‖p′u(r′)‖Gr′ + ‖u(r′)‖Gr′

)
r−1/2; r > r′.(3.14)

(Here C may depend on the support of g.) This estimate can be applied
with r′ = 2Rn (for example) to treat the analogue of the expression T3 of
Lemma 3.4.
Step II (C+ exists). — Similarly we have

2i d
dr 〈qξ(r), a

−1ξ+(r)〉G = −〈
√
bqφ, (Ã− b̃)a−1

√
b(A+ a)φ〉Gr

To show that C+ exists it suffices to argue that the derivative is integrable
(since now there is no factor ě and whence no ř-dependence to control). As
in Step I there are four terms to consider, say T2, . . . , T5. More precisely
these terms are the contributions from four terms arising by the following
computation. We compute using (2.13a), (2.13c) and in the last step (2.12a)
a√
b
(Ã− b̃)

√
b
a (A+ a)

= (A− a)η̃(A+ a) +O(r−κ)(A− a) +O(r−κ)
= (A− a)η̃(A+ a) + η̃4i(Im a)a+

(
η̃2i(Im a) +O(r−κ)

)
(A− a) +O(r−κ)

= (A+ a)η̃(A− a) + η̃
(
2(pra) + 4i(Im a)a

)
+O(r−κ/2)(A− a) +O(r−κ)

= (A+ a)η̃(A− a) +O(r−κ/2)(A− a) +O(r−κ)

= 2(H − λ)− L+O(r−κ/2)(A− a) +O(r−κ).

We can now proceed as in Step I. In particular we can use (3.14) with ě = 1
to treat the term T3 which is the analogue of T3 of Lemma 3.4. �
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Lemma 3.7. — The quantity F is the strong limit

F = G–lim
r→∞

ξ(r).

Proof. — Due to Corollary 1.10 there exists C1 > 0 and a sequence
rn →∞ such that

‖(A− a)φ‖2Grn + ‖p′φ‖2Grn 6 C1/rn.(3.15)

To show the existence of the strong limit it suffices to show that

lim
n→∞

〈ξ(rn), F − ξ(rn)〉G = 0.(3.16)

In fact, (3.16) along with Lemma 3.5 shows that

lim
r→∞

‖ξ(r)‖G = ‖F‖G ,

which, combined with Lemma 3.6, in turn implies the assertion by [31,
Theorem 8, p. 124]. Due to (3.15) it suffices in turn to show that

lim
n→∞

lim
m→∞

〈ξ(rn), (a−1ξ+)(rm)− (a−1ξ+)(rn)〉G = 0.(3.17)

Now we claim that proceeding as in Step II of the proof of Lemma 3.6
(replacing g → ξ(rn) and now integrating from rn) indeed (3.17) follows.
Note for the analogue term T3 that Lemma 2.6, Corollary 2.7 and a density
argument yield

‖p′ bā qφn‖Gr 6 C2
(
r1/2
n ‖p′φ‖Grn + ‖φ‖Grn

)
r−1/2;

r > rn, qφn = ei(rn−r)(Ã−b̃)[φ]Srn .

In combination with (3.15) we then obtain

‖p′ bā qφn‖Gr 6 C3r
−1/2,

which suffices for integrability and smallness o(n0) of the integral (due
to the Cauchy–Schwarz inequality and Corollary 1.10) essentially show-
ing (3.17). �

Proof of Theorem 1.14. — The definition (1.36) is justified by Lem-
ma 3.7. Clearly (1.37) follows from Lemma 3.5.
It remains to show the continuity statement. We shall basically follow the

scheme of [4]. Due to (1.37), Corollary 1.9 and the density of C∞c (S) ⊆ G
the continuity of the map I 3 λ→ F+(λ)ψ ∈ G follows if we can show the
continuity of 〈F+( ·)ψ, g〉G for any ψ ∈ H1+ and g ∈ C∞c (S). Let us for any
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such g introduce approximate generalized eigenfunctions φ±[g] ∈ N ∩ B∗
by specifying in the spherical coordinates

(3.18) φ±[g](r, σ)

= χn(r)b(r, σ)−1/2 exp
(∫ r

r0

(
±ĩb− 1

2 div ω̃
)

(s, σ) ds
)
g(σ).

The factor χn is chosen as a cut-off function, possibly depending on I

and the support of g, to assure the property φ±[g] ∈ N (as in the proof
of Lemma 3.6). Note that these vectors are essentially the same as those
introduced at (1.43) (this is why we are using the same notation). We shall
use the previous notation ξ, ξ+ and φ. First calculate (for m sufficiently
large)

2〈ψ, χmφ+[g]〉 = −i〈(A+ a)φ, χ′mφ+[g]〉+ 〈(A+ a)φ, χmη̃(A− a)φ+[g]〉

+
∫ ∞
r0

χm(r)
(
〈p′φ, p′φ+[g]〉Gr + 〈φ,O(r−κ)φ+[g]〉Gr

)
dr,

cf. (2.12a). Note for the first term to the right that

〈(A+ a)φ, χ′mφ+[g]〉 =
∫ ∞
r0

χ′m(r)〈(A+ a)φ,φ+[g]〉Gr dr,

and

〈(A+ a)φ, φ+[g]〉Gr = 〈(a− a)φ, φ+[g]〉Gr + 2〈(b−1ξ+)(r), g〉G
= 2〈(a−1ξ+)(r), g〉G + 2〈((b−1 − a−1)ξ+)(r), g〉G

+ 2i〈(Im a)φ, φ+[g]〉Gr .

Note for the second term to the right that(
A− a+O(r−κ)

)
φ+[g] =

(
b−1/2(A− b)b1/2 + i

2∇ω ln |dr|2
)
φ+[g]

= O(r−∞),
(3.19)

in fact here the last term vanishes for r large. These considerations allow us
to takem→∞ and we obtain (using that 〈(a−1ξ+)(r), g〉G → 〈F+(λ)ψ, g〉G
for r →∞) that

2i〈F+(λ)ψ, g〉G = 2〈ψ, φ+[g]〉 − 〈(A+ a)φ, η̃(A− a)φ+[g]〉

−
∫ ∞
r0

(
〈p′φ, p′φ+[g]〉Gr + 〈φ,O(r−κ)φ+[g]〉Gr

)
dr.

By tracing the λ-dependence we conclude from this representation that
indeed 〈F+( ·)ψ, g〉G is continuous. �
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The last formula reads more compactly (although less precisely)

i〈F+(λ)ψ, g〉G − 〈ψ, φ+[g]〉 = −〈φ, (H − λ)φ+[g]〉,(3.20)

where the right-hand side is given an interpretation very similar to (2.12a).

3.3. Properties of distorted Fourier transform

We first prove Proposition 1.15. Throughout this subsection we continue
to consider only the upper sign.

Proof of Proposition 1.15. — We first prove (1.38) for ψ ∈ B. It is a
direct consequence of Theorem 1.14 that (1.38) holds for ψ ∈ H1+, and we
have already seen that the left-hand side extends continuously in ψ ∈ B.
Hence it suffices to show the existence and continuity of the right-hand
side in B. By Theorem 1.6 these matters reduce to the following estimate,
a version of which appears in a similar context in [28]: For any ψ ∈ B

sup
R>r0

∥∥∥∥−∫
R

ξ(r) dr
∥∥∥∥
G
6 C‖φ‖B∗ .(3.21)

To show (3.21) we write ξ(r) = ei(r−r0)(Ãex−b̃ex)u(r) and note that∥∥∥∥−∫
R

ξ(r) dr
∥∥∥∥
G
6 −
∫
R

‖u(r)‖Gr dr.

Next for any R > r0 we choose n > 0 such that Rn 6 2R < Rn+1 and
use the Cauchy–Schwarz inequality to obtain∥∥∥∥−∫

R

ξ(r) dr
∥∥∥∥2

G
6 −
∫
R

‖u(r)‖2Gr dr

6 2
n∑
ν=0

(Rν/Rn)R−1
ν ‖Fν

√
bφ‖2

6 4‖
√
bφ‖2B∗.

Hence we have shown (3.21) and therefore that (1.38) holds for any ψ ∈ B.
To show that −

∫
R
ξ(r) dr → F±(λ)ψ locally uniformly in λ we can assume

that ψ ∈ H1+. Next note that∥∥∥∥F+(λ)ψ − −
∫
R1

ξ(r1) dr1

∥∥∥∥2

G
6 lim
R2→∞

−
∫
R1

−
∫
R2

‖ξ(r2)− ξ(r1)‖2G dr2dr1.

ANNALES DE L’INSTITUT FOURIER



STATIONARY SCATTERING THEORY ON MANIFOLDS 1107

We look at R2 > 2R1 and write

‖ξ(r2)− ξ(r1)‖2G = ‖ξ(r2)‖2G − ‖ξ(r1)‖2G − 2 Re〈ξ(r1), ξ(r2)− ξ(r1)〉G
= ‖ξ(r2)‖2G − ‖ξ(r1)‖2G − 2 Re〈ξ(r1), (a−1ξ−)(r2)〉G

+ 2 Re〈ξ(r1), (a−1ξ−)(r1)〉G
− 2 Re〈ξ(r1), (a−1ξ+)(r2)− (a−1ξ+)(r1〉G .

The first term contributes to the R2-limit by 2 Im〈ψ, φ〉 due to Lemma 3.3,
the second term by −−

∫
R1
‖ξ(r1)‖2G dr1, the third term by 0 (cf. Corol-

lary 1.10), the fourth term by −
∫
R1

2 Re〈ξ(r1), (a−1ξ−)(r1)〉G dr1 and the
last term by o(R0

1) (by the proof of Lemma 3.7). We readily check that
−
∫
R1

2 Re〈ξ(r1), (a−1ξ−)(r1)〉G dr1 → 0 locally uniformly in λ, and similarly
that −

∫
R1
‖ξ(r1)‖2G dr1 → 2 Im〈ψ, φ〉 and the quantity o(R0

1) → 0 locally
uniformly in λ. This is by Corollary 1.10 and the proofs of Lemmas 3.3
and 3.7, respectively.
Next, we note that B ∩ HI is dense in HI . In fact for any ψ ∈ B and

any f ∈ C∞c (I) the vector f(H)ψ ∈ B, cf. [12, Theorem 14.1.4]. Due to
Stone’s formula and (1.37) we have

‖F+ψ‖H̃I = ‖ψ‖HI ; ψ ∈ B ∩HI ,

so the operator F+ extends as an isometry from B ∩ HI ⊆ HI to an
isometryHI → H̃I (denoted also by F+). It remains to show that F+HI ⊆
MλF

+ or equivalently that F+(HI − i)−1 = (Mλ − i)−1F+. Whence it
suffices to show that

F+(H − i)−1ψ = (Mλ − i)−1F+ψ for any ψ ∈ B ∩HI .

Using the resolvent equations

R(λ± i0)R(i) = (λ− i)−1R(λ± i0)− (λ− i)−1R(i),(3.22)

we obtain

F+(λ)R(i)ψ = lim
R→∞

−
∫
R

(λ− i)−1ξ(r) dr = (λ− i)−1F+(λ)ψ.

Note that due to the Cauchy–Schwarz inequality the second term of (3.22)
does not contribute to the limit. �

Now we embark on the proof of Theorem 1.17. Theorem 1.17 is clearly
a direct consequence of Lemmas 3.8 and 3.9 below.

Note that under the conditions of the lemma below a priori we can write

R(i)Lφ+[g] = w?–B*–lim
m→∞

R(i)χmLφ+[g] ∈ B∗,

TOME 71 (2021), FASCICULE 3



1108 Kenichi ITO & Erik SKIBSTED

meaning that for any qψ ∈ B

〈R(i)Lφ+[g], qψ〉 = 〈p′φ+[g], p′R(−i) qψ〉

= lim
m→∞

∫
χm(r)〈p′φ+[g], p′R(−i) qψ〉Gr dr.

Lemma 3.8. — Suppose Condition 1.16. For any g ∈ C∞c (S) let φ+[g] ∈
N ∩ B∗ be given by (3.18) (where n is large, but locally independent of
λ > λ0). Then

R(i)Lφ+[g] = w–B–lim
m→∞

R(i)χmLφ+[g] ∈ B,

meaning that the vector ψ = R(i)Lφ+[g], a priori in B∗, actually is in B
and that for all qφ ∈ B∗

〈ψ, qφ〉 = 〈p′φ+[g], p′R(−i)qφ〉

= lim
m→∞

∫
χm(r)〈p′φ+[g], p′R(−i)qφ〉Gr dr.

In fact

R(i)Lφ+[g] ∈ B ∩H1.(3.23)

Proof. — Write with ř = Rn (recall that possibly n depends on the
support of g)

φ+ = χn(r)b−1/2ei(ř−r)(Ã−b̃)u; u = ei(r0−ř)(Ã−b̃)g ∈ C1
c (Sř).

First let us assume Condition 1.16(1). We decompose

R(i)Lφ+ = (R(i)r−sp′)(p′rsφ+); s > 1/2.(3.24)

Since the first factor is bounded as H → Hs ∩ H1 ⊆ B ∩ H1, it suffices to
show that the second factor belongs to H for some s > 1/2. We combine
Condition 1.16(1) with Lemma 2.6 and Corollary 2.7 and conclude that
indeed p′rsφ+ ∈ H for some s > 1/2. Of course the conclusion R(i)Lφ+ =
w–B–limm→∞(R(i)r−sp′)χm(p′rsφ+) follows from this argument.
Next, assuming Condition 1.16(2), we note that u ∈ C2

c (Sř) and decom-
pose

R(i)Lφ+ =
(
R(i)r−s

)(∫ ⊕
rsLrφ

+ dr
)

; s > 1/2,

and proceed by using Corollary 2.10 to bound Lrφ+. Next we introduce a
factor χm as above and conclude similarly. �

Lemma 3.9. — If for all g ∈ C∞c (S) the vector φ+[g] of (3.18) (de-
pending on λ > λ0) satisfies (3.23), then F+ : HI → H̃I is a unitary
diagonalizing transform.
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Proof. — We consider for λ ∈ I the operator F+(λ) : B → G of Propo-
sition 1.15. From the same result we know that F+ is an isometry.

Step I. — First we show that F+(λ) has dense range. This is equivalent
to showing that F+(λ)∗ : G → B∗ is injective, and for that we will use
the representation (3.20) of F+(λ)∗g for g ∈ C∞c (S). For the term on the
right-hand side for such g we claim the bound

(A+ a)R(λ− i0)(H − λ)φ+[g] ∈ B∗0 .(3.25)

To obtain (3.25) we use (3.22), reducing the problem to show that

(A+ a)ψ+, (A+ a)R(λ− i0)ψ+ ∈ B∗0 ; ψ+ = R(i)(H − λ)φ+[g].

The interpretation of ψ+ is given as in the proof of Theorem 1.14 which
amounts to expanding (H − λ)φ+[g] into a sum of three terms, cf. (2.12a).
Each term is in B ∩ H1, so consequently ψ+ ∈ B ∩ H1. Note that at this
point we use (3.19) and (3.23). Using that ψ+ ∈ B ∩ H1 we deduce (3.25)
by Corollary 1.10.
Now using (3.19), (3.20) and (3.25) we obtain

g = G–lim
R→∞

−
∫
R

ei(r−r0)(Ãex−b̃ex)[ b1/2i
2a (a+A)F+(λ)∗g

]
|Sr

dr,(3.26)

and since

(a+A)F+(λ)∗ = (λ− i)
{

(a+A)R(i)
}
F+(λ)∗ ∈ B(G, B∗),

we conclude (3.26) for all g ∈ G by a continuity argument essentially iden-
tical with the one given in the first part of the proof of Proposition 1.15.
In particular indeed F+(λ)∗ : G → B∗ is injective.
Step II. — We prove the unitarity of F+ : HI → H̃I . Since we know

F+HI ⊆ MλF
+ from Proposition 1.15 it then follows that F+HI =

MλF
+, and the proof is done.

By using Proposition 1.15 (possibly in combination with (3.31)) we ob-
tain that

F+(λ)f(H)ψ = f(λ)F+(λ)ψ for all f ∈ C∞c (I) and ψ ∈ B.(3.27)

Assuming g( ·) ∈ ker(F+)∗ ⊆ H̃I it suffices to show that g(λ) = 0 for a.e.
λ ∈ I. We shall mimic the proof of [1, Theorem 1.1]. For any f ∈ C∞c (I)
and ψ ∈ B∫

I
f(λ)

〈
g(λ), F+(λ)ψ

〉
G dλ =

〈
(F+)∗g(·), f(H)ψ

〉
HI

= 0.
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Apply this to the elements of a countable and dense subset, say {ψk}∞k=1 ⊆
B, and we conclude that there exists a set N ⊆ I of measure 0 such that〈

g(λ), F+(λ)ψk
〉
G = 0 for all k ∈ N and λ ∈ I \N.

Since {F+(λ)ψk}∞k=1 ⊆ G is dense (by Step I) we conclude that g( ·) = 0.
Hence F+ : HI → H̃I is surjective and therefore unitary. �

Remarks 3.10. — We used above the representation in terms of the vec-
tors φ±[g] ∈ N of (3.18) (here stated for both signs)

±iF±(λ)∗g = φ±[g]− ψ± − (λ− i)R(λ∓ i0)ψ±;

g ∈ C∞c (S), ψ± = R(i)(H − λ)φ±[g] ∈ B ∩H1.
(3.28a)

For comparison we obtain using Corollary 1.11

0 = φ±[g]− ψ± − (λ− i)R(λ± i0)ψ±.

In particular

φ±[g]− (λ− i)R(λ± i0)ψ± ∈ B∗0 ,

which leads to

g = (λ− i)F±(λ)ψ±; g ∈ C∞c (S), ψ± = R(i)(H − λ)φ±[g].(3.28b)

The formulas (3.28a) and (3.28b) will be used in Section 3.4, however we
stress that the vectors of (3.18) are given with a cutoff to make them
elements of N . The vectors φ±[g] given by (1.43) do not necessarily enjoy
this property, and in fact the above formulas might not be valid in general
when φ±[g] (with g ∈ C∞c (S)) are given by (1.43).

Proof of Theorem 1.17. — The statement is obvious from Proposi-
tion 1.15 and Lemmas 3.8 and 3.9. �

3.4. Scattering matrix and characterization of generalized
eigenfunctions

In this subsection we prove Theorem 1.18. Throughout the subsection
we assume Condition 1.16, and we fix λ ∈ I.
We begin with a partial uniqueness result.

Lemma 3.11. — Suppose φ ∈ Eλ and ξ± ∈ G satisfy

φ− φ+[ξ+] + φ−[ξ−] ∈ B∗0 .(3.29)
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Then ξ± are uniquely determined by φ. Moreover

‖ξ+‖2G + ‖ξ−‖2G = lim
R→∞

R−1
∫
B2R\BR

b|φ|2 (det g)1/2dx,(3.30a)

‖ξ+‖G = ‖ξ−‖G .(3.30b)

Proof. — The uniqueness statement follows from (3.30a), which in turn
is proved as follows:

lim
R→∞

R−1
∫
B2R\BR

b|φ|2 (det g)1/2dx

= lim
R→∞

R−1
∫
B2R\BR

b|φ+[ξ+]− φ−[ξ−]|2 (det g)1/2dx

= ‖ξ+‖2G + ‖ξ−‖2G − 2 Re lim
R→∞

−
∫
R

〈
ξ+, exp

(
−2i
∫ r

r0

b̃(s, ·) ds
)
ξ−

〉
G

dr

The last term vanishes as may be seen by first writing

exp
(
−2i

∫ r

r0

b̃(s, ·) ds
)

= (−2ĩb)−1 d
dr exp

(
−2i

∫ r

r0

b̃(s, ·) ds
)

and then integrate by parts picking up a sum of decaying factors. Note
that indeed d

dr b̃(r, ·) = o(R0) uniformly in the angle variable (so that the
Cauchy–Schwarz inequality applies).
As for (3.30b) first note that Aφ ∈ B∗, which comes from the represen-

tation Aφ = (λ − i)AR(i)φ and the fact that AR(i) ∈ B(B∗). Then we
compute

0 = lim
n→∞

〈i[H,χn]〉φ

= lim
n→∞

〈Aχ′n〉φ

= lim
n→∞

〈Aφ, χ′n(φ+[ξ+]− φ−[ξ−])〉

= lim
n→∞

〈φ, χ′n(Aφ+[ξ+]−Aφ−[ξ−])〉

= lim
n→∞

〈φ, χ′n(bφ+[ξ+] + bφ−[ξ−])〉

= lim
n→∞

〈φ+[ξ+]− φ−[ξ−], χ′nb(φ+[ξ+] + φ−[ξ−])〉

= ‖ξ+‖2G − ‖ξ−‖2G ,

where in the last step we integrated by parts as in the proof of (3.30a). �
Next, we construct ξ± ∈ G from φ ∈ Eλ. Note for comparison

that F±(λ)∗ξ ∈ Eλ for any ξ ∈ G (readily proven by using F±(λ)∗ =
(λ− i)R(i)F±(λ)∗, cf. the proof of Lemma 3.9).
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Lemma 3.12. — For any φ ∈ Eλ there exist ξ± ∈ G such that (1.45b)
hold.

Proof. — We use the scheme of proof of [28, Proposition 6.2]. By the
definition of S(λ) it suffices to show that for any φ ∈ Eλ the representation
φ = iF+(λ)∗ξ for some ξ ∈ G holds.

Pick f ∈ C∞c (R) with f(t) = t in neighbourhood of t = λ. Whence
f(H)φ = λφ. We introduce (for a fixed large m)

φ± = 1
2bχm(A± b)φ ∈ B∗, ξn = F+(λ)χn

(
f(H)− λ

)
φ+; n ∈ N.

The sequence (ξn) ⊆ G is bounded. Indeed since F+(λ)
(
f(H) − λ

)
= 0

(cf. (3.27)) we compute using (3.31) (stated below) and estimate uniformly
in n ∈ N and in g ∈ C∞c (S), ‖g‖G = 1,

〈g, ξn〉G = i〈F+(λ)∗g,
(
Aχ′n + i|dr|2χ′′n/2

)
f ′(H)φ+〉B∗×B ,

|〈g, ξn〉G | 6 C1|
(
‖AF+(λ)∗g‖B∗ + ‖F+(λ)∗g‖B∗

)
6 C2.

Next we choose a weakly convergent subsequence of (ξn), cf. [31, Theo-
rem 1, p. 126]. Whence, possibly upon changing notation, w–limn→∞ ξn =:
ξ ∈ G. For this ξ and with qf(t) := (f(t)− λ)(t− λ)−1 we compute

iF+(λ)∗ξ = w?–B*–lim
n→∞

iF+(λ)∗F+(λ)χn
(
f(H)− λ

)
φ+

= w?–B*–lim
n→∞

(
R(λ+ i0)−R(λ− i0)

)
χn
(
f(H)− λ

)
φ+

= w?–B*–lim
n→∞

(
R(λ+ i0)χn

(
f(H)− λ

)
φ+

+R(λ− i0)χn
(
f(H)− λ

)
(φ− φ+)

)
= w?–B*–lim

n→∞

(
qf(H)χnφ+R(λ+ i0)[χn, f(H)]φ+

+R(λ− i0)[χn, f(H)](φ− φ+)
)

= qf(H)φ+ w?–B*–lim
n→∞

(
R(λ+ i0)[χn, f(H)]φ+

+R(λ− i0)[χn, f(H)](φ− φ+)
)
.

The first term simplifies as qf(H)φ = φ. To compute the last term we
represents in a standard fashion (in terms of an almost analytic extension f̃)

f(H) =
∫
C
R(z)dµ(z); dµ(z) = −(2πi)−1∂f̃(z)dzdz,(3.31)

allowing us to compute

[χn, f(H)] = −i
∫
C
R(z)

(
Aχ′n + i|dr|2χ′′n/2

)
R(z)dµ(z).
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Whence due to Corollary 1.11 (note also that the second term with the
factor χ′′n does not contribute to the limit)

w?–B*–lim
n→∞

R(λ+ i0)[χn, f(H)]φ+

= −i w?–B*–lim
n→∞

∫
C
R(z)R(λ+ i0)Aχ′nR(z)dµ(z)φ+

= i w?–B*–lim
n→∞

∫
C
R(z)R(λ+ i0)bχ′nR(z)dµ(z)φ+

= i w?–B*–lim
n→∞

∫
C
R(z)R(λ+ i0)R(z)dµ(z)bχ′nφ+

= − i
2 w?–B*–lim

n→∞
f ′(H)R(λ+ i0)χ′nχm(A+ b)φ

= − i
2 w?–B*–lim

n→∞
f ′(H)R(λ+ i0)(A+ b)χ′nφ

= 0.

Similarly, using that φ− φ+ = χmφ− φ−,

w?–B*–lim
n→∞

R(λ− i0)[χn, f(H)](φ− φ+)

= − i
2 w?–B*–lim

n→∞
f ′(H)R(λ− i0)χ′nχm

(
(A− b)φ

)
= − i

2 w?–B*–lim
n→∞

f ′(H)R(λ− i0)(A− b)χ′nφ

= 0.

Whence we have shown that φ = iF+(λ)∗ξ for the constructed ξ. �

Lemma 3.13. — For all ψ ∈ B and all λ ∈ I
√
bR(λ± i0)ψ − 1Mei(r0−r)(Ãex∓b̃ex)F±(λ)ψ ∈ B∗0 .(3.32)

Proof. — This is obvious from Lemma 3.7 for ψ ∈ H1+. The general case
is treated by an approximation argument (as in the proof of [28, Corol-
lary 5.5]). �

A construction of φ ∈ Eλ from ξ± ∈ G may intuitively seem most feasi-
ble when ξ± satisfies the Dirichlet boundary condition. We first give such
construction for ξ± ∈ C∞c (S) and shortly extend it allowing any ξ± ∈ G.

Lemma 3.14. — For any ξ− ∈ C∞c (S) introduce φ−[ξ−] ∈ N ∩ B∗
by (3.18) (rather than by (1.43)) and define then φ ∈ Eλ and ξ+ ∈ G by

φ = ψ− + (λ− i)R(λ+ i0)ψ− − φ−[ξ−],
ξ+ = (λ− i)F+(λ)ψ−; ψ− = R(i)(H − λ)φ−[ξ−].

(3.33)

Then (1.45a) and (1.45b) hold for {ξ−, ξ+, φ}.
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Proof. — Note that ψ− ∈ B, cf. the proof of Lemma 3.9, and that (1.45a)
holds with the approximate eigenfunctions of (1.43) if the estimate is valid
for those defined by (3.18) (obviously the difference is in B∗0). We com-
bine (3.28a) and (3.28b) (with the lower sign only) and Lemma 3.13 (with
the upper sign). �

Similarly we can first specify ξ+ ∈ C∞c (S) (the proof is similar).

Lemma 3.15. — For any ξ+ ∈ C∞c (S) introduce φ+[ξ+] ∈ N ∩ B∗
by (3.18) and define φ ∈ Eλ and ξ− ∈ G by

φ = φ+[ξ+]− ψ+ − (λ− i)R(λ− i0)ψ+,

ξ− = (λ− i)F−(λ)ψ+; ψ+ = R(i)(H − λ)φ+[ξ+].
(3.34)

Then (1.45a) and (1.45b) hold for {ξ−, ξ+, φ}.

Proof of Theorem 1.18. — Let any ξ− ∈ G be given, and choose a se-
quence ξ−,n ∈ C∞c (S) such that ξ−,n → ξ− in G as n→∞. By Lemma 3.14
we have

iF−(λ)∗ξ−,n − φ+[S(λ)ξ−,n] + φ−[ξ−,n] ∈ B∗0

(with the approximate eigenfunctions of (1.43)). Then by the continuity of
F−(λ)∗, S(λ) and φ±[·] we obtain, letting n→∞,

iF−(λ)∗ξ− − φ+[S(λ)ξ−] + φ−[ξ−] ∈ B∗0 .(3.35)

Whence (1.45a) and (1.45b) hold for {ξ−, S(λ)ξ−, iF−(λ)∗ξ−}, and the ex-
istence part of (i) follows when ξ− ∈ G is given first. We can proceed
similarly using Lemma 3.15 when ξ+ ∈ G is given first, and whence, with
Lemma 3.12, the existence part of (i) is completed. In addition, the corre-
spondences for either ξ− ∈ G or ξ+ ∈ G given first are given by (1.45b).
To complete (i) it remains to prove the uniqueness part. Note that we

already have a partial result in Lemma 3.11 (for φ given first). Let ξ− ∈ G
be given and suppose that φ− φ+[ξ+] + φ−[ξ−] ∈ B∗0 for some φ ∈ Eλ and
ξ+ ∈ G. By linearity we may assume that ξ− = 0, and it suffices to show
that ξ+ = 0 and φ = 0. Clearly by Lemma 3.11 the vector ξ+ = 0 and
whence φ ∈ B∗0 . By Theorem 1.4 it then follows that φ = 0. We can argue
similarly if ξ+ ∈ G is given. We have shown (i) and the formulas (1.45b).
The assertion (1.45c) for the upper sign follows from (3.26). We can argue
similarly for the lower sign. Whence (ii) is shown.
The formulas (1.45d) are immediate consequences of (3.30a) and (3.30b),

and in combination with (i) and (ii) we conclude that indeed F±(λ)∗ : G →
Eλ (⊆ B∗) are bi-continuous. We have shown (iii).
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Finally, since F±(λ)∗ are injective and have closed range in B∗ (by (iii)),
Banach’s closed range theorem [31, Theorem p. 205] implies that the range
of F±(λ) for both signs coincides with G. We conclude that the range of
δ(H−λ) = (2π)−1F±(λ)∗F±(λ) coincides with Eλ. Hence (iv) is shown. �

3.5. Counterexamples, open problems

We consider modifications of the model of Example 1.20 and show that
the asymptotics of the generalized eigenfunctions in B∗ for these models
are not given by (1.45a). Fix κ ∈ (0, 1), let θ := xy−κ for y > 0 and let
r2 := κx2 + y2. Consider M ⊆ R2 with an end described as

E = {(x, y) ∈ R× R+ | r > r0, −1 < θ < 1},

which is a cylinder in the variables r and θ. The (inverse) metric in these
coordinates are

grr = Nr := |dr|2, gθθ = Nθ := |dθ|2, grθ = 0.

Using the short-hand notation |g| = det g = N−1
r N−1

θ we compute

|g|1/4∆|g|−1/4 = ∂rNr∂r + ∂θNθ∂θ +Wr +Wθ;

Wr = −Nr(∂r ln |g|)2/16− (∂rNr∂r ln |g|)/4,

Wθ = −Nθ(∂θ ln |g|)2/16− (∂θNθ∂θ ln |g|)/4.

We also compute

∂rx = κx
rNr

, ∂θx = 1
yκNθ

, ∂ry = y
rNr

, ∂θy = − κθ
yNθ

,

Nr = 1− (κ− κ2)θ2y2κr−2, Nθ = y−2κ + κ2θ2

y2 ,

∂rNr = 2(1− κN−1
r )(κ− κ2)θ2y2κr−3 = O(r2κ−3),

∂θNr = −2(1− κ2N−1
θ θ2y−2)(κ− κ2)θy2κr−2 = O(r2κ−2),

∂2
rNr = O(r2κ−4), ∂2

θNr = O(r2κ−2),

∂rNθ = − 2κ
rNr

(
y−2κ + κθ2y−2) = O(r−1−2κ),

∂θNθ = 2κ2θ
y2Nθ

(
y−2κ + κθ2y−2)+ 2κ2θ

y2 = 4κ2θ
r2

(
1 +O

(
r2κ−2)),

∂2
rNθ = O(r−2−2κ), ∂2

θNθ = 4κ2

r2

(
1 +O

(
r2κ−2)).

Using these formulas and ∂∗ ln |g| = −(∂∗Nr)/Nr − (∂∗Nθ)/Nθ we get

Wr = O(r−2), Wθ = O(r−2).
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We consider for κ ∈ (0, 1/2] the approximate outgoing eigenfunction
(corresponding to any λ > 0 and here with r0 = r0(λ) chosen big enough)

φ+ := χn|g|−1/4b−1/2ei
∫ r
r0
b dr

u(θ)

≈ C(λ)r−κ/2ei
∫ r
r0
b dr

u(θ).
(3.36)

Here

b =
√

2(λ− µ(λ)
r2κ ) ≈

√
2λ− µ(λ)√

2λ r
−2κ,

u = u(θ) is any Dirichlet eigenstate of the operator on L2((−1, 1),dθ)
given by

HD :=
{
− 1

2∂
2
θ for κ < 1/2,

− 1
2∂

2
θ − λθ2

4 for κ = 1/2,

and µ(λ) is the corresponding eigenvalue. To see why this is an approximate
eigenfunction we first note that φ+ ∈ N ∩B∗. We claim that in fact

(H − λ)φ+ ∈

{
r2κ−2B∗ ⊆ B for κ < 1/2,
r−2B∗ ⊆ B for κ = 1/2.

We compute for κ = 1/2 (skipping the details for κ < 1/2)

∂rNr∂r
(
b−1/2ei

∫ r
r0
b dr

u
)

=
(
−b2 + λθ2

2r +O(r−2)
)
b−1/2ei

∫ r
r0
b dr

u,

∂θNθ∂θ
(
b−1/2ei

∫ r
r0
b dr

u
)

= b−1/2ei
∫ r
r0
b dr( 1

r∂
2
θu+O(r−2)

)
.

In the first identity we substitute b2 = 2(λ − µ(λ)
r ). Then we collect our

computations and indeed obtain

(H−λ)φ+ = (H−λ)φ+−|g|−1/4b−1/2ei
∫ r
r0
b dr

r−1(HD−µ(λ)
)
u ∈ r−2B∗.

Next we define

φu = φ+ −R(λ− i0)(H − λ)φ+.

This φu is in Eλ with non-trivial prescribed outgoing asymptotics. If we
look at all eigenstates of HD, say numbered by k ∈ N, we obtain several
generalized eigenfunctions this way. Note that for κ = 1/2

ei
∫ r
r0
b dr ≈ ei

√
2λr exp

(
−iµ(λ)√

2λ ln r
)
.

Due to the non-trivial factor

exp
(
−iµ(λ,k)√

2λ ln r
)
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the asymptotics (1.45a) is readily seen to be incorrect (seen by using just
two of the constructed generalized eigenfunctions). By a similar reasoning
this conclusion is also valid for κ < 1/2.
The methods of this paper (in combination with other ingredients) should

yield a modification of Theorem 1.18 where the asymptotics of any φ ∈ Eλ
should be provided by functions of the form (3.36) and their incoming coun-
terparts, say in combination denoted by {φ±k |k ∈ N}. This would intuitively
yield the identification of the limiting space as G = l2(N), but we shall not
elaborate at this point.
For κ ∈ (1/2, 1) we do not know how to construct approximate outgoing

eigenfunctions inN∩B∗. If for example we take b =
√

2λ and u any nonzero
function in the domain of the Dirichlet Laplacian on (−1, 1) in (3.36) we
obtain

(H − λNr)φ+ ∈ r−2κB∗ ⊆ B,

which shows that

(H − λ)φ+ /∈ B,

since 1 − Nr ≈ (κ − κ2)θ2r2κ−2 is long-range for κ ∈ (1/2, 1). The reader
might think that a better approximation to the eikonal equation than√

2λr could be given to construct concrete approximate outgoing eigen-
functions in N ∩ B∗ to cure this deficiency, however a closer examination
indicates that this is not feasible (note that the forward flow property is a
severe restriction). The ansatz (1.43) has a similar deficiency. Whence the
asymptotics of the generalized eigenfunctions in Eλ is not known to us for
κ ∈ (1/2, 1).
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