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COARSE DENSITY OF SUBSETS OF MODULI SPACE

by Benjamin DOZIER & Jenya SAPIR

Abstract. — We show that an algebraic subvariety of the moduli space of genus
g Riemann surfaces is coarsely dense with respect to the Teichmüller metric (or
Thurston metric) if and only if it has full dimension. We apply this to determine
which strata of abelian differentials have coarsely dense projection to moduli space.
Furthermore, we prove a result on coarse density of projections of GL2(R)-orbit
closures in the space of abelian differentials.
Résumé. — Nous montrons qu’une sous-variété algébrique de l’espace de mo-

dule des courbes de genre g est grossièrement dense pour la métrique de Teich-
muller (ou la métrique de Thurston) si et seulement si la variété est de dimension
maximale. En guise d’application, nous déterminons les strates des différentielles
abéliennes dont la projection est grossièrement dense dans l’espace de modules. De
plus, nous obtenons un résultat sur les clôtures des GL2(R) orbites dans l’espace
des différentielles abéliennes pour lequel les projections sont grossièrement denses.

1. Introduction

The moduli space Mg of closed Riemann surfaces of genus g can be
equipped with a natural Finsler metric, the Teichmüller metric, which mea-
sures the dilatation of the best quasiconformal map between two Riemann
surfaces. In this paper we study some coarse metric properties of various
natural subsets of Mg. We say that a subset S ⊂ Mg is coarsely dense
with respect to the Teichmüller metric if there is some K such that every
point in Mg is within distance K in the Teichmüller metric from some
point of S.
In what follows an algebraic subvariety Mg is taken to mean a Zariski

closed subset.

Theorem 1.1. — Let V ⊂ Mg be an algebraic subvariety. Then V is
coarsely dense in Mg with respect to the Teichmüller metric iff dimV =
dimMg = 3g − 3.

Keywords: Teichmüller Theory, Subvarieties of moduli space, Abelian differentials.
2020 Mathematics Subject Classification: 57M50, 30F60, 32G15.
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A similar statement holds if instead of the Teichmüller metric, we use
the Thurston metric. See page 1123 for more details.

Our proof uses the compactification Mg by stable Riemann surfaces.
Intuitively, coarse density of a subset S ⊂ Mg should be related to the
topological closure S ⊂ Mg containing a large portion of the boundary.
It is not true, however, that coarse density of an arbitary S implies that
S contains all of Mg − Mg.(1) Instead, our proof uses the observation
that a coarsely dense subset must contain a sequence of Riemann surfaces
with 3g − 3 distinct curves all becoming hyperbolically pinched, but at
wildly different rates. On the other hand, surfaces on a proper subvariety
V must satisfy an analytic equation in plumbing coordinates – this implies
a relation among the hyperbolic lengths of pinching curves that prevents
them from going to zero at wildly different rates.

Strata and affine invariant manifolds. We now describe several cor-
ollaries concerning natural subsets arising in Teichmüller dynamics that
motivated the general theorem above.
The original motivation came from considering the space of holomorphic

Abelian differentials ΩMg. This is the space consisting of pairs (X,ω),
where X is a genus g Riemann surface, and ω is a one-form on X that can
be written as fdz in local coordinates, where f is a holomorphic function.
There is a natural projection

π : ΩMg →Mg

that takes (X,ω) to X. The theorem allows us to understand something
about the coarse geometry of this projection in the following sense.
The space ΩMg naturally decomposes into strata according to the mul-

tiplicities of the zeros of ω. For each partition κ = (κ1, . . . , κn) of 2g − 2,
we get a stratum H(κ) of differentials with n zeros of orders κ1, . . . , κn.

Corollary 1.2. — Let H(κ) be a stratum. Then π(H(κ)) is coarsely
dense inMg with respect to the Teichmüller metric iff

dimPH(κ) > 3g − 3.

(1)For instance, take X a stable Riemann surface that is not maximally degenerate,
i.e. some piece of X is not a thrice-punctured sphere. The boundary stratum of X has
dimension at least 1, and so we can take a non-trivial small neighborhood U of X in this
boundary stratum. Then construct S by starting with all stable nodal surfaces (in every
boundary stratum), except those in U , and smoothing out all the nodes in all possible
ways in the plumbing construction. This S will be coarsely dense, but X 6∈ S. The point
is that small neighborhoods of X in Mg intersected with Mg do not contain arbitrarily
large balls (though they do have infinite diameter).

ANNALES DE L’INSTITUT FOURIER
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Here PH(κ) is the complex projectivization of the stratum H(κ).

Proof. — If π(H(κ)) = π(PH(κ)) is coarsely dense, then applying The-
orem 1.1 with V equal to the Zariski closure of π(PH(κ)), we get that
V =Mg. So, using the fact that the dimension of a quasiprojective variety
is at least that of the Zariski closure of its image under an algebraic map,
we get

dimPH(κ) > dimV = 3g − 3.
If dimPH(κ) > 3g − 3, then by [11, Theorem 1.3 or 5.7] or [4, Proof

of Proposition 4.1], π(H(κ)) contains a Zariski open set of Mg, and in
particular is coarsely dense. (Note that this result is only true for the whole
stratum; the connected component Heven(2, . . . , 2) satisfies the dimension
condition, but does not dominate a Zariski open set inMg.) �

There is a natural action of GL2(R) on each stratum H(κ) given by
representing a surface in this stratum as a union of polygons in the plane,
and transforming the polygons by the matrix. The (topological) closures
of orbits under this action are of paramount importance for understanding
both dynamics on individual surfaces and the structure of the Teichmüller
metric.

Corollary 1.3. — Consider an orbit O = GL2(R)(X,ω) in a stratum
H(κ). Then π (O) is coarsely dense inMg with respect to the Teichmüller
metric iff the topological closureM := O satisfies

dim π(M) = 3g − 3.

Proof. — By continuity of π, π(O) is coarsely dense iff π(O) = π(M)
is coarsely dense. By work of Eskin–Mirzakhani–Mohammadi ([7, Theo-
rem 2.1]), an orbit closureM is an affine invariant manifold, and by Filip
([10, Theorem 1.1]) every affine invariant manifold is quasiprojective. Hence
the image π(M) under the algebraic map π is a constructible set. It follows
that the Zariski and topological closures of π(M) coincide – call this closure
V . Since coarse density is not affected by taking topological closure, π(M)
is coarsely dense iff V is coarsely dense. By Theorem 1.1, V is coarsely
dense iff dimV > 3g − 3. �

In particular, Theorem 1.1 implies that the projection of a stratum of
Abelian differentials, and indeed any affine invariant manifold, cannot be
coarsely dense unless it is topologically dense.

The Thurston metric. Theorem 1.1 is also true if we replace the Teich-
müller metric by the Thurston metric, dTh. This is an asymmetric metric
on Teichmüller space, where the distance from X to Y is defined using

TOME 71 (2021), FASCICULE 3
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the Lipschitz constant for the best Lipschitz map from X to Y . Thurston
showed that, in fact,

dTh(X,Y ) = log sup
α

`Y (α)
`X(α)

where the supremum is taken over the set of free homotopy classes of closed
curves [16]. Here `X(α) denotes the hyperbolic length of α on X. For our
purposes, we will take the above formula as the definition.
Because dTh is asymmetric, we can define coarse density with respect to

the Thurston metric in two possible ways.

Definition 1.4. — For a subset S ⊂ Mg the two (generally inequiva-
lent) conditions

(1) for each Y ∈Mg, there is some X ∈ S such that dTh(X,Y ) 6 K
(2) for each Y ∈Mg, there is some X ∈ S such that dTh(Y,X) 6 K

give two different definitions of K-coarsely dense, with respect to the
Thurston metric.

It turns out that our result holds for both definitions:

Theorem 1.5. — Let V ⊂ Mg be an algebraic subvariety. Then V is
coarsely dense in Mg with respect to the Thurston metric (using either
definition of coarse density) iff V =Mg.

The proof of this theorem is almost exactly the same as the proof of
Theorem 1.1, except in the first step. This is explained in Section 4 below.
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2. Plumbing coordinates

The Deligne–Mumford compactification Mg is obtained by adding to
Mg all genus g nodal Riemann surfaces that are stable, i.e. all components
of the complement of the set nodes have negative Euler characteristic. This
spaceMg is compact and has the structure of a complex orbifold, extending
the natural complex orbifold structure ofMg.
The plumbing construction gives a system of local analytic coordinates

for Mg. We will only need to understand neighborhoods of a maximally
degenerate point X ∈Mg (i.e. every component of the complement of the
nodes is a thrice-punctured sphere), so we will only describe the coordinates
for such points. Such a point X may have automorphisms which causeMg

to have an orbifold point at X. To deal with this issue, we assume that we
have passed, locally, to a manifold U that finitely covers the neighborhood.
Coordinates t1, . . . , t3g−3 on a sufficiently small U are obtained as follows.

Let p1, . . . , p3g−3 ∈ X be the nodes. The complement X − {p1, . . . , p3g−3}
is a union of connected Riemann surfaces with a pair of punctures (ai, bi)
corresponding to each node pi. Let Ui, Vi be small coordinate neighborhoods
of ai, bi, respectively, and let ui, vi be local analytic coordinates at these
points. By rescaling, we can assume that Ui ⊃ {ui : |ui| 6 1} and Vi ⊃
{vi : |vi| 6 1}. For (t1, . . . , t3g−3) in a small neighborhood Ω ⊂ C3g−3

of the origin, we define a Riemann surface Xt1,...,t3g−3 as follows. From
X − {p1, . . . , p3g−3}, we remove the sets DU = {0 < |ui| < |ti|} and DV =
{0 < |vi| < |ti|}. We then glue ui ∈ U −DU to vi ∈ V −DV when

uivi = ti.

This defines a possibly nodal Riemann surface; if all ti 6= 0, the surface is
smooth. If all ti are zero, we get X. Hence we get a plumbing map

Φ : Ω→ U .

Proposition 2.1 (Plumbing coordinates). — The plumbing map Φ is
an analytic isomorphism onto an open neighborhood of some lift of X in
U . Here the analytic structure on U comes from lifting the natural analytic
structure onMg.

The above result is stated in the Theorem and Corollary of Section 4
in the research announcement [14]. Proofs of similar results appear in [13].
The compactified moduli spaceMg was first studied from the perspective
of Teichmüller theory by Bers [3] and Abikoff ([1] and [2]). These authors
constructedMg as an analytic space, making heavy use of Kleinian groups.

TOME 71 (2021), FASCICULE 3
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Figure 2.1. The plumbing construction at the node pi

The plumbing construction seems to have been known quite early; see [9].
Plumbing parameters as coordinates for Mg were extensively studied by
Earle–Marden [6] and Kra [13].
The spaceMg was constructed from an algebraic perspective by Deligne–

Mumford [5]. The fact that the analytic structure inherited from the alge-
braic structure agrees with the analytic structure mentioned in the previ-
ous paragraph is due to Hubbard–Koch [12]. Hence algebraic subvarieties
are cut out near boundary points of the type discussed above by analytic
equations in the plumbing coordinates; we will use this fact in the proof of
Theorem 1.1.

Plumbing parameters and hyperbolic lengths. We will need to un-
derstand the relation between plumbing parameters near a boundary point
and the hyperbolic lengths of curves that get pinched at that boundary
point. Conveniently, this is understood precisely (we could get away with
much coarser estimates – see Remark 2.3).

Proposition 2.2 ([17, p. 71]). — ForX a maximally degenerate bound-
ary point, let αi be the pinched curve corresponding to parameter ti. Then
for X = Xt1,...,t3g−3 = Φ(t1, . . . , t3g−3), the hyperbolic length of αi satisfies

`X(αi) = 2π2

log 1/|ti|

(
1 +O

(
1

(log 1/|ti|)2

))
.

ANNALES DE L’INSTITUT FOURIER
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Remark 2.3. — In the proof of Theorem 1.1, we will not need the full
precision of the above proposition, though it is convenient to have. To un-
derstand the rough order of magnitude, it is sufficient to consider extremal
length, since this is comparable to hyperbolic length for short curves. Esti-
mating extremal length in terms of plumbing coordinates is very natural. In
fact, the highest modulus annulus around a given pinching curve will have
an outer boundary that is (approximately) fixed and an inner boundary of
radius approximately the plumbing parameter t. Thus the extremal length
is, coarsely, 2π

log 1/|t| .

3. Proof of main theorem

3.1. Idea of proof

The proof consists of the following three steps.
(1) Given a pants decomposition {α1, . . . , α3g−3}, we use coarse density

of V to find a sequence {Xm} ⊂ V where
c1

mi
6 `Xm(αi) 6

c2

mi

for constants c1 and c2 that depend only on K.
(2) The sequence Xm converges to a maximally degenerate point X ∈
Mg. Let t1, . . . , t3g−3 be plumbing coordinates for a small neighbor-
hood of X. Then by the relationship between hyperbolic lengths of
short curves and plumbing coordinates given by Proposition 2.2, we
get that for any p ∈ N and for all j > i,

|tj(m)| = o(|ti(m)p|)

where ti(m) is the ith plumbing coordinate for Xm. That is, the
jth plumbing coordinate is dominated even by high powers of the
previous plumbing coordinates.

(3) The fact that plumbing coordinates are analytic and V is not
all of Mg means that they satisfy at least one analytic equation
f(t1, . . . , t3g−3) = 0. To see why this might give a contradiction,
consider a specific example where the plumbing coordinates satisfy
the polynomial equation

(t1)p1 + · · ·+ (t3g−3)p3g−3 = 0

for some positive exponents p1, . . . , p3g−3. Using the o(·) estimate
from the previous step, we get that the leading term tp1

1 dominates

TOME 71 (2021), FASCICULE 3
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the others for large m, and thus the left hand side cannot possibly
equal zero.
In general, because f is analytic, its Taylor series satisfies strong

convergence conditions. Thus, we identify the leading term of the
Taylor series, and show that for all m large enough, this leading
term dominates the (infinite) sum of the rest of the terms.

3.2. Proof

Proof of Theorem 1.1. — One direction is trivial.
For the other direction, suppose for the sake of contradiction that V 6=

Mg and that V is K-coarsely dense in Mg. We will use this assumption
to construct a sequence of hyperbolic surfaces Xm ∈ V , m→∞, given by
fixing a pants decomposition, and taking the cuffs αi to have very widely
separated lengths, all going to 0, and show that this contradicts the dimen-
sion assumption.
First, consider the preimage Ṽ of V in Teichmuller space, Tg. Fix a pants

decomposition {α1, . . . , α3g−3} of S. Take a sequence of surfaces Ym ∈ Tg
as follows. If `Ym(αi) denotes the length of αi with respect to a point Ym,
let

`Ym(αi) = 1
mi

We specify Ym by choosing arbitrary twists about each αi.
Since we assume that V is K-coarsely dense inMg for some K > 0, its

lift Ṽ is alsoK-coarsely dense in Tg. So, we can find some sequence Xm ∈ Ṽ
with dTeich(Xm, Ym) 6 K. A lemma of Wolpert (see [8, Lemma 12.5]) gives
that

1
c
`Ym(αi) 6 `Xm(αi) 6 c · `Ym(αi)(3.1)

for a constant c depending only on K. So
1
c

1
mi
6 `Xm(αi) 6 c

1
mi

.

for all m.
Project the sequence Xm down to V . Abusing notation, we will still refer

to it as Xm. Then in the Deligne–Mumford compactification Mg, {Xm}
converges to the boundary point X where all of the curves αi are pinched
to nodes.
Now by Proposition 2.1, we can take analytic plumbing coordinates

t = (t1, . . . , t3g−3) ∈ C3g−3 for U a manifold that finitely covers a small

ANNALES DE L’INSTITUT FOURIER
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neighborhood ofX inMg. Let t(m) = (t1(m), . . . , t3g−3(m)) be the plumb-
ing coordinates for (an appropriately chosen lift) ofXm. By Proposition 2.2,
we have

1
c

1
mi
6

2π2

log 1/|ti(m)|

(
1 +O

(
1

(log 1/|ti(m)|)2

))
6 c

1
mi

In particular, for m large enough, there is another constant c′ so that

e−c
′mi 6 |ti(m)| 6 e− 1

c′m
i

.

In particular, for all j > i and for any positive integer p,

|tj(m)| = o(|ti(m)p|)(3.2)

as m→∞.
These coordinates are analytic, and we are assuming that V is locally

cut out by algebraic equations inMg. This means that in this coordinate
chart, (the local lift to the manifold cover U) of V is given as the solution
to analytic equations in the plumbing coordinates. Since we are assuming
that V 6=Mg, there is at least one such equation:

f(t1, . . . , tn) = 0,

where f is a complex analytic function (not identically equal to zero) de-
fined on a connected neighborhood of the origin. Here n = 3g − 3.
Now consider the Taylor series

f(t) =
∑
α

cαtα,

where the sum is over all multi-indices α = (α1, . . . , αn) with non-negative
integral coefficients (and tα means tα1

1 · · · tαnn ). Since f is analytic, the sum
converges absolutely for small t.

We wish to identify the term in the sum that is dominant along our
sequence Xm. To this end, consider a lexicographic total ordering � defined
by setting

(α1, . . . , αn) � (β1, . . . , βn)

iff for the largest k such that αk 6= βk, we have αk > βk (e.g. (1, 8, 5, 2) �
(2, 7, 5, 2) since 7 < 8). Note that any subset of these indices has a smallest
element with respect to � (i.e. it is a well-ordering). The monomials in
the Taylor series with smaller α will correspond to larger terms for our
sequence Xm.

TOME 71 (2021), FASCICULE 3
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Now in the Taylor series, consider the α such that cα 6= 0. Among these
α there is a smallest element β, and so we can write

f(t) = cβtβ +
∑
α�β

cαtα(3.3)

where cβ 6= 0.
The strategy is to show that the tβ term dominates the remaining terms

along our sequence Xm. By the Cauchy bound (see e.g. [15, Proposi-
tion 2.1.3]), there is some M and r > 0, such that for any α

|cα| 6
M

r|α|
(3.4)

where |(α1, . . . , αn)| := α1 + · · ·+ αn.
Our goal now is to show that

∣∣∣∑α�β cαt(m)α
∣∣∣ = o

(∣∣t(m)β
∣∣) as m→∞.

We write ∑
α�β

cαtα = Sn(t) + · · ·+ S1(t),

where

Si(t) : =
∑

αn=βn
...

αi+1=βi+1
αi>βi

cαtα

(Here the sums are taken over all multi-indices α of non-negative integers
satisfying the given constraints). We then get

|Si(t)| 6
∑

αn>βn...
αi+1>βi+1
αi>βi

|cαtα|

6
∑
α

∣∣∣cα+(0,...,0,βi+1,βi+1,...,βn)tα+(0,...,0,βi+1,βi+1,...,βn)
∣∣∣

=
∑
α

∣∣∣∣∣cα+(0,...,0,βi+1,βi+1,...,βn)
tαtβti

tβ1
1 · · · t

βi−1
i−1

∣∣∣∣∣
=

∣∣∣∣∣ ti

tβ1
1 · · · t

βi−1
i−1

tβ
∣∣∣∣∣∑
α

∣∣cα+(0,...,0,βi+1,βi+1,...,βn)tα
∣∣

Now using the Cauchy bound (3.4), we see that the sum in the last
expression above converges to an analytic function for small t (we also use

ANNALES DE L’INSTITUT FOURIER
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that the number of multi-indices α with |α| = k grows at most polynomially
with k). In particular, the sum is bounded near the origin. By (3.2),∣∣∣∣ ti(m)

t1(m)β1 · · · ti−1(m)βi−1

∣∣∣∣ = o(1),

as m → ∞. Using this and the boundedness of the sum part, we get that
|Si(t(m))| = o

(∣∣t(m)β
∣∣) as m→∞. Summing, we get∣∣∣∣∣∣

∑
α�β

cαt(m)α
∣∣∣∣∣∣ 6 |Sn(t(m))|+ · · ·+ |S1(t(m))| = o

(∣∣t(m)β
∣∣) .

Since the points Xm are on the variety V , we have f(t(m)) = 0 for all m,
so using the expansion (3.3) and rearranging the equation gives

∣∣cβt(m)β
∣∣ =

∣∣∣∣∣∣−
∑
α�β

cαt(m)α
∣∣∣∣∣∣ = o

(∣∣t(m)β
∣∣) ,

which gives a contradiction asm→∞, since t(m)β 6= 0, and by assumption
cβ 6= 0. �

4. Proof for the Thurston metric

We now explain the proof of the main theorem for the Thurston metric
(Theorem 1.5). We can no longer use Wolpert’s lemma (3.1) to relate the
lengths of curves on pairs of surface that are a bounded distance apart.
Instead, the proof hinges on the following lemma:

Lemma 4.1. — Suppose dTh(X,Y ) 6 K. There is an ε depending only
on the genus g so that if α is a simple closed curve with `Y (α) 6 ε, then

1
c
· `Y (α) 6 `X(α) 6 c · `Y (α)1/c(4.1)

for a constant c depending only on K and the genus g.

We will first explain the proof of Theorem 1.5 given this lemma, and
then prove the lemma.

In contrast to the case of the Teichmuller metric, the ratio `X(α)/`Y (α)
is not bounded in terms of dTh(X,Y ). In fact, for any simple closed curve
α, we can find pairs X,Y where dTh(X,Y ) 6 K and `X(α)/`Y (α) is as
large as we like. But the above lemma is enough for our purposes.

TOME 71 (2021), FASCICULE 3
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Proof of Theorem 1.5 given Lemma 4.1. — We will assume that V sat-
isfies the first definition of coarse density from Definition 1.4; Remark 4.2
indicates the changes needed if we were to use the second definition instead.
As in the proof of Theorem 1.1, we first construct a sequence Ym of

Riemann surfaces converging in Mg to a maximally degenerate point X.
This time, if α1, . . . , α3g−3 is the shrinking pants decomposition, we need
to choose the lengths to be even more widely separated than before, since
Lemma 4.1 gives us less control than Wolpert’s lemma (3.1). Specifically, let

`Ym(αi) = e−m
i

Using our definition of coarse density, for each m, there is some Xm ∈ V
with dTh(Xm, Ym) 6 K. So by Lemma 4.1, this implies

1
c
· e−m

i

6 `Xm(αi) 6 c · e−m
i/c(4.2)

for a constant c depending only on K and the genus g.
Again, we take plumbing coordinates t1, . . . , t3g−3 in a small neighbor-

hood of X. Using Proposition 2.2 in the same way as in the proof of The-
orem 1.1, we see that

e
−c′

`Xm
(αi) 6 |ti(m)| 6 e

−1
c′·`Xm (αi)

where c′ is a constant that depends only on g and K. Applying the esti-
mate (4.2) to this gives

e−cc
′em

i

6 |ti(m)| 6 e−(1/cc′)em
i/c

.(4.3)

This guarantees that |tj(m)| = o(|ti(m)|p). From here the proof of
Theorem 1.5 proceeds exactly as the proof of Theorem 1.1 starting
from (3.2). �

Remark 4.2. — If we were to use the second definition of coarse density,
the inequalities in (4.2) would be replaced by (1/c)ce−cmi 6 lXm(αi) 6
ce−m

i but the structure of the rest of the proof would be the same.

Proof of Lemma 4.1. — The lower bound in the lemma follows directly
from the definition of the Thurston metric. In fact, if dTh(X,Y ) 6 K, then

`Y (α) 6 eK`X(α).

To prove the upper bound, we seek a hyperbolic geodesic γ (not neces-
sarily simple) on X that crosses α and such that

`X(γ) 6 C1 log(1/`X(α)) + C2,(4.4)

ANNALES DE L’INSTITUT FOURIER
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where C1, C2 are constants that depend only on genus. The above means
that when α is short, the length of γ is bounded above by the same order
of magnitude as the width of the collar given by the Collar Lemma.
Choose a Bers pants decomposition P on X, i.e. one for which every

cuff curve has length at most the Bers constant B (which depends only on
genus). If α is not one of the cuff curves in P, then, since it is simple, it must
intersect one of the cuff curves, which we take to be γ. Since `X(γ) 6 B,
we get (4.4) by taking C2 > B. Alternatively, if α is one of the cuffs in
P, then look at the pairs of pants P1, P2 ∈ P on either side of α. Take γ
to be a curve formed by taking ortho-geodesics on P1, P2, each with both
endpoints on α, and concatenating them together along with some piece
of α. We can bound the length of each ortho-geodesic from above in terms
of `X(α) using the hyperbolic right-angled pentagon formula, which gives
`X(γ) 6 C1 log(1/`X(α)) + B′, where B′ depends only on B in this case.
Combining the two cases gives (4.4).
Now, since dTh(X,Y ) 6 K,

`X(γ) > 1
eK
· `Y (γ).

By the Collar Lemma, since γ must cross the entire collar of α, when `Y (α)
is sufficiently small, we have

`Y (γ) > log(1/`Y (α)).

Applying (4.4) and the above two inequalities gives

C1 log(1/`X(α)) + C2 > `X(γ) > 1
eK
· `Y (γ) > 1

eK
log(1/`Y (α)),

which can be rearranged to give the desired second inequality in (4.1). �
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