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THE BULK-EDGE CORRESPONDENCE FOR
CONTINUOUS DISLOCATED SYSTEMS

by Alexis DROUOT (*)

Abstract. — We study topological aspects of defect modes for a family of op-
erators P(t), obtained as a Schrödinger operator P0 perturbed by a phase defect
t between −∞ and +∞: a dislocation. When t = π and the dislocation is adia-
batic, Fefferman, Lee-Thorp and Weinstein showed that conical degeneracies of P0
bifurcate to defect modes of P(π).

We show that these modes are topologically protected even outside the adiabatic
regime. This relies on a bulk-edge correspondence for dislocations. Specifically, we
show that the signed number of defect modes equals a Chern number computed
from the bulk. We next derive an explicit formula for these indices in terms of the
dislocation and of the conical point Bloch modes. We illustrate the depth of our
result through a few examples.
Résumé. — Nous étudions les aspects topologiques de modes propres d’une fa-

mille d’opérateurs {P(t)}t∈[0,2π], perturbations d’un opérateur P0 par une dislo-
cation: un potentiel avec un défaut de phase t entre −∞ and +∞. Quand t = π
et la dislocation est adiabatique, Fefferman, Lee-Thorp and Weinstein ont montré
que les dégénérescences coniques de P0 bifurquent vers des états propres de P(t).

Nous montrons ici que ces états propres sont topologiquement protégés, même
en dehors du régime adiabatique. Cela passe par une correspondance « bulk-edge »
pour les systèmes de dislocations. Spécifiquement, nous démontrons que le nombre
effectif d’états propres est égal à un nombre de Chern, calculé à partir du bulk.
Nous montrons que ces nombres sont le degré d’une fonction définie à partir de la
dégénérescence conique et de la dislocation. Finalement, nous illustrons la richesse
du modèle à travers quelques exemples.

1. Introduction

The study of waves in crystalline materials has a long history. Central
questions include energy transport, localization, inverse problems, scatter-
ing by impurities, etc. An important theme concerns whether two different
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crystals can be deformed into one another while preserving their electronic
properties. This amounts to topologically classifying periodic materials.
This classification was first believed to depend solely on the band spec-
trum of the crystals. But the scientific community soon realized that the
Bloch modes encoded essential information. This led to theoretical expla-
nations of the quantum Hall effect [52, 54, 95]; discoveries of topological
insulators [44, 64, 65, 82, 91]; and topological interpretations of geophysics
waves [23].
Highly symmetric crystals are central to the field of topological insula-

tors. They exhibit degeneracies in their band spectrum. Symmetry-breaking
perturbations may remove these degeneracies and open essential spectral
gaps. When this happens, metals become insulators. The existence of en-
ergy gaps allows to define low-energy eigenbundles. Their topology depend
on their Chern classes. For two-dimensional materials, there is a single
Chern class, represented by an integer: the bulk index.

In favorable conditions, certain half-crystals are insulating in the bulk
but conducting along their boundary. In other words, they support time-
harmonic waves propagating along rather than across the edge. Accord-
ing to numerical and physical experiments, this property is strikingly ro-
bust: it persists under large deformations of the interface. This inspired
investigations in electronic physics, photonics, acoustics and mechanics;
see e.g. [83, 100]. From the theoretical point of view, this motivated the
definition of the edge index: the difference between the number of edge
states propagating up and down.

The bulk-edge correspondence is a formal principle that asserts that the
bulk and edge indexes coincide. Such identities are ubiquitous in math-
ematics and physics: they relate spectral quantities (here, the edge in-
dex) to topological quantities (the bulk index). One of the most famous
example is the Atiyah–Patodi–Singer index theorem [2, 3, 4]. The bulk-
edge correspondence has been proved in a growing number of discrete set-
tings [5, 8, 17, 32, 48, 49, 50, 87]; see [42, 1] for a good introduction. For
continuum systems, we refer to [68, 69, 94] for the quantum Hall effect
(and [27, 61, 62] for analysis of edge currents); [7, 8, 45] for an analysis on
Dirac operators; [29] for semiclassical aspects; and [16] for K-theory. Here,
we prove the bulk-edge correspondence in a new continuum setting.

The system models the dislocation of a one-dimensional crystal; equiv-
alently, the imperfect junction of two similar crystals at a phase defect
t ∈ [0, 2π]. For small and adiabatic dislocations, Fefferman, Lee-Thorp and

ANNALES DE L’INSTITUT FOURIER



BULK-EDGE CORRESPONDENCE FOR DISLOCATED SYSTEMS 1187

Weinstein [34, 36] constructed defect states via a rigorous multiscale pro-
cedure. These defect states bifurcate conical degeneracies of the periodic
background. We recently showed that the multiscale approach of [34, 36]
produces all defect states [30].
Using [30], we derive a formula for the edge index. It depends only on

the bulk: it is a winding number expressed in terms of the asymptotic
shape of the dislocation and of the 1D Dirac point Bloch modes of the
periodic background. It shows that Dirac points play a key role in the
production of defect states (see also [28] for an analysis in 2D tight-binding
models). Because of topological invariance, our formula gives the edge index
regardless of small or adiabatic assumptions.

We then use the classical expression of the bulk index as the integral
of the Berry curvature. The same winding number emerges via the rig-
orous reduction to a tight-binding model. This proves the bulk-edge cor-
respondence for our model. It extends and generalizes parts of results of
Korotyaev [72, 73], Dohnal–Plum–Reichel [25] and Hempel–Kohlmann [58].
We compute the bulk/edge index on a few examples. This demonstrates
that the bulk/edge index of our system can take any odd value.

Our model shares many features with honeycomb lattices glued along an
edge. Fefferman, Lee-Thorp, Weinstein and Zhu successfully exploited this
connection to construct edge states in the small adiabatic regime [35, 77].
Their work demonstrates mathematically some of the predictions of Hal-
dane and Raghu [51, 89]. The work of Hempel and Kohlmann [58] inspired
studies for two-dimensional dislocations [57, 59, 60, 74]. Our techniques
will likewise apply to more advanced models.

1.1. Description of the model and motivation

We study a family of Schrödinger operators {P(t)}t∈[0,2π] on L2(R) with
potentials periodic on the far left and the far right, but acquiring a phase
defect t when going from +∞ to −∞. Specifically:

(1.1) P(t) def= − ∂2

∂x2 + V + χ−W + χ+Wt + F, where:

• V and W are smooth, real-valued, one-periodic and satisfy

(1.2)
V ( ·+ 1/2) = V (x); W (x+ 1/2) = −W (x);

Wt(x) def= W (x+ t/(2π)).
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1188 Alexis DROUOT

• χ± are smooth and real-valued and satisfy

(1.3)

χ+ + χ− = 1, χ+(x) =
{

1 for x� 1;
0 for x� −1,

χ−(x) =
{

1 for x� −1;
0 for x� 1.

• F is a selfadjoint operator on L2(R), compact fromH2(R) to L2(R).
The operator P(t) is the dislocation of a periodic Schrödinger operator
P0

def= D2
x + V by a potential that looks like W for x � −1 and Wt for

x� 1. See Figure 1.1.
The work of Fefferman, Lee-Thorp and Weinstein [34, 36] motivates our

analysis. These papers study defect modes for

(1.4) Pδ,?
def= D2

x + V − δ · κ(δ ·) ·W, Dx
def= 1

i

∂

∂x
, κ

def= χ+ − χ−.

This corresponds to (1.1) when F ≡ 0, t = π, χ+, χ− vary at scale δ−1 � 1
and W = OL∞(δ). The operator (1.4) is a small non-local perturbation of
P0 = D2

x+V . As a periodic operator, P0 acts on the space of quasi-periodic
functions

(1.5) L2
ξ

def=
{
u ∈ L2

loc : u(x+ 1) = eiξu(x)
}
.

These are Hilbert spaces when provided with the bilinear form 〈f, g〉 def=∫ 1
0 f(x)g(x) dx. Because of (1.2), the L2

π-eigenvalues of P0 are two-fold
degenerate. They correspond to one-dimensional Dirac points: conical in-
tersections of the L2

ξ-eigenvalues of P0. If (π,E?) is a (1D) Dirac point,
there exist normalized solutions φ?± ∈ L2

π of the eigenvalue problems

(1.6)
(
D2
x + V − E?

)
φ?± = 0, φ?±(x+ 1/2) = ±iφ±(x).

These solutions are uniquely defined modulo multiplicative factors in S1.
We call (φ?+, φ?−) a “Dirac eigenbasis”. We refer to Section 2 for details.

Introduce the parameter

(1.7) ϑ?
def=
〈
φ?−,Wπφ

?
+
〉

=
∫ 1

0
φ?+(x)W (x+ 1/2)φ?−(x) dx.

When ϑ? 6= 0 and δ > 0 is sufficiently small, the operator Pδ,? has an
essential spectral gap centered at the Dirac energy E?, of size 2ϑF δ+O(δ2),
where ϑF = |ϑ?|. The work [36] predicts that Pδ,? admits at least one
eigenvalue in each of these gaps, equal to E? + O(δ2). The corresponding
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V (x)

W (x+ t)W (x)
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x

x

Figure 1.1. The periodic potentials V (red) and W (blue) are plotted
in the top graph; on the right, W acquires a phase defect t. The bot-
tom graph represents the typical potential in the Schrödinger operator
P(t): it is periodic on the left and on the right, with different asymp-
totics. The gray transition zone takes an arbitrary form.

eigenvector is seeded by the zero mode of the Dirac operator

(1.8)
/D?

def= ν?σ3Dx + σ?κ, ν?
def= 2

〈
φ?+, Dxφ

?
+
〉
,

σ?
def=
[

0 ϑ?
ϑ? 0

]
, σ3

def=
[
1 0
0 −1

]
.

The operator /D? emerges via a multiscale analysis of (1.4). We improve
this result in [30]: we show that the eigenvalues of /D? seed precisely all the
eigenvalues of Pδ,?. See Section 4.3 for precise statements and Figure 4.2
for a pictorial representation.
The zero mode of the Dirac operator /D? persists against large compact

perturbations of κ. A natural question is whether this robustness property
transfers to the defect states constructed in [36], in other words, whether
these modes persist against large deformations. The short answer is no: one
could deform these modes away by adding a suitable finite-rank operator.
A less naive answer consists in embedding Pδ,? in a family of dislocation

problems of the form (1.1). This family is 2π-periodic with respect to t

and topological effects appear. We show that under suitable assumptions,
the family t ∈ [0, 2π] 7→ P(t) admits defect states independently of the
perturbation F . This means that there are always phase shifts t such that

TOME 71 (2021), FASCICULE 3
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P(t) admits eigenvalues. In particular, the corresponding modes persist
against arbitrary bulk-preserving perturbations.

1.2. Existence of defect states

Fix n an odd integer. Because V is 1/2-periodic, the n-th and n + 1-
th dispersion curves of D2

x + V join at a (1D) Dirac point (π,E?), see
the above discussion and Section 2. In addition to (1.2), we introduce two
assumptions for the pair of potentials (V,W ):
(H1) There exists E ∈ C0([0, 1] × R/(2πZ),R) with E(s, t) = E? for s

small and

(1.9) s ∈ (0, 1], t ∈ R

=⇒ E(s, t) is not in the L2
π-spectrum of D2

x + V + sWt.

(H2) For every t ∈ R, ϑ(t) def=
〈
φ?−,Wtφ

?
+
〉
is non-zero.

These conditions concern only the bulk structure of the problem; if they
hold for (V,W ) they also hold for small perturbations of (V,W ). (H1) means
that as s, t vary, the n-th gap of D2

x+V +sWt remains open; (H2) is a non-
degeneracy condition that already appeared in [30, 34, 36]. In Section 3,
we provide examples of pairs (V,W ) where both (H1) and (H2) hold. (H2)
allows to define the degree of ϑ : R→ C∗:

(1.10) m
def= 1

2πi

∫ 2π

0

ϑ′(t)
ϑ(t) dt.

Equivalently, m is the winding number of t ∈ T1 7→ ϑ(t) ∈ C∗ around 0.
Since ϑ(t + π) = −ϑ(t), m is odd (see Section 2.2); in particular m 6= 0.
A simple version of our main results predicts existence of defect states
for P(t).

Corollary 1.1. — If (V,W ) satisfies (1.2), (H1) and (H2) then there
exist at least |m| values of t ∈ [0, 2π] such that E(1, t) is an eigenvalue of
P(t) (counted with multiplicity).

1.3. Bulk-edge correspondence

We describe our main results. We start by defining indexes. The edge
index is the spectral flow SfT1(P − E(1, · )), where T1 denotes the torus
R/(2πZ). Roughly speaking, it is the spectral multiplicity that effectively
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t

E
essential spectrum

E(1, t)

Figure 1.2. This picture represents the spectrum of P(t) as a function
of t. The gray zone corresponds to the essential spectrum; eigenvalues
are plotted in red; t 7→ E(1, t) is an arbitrary energy level in the gap.
The spectral flow counts the signed number of downwards intersections
between the red and blue curves. Here it equals 1: the first crossing
occurs downwards; the upper curve does not intersect E(1, t); and the
lower curve intersections cancel each other. A bulk-preserving pertur-
bation must leave the spectral flow invariant: the first red curve cannot
be deformed away.

crosses the gap downwards(1) as t runs from 0 to 2π; see Section 4.1 for a
precise definition. Corollary 1.1 is a direct consequence of:

Theorem 1.2. — If the pair (V,W ) satisfies (1.2), (H1) and (H2) then

(1.11) SfT1(P − E(1, · )) = (−1)
n−1

2 ·m.

We now define the bulk index. As a periodic operator, D2
x +V +Wt acts

on L2
ξ : the space of quasi-periodic functions (1.5). Because of (H1), the n-th

gap of D2
x + V + Wt on L2

ξ is open. We can then define a smooth rank-n
bundle E over the two-torus T2 = R2/(2πZ)2: the fibers at (ξ, t) ∈ T2 is
the direct sum of the first n eigenspaces of D2

x + V +Wt on L2
ξ . The bulk

index is the first Chern class c1(E) of E .

(1)Different authors picked different conventions. For instance, in [4, 46, 88] the spectral
flow is the upwards net crossing of eigenvalues. We chose the “downwards” convention
because it has been previously used in the mathematical litterature about bulk-edge
correspondence [17] and dislocation problems [58], both of which have strong connections
with the present work.

TOME 71 (2021), FASCICULE 3
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Theorem 1.3. — If the pair (V,W ) satisfies (1.2), (H1) and (H2) then

(1.12) c1(E) = (−1)
n−1

2 ·m.

Theorem 1.2 and 1.3 give the bulk-edge correspondence: the bulk pre-
scribes the signed number of defect states of the family {P(t)}t∈[0,2π].
Furthermore, they express the bulk and edge indexes in terms of W , n and
φ?± only:

(1.13) SfT1(P − E(1, · )) = c1(E) = (−1)n−1
2

2πi

∫ 2π

0

ϑ′(t)
ϑ(t) dt.

This formula indicates that the existence of defect states depends exclu-
sively on the rough shapes of the perturbation W and of the Dirac eigen-
basis (φ?+, φ?−), rather than on the details of V . This is another form of the
topological manifestation identified here.

1.4. Relation with [30, 34, 36]

Theorem 1.2 is (in nature) a topological result rather than an asymp-
totic result: no smallness of parameters is assumed. It predicts the existence
of defect states for a much wider class of operators than those considered
in [30, 34, 36]. However, it neither specifies their exact number, their shape,
nor which values of t guarantee their existence. This is in sharp contrast
with [30, 34, 36]. The first two papers describe defect states of Pδ,? as
two-scale functions oscillating like (φ?+, φ?−), with slow decay prescribed by
eigenvectors of /D?. The third paper refines this description with the pre-
cise counting of defect states; and full expansions of eigenpairs in powers of
δ. Both these results are asymptotic: they work for small δ. The strength
of Theorems 1.2 and 1.3 is their robustness. These results identify defect
modes that persist against all bulk-preserving perturbations, for δ of order
1. Their proofs contain topological and analytical steps: homotopy argu-
ments and reduction to Dirac operators. The present paper justifies the
“topologically protected” terminology used in [36].

1.5. Proof of Theorem 1.2

The proof of Theorem 1.2 consists of three mains steps:

ANNALES DE L’INSTITUT FOURIER
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• In Section 4, we deform continuously the family t 7→P(t)−E(t, 1) to

(1.14) Pδ(t)
def= D2

x + V + δχ−(δ ·)W + δχ+(δ ·)Wt − E?,

where δ > 0 is arbitrarily small. This preserves the spectral flow
associated to the n-th gap because of assumption (H1).

• The family (1.14) is spectrally connected to effective Dirac opera-
tors

(1.15)
t ∈ T1 7−→ /D(t) = ν?σ3Dx − σ?χ− +

[
0 ϑ(t)
ϑ(t) 0

]
χ+,

ν?
def= 2

〈
φ?+, Dxφ

?
+
〉
, ϑ(t) def=

〈
φ?+,Wtφ

?
−
〉
6= 0.

The operator /D(t) emerges from a multiscale analysis of Pδ(t)
(see [34, 36]). The key tool is the analysis of [30] which shows that
the defect states of Pδ,? with energy near E? are in bijection with
the modes of the effective Dirac operator /D? = /D(π). This predic-
tion applies similarly to Pδ(t), /D(t). This allows to count precisely
the eigenvalues of Pδ(t) in terms of those of /D(t). We derive the
spectral flow equality

(1.16) SfT1(Pδ − E?) = SfT1( /D).

• The operator /D(t) depends on t only through the function t 7→ ϑ(t),
which is homotopic to t 7→ −ϑ?eimt (m is the degree of ϑ). Hence,
/D deforms continuously to a simpler Dirac operator

(1.17) /Dm(t) def= sgn(ν?)σ3Dx − σ?χ− −
[

0 ϑ?e
−imt

ϑ?e
imt 0

]
χ+

again without changing the spectral flow.
• The spectral flow of t 7→ /Dm(t) equals m times the spectral flow of
/D1(t). We replace χ+ (respectively χ−) in /D1(t) by 1[0,∞) (resp.
1(−∞,0]). This preserves the spectral flow; and reduces /D1(t) to
an operator with constant coefficients. An explicit calculation is
possible:

(1.18) SfT1
(
/D1
)

= sgn(ν?).

The conclusion comes from the identity sgn(ν?) = (−1)n−1
2 .

1.6. Proof of Theorem 1.3

In Section 5.1, we define the bulk index c1(E) for the n-th gap of P (ξ, t) =
D2
x+V +Wt : L2

ξ → L2
ξ (following the geometric interpretation of [85]). To
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compute it, we deform P (ξ, t) to an operator Pδ(ξ, t) whose n-th gap has
width of order δ � 1. The n-th eigenvalue of Pδ(π, t) is almost degenerate.
The physical intuition suggests that the Berry curvature is “largest” near
(π, t). For small δ and ξ near π, the operator Pδ(ξ, t) behaves like a 2 × 2
tight-binding model Mδ(ξ, t). We then show that the bulk index equals
the Chern number for the low-energy eigenbundle of Mδ(ξ, t). A direct
calculation yields then Theorem 1.3:

(1.19) c1(E) = (−1)n−1
2

2πi

∫ 2π

0

ϑ′(t)
ϑ(t) dt.

Although the proofs of Theorems 1.2 and 1.3 are independent, they share
the same ground: the reduction to a Dirac operator. We perform this reduc-
tion by shrinking the amplitude of W to zero. The assumptions (H1) and
(H2) ensure that the essential spectral gap does not close. This effectively
removes all terms that are not related to the Dirac point (π,E?).

1.7. Comparison with earlier work

The previous papers of Korotyaev [72, 73], Dohnal–Plum–Reichel [25]
and Hempel–Kohlmann [58] studied the dislocation problem on the line,
i.e. the eigenvalues of

(1.20) Q(t) = D2
x + 1(−∞,0]W + 1[0,∞)W (·+ t/(2π)),

where W is a one-periodic potential.(2) The main difference of (1.20) with
P(t) is the absence of a periodic background potential. It has fundamental
implications.
The essential spectrum of Q(t) coincide with the spectrum of the periodic

operator Q(0) = D2
x + W . When the n-th gap is open, Korotyaev [72] and

Dohnal–Plum–Reichel [25] show that there exist 0 = t0 < t1 < · · · < tn = 1
such that for every t ∈ (tj , tj+1), the operator Q(t) has a unique eigen-
value in the n-th gap. The effective flow of eigenvalues of Q(t) in the n-
th gap is n (see also Gonthier [47]). Hempel–Kohlmann [58] rediscovered
this formula via a clever trick, flexible enough to work in two-dimensional
analogs [57, 60]. [25] provides many interesting numerical examples. We do
not know whether the results of [25, 72] persist against localized perturba-
tions; though the spectral flow interpretation remains.

(2) [73] is more general: it considers cases where the potentials on the left and right are
different.

ANNALES DE L’INSTITUT FOURIER
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In contrast with Theorem 1.2, [72] requires no hypothesis on W except
(naturally) an open n-th gap for D2

x + W . Our paper requires more as-
sumptions, in particular (1.2); but offers a different perspective:

(a) we add the periodic potential V to (1.20);
(b) we investigate the topological relation between bulk and edge (a

question not addressed in [25, 58, 72, 73]).
Because of (a), our class of model is topologically richer than that of [25,

58, 72]. For instance, in Section 3 we produce for each pair of odd numbers
(m,n) 6= (−n, n) two potentials V and W such that the spectral flow of
{P(t)}t∈[0,2π] in the n-th gap equals m. When m 6= n, this shows that
{P(t)}t∈[0,2π] is topologically different from the families studied in [25,
58, 72]. This indicates that some assumptions (probably in the spirit of
(H1)) are necessary for Theorem 1.2 to hold. It also demonstrates that
Theorem 1.2 and 1.3 provide a way to topologically distinguish pairs of
potentials (V,W ): the data of the bulk-edge indexes mn associated to the
n-th gap.

We analyze briefly P (ξ, t) within the framework of the Kitaev table
(see [71]). Let H(ξ, t) : L2

ξ → L2
ξ be a family of Hamiltonians 2π-periodic

in (ξ, t). We say that H has:
• chiral invariance if there exist unitary operators S(ξ, t) : L2

ξ → L2
ξ

such that S(ξ, t)2 = Id and (SHS)(ξ, t) = −H(ξ, t);
• time-reversal invariance if there exist antiunitary operators
T (ξ, t) : L2

ξ → L2
−ξ such that T (ξ, t)2 = Id or T (ξ, t)2 = − Id and

(T HT )(ξ, t) = H(−ξ,−t);
• charge-conjugation invariance if there exist antiunitary operators
C(ξ, t) : L2

ξ → L2
−ξ such that C(ξ, t)2 = Id or C(ξ, t)2 = − Id and

(CHC)(ξ, t) = −H(−ξ,−t).
The Kitaev table classifies values of possible bulk invariants in terms of the
existence (or absence) of these symmetries. The operators P (ξ, t) do not
seem to exhibit such invariance, so it should fit within symmetry class A.(3)

This symmetry class (which is that of the quantum Hall effect) corresponds
to a Z-valued index.
Our analysis relates to the study of waves scattered by impurities in

periodic backgrounds, see e.g. [12, 13, 14, 15, 21, 22, 41, 63, 86, 99, 101].
In comparison with these papers, we focus here on topological aspects.
(3) It would be tempting to say that complex conjugation acts as time-reversal invariance,
but that is not true for dislocation models: we have instead
(1.21) f ∈ L2

ξ =⇒ P (ξ, t)f = P (−ξ, t)f̄ .
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The relation between spectral and topological aspects of linear PDEs has a
long and rich history, with ongoing developments. We would like to mention
some recent advances (with no attempt to make an exhaustive list):

• For Anosov flow on 3-manifolds, [20] recently proved the equality
between the analytic torsion and the dynamical zeta function at 0
(see [92] for the analytic case).

• On a related note, [31] investigated connections between Hodge–de
Rham cohomology and k-forms invariant under the Anosov flow.

• The celebrated Atiyah–Patodi–Singer index theorems have now
proofs that do not rely on ellipticity [9, 18].

• In the sub-Riemannian context, [10] studied the small-time asymp-
totic of the heat kernel in terms of topological invariants.

1.8. Further perspectives

This work suggests other directions of research:
• Assume that (V,W ) and (V ,W) are two pairs of potentials satisfy-
ing (1.2), (H1) and (H2) in the n-th gap; but that the winding num-
bers defined by (1.10) are different. Then we expect non-topological
transitions when one goes from (V,W ) to (V ,W). These relate to
Chern number transfers at linear band crossings. See [33, 46] for
further reading.

• There is a rich literature on convergence of semiclassical operators
to tight-binding models, see e.g. [19, 53, 55, 56, 79, 80, 84, 93]
and more recently [37, 38]. The bulk-edge correspondence holds in
many tight-binding situations, see e.g. [5, 17, 32, 48, 49, 67, 87] and
references therein. A novel approach could consist in combining
these two classes of results.

• Under certain conditions, biperiodic backgrounds can support non-
linear surface solitons [24, 26]. Our work suggests that there may
be a topological interpretation of these results.

Notations

• S1 ⊂ C is the sphere {z ∈ C : |z| = 1}.
• If E,E′ ⊂ RN , dist(E,E′) denotes the Euclidean distance between
sets.
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• When S ⊂ R and it is clear that a number j denotes an integer, we
write j ∈ S instead of j ∈ S ∩ Z.

• Dx is the operator 1
i ∂x.

• The space L2
ξ consists of ξ-quasiperiodic functions (w.r.t. Z):

(1.22) L2
ξ

def=
{
u ∈ L2

loc : u(x+ 1) = eiξu(x)
}
.

It splits orthogonally as L2
ξ = L2

ξ,e ⊕ L2
ξ,o,

(1.23)
L2
ξ,e

def=
{
u ∈ L2

loc : u(x+ 1/2, ξ) = eiξ/2u(x)
}
,

L2
ξ,o

def=
{
u ∈ L2

loc : u(x+ 1/2, ξ) = −eiξ/2u(x)
}
.

• If f, g are square integrable on (0, 1), we set

(1.24) 〈f, g〉 def=
∫ 1

0
f(x)g(x) dx.

• V ,W denote smooth, real-valued potentials such that V (x+1/2) =
V (x) and W (x+ 1/2) = −W (x).

• Wt is the periodic potential x 7→W (x+ t/(2π)).
• n is an odd integer referring to the n-th gap of D2

x + V +W .
• (π,E?) denotes the n-th Dirac point of D2

x + V and a Dirac eigen-
basis is (φ?+, φ?−) ∈ L2

π,e × L2
π,o. See Section 2.2.

• The Fermi velocity is ν? = 2
〈
Dxφ

?
+, φ

?
+
〉
; we will also use νF = |ν?|.

• ϑ is the 2π-periodic function t 7→
〈
φ?−,Wtφ

?
+
〉
; ϑ? equals ϑ(π);

the integer m is the winding number of ϑ around 0. We will write
|ϑ?| = ϑF

• Ps(ξ, t) is the operator D2
x + V + sWt acting on L2

ξ . Its discrete
spectrum is λs,1(ξ, t) 6 · · · 6 λs,`(ξ, t) 6 · · · .

• χ± are two smooth functions on R such that

(1.25)

χ+ + χ− = 1, χ+(x) =
{

1 for x� 1;
0 for x� −1,

χ−(x) =
{

1 for x� −1;
0 for x� 1.

• The Pauli matrices are

(1.26) σ1 =
[
0 1
1 0

]
, σ2 =

[
0 i

−i 0

]
, σ3 =

[
1 0
0 −1

]
.

These matrices satisfy σj
2 = Id2 and σiσj = −σjσi for i 6= j.
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• The matrix σ? is defined by

(1.27) σ? =
[

0 ϑ?
ϑ? 0

]
= Re(ϑ?)σ1 + Im(ϑ?)σ2.

• T1 is the torus R/(2πZ); T2 is the two-torus R2/(2πZ)2.
• If E → T2 is a smooth vector bundle, Γ(T2, E) denotes the space
of smooth sections of E.

• C is the cylinder T1 × R.
• The spectral flow of a 2π-periodic family of operatorsA(t) is SfT1(A)
(see Section 4.1).

• The (first) Chern class of a vector bundle E is c1(E) (see Sec-
tion 5.1).

• If H is a Hilbert space and ψ ∈ H, we write |ψ|H for the norm of
H; if A : H → H is a bounded operator of H, the operator norm
of A is

(1.28) ‖A‖H
def= sup
|ψ|H=1

|Aψ|H.

• If A is a (possibly unbounded) operator on a Hilbert space H, the
spectrum of A is ΣH(A). If A is trace class, then TrH[A] denotes
the trace of A.

• If ψε ∈ H (resp. Aε : H → H is a linear operator) depend on a
parameter ε, we write ψε = OH(f(ε)) (resp. Aε = OH(f(ε))) when
there exists C > 0 such that |ψε|H 6 Cf(ε) (resp. ‖Aε‖H 6 Cf(ε))
for sufficiently small ε.
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2. Overview of Floquet–Bloch theory and 1D Dirac points

2.1. Dispersion curves

We review basic 1D Floquet–Bloch theory. The basic reference is Reed–
Simon [90, §XIII]. Kuchment recently wrote a nice survey [75].
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Let V ∈ C∞(R,R) be one-periodic. The operator D2
x + V acting on

(2.1) L2
ξ =

{
u ∈ L2

loc : u(x+ 1) = eiξu(x)
}

has discrete spectrum E1(ξ) 6 E2(ξ) 6 · · · . The maps ξ ∈ [0, 2π] 7→ Ej(ξ)
are called dispersion curves. They are symmetric about ξ = π (because V is
real valued). The eigenvalue problem is a second order differential equation.
Its solution space is at most two-dimensional. Since V is real-valued, one
can deduce (see e.g. [90, Theorem XIII.89]) that

(2.2)
n odd =⇒ En is increasing on [0, π] and decreasing on [π, 2π];
n even =⇒ En is decreasing on [0, π] and increasing on [π, 2π].

Another consequence is that degenerate eigenvalues can occur only if ξ =
π mod 2π:

(2.3) En(ξ) = En+1(ξ) =⇒
{
ξ = 0 if n is even;
ξ = π if n is odd.

The next result implies that dispersion curves are stable. It is a direct
consequence of [40, Appendix A].

Lemma 2.1 ([40, Appendix A]). — Let ` be an integer and C > 0; there
exists ε0 > 0 such that the following holds. Let V and W be two periodic
potentials and EV ,`(ξ) be the `-th L2

ξ-eigenvalue of D2
x + V ; EW ,`(ξ) be

the `-th L2
ξ-eigenvalue of D2

x + W . Then

(2.4) |V −W |∞ 6 ε0, |V |∞ + |W |∞ 6 C
=⇒ |EW ,`(ζ)− EV ,`(ξ)| 6 |V −W |∞.

2.2. 1D Dirac points and dimer symmetry

We now review 1D Dirac points.

Definition 2.2. — We say that D2
x + V has a Dirac point at (ξ?, E?)

if there exist an integer n and νF > 0 such that

(2.5)
En(ξ) = E? − νF · |ξ − ξ?|+O(ξ − ξ?)2,

En+1(ξ) = E? + νF · |ξ − ξ?|+O(ξ − ξ?)2.

In particular, n is odd because of the monotonicity properties of dis-
persion curves (see (2.2)). Dirac points energies are two-fold degenerate
eigenvalues of D2

x + V on L2
ξ?
.

Dirac points are usually studied in higher-dimensional lattices. Regard-
ing mathematical proofs of their existence in honeycomb lattices, we refer
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to [11, 76, 96] and especially [39] which shows that they arise generically.
We also mention that different types of degeneracies may arise in other
types of lattices. See e.g. the Lieb lattice where dispersion surfaces in-
tersect quadratically [70]. Here, we will be specifically interested in Dirac
points generated by dimer symmetries.

Lemma 2.3 ([98, Appendix B.1]). — Assume that

(2.6) V ∈ C∞(R,R), V (x+ 1/2) = V (x).

Then the Dirac points of D2
x+V (regarded as a one-periodic operator) with

ξ? = π are precisely the pairs (π,En(π)) where n spans the odd integers.

Watson [98, Appendix B.1] gave a proof of Lemma 2.3, improving upon
[36, Appendix D] that showed genericity. We provide an elementary proof
in Appendix A.1. It uses that for ξ ∈ (0, 2π), D2

x + V acting on the spaces

(2.7)
L2
ξ,e

def=
{
u ∈ L2

loc : u(x+ 1/2, ξ) = eiξ/2u(x)
}
,

L2
ξ,o

def=
{
u ∈ L2

loc : u(x+ 1/2, ξ/2) = −eiξu(x)
}
,

have simple eigenvalues (see Lemma A.1). This fact is also the basis for:

Lemma 2.4. — Let V be 1/2-periodic, n an odd integer and (π,E?) =
(π,En(π)) be a Dirac point of D2

x + V . Then for each ξ ∈ (0, 2π), there
exist L2

ξ-normalized eigenpairs (λ+(ξ), φ+(ξ)) and (λ−(ξ), φ−(ξ)) ofD2
x+V

varying smoothly with ξ and satisfying:
• φ+(ξ) ∈ L2

ξ,e and φ−(ξ) ∈ L2
ξ,o.

• If φ?+
def= φ+(π) and φ?−

def= φ−(π) then φ?+ = φ?−.
• For ξ in a neighborhood of π,

(2.8) λ+(ξ) = E? + ν? · (ξ − π) +O(ξ − π)2,

λ−(ξ) = E? − ν? · (ξ − π) +O(ξ − π)2,
,

where ν?
def= 2

〈
φ?+, Dxφ

?
+
〉

= −2
〈
φ?−, Dxφ

?
−
〉
6= 0.

We refer to [34, Proposition 3.7] for a more general statement and to [30,
Proposition 2.1] for the statement and proof of the version needed here.
The numbers ν? and νF are related via |νF | = ν?. As a consequence of the
monotonicity property of the eigenvalues of D2

x + V on L2
ξ,e and L2

ξ,o (see
Lemma A.1 and (A.11)) the sign of ν? is related to the value of n modulo 4:

(2.9) n = 1 mod 4 =⇒ ν? > 0, n = 3 mod 4 =⇒ ν? < 0.

In particular, sgn(ν?) = (−1)n−1
2 .
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The pair (φ?+, φ?−) solves

(2.10)
(D2

x + V − E?)φ?± = 0, φ?+(x) = φ?−(x),

φ?+ ∈ L2
π,e, φ?− ∈ L2

π,o, |φ+|L2
π

= |φ−|L2
π

= 1,

Because the eigenvalues of D2
x + V on L2

π,e and L2
π,o are simple, this char-

acterizes (φ?+, φ?−) uniquely, modulo the S1-action (φ?+, φ?−) 7→ (ωφ?+, ωφ?−)
where ω ∈ S1. We refer to (φ?+, φ?−) as a Dirac eigenbasis.
We will be interested in bifurcations of Dirac points when the 1/2-

translational symmetry is broken. For the rest of the paper, we fix one-
periodic potentials V and W with

(2.11) V, W ∈ C∞(R,R), V (x+1/2) = V (x), W (x+1/2) = −W (x).

Fix n an odd integer. Because V satisfies the assumption of Lemma 2.3, it
has a Dirac point at (π,E?), where E? is the n-th eigenvalue of D2

x + V on
L2
π. Let ν?, φ+(ξ), φ−(ξ) be the objects associated via Lemma 2.4.
We define Wt as Wt(x) def= W (x+ t/(2π)). Introduce

(2.12) ϑ(t) =
〈
φ?−,Wtφ

?
+
〉
.

If ϑ(t) never vanishes (assumption (H2)) then ϑ has a well-defined wind-
ing number on [0, 2π]. Because of the above characterization of (φ?+, φ?−)
modulo the S1-action, this winding number is independent of the choice of
Dirac eigenbasis. It is given by

(2.13) m = 1
2πi

∫ 2π

0

ϑ′(t)
ϑ(t) dt.

We claim that m is odd. Indeed, the winding number of ϑ̃ : t 7→ e−itϑ(t)
on [0, 2π] is m̃ = m − 1. Moreover ϑ̃ satisfies ϑ̃(t + π) = ϑ̃(t); therefore ϑ̃
is π-periodic and its winding number on [0, 2π] is even. This proves that
m is odd. We conclude this section with a simple lemma, proved in [30,
Proposition 2.2] when t = π. The proof goes through without changes
when t 6= π.

Lemma 2.5 ([30, Proposition 2.2]). — With the above notations,

(2.14)
[〈
φ?+,Wtφ

?
+
〉 〈

φ?+,Wtφ
?
−
〉〈

φ?−,Wtφ
?
+
〉 〈

φ?−,Wtφ
?
−
〉] =

[
0 ϑ(t)
ϑ(t) 0

]
.

3. Examples

In this section, we present settings where Theorems 1.2 and 1.3 apply. We
start with pairs (V,W ) that display the same topology as the dislocation
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problem of [25, 58, 72]. Fix V ,W be one-periodic potentials with:

(3.1) V , W ∈ C∞(R,R),
V(x+ 1/2) = V(x), W(x+ 1/2) = −W(x+ 1/2).

If f ∈ C∞(R,C) is a one-periodic function we denote by f̂` its `-th Fourier
coefficient:

(3.2) f̂`
def=
∫ 1

0
f(x)e−2iπ`x dx.

Lemma 3.1. — Fix n an odd integer. Assume that Ŵn 6= 0; and n = 1
or V̂n−1 6= 0. If ε is sufficiently small then the pair (V,W ) = (εV , εW)
satisfies (1.2), (H1) and (H2). In addition, the winding number (1.10) for
the n-th gap equals (−1)n+1

2 · n and the bulk/edge index equals −n.

This shows that small potentials V, W exhibit the same topological
features as the dislocation problem of [25, 58, 72]: n eigenvalues effectively
flow in the n-th gap as t goes from 0 to 2π.(4) The proof of Lemma 3.1 is
a perturbative argument. We postpone it to Appendix A.2.
We now present a topologically different setting: we construct a pair

(V,W ) of potentials satisfying the hypothesis (H1) and (H2) such that the
winding number (1.10) in the n-th gap is not equal to n.

Lemma 3.2. — Let n,m be two odd integers with n > 0 and |m| 6= n.
Define

(3.3)
V (x) def= ε2 cos(2π(n−m)x) + ε3 cos(2π(n− 1)x),

W (x) def= 2ε4 cos(2πmx).

If ε is sufficiently small then the pair (V,W ) satisfies (1.2), (H1) and (H2).
Furthermore, the winding number (1.10) for the n-th gap equals (−1)n+1

2 ·m
and the bulk/edge index equals −m.

This result contrasts fundamentally with the dislocation problem studied
in [25, 58, 72]. There, V ≡ 0: n eigenvalues effectively flow in the n-th gap.
Here, |m| eigenvalues effectively flow in the n-th gap. This demonstrates
that our class of operators is topologically richer than that of [25, 58, 72],
hence Theorem 1.2 needs some assumptions to hold. From the physics point
of view, this means that the periodic background (modeled by V ) may
fundamentally affect topological phases of matter. We emphasize that this

(4)The sign discrepancy in comparison with [58] comes from the fact that the dislocation
arises on the left there, while here we consider dislocations on the right.
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example is not exceptional: small perturbations of (V,W ) do not change
the winding number (1.10). Lemma 3.2 is somewhat reminiscent of [74].
The proof of Lemma 3.1 is also a perturbative argument. We postpone

it to Appendix A.2. We conclude with the following conjecture:

Conjecture 3.3. — Let m1,m3, . . . be an infinite sequence of odd
integers, labeled by odd positive integers. For every odd n, there exist
(V,W ) satisfying (1.2), (H1) and (H2) for the n-th gap, with winding num-
ber (1.10) equal to (−1)n−1

2 ·mn.

4. Reduction to a Dirac operator and proof of
Theorem 1.2

We prove here Theorem 1.2. We briefly recall the context. We analyze
the family

(4.1) P(t) = D2
x + V + χ+W + χ−Wt + F, t ∈ [0, 2π].

Above, V and W are smooth, real-valued periodic potentials satisfying
(1.2); Wt(x) = W (x + t/(2π)); χ± satisfy (1.25); and F is a compact
operator from H2 to L2. We fix n an odd integer and let (π,E?) be the
n-th Dirac point of the unperturbed operator D2

x + V (see Section 2.2).
This comes with a Dirac eigenbasis, i.e. a normalized pair (φ?+, φ?−) that
solves the eigenvalue problem

(4.2) (D2
x + V − E?)φ?± = 0, φ?+ ∈ L2

π,e, φ?− ∈ L2
π,o.

We review the assumptions (H1) and (H2). For every t, the n-th spectral
gap of D2

x+V +Wt is open. When the strength of the dislocation decreases
to 0, this gap persists and shrinks to {E?} (see (H1)). The non-degeneracy
condition

(4.3) t ∈ [0, 2π] =⇒ ϑ(t) def=
〈
φ?−,Wtφ

?
+
〉
6= 0

holds (see (H2)). Theorem 1.2 asserts that

(4.4) SfT1(P − E(1, · )) = (−1)
n−1

2 · 1
2π

∫ 2π

0

ϑ′(t)
ϑ(t) dt.

We organize the proof as follows. We review the notion of spectral flow
in Section 4.1. In Section 4.2, we deform the family t 7→ P(t) − E(1, t)
to a family t 7→ Pδ(t) − E? exhibiting a small and adiabatic dislocation
instead. (H1) ensures that the essential spectral gap remains open. The
operator Pδ(π) has been studied in [30, 34, 36]. In [30], we show that the
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eigenvalues of Pδ(t) in the gap containing E? are all precisely seeded by
those of an effective Dirac operator,

(4.5) /D?
def= ν?σ3Dx − χ−σ? + χ+

[
0 ϑ?
ϑ? 0

]
, ν?

def=
〈
φ?+, Dxφ

?
−
〉
6= 0.

The analysis applies similarly to Pδ(t) and produces a Dirac operator /D(t).
A consequence is that P −E(1, · ) and /D have the same spectral flow (see
Section 4.3).
In other words, we found a gap-preserving homotopy that starts at t 7→

P(t) − E(1, t) (these are second order differential operators, periodic in
the bulk) and ends at t 7→ /D(t) (these are first order differential operators
constant in the bulk). The integers SfT1( /D) and SfT1(P−E(1, · )) are equal
because the spectral flow is invariant along gap-preserving homotopies.
Because the coefficients of { /D(t)}t∈[0,2π] are constant in the bulk, a sim-

ple computation of its spectral flow is possible. The winding number m dis-
played in the RHS of (4.4) emerges via another homotopy that transforms
ϑ(t) to −ϑ?eimt (see Section 4.4). In Section 4.5, we calculate explicitly the
spectrum of a Dirac operator with piecewise constant coefficients. It leads
to the value of SfT1( /D), completing the proof of Theorem 1.2.

4.1. Spectral flow

We review the definition of spectral flow, following [97, §4]. Let H be a
Hilbert space and {T (t)}t∈[0,2π] be a family of selfadjoint Fredholm opera-
tors on H with t-independent domains, continuous for the gap distance

(4.6) d(T, T ′) def=
∥∥(T + i)−1 − (T ′ + i)−1∥∥

H .

Assume that T (0) = T (2π); and that 0 is not in the essential spectrum
of T (t) for every t ∈ [0, 2π]. There exist 0 = t1 < · · · < tN = 2π and
a1, . . . , aN > 0 such that

(4.7) t ∈ [tj , tj+1]
=⇒ ±aj /∈ ΣH(T (t)) and 1[−aj ,aj ](T (t)) has finite rank.

This in particular implies that for t ∈ [tj , tj+1], 1[−aj ,aj ](T (t)) has constant
rank. Figure 4.1 is a picture representing (4.7) on an example. The spectral
flow is

(4.8) SfT1(T ) def=
N−1∑
j=1

dim1[0,aj ](T (tj))− dim1[0,aj ](T (tj+1)).
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a1

a2

a3

t2 t30 2π
t

E
essential spectrum

Figure 4.1. The gray region represents the essential spectrum of a
family of operators {T (t)}. The red dotted curves represent its eigen-
values in the gap. We partition [0, 2π] in sub-intervals so that T (t)
has a constant number of eigenvalues in the gap, in each sub-interval.
Above, this number is 0 in [t1, t2] = [0, t2]; 1 in [t2, t3]; and 0 in
[t3, t4] = [t3, 2π]. The spectral flow is 1.

It is independent of the choice of tj , aj that satisfy (4.7), see [97, Lem-
ma 4.1.3].
The spectral flow is invariant under homotopy. Specifically, assume given

for every s ∈ [0, 1] a periodic family {Ts(t)}t∈[0,2π] of selfadjoint Fredholm
operators on H with domains independent on (s, t), such that 0 is not in the
essential spectrum of Ts(t). If (s, t) ∈ [0, 1] × [0, 2π] 7→ Ts(t) is continuous
for the gap distance then

(4.9) s ∈ [0, 1] 7−→ SfT1(Ts)

is constant (see [97, Theorem 4.2.4]).

4.2. Homotopy

We start the proof of Theorem 1.2. For the rest of Section 4, we fix
functions V , W , χ±, F satisfying the setting of Section 1.1, together with
an odd positive integer n. We assume that the pair (V,W ) satisfies (H1)
and (H2) for the n-th gap.

TOME 71 (2021), FASCICULE 3



1206 Alexis DROUOT

We want to compute the edge index: SfT1(P − E(1, · )). For s ∈ (0, 1],
we introduce

(4.10) Ps(t)
def= D2

x + V + sχ−(s ·)W + sχ+(s ·)Wt + θ(s)F

where θ : [0, 1] → R is a smooth function with value 0 near 0 and 1 near
1; and χ±(s · ) : x 7→ χ±(sx). By assumption (H1), E(s, t) is not in the
essential spectrum of Ps(t) for any (s, t) ∈ (0, 1]× [0, 2π].

Hence SfT1(P − E(1, · )) = SfT1(Ps − E(s, · )) as long as the family

(4.11) (s, t) ∈ (0, 1]× R 7−→ (Ps(t)− E(s, t) + i)−1 : L2 → L2

is continuous for the gap distance. To verify this, we use the resolvent
identity for

(4.12) (Ps(t)− E(s, t) + i)−1 − (Ps′(t′)− E(s′, t′) + i)−1.

The map (s, t) 7→ Es(t) is continuous and ‖Ps(t) −Ps′(t′)‖L2 goes to 0
when (s′, t′) goes to (s, t). Because of the spectral theorem,

(4.13)

∥∥(Ps(t)− E(s, t) + i)−1∥∥
L2 6 1,∥∥(Ps′(t′)− E(s′, t′) + i)−1∥∥
L2 6 1.

Therefore the map (4.11) is continuous for the gap distance. Hence

(4.14) SfT1(P − E(1, · )) = SfT1(Pδ − E(δ, · )) = SfT1(Pδ − E?).

In the last equality, we used E(δ, · ) = E? when δ is sufficiently small. In
contrast with P, the dislocation in Pδ is small and adiabatic. This is the
setting of the papers [30, 34, 36].

Remark 4.1. — There exists ε0 > 0 such that the identity (4.14) persist
if F is replaced by any selfadjoint family {F1(t) + F2(t)}, where

• F1(t) and F2(t) are bounded H2→L2, continuous and 2π-periodic
in t.

• For every t, F1(t) : H2 → L2 with ‖F1(t)‖L2→H2 6 ε0;
• For every t, F2(t) : H2 → L2 is compact.

In particular, Theorem 1.2 holds for a wider class of perturbations than
presented in Section 1.1. We leave this verification to the reader.

4.3. Review of [30]

We recall that V,W satisfy (1.2) and that (H2) holds: ϑ(t) 6= 0 for every
t ∈ R. The paper [30] studies defect states of the operator

(4.15) Pδ,? = D2
x + V + δχ−(δ ·)W − δχ+(δ ·)W.
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Let (π,E?) be a Dirac point of D2
x + V . Assume that the number ϑ? =

ϑ(π) = 〈φ?−,Wφ?+〉 associated to (π,E?) is non-zero. A multiscale approach
due to [36] produces the Dirac operator

(4.16) /D? = ν?σ3Dx + σ?κ, σ?
def=
[

0 ϑ?
ϑ? 0

]
, κ

def= χ+ − χ−.

This operator has essential spectrum outside (−ϑF , ϑF ), where ϑF = |ϑ?|.
In this gap, /D? has an odd number of simple eigenvalues {µj}j∈[0,2M?] with

(4.17) − ϑF < µ0 < · · ·< µM?−1 < µM? = 0< µM?+1 < · · ·< µ2M? < ϑF ,

see [30, Theorem 3]. The numberM? can be arbitrarily large; see [78]. Zero
is a robust eigenvalue of /D?: it persists even when κ is modified locally.
The main result of [30] is:

Theorem 4.2 ([30, Theorem 1 and Corollary 1]). — For any ϑ] ∈
(ϑ2M?

, ϑF ), there exists δ0 > 0 such that for δ ∈ (0, δ0), the following
holds. The spectrum of Pδ,? in (E? − ϑ]δ, E? + ϑ]δ) consists exactly of
2M? + 1 eigenvalues, given by

(4.18) E? + δµj +O
(
δ2) .

See Figure 4.2. This result refines [36], which predicted existence of defect
states for Pδ,?, associated to the eigenvalues of /D?. The main improvement
of [30] over [36] is the full identification of eigenvalues of Pδ,? in the gap
(−ϑ], ϑ]). The perturbative strategy of [36] could not achieve this charac-
terization, which we will strongly need here.(5)

We need a version of Theorem 4.2 adapted to Pδ(t). We assume that
(H2) holds: ϑ(t) 6= 0 for every t. We introduce the Dirac operator

(4.19) /D(t) def= ν?σ3Dx − χ−σ? + χ+

[
0 ϑ(t)
ϑ(t) 0

]
.

The operator /D(t) has essential spectrum equal to

(4.20) (−∞,−ϑ−(t)] ∪ [ϑ−(t),+∞), ϑ−(t) def= min(ϑF , |ϑ(t)|).

Observe that ϑ−(t) is positive by assumption (H2). Let {µj(t)}j∈[0,n(t)] be
the ordered eigenvalues of /D(t) in (−ϑ−(t), ϑ−(t)). Note that n(t) is finite.

(5)The work [30] also includes full rigorous expansions of eigenpairs in powers of δ,
whose terms are constructed recursively via the multiscale approach of [36].
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−ϑF ϑF

• • •
0

• •
Spectrum of /D?

E? − ϑF δ E? + ϑF δ

• • •
E?

• •
Spectrum of Pδ,?

Figure 4.2. The spectrum of /D? and that of Pδ,? are in bijection via
a function µ 7→ E? + δµ modulo O(δ2). The grey region represents
the essential spectra, the red dots are eigenvalues of /D?, the blue dots
are eigenvalues of Pδ,?. Theorem 4.2 does not apply in the light gray
region near ±ϑF , the edges of the essential spectrum of Pδ,?.

Theorem 4.3. — For any t ∈ R, ϑ[ ∈ (−ϑ−(t), µ0(t)) and ϑ] ∈
(µn(t)(t), ϑ−(t)), there exists δ0 > 0 such that for δ ∈ (0, δ0), the following
holds. The spectrum of Pδ(t) in (E? + ϑ[δ, E? + ϑ]δ) consists exactly of
n(t) + 1 eigenvalues, given by

(4.21) E? + δµj(t) +O
(
δ2) .

We will not prove this result. The proof is identical to that of [30, The-
orem 1 and Corollary 1] and we refer to that paper. Theorem 4.3 has the
corollary:

Corollary 4.4. — Fix t ∈ R and ϑ[ < ϑ] outside the spectrum of
/D(t). There exists δ0(t) > 0 such that for any δ ∈ (0, δ0(t)),

(4.22)
E? + δϑ[, E? + ϑ]δ /∈ ΣL2(Pδ(t))

and dim1[E?−δϑ[,E?+δϑ]](Pδ(t)) = dim1[ϑ[,ϑ]]
(
/D(t)

)
.

We use this corollary to relate the spectral flow of Pδ(t) to that of /D(t).

Lemma 4.5. — Under the above assumptions, for every δ ∈ (0, 1],

(4.23) SfT1( /D) = SfT1(Pδ − E?).

This result is quite unusual. A first order differential operator with co-
efficients constant in the bulk stands in the LHS of (4.23); while a second
order differential operator with coefficients periodic in the bulk appears in
the RHS.
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Proof.
Step 1. — Because of (4.14), we need to prove (4.23) only for small δ.

Consider {tj , aj}j∈[1,N ] satisfying (4.7):

(4.24) t ∈ [tj , tj+1]
=⇒ ±aj /∈ ΣL2( /D(t)) and 1[−aj ,aj ]( /D(t)) has finite rank.

There exists ε0 > 0 such that the following conditions are satisfied :
(i) For every j ∈ [1, N − 1], for every t ∈ [tj , tj+1], the operators /D(t)

has no spectrum in [−aj − ε0,−aj + ε0] ∪ [aj − ε0, aj + ε0].
(ii) /D(t1), . . . , /D(tN ) have no spectrum in [−ε0, 0).
(iii) For every t ∈ [0, 2π], ε0 6 |ϑ−(t)|.

Because of (i), the collection {tj , aj − ε0}j∈[1,N ] satisfies (4.7). Thus

(4.25) SfT1( /D) =
N−1∑
j=1

dim1[0,aj−ε0]( /D(tj))− dim1[0,aj−ε0]( /D(tj+1)).

From this equation and (ii), we deduce that

(4.26) SfT1( /D) =
N−1∑
j=1

dim1[−ε0,aj−ε0]( /D(tj))−dim1[−ε0,aj−ε0]( /D(tj+1)).

Step 2. — We apply Corollary 4.4 simultaneously to all Pδ(tj) with
ϑ[ = −ε0 and ϑ] = aj − ε0; this is possible because {tj}j∈[1,N ] is finite. We
deduce that SfT1( /D) is equal to

N−1∑
j=1

dim1[E?−ε0δ,E?+ajδ−ε0δ](Pδ(tj))(4.27)

− dim1[E?−ε0δ,E?+ajδ−ε0δ](Pδ(tj+1))

=
N−1∑
j=1

dim1[0,δaj ](Pδ(tj)− E? + ε0δ)(4.28)

− dim1[0,δaj ](Pδ(tj+1)− E? + ε0δ).

Step 3. — We would like to conclude that (4.28) is the spectral flow of
Pδ − E?. We first show that {δaj , tj}j∈[1,N ] satisfies (4.7) for the family
Pδ − E? + ε0δ. This only amounts to show that there exists δ1 > 0 with

(4.29) δ ∈ (0, δ1), τ ∈ [tj , tj+1] =⇒ E? ± δaj − ε0δ /∈ ΣL2(Pδ(τ)).

Observe that for every τ ∈ [tj , tj+1], ϑ] = aj−ε0, ϑ[ = −aj−ε0 satisfy the
assumptions of Corollary 4.4 with t = τ because of (i). This implies that
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there exists δ0(τ) with

(4.30) δ ∈ (0, δ0(τ)) =⇒ E? ± δaj − ε0δ /∈ ΣL2(Pδ(τ)).

Because the family Pδ is continuous, (4.30) still holds on a small neigh-
borhood of τ : there exists η(τ) > 0 such that

(4.31) δ ∈ (0, δ0(τ)), |t− τ | 6 η(τ) =⇒ E?± δaj − ε0δ /∈ ΣL2(Pδ(τ)).

Now cover the compact set [tj , tj+1] by finitely many open sets (τ`−η`, τ`+
η`). Take δ1 to be the minimum of all δ0(τ`) and conclude:

(4.32) δ ∈ (0, δ1), τ ∈ [tj , tj+1] =⇒ E? ± δaj − ε0δ /∈ ΣL2(Pδ(τ)).

After shrinking δ1, we can assume that this holds for every j ∈ [1, N − 1].
We deduce from the definition of spectral flow and Step 2 that

(4.33) SfT1( /D) = SfT1(Pδ − E? + ε0δ).

On the RHS, we have the spectral flow of Pδ, measured at E? − ε0δ. This
corresponds to the spectral flow of Pδ in the n-th gap because ε0 satis-
fies (iii): the energy level E? − ε0δ belongs to the gap of Pδ(t) containing
E?. Hence SfT1(Pδ −E? + ε0δ) equals SfT1(Pδ −E?). This concludes the
proof. �

4.4. Connection to the winding number

We relate the winding number m of ϑ around 0 to the spectral flow of
/D. Introduce

(4.34) /Dm(t) def= sgn(ν?)σ3Dx − χ−σ? − χ+

[
0 ϑ?e

−imt

ϑ?e
imt 0

]
.

The functions ϑ : T1 → C \ {0} and t 7→ −ϑ?eimt have same degree. Since
π1 (C \ {0}) = Z, there exists a continuous function h : [0, 1]×R→ C \ {0}
such that

(4.35) h(1, t) = ϑ(t), h(0, t) = −ϑ?eimt, h(s, t+ 2π) = h(s, t).

For s ∈ [0, 1], we set:

(4.36) /Ds(t)
def= (sν?+(1−s) sgn(ν?))σ3Dx−χ−σ? +χ+

[
0 h(s, t)

h(s, t) 0

]
.

We observe that ‖ /Ds(t)− /Ds′(t′)‖L2 6 C|h(s, t)− h(s′, t′)| and that /Ds(t)
is Fredholm H1(R) → L2(R) for every s ∈ [0, 1]. Therefore, an argument
as in Section 4.2 shows that the family s 7→ /Ds(t) behaves continuously for
the gap topology.
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This implies that the spectral flows of /D1 = /D and /D0 = /Dm are equal.
Moreover, because of the concatenation properties of the spectral flow [97,
Lemma 4.2.2], SfT1( /Dm) = m · SfT1( /D1). From Lemma 4.5, we deduce:

(4.37) SfT1(Pδ − E?) = m · SfT1( /D1).

4.5. Computation of SfT1( /D1).

Lemma 4.6. — If χ+ = 1[0,∞) and χ− = 1(−∞,0] then for t ∈ (0, 2π),
the operator

(4.38) /D1(t) def= sgn(ν?)σ3Dx − χ−σ? − χ+

[
0 ϑ?e

−it

ϑ?e
it 0

]
has a single eigenvalue in (−ϑF , ϑF ). It equals sgn(ν?)ϑF · cos(t/2).

Proof. — We first work in the case ν? > 0. Fix t ∈ (0, 2π) and assume
that u ∈ H1(R) is a non-zero solution of ( /D1(t)− λ)u = 0. In particular u
is continuous. From standard elliptic regularity theory, u is smooth except
possibly at x = 0. For x 6= 0, u solves a first order ODE with constant
coefficients. Hence, there exist a, b, γ± ∈ C with

(4.39) u(x) =
[
a

b

]
eiγ±x for ± x > 0, ± Im γ± > 0, (a, b) 6= (0, 0).

The above constants must solve the equations

(4.40)

(
σ3γ+−

[
0 ϑ?e

−it

ϑ?e
it 0

]
−λ
)[
a

b

]
= 0, (σ3γ−−σ?−λ)

[
a

b

]
= 0,

± Im γ± > 0, (a, b) 6= (0, 0).
Taking the difference of the two equations, we obtain

(4.41)
(

σ3(γ+ − γ−)−
[

0 ϑ?(e−it − 1)
ϑ?(eit − 1) 0

])[
a

b

]
= 0.

In particular the matrix involved in (4.41) is singular and its determinant
vanishes. It implies (γ+ − γ−)2 = −ϑ2

F |eit − 1|2. Since Im γ+ > 0 and
Im γ− < 0 we get γ+−γ− = iϑF ·|eit−1|. This relation allows to solve (4.41)
for [a, b]>:

(4.42)
[
a

b

]
∈ C ·

[
iϑF · |eit − 1|
−ϑ?(eit − 1)

]
.

The second eigenvalue problem in (4.40) corresponds to the system

(4.43)
{
γ−a− ϑ?b− λa = 0
−γ−b− ϑ?a− λb = 0

TOME 71 (2021), FASCICULE 3



1212 Alexis DROUOT

and we deduce that ϑ?b2 + ϑ?a
2 + 2λab = 0. Because of (4.42), this yields

(4.44) λ = −ϑ?b
2 + ϑ?a

2

2ab = ϑF sin(t)
|eit − 1| = ϑF cos(t/2).

So far we showed that if λ is an eigenvalue of /D1(t) then λ = ϑF cos(t/2).
To prove that the converse holds, we must check that there exist γ±, a, b
solving (4.40) with λ = ϑF cos(t/2). The eigenvalue problems (4.40) have
solutions

(4.45) ϑF cos(t/2) = λ = ±
√
γ2

+ + ϑ2
F = ±

√
γ2
− + ϑ2

F .

When t ∈ (0, 2π), cos(t/2) belongs to (−1, 1). Thus solutions γ± of (4.45)
have a non-zero imaginary part; and if γ± is solution then so is −γ±.
Therefore there is a unique solution of (4.45) with Im γ± > 0. This proves
the converse part and concludes the proof of the lemma when ν? > 0.

If ν? < 0, then the solution to (4.42) becomes

(4.46)
[
a

b

]
∈ C

[
iϑF · |eit − 1|
ϑ?(eit − 1)

]
.

In other words, b changes sign while a remains unchanged. It follows from
(4.44) that λ = −ϑF cos(t/2) = sgn(ν?)ϑF · cos(t/2). �

Hence when χ+ = 1[0,∞) and χ− = 1(−∞,0] we can compute precisely
the spectrum of /D1(t). The corresponding spectral flow equals sgn(ν?): a
single eigenvalue flows either upwards or downwards as t runs from 0 to 2π,
depending on the sign of ν?.(6) See Figure 4.3. Because the spectral flow
is a topological invariant, it remains equal to sgn(ν?) even when χ± are
not piecewise constant (see the argument of Section 4.2 and Section 4.4).
Together with (4.14) and (4.37), we deduce Theorem 1.2:

(4.47) SfT1(P − E(1, · )) = sgn(ν?) ·m = (−1)
n−1

2 ·m,

where we used sgn(ν?) = (−1)n−1
2 (see (2.9)).

5. Computation of the bulk index

In this section, we review the definition of the bulk invariant as a Chern
number and we compute it. Specifically, fix n an odd integer and (V,W )
a pair of periodic potentials satisfying (1.2) together with (H1) and (H2).
Under these conditions, the n-th L2

π-eigenvalue of D2
x + V bifurcate to

(6)The identity Sf( /D1) = sgn(ν?) may possibly be contained in more general results [7,
45]. The proof via Lemma 4.6 is nonetheless very simple.
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0 2π
t

E
essential spectrum

ϑF · cos(t/2)
0 2π

t

E
essential spectrum

Figure 4.3. On the left, the spectrum of /D1(t) when χ+ = 1[0,∞),
χ− = 1(−∞,0] and ν? > 0. The gray region represents the essential
spectrum and the red curve is the eigenvalue. It flows from the top to
the bottom of the spectrum as t runs from 0 to 2π. The spectral flow
equals 1. On the right, a representation of the spectrum of /D when
m = 1. It may look quite different from that of /D1 but the intersection
number of the red curve with the horizontal axis must be the same.

a Dirac point (π,E?) (see Section 2.2); and there exists a vector bundle
E → T2 associated to P (ξ, t) (see Section 5.1). Theorem 1.3 expresses the
first Chern number of the bundle E in terms of W and the Dirac eigenbasis
(φ?+, φ?−) associated to (π,E?):

(5.1) c1(E) = (−1)n−1
2

2πi

∫ 2π

0

ϑ′(t)
ϑ(t) dt, ϑ(t) def=

〈
φ?−,Wtφ

?
+
〉
.

We briefly explain the proof. Because of topological invariance of Chern
classes, c1(E) = c1(Eδ), where Eδ is the rank-n eigenbundle for Pδ(ξ, t) =
D2
x + V + δW ( · + t/2π) acting on L2

ξ . As δ → 0, we derive estimates for
the Berry curvature of Eδ,
(5.2) Bδ(ξ, t) def= Tr (Πδ(ξ, t)[∇ξΠδ(ξ, t), ∂tΠδ(ξ, t)]) , (ξ, t) ∈ [0, 2π]2.

Above, Πδ(ξ, t) is the L2
ξ-projector to the space spanned by the n first

L2
ξ-eigenvectors of Pδ(ξ, t). We show:
• Bδ(ξ, t) is negligible when ξ is away from π (Lemma 5.1);
• For ξ near π and δ small, Pδ(ξ, t) behaves like a 2× 2 tight-binding

model with Hamiltonian Mδ(ξ, t) (Lemma 5.2);
• After rescaling, Bδ(ξ, t) approaches the Berry curvature of the low-
energy eigenbundle associated to Mδ(ξ, t) for ξ near π (Lemma 5.4).
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ξ

E

(π,E?)

λ0,n+1(ξ, t)

λ0,n(ξ, t)

ξ

E

λδ,n+1(ξ, t)

λδ,n(ξ, t)

Figure 5.1. The operator D2
x+V has a Dirac point at (π,E?): E? is an

L2
π-eigenvalue ofD2

x+V of multiplicity 2. The corresponding dispersion
curves are not smooth: see the left graph. Adding the potential δWt

opens a small gap near the energy E?; the corresponding dispersion
curves are smooth but their second order derivatives blow up at ξ = π

as δ goes to 0: see the right graph.

• The family Mδ(ξ, t) is linear in ξ and depends on t only through
ϑ(t). Its low-energy Chern number is well-defined as the integral of
the corresponding Berry curvature. It equals the winding number
appearing in (5.1) (Lemma 5.3).

These statements match the physical intuition: Bδ(ξ, t) is greatest near
degeneracies; and near such singularities, a tight-binding model captures
the dominant effects. Along the proof, we will need some simple estimates
about the spectrum of Pδ(ξ, t). These are stated and proved in Appen-
dix A.3.

5.1. Eigenprojection and Chern number

Below we set ζ = (ξ, t) ∈ R2 and we fix s ∈ (0, 1]. Let Ps(ζ) = D2
x + V +

sW ( ·+ t/2π), acting on L2
ξ . These operators have discrete spectrum,

(5.3) λs,1(ζ) 6 · · · 6 λs,`(ζ) 6 · · · .

Because of (H1), the n-th eigenvalue of Ps(π, t) is simple for every
s ∈ (0, 1]. Since n is odd, we can use the monotonicity properties of the
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dispersion curves to deduce

(5.4) s ∈ (0, 1] =⇒ λs,n(ζ) 6 λs,n(π, t) < λs,n+1(π, t) 6 λs,n+1(ζ).

Hence, the first n-th eigenvalues of Ps(ζ) are separated from the rest of the
spectrum. Therefore, if Πs(ζ) : L2

ξ → L2
ξ is the orthogonal projector to

(5.5) Fs(ζ) def=
n⊕
j=1

ker(Ps(ζ)− λs,j(ζ)).

then Πs(ζ) is 2π-periodic in ζ; and e−iξxΠs(ζ)eiξx : L2
0 → L2

0 depends
smoothly on ζ (see [66, §VII.1.3, Theorem 1.7]). In particular, we can define

(5.6) ∇ξΠs(ζ) def= eiξx · ∂e
−iξxΠs(ζ)eiξx

∂ξ
· e−iξx : L2

ξ → L2
ξ .

We now introduce a (2πZ)2-periodic function Bs : R2 → C and a number
c1(Es):

(5.7)
Bs(ζ) def= TrL2

ξ
(Πs(ζ)[∇ξΠs(ζ), ∂tΠs(ζ)]),

c1(Es) def= 1
2πi

∫
T2

Bs(ζ) dζ.

We interpret the objects of (5.7) geometrically, following equivariant vec-
tor bundle constructions of Panati [85, §2.1] (see also [43, 81]). We observe
that Fs(ζ) ⊂ L2

ξ varies periodically with ζ. This suggests to define an
equivalence relation ∼F on Fs =

{
(ζ, ϕ) : ϕ ∈ Fs(ζ)

}
:

(5.8) (ζ, ϕ) ∼F (ζ ′, ϕ′) ⇐⇒

{
ζ − ζ ′ ∈ (2πZ)2;
ϕ = ϕ′.

Since Fs(ζ) has constant dimension, the set Es = Fs/∼F has a vector
bundle structure over R2 = T2/(2πZ)2. Since e−iξxΠs(ζ)eiξx : L2

0 → L2
0 is

smooth in ζ, Es also has a (compatible) smooth structure, induced by that
of R2 × L2

0/∼, where:

(5.9) (ζ, ψ) ∼ (ζ ′, ψ′) ⇐⇒

{
ζ − ζ ′ ∈ (2πZ)2;
eiξxψ = eiξ

′xψ′.

In this framework, Bs is the (trace of the) Berry curvature of Es (see e.g. [6]);
and c1(Es) is the Chern number of Es (the bulk invariant of Ps in solid state
physics).
The Chern number c1(Es) is an integer. Because of [66, §VII.1.3, Theo-

rem 1.7], the projector Πs(ζ) is smooth in s ∈ (0, 1] and ζ ∈ R2. Therefore
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c1(Es) is a continuous function of s. It follows that c1(Es) is constant. We
deduce that (with E = E1):

(5.10) c1(E) = lim
δ→0

c1(Eδ).

In other words, it suffices to compute c1(Eδ) in the limit δ → 0 to prove
Theorem 1.3.

5.2. Reduction to ξ near π

Lemma 5.1. — For every ε > 0, there exists C > 0 such that

(5.11) t ∈ R, ξ ∈ [0, π − ε] ∪ [π + ε, 2π], δ ∈ (0, 1] =⇒ |Bδ(ξ, t)| 6 Cδ.

Proof. — For ξ ∈ R \ (π + 2πZ) and t ∈ R, we let Π0(ξ, t) be the eigen-
projector for the n first eigenvalues of P0(ξ, t). It is well defined because
the eigenvalue λ0,n(ξ, t) is non-degenerated (ξ /∈ π mod 2π). Therefore, the
family of projectors

(5.12) (δ, ξ, t) ∈ [0, 1]× [0, 2π] \ {π} × R 7→ Πδ(ξ, t)

is smooth ([66, §VII.1.3, Theorem 1.7]). If ε > 0 is given then [0, π − ε] ∪
[π + ε, 2π] is a compact subset of [0, 2π] \ {π}. It follows that Πδ(ξ, t) −
Π0(ξ, t) = OL2

ξ
(δ), together with its derivatives in ξ and t. Moreover, as

P0(ξ, t) = D2
x +V does not depend on t, Π0(ξ, t) does not depend on t. We

deduce that in the range specified in (5.11),

(5.13) Πδ(ξ, t)[∇ξΠδ(ξ, t), ∂tΠδ(ξ, t)] = OL2
ξ
(δ).

The operator in the LHS has rank bounded by n. Therefore we can the
trace on both side while preserving the order of the order term. This yields

(5.14) Tr (Πδ(ξ, t)[∇ξΠδ(ξ, t), ∂tΠδ(ξ, t)]) = O(δ),

which completes the proof. �

5.3. ξ near π

We now estimate the Berry curvature when |ξ − π| 6 δ3/4. Let φ+(ξ),
φ−(ξ) be the smoothly varying basis of eigenvectors of P0(ξ, t) near the
Dirac point given in Section 2.2. Define J0(ξ) : L2

ξ → C2 by

(5.15) J0(ξ)v def=
[
〈φ+(ξ), v〉
〈φ−(ξ), v〉

]
.
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We introduce the 2× 2 matrix

(5.16) Mδ(ξ, t)
def=
[
E? + ν?(ξ − π) δϑ(t)

δϑ(t) E? − ν?(ξ − π)

]
.

It has two distinct eigenvalues,

(5.17) µ±δ (ξ, t) def= E? ± rδ(ξ, t), rδ(ξ, t)
def=
√
ν2
?(ξ − π)2 + δ2|ϑ(t)|2.

The next lemma shows that in a certain energy regime, Pδ(ξ, t) behaves
very much like Mδ(ξ, t). A similar result was used in the proof of [30,
Theorem 4]: see [30, Proposition 4.2].

Lemma 5.2. — There exists δ0 > 0 and ε0 ∈ (0, 1) such that

δ ∈ (0, δ0), |ξ − π| 6 ε0, t ∈ R z ∈ ∂B
(
µ±δ (ξ, t), rδ(ξ, t)

)
(5.18)

=⇒ (Pδ(ξ, t)− z)−1 = J0(ξ)∗ · (Mδ(ξ, t)− z)−1 · J0(ξ) + OL2
ξ
(1).

Proof.
Step 1. — We use ζ = (ξ, t). We prove the lemma for µ−δ (ζ) only, the

proof for µ+
δ (ζ) is identical. Let V (ξ) ⊂ L2

ξ be the two-dimensional vector
space

(5.19) V (ξ) def= Cφ+(ξ)⊕ Cφ−(ξ) ⊂ L2
ξ .

We write Pδ(ζ) − z as a block matrix with respect to the splitting L2
ξ =

V (ξ)⊕ V (ξ)⊥:

(5.20) Pδ(ζ)− z def=
[
Aδ(ζ, z) Bδ(ζ)
Cδ(ζ) Dδ(ζ, z)

]
.

Above, Aδ(ζ, z) : V (ξ) → V (ξ); Bδ(ζ) : V (ξ)⊥ → V (ξ); Cδ(ζ) = Bδ(ζ)∗ :
V (ξ) → V (ξ)⊥; and Dδ(ζ, z) : V (ξ)⊥ → V (ξ)⊥. Schur’s complement for-
mula computes inverses of block by block operators under suitable condi-
tions (see [30, Lemma 4.1]). Here these conditions are:

(5.21)
Aδ(ζ, z) : V (ξ)→ V (ξ) is invertible and

Dδ(ζ, z)− Cδ(ζ)Aδ(ζ, z)−1Bδ(ζ) : V (ξ)⊥ → V (ξ)⊥ is invertible.

We show that they hold in Steps 2 and 3 below.
Step 2. — Let I0(ξ) : V (ξ) → C2 be the coordinate map in the basis

{φ+(ξ), φ−(ξ)}. The operator I0(ξ) has the same expression (5.15) as J0(ξ)
(though v ∈ V (ξ) instead of L2

ξ). Moreover I0(ξ) is invertible, and

(5.22) Aδ(ζ, z) = I0(ξ)−1
[

λ+(ξ)− z δ 〈φ+(ξ),Wtφ−(ξ)〉
δ 〈φ−(ξ),Wtφ+(ξ)〉 λ−(ξ)− z

]
I0(ξ).

To prove (5.22), we observe that 〈φ±(ξ),Wtφ±(ξ)〉 = 0 from Lemma 2.5.
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We show thatAδ(ζ, z) is invertible. We recall that λ±(ξ)=E?±ν?(ξ−π)+
O(ξ − π)2 and we observe that

(5.23)
δ 〈φ−(ξ),Wtφ+(ξ)〉 = δ

〈
φ?−,Wtφ

?
+
〉

+O(δ(ξ − π))

= δϑ(t) +O
(
rδ(ζ)2) .

Hence

(5.24) Aδ(ζ, z) = I0(ξ)−1(Mδ(ζ)− z)I0(ξ) + OV (ξ)
(
rδ(ζ)2) .

The matrix Mδ(ζ) is selfadjoint. Therefore, a bound on (Mδ(ζ) − z)−1

follows from an estimate on the distance between z and the spectrum of
Mδ(ζ). Observe that |µ+

δ (ζ)− µ−δ (ζ)| = 2rδ(ζ); therefore,

(5.25) |z − µ−δ (ζ)| = rδ(ζ) =⇒ |z − µ+
δ (ζ)| > rδ(ζ).

It follows that,

(5.26) z ∈ ∂B(µ−δ (ζ), rδ(ζ)) =⇒
∥∥(Mδ(ζ)− z)−1∥∥

C2 = O(rδ(ζ)−1).

Because of a perturbation argument based on (5.24), (5.26) and a Neumann
series, when z ∈ ∂B(µ−δ (ζ), rδ(ζ)) and |ξ−π|+δ is sufficiently small, Aδ(ζ, z)
is invertible. This comes with the estimates

(5.27)
Aδ(ζ, z)−1 = I0(ξ)−1(Mδ(ζ)− z)−1I0(ξ) + OV (ξ)(1),∥∥Aδ(ζ, z)−1∥∥

V (ξ) = O
(
rδ(ζ)−1) ,

valid for |ξ − π| and δ small enough.
Step 3. — The operator Bδ(ζ) : V (ξ)⊥ → V (ξ) is the composition of

the embedding V (ξ)⊥ → L2
ξ , the multiplication δWt and the projection

L2
ξ → V (ξ). Therefore Bδ(ζ) = OV (ξ)⊥→V (ξ)(δ). Since Cδ(ζ) = Bδ(ζ)∗,

Cδ(ζ) = OV (ξ)→V (ξ)⊥(δ). Step 2 implies

(5.28)
Dδ(ζ, z)− Cδ(ζ)Aδ(ζ, z)−1Bδ(ζ) = Dδ(ζ, z) + OV (ξ)⊥(δ)

= (P0(ζ)− z)|V (ξ)⊥ + OV (ξ)⊥(δ).

Above (P0(ζ) − z)|V (ξ)⊥ is seen as an operator V (ξ)⊥ → V (ξ)⊥. It is
invertible with inverse OV (ξ)⊥(1) when z is sufficiently far from E?. This
is because all eigenvalues of P0(ζ) but the n-th and n + 1-th must be at
distance of order 1 from E? (see Lemma A.3). Once again, a Neumann series
argument shows thatDδ(ζ, z)−Cδ(ζ)Aδ(ζ, z)−1Bδ(ζ) is also invertible with
inverse OV (ξ)⊥(1).
Step 4. — We conclude that the inverse of Pδ(ζ)− z exists and is given

by Schur’s complement formula:

(5.29) (Pδ(ζ)− z)−1 =
[
Aδ(ζ, z)−1 0

0 0

]
+ OL2

ξ
(1).
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The lemma follows. �

Introduce M(ξ, t) the 2× 2 matrix

(5.30) M(ξ, t) def= 1
δ

(
Mδ

(
π + δξ

ν?
, t

)
− E?

)
=
[
ξ ϑ(t)
ϑ(t) −ξ

]
.

It has eigenvalues ±
√
ξ2 + |ϑ(t)|2. Let L → R × T1 be the line bundle

whose fiber at (ξ, t) is the eigenspace

(5.31) kerC2(Mδ(ξ, t) +
√
ξ2 + |ϑ(t)|2)

We define the Berry curvature (ξ, t) ∈ R × T1 7→ B(ξ, t) of L according
to (5.7). Since R×T1 is a non-compact manifold, it is not immediate that
we can integrate B.
Lemma 5.3. — The orthogonal projector π−(ξ, t) : C2 → C2 to the

space (5.31) satisfies

(5.32) sup
R×[0,2π]

{∥∥∂ξπ−(ξ, t)
∥∥
C2 +

∥∥∂tπ−(ξ, t)
∥∥
C2

}
<∞.

Moreover, B is integrable on R× [0, 2π] and

(5.33) 1
2πi

∫
R×[0,2π]

B(ξ, t) · dξ dt = 1
2πi

∫ 2π

0

ϑ′(t)
ϑ(t) dt.

The proof of this lemma is a calculation postponed to Appendix A.5.
Because of (5.30) and (5.32), we deduce that the orthogonal projector
π−δ (ξ, t) : C2 → C2 to the negative eigenspace of Mδ(ξ, t) satisfies

(5.34) sup
R×[0,2π]

∥∥∂ξπ−δ (ξ, t)
∥∥
C2 = O(δ−1), sup

R×[0,2π]

∥∥∂tπ−δ (ξ, t)
∥∥
C2 <∞.

For (ξ, t) ∈ R2, we let Bδ(ξ, t) be the Berry curvature associated to the
low-lying eigenbundle of Mδ(ξ, t), i.e. associated to π−δ (ξ, t).

Lemma 5.4. — Let ε0 be specified by Lemma 5.2. There exists δ0 > 0
such that

(5.35) δ ∈ (0, δ0), |ξ − π| 6 ε0, t ∈ R =⇒ Bδ(ξ, t) = Bδ(ξ, t) +O(1).

Proof.
Step 1. — We write ζ = (ξ, t). Let Qδ(ζ) : L2

ξ → L2
ξ the projector on

(5.36)
n−1⊕
j=1

kerL2
ξ
(Pδ(ζ)− λδ,j(ζ)).

When |ξ − π| 6 ε0 < 1, the eigenvalues λ0,1(ζ), . . . , λ0,n−1(ζ) of P0(ζ) are
separated from the rest of the spectrum of P0(ζ). Indeed, λ0,n−1(ζ) can
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equal λ0,n(ζ) only if ξ = 0, which is excluded because |ξ − π| < 1. Because
of [66, §VIII.1.3, Theorem 1.7], the family (δ, ζ) 7→ Qδ(ζ) is smooth on a
neighborhood of {(0, π)}×R2. In particular, under the conditions of (5.35),

(5.37) Tr(Qδ(ζ)[∇ξQδ(ζ), ∂tQδ(ζ)]) = O(1).

For δ > 0, let Π−δ (ξ) be the projector on kerL2
ξ
(Pδ,+(ξ) − λδ,n(ξ)). For

(δ, ξ) near (0, ξ?), λδ,n(ξ) is a simple eigenvalue of Pδ(ξ) (see Lemma A.3).
Therefore for (δ, ξ) near (0, ξ?) the projector Πδ(ξ) splits orthogonally as

(5.38) Πδ(ξ) = Π−δ (ξ) +Qδ(ξ).

The trace of the Berry curvature Bδ(ζ) is gauge independent. Since (5.38)
splits Πδ(ξ) in projectors with orthogonal range, we have
(5.39)
Bδ(ζ) = Tr(Qδ(ζ)[∇ξQδ(ζ), ∂tQδ(ζ)]) + Tr(Π−δ (ζ)[∇ξΠ−δ (ζ), ∂tΠ−δ (ζ)])

= Tr(Π−δ (ζ)[∇ξΠ−δ (ζ), ∂tΠ−δ (ζ)]) +O(1).

Step 2. — Let γδ(ζ) be the circle centered at µ−δ (ζ), of radius rδ(ζ),
oriented positively. Since λδ,n(ζ) is the only eigenvalue of Pδ(ζ) enclosed
by γδ(ζ) (Lemma A.4), we have

(5.40) Π−δ (ζ) = 1
2πi

∮
γδ(ζ)

(z − Pδ(ζ))−1 dz.

Since γδ(ζ) has length O(rδ(ζ)), Lemma A.5 implies that

(5.41)
Π−δ (ζ) = J0(ξ)∗ · 1

2πi

∮
γδ(ζ)

(z −Mδ(ζ))−1 dz · J0(ξ) + OL2
ξ
(rδ(ζ))

= J0(ξ)∗ · π−δ (ζ) · J0(ξ) + OL2
ξ
(rδ(ζ)).

Step 3. — Using (5.40),

(5.42)
∂Π−δ (ζ)
∂t

= ∂

∂t

(
1

2πi

∮
γδ(ζ)

(z − Pδ(ζ))−1 dz
)
.

Lemma A.5 is a direct application of the residue theorem that shows that
the derivative with respect to t can be interchanged with the integral, even
though γδ(ζ) depends on t. Thanks to ∂tPδ(ζ) = δW ′t , it implies

(5.43)
∂Π−δ (ζ)
∂t

= 1
2πi

∮
γδ(ζ)

(z − Pδ(ζ))−1 · δW ′t · (z − Pδ(ζ))−1 dz.
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We now apply Lemma 5.2 to get

(5.44)
∂Π−δ (ζ)
∂t

= J0(ξ)∗ · 1
2πi

∮
γδ(ζ)

(z −Mδ(ζ))−1 · J0(ξ)δW ′tJ0(ξ)∗

· (z −Mδ(ζ))−1 dz · J0(ξ) +
∫
γδ(ζ)

OL2
ξ
(δrδ(ζ)−1) dz.

To control the remainder term, we used the estimate

(5.45) (z − Pδ(ζ))−1 = OL2
ξ
(rδ(ζ)−1),

which follows from Lemma 5.2 and the bound (5.26) on the resolvent of
Mδ(ζ). The operator J0(ξ)W ′tJ0(ξ)∗ is the 2× 2 matrix

(5.46)
[

0 δ 〈φ+(ξ),W ′tφ−(ξ)〉
〈φ−(ξ),W ′tφ+(ξ)〉 0

]
=
[

0 ϑ′(t)
ϑ′(t) 0

]
+OC2(ξ−π).

We recognize the matrix ∂tMδ(ζ) modulo OC2(ξ − π). Using again (5.26),
that γδ(ζ) has length O(rδ(ζ)) and δ(ξ − π) = O(rδ(ζ)2), we deduce that
under our assumptions,

(5.47)
∂tΠδ(ζ) = J0(ξ)∗ · ∂

∂t

(
1

2πi

∮
γδ(ζ)

(z−Mδ(ζ))−1 dz
)
· J0(ξ) +OL2

ξ
(δ)

= J0(ξ)∗ ·
∂π−δ (ζ)
∂t

· J0(ξ) + OL2
ξ
(δ).

From (5.34), ∂tπ−δ (ζ) = OC2(1). This implies ∂tΠδ(ζ) = OL2
ξ
(1).

Step 4. — Observe that∇ξPδ(ζ)= 2Dx. Via arguments similar to Step 3,

(5.48)

∇ξΠ−δ (ζ) = 1
2πi

∮
γδ(ζ)

(z − Pδ(ζ))−1 · 2Dx · (z − Pδ(ζ))−1 dz

= J0(ξ)∗ · 1
2πi

∮
γδ(ζ)

(z −Mδ(ζ))−1 · J0(ξ)2DxJ0(ξ)∗

· (z −Mδ(ζ))−1 dz · J0(ξ) +
∫
γδ(ξ)

OL2
ξ
(rδ(ζ)−1) dz.

To control the remainder term, we used J0(ξ)2DxJ0(ξ)∗=OC2(1) and (5.45).
Because of Lemma 2.4, J0(ξ)2DxJ0(ξ)∗ equals

(5.49) 2
[
〈φ+(ξ), Dxφ+(ξ)〉 〈φ+(ξ), Dxφ−(ξ)〉
〈φ−(ξ), Dxφ+(ξ)〉 〈φ−(ξ), Dxφ−(ξ)〉

]
= ν?σ3 + OC2(ξ − π).

We recognize ∂ξMδ(ζ) modulo OC2(ξ−π). Using (5.26) and that γδ(ζ) has
length O(rδ(ζ)), we argue as in the end of Step 3 and deduce that

(5.50) ∇ξΠ−δ (ζ) = J0(ξ)∗ ·
∂π−δ (ζ)
∂ξ

· J0(ξ) + OL2
ξ
(1).
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From (5.34), ∂ξπ−δ (ζ) = OC2(δ−1). This implies that ∇ξΠ−δ (ζ) = OL2
ξ
(δ−1).

Step 5. — In Steps 2, 3 and 4 we provided bounds on Π−δ (ζ), ∂tΠ−δ (ζ)
and ∇ξΠ−δ (ζ) and we expanded them in terms of π−δ (ζ), ∂tπ−δ (ζ) and
∂ξπ
−
δ (ζ), respectively. These bounds lead to the expansion

(5.51) Π−δ (ζ)[∇ξΠ−δ (ζ), ∂tΠ−δ (ζ)]

= J0(ξ)∗ · π−δ (ζ)[∇ξπ−δ (ζ), ∂tπ−δ (ζ)] · J0(ξ) + OL2
ξ
(1),

where we used that J0(ξ)J0(ξ)∗ = IdC2 . The operators involved have rank
at most one, therefore we can take the trace and deduce that

(5.52) Tr
(
Π−δ (ζ)[∇ξΠ−δ (ζ), ∂tΠ−δ (ζ)]

)
= Tr

(
π−δ (ζ)[∇ξπ−δ (ζ), ∂tπ−δ (ζ)]

)
+O(1).

We used the cyclicity of the trace to remove J0(ξ) and J0(ξ)∗ from the
RHS. We conclude thanks to Step 1 that

(5.53) Bδ(ζ) = Tr
(
π−δ (ζ)[∂ξπ−δ (ζ), ∂tπ−δ (ζ)]

)
+O(1).

This completes the proof. �

We now have all the ingredients to prove Theorem 1.3. We recall that
c1(E) = c1(Eδ) is the integral of the Berry curvature Bδ(ξ, t) over [0, 2π]2
(see (5.7)). Let ε0 > 0 and δ0 > 0 be given by Lemma 5.2. For every
δ ∈ (0, δ0) and ε ∈ (0, ε0),

(5.54) c1(Eδ) = 1
2πi

∫ 2π

0

∫
|ξ−π|6ε

Bδ(ξ, t) · dξ dt

+ 1
2πi

∫ 2π

0

∫
|ξ−π|>ε

Bδ(ξ, t) · dξ dt.

Lemma 5.4 yields

(5.55) 1
2πi

∫ 2π

0

∫
|ξ−π|6ε

Bδ(ξ, t) · dξ dt

= 1
2πi

∫ 2π

0

∫
|ξ−π|6ε

Bδ(ξ, t) · dξ dt+O(ε).

We now fix ε such that the remainder term O(ε) in (5.55) is smaller than
1/4. Lemma 3.1 shows that for δ sufficiently small,

(5.56)

∣∣∣∣∣ 1
2πi

∫ 2π

0

∫
|ξ−π|>ε

Bδ(ξ, t) dξ dt

∣∣∣∣∣ 6 1
4 .
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We deduce that

(5.57)

∣∣∣∣∣c1(Eδ)−
1

2πi

∫ 2π

0

∫
|ξ−π|6ε

Bδ(ξ, t) · dξ dt

∣∣∣∣∣ 6 1
2 .

It remains to compute the integral appearing in (5.57). Because of the
link (5.30) between Mδ(ξ, t) and M(ξ, t), we have

(5.58) 1
2πi

∫ 2π

0

∫
|ξ−π|6ε

Bδ(ξ, t) · dξ dt

= 1
2πi

∫ 2π

0

∫
|ξ−π|6ε

ν?
δ
· B
(
ν?(ξ − π)

δ
, t

)
· dξ dt.

We perform the substitution ξ 7→ π + ν−1
? δξ. Since ε is fixed, the do-

main of integration now approaches R × [0, 2π] as δ goes to zero. Using
Lemma 5.3 (which computes the integral of B(ξ, t) over R × [0, 2π]) we
deduce that (5.58) equals

(5.59) 1
2πi

∫ 2π

0

∫
|ξ|6νF ε/δ

B (ξ, t) · sgn(ν?) dξ dt

= (−1)n−1
2

2πi

∫ 2π

0

ϑ′(t)
ϑ(t) dt+ o(1).

We take δ sufficiently small so that the term o(1) is smaller than 1/4
and (1.10) holds. This leads to

(5.60)

∣∣∣∣∣c1(Eδ)−
(−1)n−1

2

2πi

∫ 2π

0

ϑ′(t)
ϑ(t) dt

∣∣∣∣∣ 6 3
4 .

Since c1(Eδ) is an integer, the proof of Theorem 1.3 is complete:

(5.61) c1(E) = c1(Eδ) = (−1)n−1
2

2πi

∫ 2π

0

ϑ′(t)
ϑ(t) dt.

Appendix A.

A.1. Dirac points

We deal here with operators D2
x+V , where V is a one-periodic potential

satisfying an additional symmetry: V (x + 1/2) = V (x). In particular, the
fundamental cell is [0, 1] and Brillouin zone is [0, 2π]. Recall that

(A.1)
L2
ξ,e =

{
u ∈ L2

loc : u(x+ 1/2, ξ) = eiξu(x)
}
,

L2
ξ,o =

{
u ∈ L2

loc : u(x+ 1/2, ξ) = −eiξu(x)
}
.
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The operator D2
x +V leaves these spaces invariant; we denote by µe,1(ξ) 6

· · · 6 µe,j(ξ) and µo,1(ξ) 6 · · · 6 µo,j(ξ) its eigenvalues on L2
ξ,e and L2

ξ,o,
respectively.

Lemma A.1. — The functions µe,j and µo,j are monotonous on [0, 2π].
Specifically,

(A.2)

j odd =⇒
{
µe,j increases on [0, 2π];
µo,j decreases on [0, 2π],

j even =⇒
{
µe,j decreases on [0, 2π];
µo,j increases on [0, 2π].

In addition, for every ξ ∈ (0, 2π) and j > 1, the eigenvalues µe,j(ξ) and
µo,j(ξ) of D2

x + V on L2
ξ,e, L2

ξ,o are simple.

Proof.
Step 1. — We look at D2

x+V as a 1/2-periodic operator; the associated
fundamental cell is [0, 1/2] and the corresponding Brillouin zone is [0, 4π].
For ξ ∈ [0, 4π], let T (ξ) formally equal to D2

x + V , acting on the space of
ξ-quasiperiodic functions

(A.3) L̃2
ξ =

{
u ∈ L2

loc : u(x+ 1/2, ξ) = ei
1
2 ξu(x)

}
(the factor 1

2 accounts for the period 1/2 of the lattice Z/2). This space
equals L2

ξ,e when ξ ∈ [0, 2π]. Moreover,

(A.4) ei
1
2 ξ = −ei 1

2 (ξ−2π).

Therefore when ξ ∈ [2π, 4π], L̃2
ξ = L2

ξ−2π,o. We deduce that

(A.5)
ξ ∈ [0, 2π] =⇒ T (ξ) is equal to D2

x + V : L2
ξ,e → L2

ξ,e;

ξ ∈ [2π, 4π] =⇒ T (ξ) is equal to D2
x + V : L2

ξ−2π,o → L2
ξ−2π,o.

Step 2. — Let Ẽ1(ξ) 6 · · · 6 Ẽj(ξ) 6 . . . be the L̃2
ξ-eigenvalues of T (ξ).

Because of (A.5),

(A.6) Ẽj(ξ) =
{
µe,j(ξ) if ξ ∈ [0, 2π];
µo,j(ξ − 2π) if ξ ∈ [2π, 4π].

For ξ ∈ (0, 2π) ∪ (2π, 4π), the Ẽ`(ξ) are simple eigenvalues (see [90, The-
orem XIII.89]). It follows that for ξ ∈ (0, 2π), L2

ξ,e- and L2
ξ,o-eigenvalues

of D2
x + V are simple. That same theorem implies that if ` is odd (resp.

even) then Ẽ` increases (resp. decreases) on [0, 2π] and Ẽ` decreases (resp.
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ξ

E

(π,E?)

λ0,n+1(ξ, t)

λ0,n(ξ, t)

ξ

E

λδ,n+1(ξ, t)

λδ,n(ξ, t)

Figure A.1. The graph on the left represents the dispersion curves of
D2
x+V as a one-periodic operator. The L2

ξ,e-curves are plotted in blue
and the L2

ξ,o-curves are plotted in red. To obtain the dispersion curves
of D2

x + V as a 1/2-periodic operator, it suffices to concatenate the
L2
ξ,e-curves with the L2

ξ,o-curves.

increases) on [2π, 4π]. We deduce from (A.6) that ξ ∈ [0, 2π] 7→ µe,`(ξ) and
ξ ∈ [0, 2π] 7→ µo,`(ξ) are monotonous. More specifically,

(A.7)

` odd =⇒
{
µe,` increases on [0, 2π];
µo,` decreases on [0, 2π],

` even =⇒
{
µe,` decreases on [0, 2π];
µo,` increases on [0, 2π].

This completes the proof. �

For a pictorial representation of the proof of Lemma A.1, see Figure A.1.
Because of the monotonicity property (2.2), we see that the L2

ξ,e and L2
ξ,o-

eigenvalues of D2
x + V relate to the L2

ξ-eigenvalues E1(ξ) 6 · · · 6 E`(ξ) 6
· · · of D2

x + V via
(A.8)

E2j−1(ξ) =
{
µe,j(ξ) if ξ ∈ [0, π];
µo,j(ξ) if ξ ∈ [π, 2π],

E2j(ξ) =
{
µo,j(ξ) if ξ ∈ [0, π];
µe,j(ξ) if ξ ∈ [π, 2π].

See the left graph of Figure A.1. Moreover, µe,N (ξ) = µo,N (2π − ξ). This
comes from V real-valued: for any E,

(A.9) u ∈ L2
ξ,e, (D2

x+V −E)u = 0 =⇒ u ∈ L2
2π−ξ,o, (D2

x+V −E)u = 0.
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Proof of Lemma 2.3.
Step 1. — Write n = 2N − 1 and E? = En(π). From (A.9), we see

that µe,N (π) = µo,N (π), that is, the n-th and n+ 1-th dispersion curves of
D2
x + V intersect at π. To check that this intersection always corresponds

to a Dirac point, we must observe that ∂ξµe,N (π) 6= 0.
Step 2. — Assume that ∂ξµe,N (π) = 0; we look for a contradiction. The

equation µe,N (ξ) = E? has a zero of algebraic multiplicity 2. The function
ξ ∈ (0, 2π) 7→ µe,N (ξ) is real analytic. Indeed, it represents L2

0,e-eigenvalues
of (Dx + ξ)2 + V , which are simple. It follows that µe,N has an analytic
extension to an open set U ⊂ C containing (0, 2π).
Let E ∈ R \ {E?}, sufficiently close to E?. From Rouché’s theorem, the

equation µe,N (ξ) = E has at least two solutions ξ1 and ξ2 in U . Since
µe,N (ξ) is strictly monotonous and continuous on (0, 2π), the intermediate
value theorem implies that (say) ξ1 ∈ (0, 2π) \ {π}; and ξ2 /∈ R. Let ξ3 =
2π−ξ1. Note that ξ1, ξ2 and ξ3 are pairwise distinct; and because of (A.9),
µo,N (ξ3) = E.
Step 3. — For ξ ∈ (0, 2π), the µe,`(ξ)’s are the L2

0,e-eigenvalues of
(Dx+ξ)2+V . Using the unique continuation principle, this remains true for
ξ ∈ U . An analogous statement holds for µo,`(ξ). From Step 2, we deduce
that there exist 0 6≡ ψj ∈ L2

ξj
, j = 1, 2, 3 such that

(A.10) (D2
x + V − E)ψj = 0.

If (i, j, k) are pairwise distinct then so are (ξi, ξj , ξk); and L2
ξi
∩(L2

ξj
⊕L2

ξk
) =

{0}. We conclude that ψ1, ψ2, ψ3 are three linearly independent solutions
of the second order ODE (A.10). This is a contradiction. We deduce that
∂ξµe,N (π) 6= 0, which ends the proof. �

A consequence of Lemma A.1 and of the proof of Lemma 2.3 is that under
the notations of Lemma 2.4, ν? = 〈Dxφ

?
+, φ

?
+〉 > 0 when n = 1 mod 4 and

ν? < 0 when n = 3 mod 4. Equivalently,

(A.11) sgn(ν?) = (−1)
n−1

2 .

A.2. Examples

Here we prove the results of Section 3. We will need the following lemma.

Lemma A.2 ([30, Lemma 3.1]). — Let T be a selfadjoint operator on a
Hilbert space H with discrete spectrum. Assume that there exist ψ in the
domain of T , E ∈ R and η > 0 such that

(A.12) |ψ|H = 1 and |(T − E)ψ|H 6 η.
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Then, T has a eigenvalue λ with |λ− E| 6 η.
Furthermore, if T has no other eigenvalue in the interval [E − Cη,

E + Cη] for some C > 1 then T has an eigenvector φ ∈ kerH(T − λ)
with |ψ − φ|H 6 C−1.

The function ψ is usually called a (η-accurate) quasimode. Lemma A.2 is
a consequence of variational principles for selfadjoint eigenvalue problems.
It can dramatically refines results at barely any cost once one has (a) an
accurate quasimode and (b) an eigenvalue separation estimate. See the
application [30, Corollary 1] to get full expansions of defect states for the
Pδ,?-spectral problem.
Proof of Lemma 3.1. — This lemma deals with small potentials. We

verify the assumptions (H1) and (H2) using perturbative analysis. The
general idea is (a) use Lemma 2.1 to estimate Bloch eigenpairs with a crude
error bound; (b) use Lemma A.2 to refine these estimates. In the proof we
suppose (without loss of generalities) that |V |∞ 6 1 and |W |∞ 6 1.

Step 1. — We first assume that n = 1 mod 4. The operator D2
x has

eigenvalues `2π2 on L2
π, ` ∈ 2N + 1, each of them with double multiplicity.

The operator D2
x + V has eigenvalues

(A.13) λ0,1(π, t) = λ0,2(π, t) < λ0,3(π, t) = λ0,4(π, t) < · · ·

see Lemma 2.3 (technically speaking, these eigenvalues do not depend on t).
Lemma 2.1 applied to V = V , W = 0 implies that for ε sufficiently small,

(A.14) ` ∈ [1, n+ 1] odd =⇒ λ0,`(π, t) = λ0,`+1(π, t) = `2π2 +O(ε).

We set E? = λ0,n(π, t).
Let f±(x) = e±iπnx. The function f+ belongs to L2

π,e (because n =
1 mod 4) and

(A.15) (D2
x + V − E?)f+ = (D2

x − n2π2)f+ +OL2
π,e

(ε) = OL2
π,e

(ε).

Hence, f+ is a O(ε)-precise quasimode for D2
x + V on L2

π,e. In particular
D2
x + V has a L2

π,e-eigenvalue equal to n2π2 + O(ε) (see Lemma A.2).
Because of (A.14), this eigenvalue must be E?.
The eigenvalues ofD2

x+V on L2
π,e are simple (see Lemma A.1). The equa-

tion (A.14) implies that E? is the only L2
π,e eigenvalue ofD2

x+V in [n2π2−1,
n2π2+1] for ε sufficiently small. We deduce from Lemma A.2 applied to η =
O(ε), C−1 = O(ε) that a corresponding L2

π,e-eigenvector is f+ + OL2
π,e

(ε).
Since V is real-valued, taking the complex conjugate produces a L2

π,o-
eigenvector. Hence, a Dirac eigenbasis for the Dirac point (π,E?) is

(A.16) (φ?+, φ?−) = (f+, f−) +OL2
π
(ε).
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In particular,

(A.17)
ϑ(t) =

〈
φ?−,Wtφ

?
+
〉

= ε

∫ 1

0
W(x+ t/(2π))e2iπnx dx+O

(
ε2)

= ε

∫ 1

0
W(x)e2iπnx−int dx+O

(
ε2) = εŴn · e−int +O

(
ε2) .

Since we assumed that Ŵn 6= 0, ϑ does not vanish for small enough ε:
(H2) holds. Furthermore, the degree of ϑ is −n = (−1)n+1

2 · n, because
n = 1 mod 4.
When n = 3 mod 4 then f+ ∈ L2

π,o and f− ∈ L2
π,e instead. Therefore we

only need to interchange f+ and f−. A Dirac eigenbasis is

(A.18) (φ?+, φ?−) = (f−, f+) +OL2
π
(ε).

Since W is real-valued, a calculation similar to (A.17) shows

(A.19) ϑ(t) = ε

∫ 1

0
W(x)e−2iπnx+int dx+O

(
ε2) = εŴn · eint +O

(
ε2) .

For small enough ε, ϑ(t) does not vanish: (H2) holds. Here, the degree of
ϑ is n = (−1)n+1

2 · n, since n = 3 mod 4.
Step 2. — We prove that for s ∈ (0, 1] and ε sufficiently small, the n-th

and n+ 1-th L2
π-eigenvalues of D2

x + V + sWt satisfy

(A.20) λs,n(π, t) < E? < λs,n+1(π, t).

As in Step 1, Lemma 2.1 estimates crudely the eigenvalues of D2
x+V +sWt:

for ε sufficiently small, for each odd ` ∈ [1, n+ 1],

(A.21) λs,`(π, t) = `2π2 +O(ε), λs,`+1(π) = `2π2 +O(ε).

When ` = n, we refine this estimate by constructing an accurate quasimode
g. Let

(A.22)
(a, b) 6= (0, 0) ∈ C2; u ∈ C∞(R,C) ∩ L2

π with u = OL2
π
(ε);

λ ∈ R with λ = O(ε).

Set g = aφ?+ + bφ?− + su and observe that

(A.23) (D2
x + V + sWt − E? − sλ)g

= (D2
x + V − E?)su+ s(Wt − λ)(aφ?+ + bφ?−) +OL2

π
(s2ε2).

For g to be an accurate quasimode, the leading term of the RHS must
vanish:

(A.24) (D2
x + V − E?)u+ (Wt − λ)(aφ?+ + bφ?−) = 0.
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We prove that (A.24) admits a solution (a, b, u, λ) satisfying (A.22). We
look at (A.24) as a inhomogeneous equation for u. For a solution to exist,
it suffices to have the inhomogeneous term (Wt−λ)(aφ?+ +bφ?−) orthogonal
to kerL2

π
(D2

x + V − E?) = Cφ?+ ⊕ Cφ?−. We obtain a system of equations:

(A.25)
{〈
φ?+,Wtφ

?
+
〉
a+ b

〈
φ?+,Wtφ

?
−
〉
− λa = 0〈

φ?−,Wtφ
?
+
〉
a+ b

〈
φ?−,Wtφ

?
−
〉
− λa = 0.

Note that
〈
φ?+,Wtφ

?
+
〉

=
〈
φ?−,Wtφ

?
−
〉

= 0 (see Lemma 2.5). The sys-
tem (A.25) takes the form of a 2× 2-eigenvalue problem:

(A.26)
([

0 ϑ(t)
ϑ(t) 0

]
− λ
)[

a

b

]
= 0.

It has non-trivial solutions precisely when λ = ±|ϑ(t)|. Because ϑ(t) = O(ε)
(see Step 1), λ = O(ε). Since Wt = O(ε), (A.24) admits solution u± =
OL2

π
(ε) (corresponding respectively to λ = ±|ϑ(t)|). Hence, we constructed

g± ∈ L2
π such that

(A.27) (D2
x + V + sWt − E? ± s|ϑ(t)|)g± = OL2

π
(s2ε2).

Lemma A.2 (with η = O(s2ε2)) implies that D2
x + V + sWt has two eigen-

values given by E?±s|ϑ(t)|+O(s2ε2). These eigenvalues must be λs,n(π, t)
and λs,n+1(π, t) because of (A.21) and of E? = n2π2 + O(ε). We deduce
that for s ∈ (0, 1] and ε small enough,

(A.28) λs,n(π, t) < E? < λs,n+1(π, t).

In particular, (H1) holds with E(s, t) ≡ E?. �

Proof of Lemma 3.2.
Step 1. — We first assume that n = 1 mod 4. The strategy is similar

to that of Lemma 3.1. By Lemma 2.1, for ε small enough, for each odd
` ∈ [1, n+ 1],

(A.29) λ0,`(π, t) = λ0,`+1(π, t) = `2π2 +O
(
ε2) .

Set E? = λ0,n(π, t) = λ0,n(π, 0) = n2π2 +O(ε2). The operator D2
x + V has

a Dirac point at (π,E?). We use Lemma A.2 to construct an approximation
of a Dirac eigenbasis (φ?+, φ?−). Set

(A.30) f+(x) def= eiπnx
(

1− ε2

8π2(m− n)

(
e2iπ(m−n)x

m
+ e−2iπ(m−n)x

m− 2n

))
,

where f−(x) def= f+(x). Since n = 1 mod 4, f+ ∈ L2
π,e, f− ∈ L2

π,o. Moreover,
a computation yields

(A.31) (D2
x + V − n2π2)f± = OL2

π
(ε3), |f±|L2

π
= 1 +O

(
ε3) .
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Therefore D2
x + V admits L2

π,e and L2
π,o-eigenvectors O

(
ε3)-close to f±,

with energy O(ε3) close to n2π2, see Lemma A.2 and the first step in the
proof of Lemma 3.1. From (A.29), we deduce that a Dirac eigenbasis is

(A.32) (φ?+, φ?−) = (f+, f−) +OL2
π

(
ε3) .

We can now estimate ϑ(t): up to O(ε7), φ?−(x)Wt(x)φ?+(x) is equal to
(A.33)

ε4
(
e2iπnx − ε2

4π2(m− n)

(
e2iπmx

m
+ e−2iπ(m−2n)x

m− 2n

))
cos(2πmx+ t).

Averaging this over [0, 1], we get:

(A.34) ϑ(t) = − ε6

8π2(m− n)me−imt +O
(
ε7) .

For ε sufficiently small, ϑ does not vanish and its degree ism = (−1)n+1
2 ·m,

because n = 1 mod 4. If now n = 3 mod 4, then we need to change f+ and
f− (as in the proof of Lemma 3.1). We end up with

(A.35) ϑ(t) = − ε6

8π2(m− n)meimt +O
(
ε7) .

Therefore, the winding number (1.10) equals m = (−1)n+1
2 ·m. In partic-

ular, (H2) holds for sufficiently small ε.
Step 2. — The exact same argument as in Step 2 in the proof of Lem-

ma 3.1 shows that

(A.36)
λs,n(π, t) = E? − s|ϑ(t)|+O

(
s2ε8) ,

λs,n+1(π, t) = E? + s|ϑ(t)|+O
(
s2ε8) .

From (A.34) and (A.35), we deduce that

(A.37) |λs,n(π, t)− λs,n+1(π, t)| > ε6

2π2 +O
(
s2ε8) .

In particular, (H1) holds for sufficiently small ε. �

A.3. Eigenvalue estimates

Recall that the operator Pδ(ξ, t) is D2
x + V + δWt acting on L2

ξ and that
λδ,`(ξ, t) is the `-th eigenvalue of Pδ(ξ, t).
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Lemma A.3. — There exist δ0 > 0 and C > 0 such that

(A.38) δ ∈ (0, δ0), |ξ − π| 6 δ0, z ∈ B(µ−δ (ζ), rδ(ζ)), t ∈ R

=⇒ P0(ξ, t) is invertible on V (ξ)⊥

and
(
(P0(ζ)− z)|V (ξ)⊥

)−1 = OV (ξ)⊥(1).

Proof. — Fix ζ = (ξ, t). The spectrum of P0(ζ) : V (ξ)⊥ → V (ξ)⊥ is
precisely

(A.39) ΣL2
ξ
(P0(ζ)) \

{
λ0,n(ζ), λ0,n+1(ζ)

}
Because of the monotonicity properties of λ0,n(ζ) and λ0,n+1(ζ) (see (2.2))
there exist ε0, ε1 > 0 such that for ξ ∈ [π/2, 3π/2],

(A.40) λ0,n−1(ζ) < E? − 2ε0 < λ0,n(ζ) 6 E?
6 λ0,n+1(ζ) < E? + 2ε1 < λ0,n+2(ζ).

Let ε = min(ε0, ε1). The equation (A.40) implies that the distance between
B(E?, ε) and the V (ξ)⊥-spectrum of P0(ζ) is at least ε. It follows that

(A.41) z ∈ B(E?, ε) =⇒
∥∥∥((P0(ζ)− z)|V (ξ)⊥

)−1
∥∥∥

V (ξ)⊥
6 ε−1.

To conclude, we simply observe that B(µ−δ (ζ), rδ(ζ)) ⊂ B(E?, ε) when δ

and |ξ − π| are small enough because

(A.42) |E? − µ−δ (ζ)| 6 νF |ξ − π|+ δ|ϑ(t)|.

This completes the proof. �

Lemma A.4. — There exists δ0 > 0 such that

(A.43) δ ∈ (0, δ0), |ξ − π| 6 δ0, t ∈ R

=⇒ λδ,n(ζ) ∈ B(µ−δ (ζ), rδ(ζ)), λδ,n+1(ζ) ∈ B(µ+
δ (ζ), rδ(ζ)).

Proof.
Step 1. — We show that Pδ(ζ) has an eigenvalue in each of the balls

B(µ−δ (ζ), rδ(ζ)) and B(µ+
δ (ζ), rδ(ζ)). Because of Lemma 2.1, these must be

the n-th and n+ 1-th eigenvalues of Pδ(ζ). This would prove the lemma.
Step 2. — According to Lemma 5.2, the operator Pδ(ζ)− z is invertible

for z ∈ B(µ−δ (ζ), rδ(ζ)). It follows that

(A.44) #ΣL2
ξ
(Pδ(ζ))∩B(µ−δ (ζ), rδ(ζ)) = Tr

[
1

2πi

∮
γ−
δ

(ζ)
(z − Pδ(ζ))−1 dz

]
,
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where γ−δ (ζ) = ∂B(µ−δ (ζ), rδ(ζ)). Again from Lemma 5.2,

(A.45) 1
2πi

∮
γ−
δ

(ζ)
(z − Pδ(ζ))−1 dz

= Π0(ξ)∗ · 1
2πi

∮
γ−
δ

(ζ)
(z −Mδ(ζ))−1 dz ·Π0(ξ) + OL2

ξ
(rδ(ζ)).

Because of Lemma 2.1, the LHS is of rank at most 2. The leading term in
the RHS is of rank 1. Therefore the remainder term is at most of rank 3
and we can take the trace. It yields

(A.46) Tr
[

1
2πi

∮
γ−
δ

(ζ)
(z − Pδ(ζ))−1 dz

]
= 1 +O(rδ(ζ)).

We deduce that Pδ(ζ) has exactly one eigenvalue in B(µ−δ (ζ), rδ(ζ)). The
same holds for B(µ+

δ (ζ), rδ(ζ)), and the conclusion follows. �

A.4. A contour integration lemma

Let U be an open subset of RN , U an open subset of C×U and F : U → C.
We say that F is a smooth family of meromorphic functions for ζ ∈ U if
there exist S, T ∈ C∞(C× U,C) such that ∂zS = ∂zT = 0 and

(A.47) (z, ζ) ∈ U =⇒ F (z, ζ) = S(z, ζ)
T (z, ζ) .

In Section 5, we use thoroughly the following lemma. The proof is an im-
mediate consequence of the residue theorem and is omitted.

Lemma A.5. — Let F be as above. Let (ζ, θ) ∈ U × S1 7→ γ(ζ, θ) ∈ C
be a piecewise C1 contour such that (γ(ζ, θ), ζ) always belong to U . Then

(A.48) I : ζ ∈ U 7→ 1
2πi

∮
γ(ζ)

F (z, ζ) dz

is smooth and for j = 1, . . . , N ,

(A.49) ∂I(ζ)
∂ζj

= 1
2πi

∮
γ(ζ)

∂F (z, ζ)
∂ζj

dz.
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A.5. Berry curvature of a family of matrices

Here we prove Lemma 5.3 about the Berry curvature and Chern class of
the low energy eigenbundle of the matrix

(A.50) M(ζ) = 1
δ

(
Mδ

(
π + δξ

ν?
, t

)
− E?

)
=
[
ξ ϑ(t)
ϑ(t) −ξ

]
.

Proof of Lemma 5.3.
Step 1. — We use ζ = (ξ, t). We recall that M(ζ) has eigenvalues

±
√
ξ2 + |ϑ(t)|2. The projector π−(ζ) to the negative eigenspace of M(ζ)

is

(A.51) π−(ζ) = 1
2πi

∫
γ(ζ)

(z −M(ζ))−1 dz.

where γ(ζ) is the disk centered at−
√
ξ2+|ϑ(t)|2, of radius mint∈[0,2π] |ϑ(t)|.

Lemma A.5 shows that

(A.52)

∂π−(ζ)
∂t

= 1
2πi

∫
γ(ζ)

(z −M(ζ))−1
[

0 ϑ′(t)
ϑ′(t) 0

]
(z −M(ζ))−1 dz,

∂π−(ζ)
∂ξ

= 1
2πi

∫
γ(ζ)

(z −M(ζ))−1
[
1 0
0 −1

]
(z −M(ζ))−1 dz.

Since the eigenvalues of M(ζ) are at least ϑ0-distant from γ(ζ), we can
control ∂tπ−(ζ) and ∂ξπ

−(ζ) using the spectral theorem. It shows that
uniformly in ζ ∈ R× [0, 2π], ∂tπ−(ζ) = OC2(1) and ∂ξπ−(ζ) = OC2(1).
Step 2. — We use the formula [42, (23)] to compute the Berry curvature

of the low-energy eigenbundle associated to M:

(A.53)

B(ζ) = 1
2i(ξ2 + |ϑ(t)|2)3/2

Reϑ(t)
Imϑ(t)

ξ

·
∂ξ

Reϑ(t)
Imϑ(t)

ξ

∧ ∂t
Reϑ(t)

Imϑ(t)
ξ


= 1

2i(ξ2 + |ϑ(t)|2)3/2

Reϑ(t)
Imϑ(t)

ξ

 ·
0

0
1

 ∧
Reϑ′(t)

Imϑ′(t)
0


= 1

2i(ξ2 + |ϑ(t)|2)3/2

Reϑ(t)
Imϑ(t)

ξ

 ·
− Imϑ′(t)

Reϑ′(t)
0


= Im(ϑ(t)ϑ′(t))

2i(ξ2 + |ϑ(t)|2)3/2 .
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If we write ϑ(t) = r(t)eiϕ(t), this reduces to

(A.54) B(ζ) = i

2(ξ2 + r(t)2)3/2 · r(t)
2ϕ′(t).

Integrating over ξ and t, we get

(A.55)

1
2πi

∫
R×S1

B(ζ) dζ = 1
4π

∫
R

dξ
(ξ2 + r(t)2)3/2 · r(t)

2ϕ′(t) dt

= 1
2π

∫ 2π

0
ϕ′(t) dt.

This completes the proof as the RHS of (A.55) is the winding number
of ϑ. �
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