
ANNALES DE
L’INSTITUT FOURIER

Université Grenoble Alpes

Les Annales de l’institut Fourier sont membres du
Centre Mersenne pour l’édition scienti�que ouverte
www.centre-mersenne.org

Clément Coine, Christian Le Merdy & Fedor Sukochev
When do triple operator integrals take value in the trace class?
Tome 71, no 4 (2021), p. 1393-1448.
<http://aif.centre-mersenne.org/item/AIF_2021__71_4_1393_0>

© Association des Annales de l’institut Fourier, 2021,
Certains droits réservés.

Cet article est mis à disposition selon les termes de la licence
Creative Commons attribution – pas de modification 3.0 France.
http://creativecommons.org/licenses/by-nd/3.0/fr/

www.centre-mersenne.org
http://aif.centre-mersenne.org/item/AIF_2021__71_4_1393_0
http://creativecommons.org/licenses/by-nd/3.0/fr/


Ann. Inst. Fourier, Grenoble
71, 4 (2021) 1393-1448

WHEN DO TRIPLE OPERATOR INTEGRALS TAKE
VALUE IN THE TRACE CLASS?

by Clément COINE,
Christian LE MERDY & Fedor SUKOCHEV (*)

Abstract. — Consider three normal operators A,B,C on a separable Hilbert
space H as well as scalar-valued spectral measures λA on σ(A), λB on σ(B) and
λC on σ(C). For any φ ∈ L∞(λA × λB × λC) and any X,Y ∈ S2(H), the
space of Hilbert–Schmidt operators on H, we provide a general definition of a
triple operator integral ΓA,B,C(φ)(X,Y ) belonging to S2(H) in such a way that
ΓA,B,C(φ) belongs to the space B2(S2(H) × S2(H), S2(H)) of bounded bilinear
operators on S2(H), and the resulting mapping ΓA,B,C : L∞(λA × λB × λC) →
B2(S2(H)×S2(H), S2(H)) is a w∗-continuous isometry. Then we show that a func-
tion φ ∈ L∞(λA×λB×λC) has the property that ΓA,B,C(φ) maps S2(H)×S2(H)
into S1(H), the space of trace class operators on H, if and only if it has the
following factorization property: there exist a Hilbert space H and two func-
tions a ∈ L∞(λA × λB ;H) and b ∈ L∞(λB × λC ;H) such that φ(t1, t2, t3) =
〈a(t1, t2), b(t2, t3)〉 for a.e. (t1, t2, t3) ∈ σ(A)×σ(B)×σ(C). This is a bilinear version
of Peller’s Theorem characterizing double operator integral mappings S1(H) →
S1(H). In passing we show that for any separable Banach spaces E,F , any w∗-
measurable esssentially bounded function valued in the Banach space Γ2(E,F ∗) of
operators from E into F ∗ factoring through Hilbert space admits a w∗-measurable
Hilbert space factorization.
Résumé. — Considérons trois opérateurs normaux A,B,C sur un espace de Hil-

bert séparable H ainsi que des mesures spectrales scalaires λA sur σ(A), λB sur
σ(B) et λC sur σ(C). Pour tout φ ∈ L∞(λA×λB×λC) et pour tous X,Y ∈ S2(H),
l’espace des opérateurs de Hilbert–Schmidt sur H, nous donnons une définition gé-
nérale d’une intégrale triple d’opérateurs ΓA,B,C(φ)(X,Y ) appartenant à S2(H),
de sorte que ΓA,B,C(φ) appartient à l’espace B2(S2(H)×S2(H), S2(H)) des opéra-
teurs bilinéaires bornés sur S2(H), et l’application ΓA,B,C : L∞(λA×λB×λC)→
B2(S2(H)×S2(H), S2(H)) est une isométrie w∗-continue. On montre alors qu’étant
donnée une fonction φ ∈ L∞(λA × λB × λC), ΓA,B,C(φ) envoie S2(H) × S2(H)
dans S1(H), l’espace des opérateurs à trace sur H, si et seulement si φ vérifie
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la propriété de factorisation suivante: il existe un espace de Hilbert H et deux
fonctions a ∈ L∞(λA × λB ;H) et b ∈ L∞(λB × λC ;H) tels que φ(t1, t2, t3) =
〈a(t1, t2), b(t2, t3)〉 pour presque tout (t1, t2, t3) ∈ σ(A)×σ(B)×σ(C). Il s’agit de la
version bilinéaire du Théorème de Peller caractérisant les applications d’intégrales
doubles d’opérateurs envoyant S1(H) dans S1(H). On établit en passant qu’étant
donnés deux espaces de Banach séparables E et F , toute fonction w∗-mesurable et
essentiellement bornée à valeurs dans l’espace Γ2(E,F ∗) des opérateurs de E dans
F ∗ se factorisant par un espace de Hilbert, admet une factorisation hilbertienne
w∗-mesurable.

1. Introduction

Let H be a separable Hilbert space. Let S2(H) denote the space of
Hilbert–Schmidt operators on H and let S1(H) denote the space of trace
class operators onH. Let A,B be two normal operators onH. Any bounded
Borel function φ on σ(A) × σ(B) gives rise to a double operator integral
mapping ΓA,B(φ) : S2(H)→ S2(H) formally defined as

ΓA,B(φ)(X) =
∫
σ(A)×σ(B)

φ(s, t) dEA(s)X dEB(t), X ∈ S2(H),

where EA and EB denote the spectral measures of A and B, respec-
tively. Double operator integrals were initially defined by Daletskii and
Krein [15] and then dramatically developed in a series of papers of Birman–
Solomjak [5, 6, 7]. They play a prominent role in various aspects of operator
theory, especially in the perturbation theory. We refer the reader to the sur-
vey papers [8, 30] and to the book [38] for a large volume of information
on this topic and its applications.
In [28], V.V. Peller gave a characterization of double operator integral

mappings which restrict to a bounded operator on S1(H). He showed that
ΓA,B(φ) is a bounded operator from S1(H) into itself if and only there exist
a Hilbert space H and two functions a ∈ L∞(EA;H) and b ∈ L∞(EB ;H)
such that

φ(s, t) = 〈a(s), b(t)〉 a.e.-(s, t).
This property means that the operator L1(EA) → L∞(EB) with kernel φ
factors through Hilbert space. We refer to [22] and [28] for other equivalent
formulations.
The purpose of this paper is to study an analogue of Peller’s Theorem

for triple operator integrals. This issue was motivated by a recent work of
the authors together with D. Potapov and A. Tomskova on perturbation
theory [12]. In this paper the construction of triple operator integral map-
pings which do not map S2(H)× S2(H) into S1(H) played a fundamental
role; see also [11] and [35] for related work.
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The paper [12] contains the following result on infinite matrices (see
Theorems 1, 7 and Corollary 8 in the latter paper). Let M = {mikj}i,k,j>1
be a three-dimensional matrix with entries in C. Let (Eij)i,j>1 denote the
standard matrix units. Then the bilinear Schur multiplier BM formally
defined by

BM (X,Y ) :=
∑

i,j,k>1
mikjxikykj Eij , X = {xij}i,j>1, Y = {yij}i,j>1,

defines a bounded bilinear operator from S2×S2 into S1 if and only if there
exist a Hilbert space H and two bounded families (aik)i,k>1 and (bjk)j,k>1
in H such that

mikj = 〈aik, bjk〉, i, k, j > 1.

Triple operator integral mappings can be regarded as (far reaching) ex-
tensions of bilinear Schur multipliers, hence the above result serves as a
guide for our investigation. In Section 3 we revisit an old construction of
Pavlov [26] providing a general definition of triple operator integral map-
pings

ΓA,B,C(φ) : S2(H)× S2(H) −→ S2(H),

where A,B,C are normal operators on H, λA, λB , λC are scalar valued
spectral measures on the spectra σ(A), σ(B), σ(C), respectively, and φ ∈
L∞(λA×λB×λC). We show in Theorem 3.3 and Corollary 3.9 that ΓA,B,C
is an isometry from L∞(λA × λB × λC) into B2(S2(H) × S2(H), S2(H)),
the space of bounded bilinear maps from S2(H)× S2(H) into S2(H), and
that ΓA,B,C is w∗-continuous (i.e. continuous in the w∗-topologies of the
dual spaces L∞(λA × λB × λC) and B2(S2(H)× S2(H), S2(H))).
Our main result, established in Section 6 (see Theorem 6.2), asserts that

ΓA,B,C(φ) : S2(H)× S2(H) −→ S1(H)

if and only if there exist a Hilbert space H and two functions

a ∈ L∞(λA × λB ;H) and b ∈ L∞(λB × λC ;H)

such that

(1.1) φ(t1, t2, t3) = 〈a(t1, t2), b(t2, t3)〉 , a.e.-(t1, t2, t3).

In Section 7, we recover Peller’s Theorem as a special case of the above
statement and we compare our triple operator integrals with previous con-
structions.

TOME 71 (2021), FASCICULE 4
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Multiple operator integrals are a very active topic at the moment. In
addition to the already mentioned papers [11, 12], we refer the reader to [1,
2, 3, 4, 10, 13, 25, 29, 34] for important results, as well as to [38] and the
references therein.

The proof of Theorem 6.2 combines several techniques and intermedi-
ate results which are discussed in Sections 2-5. First, the w∗-continuity of
ΓA,B,C plays a crucial role as it allows to reduce various computations to
tensor product manipulations. The relevant background on tensor prod-
ucts and duality is provided in Section 2. Second, in order to study the
factorization property (1.1), which is about functions only, we need to de-
velop triple operator integrals associated with functions, in parallel with
the construction of ΓA,B,C . This is achieved in Subsection 3.2. The link
between the two constructions, which is fundamental for our purpose, is
given in Subsection 3.3 (see Proposition 3.8). Third, w∗-measurable ver-
sions of vector-valued Lp-spaces and Hilbert space factorizations appear
naturally in our investigation. Sections 4 and 5 are devoted to these two
topics. Our main result, of independent interest, is the following. Let E,F
be separable Banach spaces and let (Ω, µ) be a separable measure space.
Let Γ2(E,F ∗) be the space of all bounded linear operators E → F ∗ which
factor through Hilbert space. This is a dual space (see (2.6)). We show that
if φ : Ω→ Γ2(E,F ∗) is a w∗-measurable essentially bounded function, then
there exist a separable Hilbert space H and two w∗-measurable essentially
bounded functions α : Ω→ B(E,H) and β : Ω→ B(F,H) such that〈[

φ(t)
]
(x), y

〉
=
〈[
α(t)

]
(x),

[
β(t)

]
(y)
〉

almost everywhere, for any x ∈ E and y ∈ F .
We end this Introduction with a few notations and conventions. Through-

out the paper we will use the notation ‖ · ‖p for the norms on various Lp-
spaces, which may be either classical ones or vector valued ones. The nota-
tions ‖ · ‖1 and ‖ · ‖2 will also be used on the spaces of trace class operators
and Hilbert–Schmidt operators, respectively (see Subsection 2.3).
Whenever Σ is a set and V ⊂ Σ is a subset we let χV : Σ→ {0, 1} denote

the characteristic function of V .
The Hilbertian direct sum of any family (Hi)i∈I of Hilbert spaces will

be denoted by
2⊕
i∈I
Hi.

Likewise, the notation H
2
⊕ K will stand for the Hilbertian direct sum of

any two Hilbert spaces H and K.

ANNALES DE L’INSTITUT FOURIER
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Whenever E,F are two Banach spaces, a bounded linear map u : E∗ →
F ∗ will be called w∗-continuous when it is continuous with respect to the
w∗-topologies of E∗ and F ∗. This is equivalent to the fact that u is the
adjoint of a bounded linear map from F into E. We recall that when
a w∗-continuous map u : E∗ → F ∗ is an isometry, then its range is w∗-
closed, and u induces a w∗-homeomorphism between E∗ and its range.
The latter is therefore a dual space and u : E∗ → u(E∗) is an isometric
w∗-homeomorphic identification between the dual spaces E∗ and u(E∗).

2. Preliminaries and background

2.1. Normal operators and scalar-valued spectral measures

We assume that the reader is familiar with the general spectral theory
of normal operators on Hilbert space, for which we refer e.g. to [37, Chap-
ters 12 and 13] and [14, Sections 14 and 15]. Let H be a separable Hilbert
space and let A be a (possibly unbounded) normal operator on H. We let
σ(A) denote the spectrum of A and we let EA denote the spectral measure
of A, defined on the Borel subsets of σ(A).
By definition a scalar-valued spectral measure for A is a positive finite

measure λA on the Borel subsets of σ(A), such that λA and EA have the
same sets of measure zero. Such measures exist, thanks to the separability
assumption on H. Indeed let

W ∗(A) ⊂ B(H)

be the von Neumann algebra generated by the range of EA. By [14, Corol-
lary 14.6], W ∗(A) has a separating vector e. It follows that

λA := ‖EA( · )e‖2

is a scalar-valued spectral measure for A. (This construction is given in [14,
Section 15] for a bounded A.)
The Borel functional calculus for A takes any bounded Borel function

f : σ(A)→ C to the bounded operator

f(A) :=
∫
σ(A)

f(t) dEA(t) .

According to [14, Theorem 15.10], it induces a w∗-continuous (=normal)
∗-representation

(2.1) πA : L∞(λA) −→ B(H),

TOME 71 (2021), FASCICULE 4



1398 Clément COINE, Christian LE MERDY & Fedor SUKOCHEV

As a matter of fact, the space L∞(λA) does not depend on the choice of
the scalar-valued spectral measure λA. Without ambiguity, we may write
f(A) = πA(f) for any f ∈ L∞(λA).

2.2. Tensor products and duality

We give a brief summary of tensor product formulas to be used in
the sequel. Let E, F and G be Banach spaces. We let B(E,G) be the
Banach space of all bounded linear operators from E into G. Then we
let B2(E × F,G) be the Banach space of all bounded bilinear operators
T : E × F → G, equipped with

‖T‖ = sup
{
‖T (x, y)‖ : x ∈ E, y ∈ F, ‖x‖ 6 1, ‖y‖ 6 1

}
.

If z ∈ E ⊗ F , the projective tensor norm of z is defined by

‖z‖∧ := inf
{∑

‖xi‖‖yi‖
}
,

where the infimum runs over all finite families (xi)i in E and (yi)i in F

such that
z =

∑
i

xi ⊗ yi.

The completion E
∧
⊗ F of (E ⊗ F, ‖ · ‖∧) is called the projective tensor

product of E and F .
To any T ∈ B2(E×F,G), one can associate a linear map T̃ : E⊗F → G

by the formula

T̃ (x⊗ y) = T (x, y), x ∈ E, y ∈ F.

Then T̃ is bounded on (E ⊗ F, ‖ · ‖∧), with ‖T̃‖ = ‖T‖, and hence the
mapping T 7→ T̃ gives rise to an isometric identification

(2.2) B2(E × F,G) = B(E
∧
⊗ F,G).

In the case G = C, this implies that the mapping taking any functional
ω : E ⊗ F → C to the operator u : E → F ∗ defined by 〈u(x), y〉 = ω(x⊗ y)
for any x ∈ E, y ∈ F , induces an isometric identification

(2.3) (E
∧
⊗ F )∗ = B(E,F ∗).

We refer to [18, Chapter 8, Theorem 1 & Corollary 2] for these classical
facts.
Let (Ω, µ) be a σ-finite measure space and let L1(Ω;F ) denote the

Bochner space of integrable functions from Ω into F . By [18, Chapter 8,

ANNALES DE L’INSTITUT FOURIER
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Example 10], the natural embedding L1(Ω)⊗ F ⊂ L1(Ω;F ) extends to an
isometric isomorphism

(2.4) L1(Ω;F ) = L1(Ω)
∧
⊗ F.

By (2.3), this implies

(2.5) L1(Ω;F )∗ = B(L1(Ω), F ∗).

Let E,W be Banach spaces. We say that an operator u : E →W factors
through a Hilbert space if there exist a Hilbert space H and two operators
α : E → H and β : H → W such that u = βα. We denote by Γ2(E,W )
the space of all such operators. For any u ∈ Γ2(E,W ), define

γ2(u) = inf
{
‖α‖‖β‖

}
,

where the infimum runs over all factorizations of u as above. Then γ2 is a
norm on Γ2(E,W ) and the latter is a Banach space, see e.g. [17] or [31,
Chapter 2].
We will make crucial use of the fact that if W is a dual space, then

Γ2(E,W ) is a dual space as well. Indeed assume that W = F ∗ for some
Banach space F . Then there exists a norm γ∗2 6 ‖ · ‖∧ on E ⊗ F such that
if we let E

∧
⊗γ∗2 F denote the completion of (E ⊗ F, γ∗2), then (2.3) induces

an isometric identification

(2.6) (E
∧
⊗γ∗2 F )∗ = Γ2(E,F ∗).

See e.g. [32, Theorem 5.3] for a definition of γ∗2 (that we will not use
here) and a proof. By construction, the canonical embedding Γ2(E,F ∗)→
B(E,F ∗) is w∗-continuous.

2.3. Operators on Hilbert spaces and trace duality

Let H,K be Hilbert spaces and let tr be the trace on B(K). We let
S1(K,H) denote the space of trace class operators T : K → H, equipped
with ‖T‖1 = tr(|T |), where |T | = (T ∗T ) 1

2 . We recall that the pairing

〈S, T 〉 = tr(ST ), T ∈ S1(K,H), S ∈ B(H,K),

induces an isometric identification

(2.7) B(H,K) = S1(K,H)∗.

TOME 71 (2021), FASCICULE 4
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Let S2(K,H) denote the space of Hilbert–Schmidt operators T : K → H,
equipped with ‖T‖2 =

(
tr(|T |2)

) 1
2 . Then the above duality pairing also

yields an isometric identification

(2.8) S2(H,K) = S2(K,H)∗.

Given any two Banach spaces E,G, it is customary to identify E∗ ⊗ G
with the space of bounded finite rank operators from E into G. Indeed
for any x∗ ∈ E∗ and g ∈ G, x∗ ⊗ g is identified with the element of
B(E,G) taking any x ∈ E to x∗(x)g. We apply this principle to Hilbert
spaces. We let K denote the complex conjugate of K and recall the canonical
identification K∗ = K. Then we regard K ⊗ H as the space of finite rank
operators from K into H. In this identification, for any η ∈ K and ξ ∈ H,
η ⊗ ξ : K → H denotes the operator taking any z ∈ K to 〈z, η〉ξ.
We recall that K⊗H is both a dense subspace of S1(K,H) and S2(K,H).

2.4. Measurable Schur multipliers

Let (Ω1, µ1) and (Ω2, µ2) be two σ-finite measure spaces. If J ∈ L2(Ω1×
Ω2), the operator

XJ : L2(Ω1) −→ L2(Ω2)

r 7−→
∫

Ω1

J(t, · )r(t) dµ1(t)

is a Hilbert–Schmidt operator and ‖XJ‖2 = ‖J‖2. Further any element
of S2(L2(Ω1), L2(Ω2)) has this form (see e.g. [36, Theorem VI. 23]). We
summarize these facts by writing an isometric identification

(2.9) L2(Ω1 × Ω2) = S2(L2(Ω1), L2(Ω2)).

Let ψ ∈ L∞(Ω1 × Ω2). Thanks to the above identity, we may associate
the operator

Rψ : S2(L2(Ω1), L2(Ω2)) −→ S2(L2(Ω1), L2(Ω2))
XJ 7−→ XψJ

whose norm is equal to ‖ψ‖∞. We say that ψ is a measurable Schur mul-
tiplier if Rψ extends to a bounded operator (still denoted by)

Rψ : K(L2(Ω1), L2(Ω2)) −→ B(L2(Ω1), L2(Ω2)),

where K(L2(Ω1), L2(Ω2)) denotes the space of compact operators from
L2(Ω1) into L2(Ω2). The density of Hilbert–Schmidt operators in compact
operators ensures that this extension is necessarily unique.

ANNALES DE L’INSTITUT FOURIER
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For any ψ ∈ L∞(Ω1 × Ω2), one may define uψ ∈ B(L1(Ω1), L∞(Ω2)) by

uψ(r) =
∫

Ω1

ψ(t, · )r(t) dµ1(t), r ∈ L1(Ω1).

Applying (2.5) with F =L1(Ω2) together with the identity L1(Ω1;L1(Ω2))=
L1(Ω1 × Ω2), we obtain an isometric w∗-homeomorphic identification

(2.10) L∞(Ω1 × Ω2) = B(L1(Ω1), L∞(Ω2)).

A thorough look at this identification reveals that it is given by the mapping
ψ 7→ uψ. Thus we have

‖uψ‖ = ‖ψ‖∞
and any element of B(L1(Ω1), L∞(Ω2)) is an operator uψ for some (unique)
ψ.
The first part of Theorem 2.1 below is a remarkable characterization

of measurable Schur multipliers. In the discrete case it was stated by
Pisier in [32, Theorem 5.1] who refers himself to some earlier work of
Grothendieck. For the general case considered here we refer to Haagerup [21]
and Spronk [39, Section 3.2]. Peller’s characterization of double operator
integral mappings which restrict to a bounded operator S1(H) → S1(H)
is closely related to this factorization result. Indeed, Theorem 2.1(1) below
is implicit in [28].
For the second part of the next result, recall that by (2.6) and (2.3),

Γ2(L1(Ω1), L∞(Ω2)) and B
(
K(L2(Ω1), L2(Ω2)), B(L2(Ω1), L2(Ω2))

)
are both dual spaces.

Theorem 2.1.

(1) [21, 28, 32, 39] A function ψ ∈ L∞(Ω1 ×Ω2) is a measurable Schur
multiplier if and only if the operator uψ belongs to Γ2(L1(Ω1),
L∞(Ω2)), and we have

γ2(uψ) = ‖Rψ‖

in this case.
(2) Moreover the isometric embedding

Γ2(L1(Ω1), L∞(Ω2)) ↪→ B
(
K(L2(Ω1), L2(Ω2)), B(L2(Ω1), L2(Ω2))

)
taking any uψ ∈ Γ2(L1(Ω1), L∞(Ω2)) to Rψ is w∗-continuous.

Proof. — Let us prove (2). Let ψ ∈ L∞(Ω1 × Ω2) and let (ψι)ι be
a net of L∞(Ω1 × Ω2) such that uψ and the operators uψι belong to
Γ2(L1(Ω1), L∞(Ω2)) for any ι, (uψι)ι is a bounded net in the latter space,
and uψι → uψ in the w∗-topology of Γ2(L1(Ω1), L∞(Ω2)). This implies

TOME 71 (2021), FASCICULE 4
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that uψι → uψ in the w∗-topology of B(L1(Ω1), L∞(Ω2)) (see the com-
ments following (2.6)). According to (2.10), this means that ψι → ψ in the
w∗-topology of L∞(Ω1 × Ω2).
Let ξ, ξ′ ∈ L2(Ω1) and η, η′ ∈ L2(Ω2). For any ι, Rψι(ξ̄ ⊗ η) is the

Hilbert–Schmidt operator associated to the L2-function ψι(ξ̄ ⊗ η), hence〈[
Rψι(ξ̄⊗η)

]
(ξ′), η′

〉
=
∫

Ω1×Ω2

ψι(t1, t2)ξ(t1)ξ′(t1)η(t2)η′(t2) dµ1(t1)dµ2(t2).

The right-hand side of this equality is the action of ψι ∈ L∞(Ω1 × Ω2) on
the L1-function

(t1, t2) 7−→ ξ(t1)ξ′(t1)η(t2)η′(t2).
Since ψ = w∗-limι ψι, this implies that〈[

Rψι(ξ̄ ⊗ η)
]
(ξ′), η′

〉
−→

〈[
Rψ(ξ̄ ⊗ η)

]
(ξ′), η′

〉
.

By linearity, this implies that for any finite rank operator σ : L2(Ω1) →
L2(Ω2), Rψι(σ) → Rψ(σ) is the weak operator topology of B(L2(Ω1),
L2(Ω2)). Since (uψι)ι is a bounded net, (Rψι)ι is bounded as well. By the
density of finite rank operators in K(L2(Ω1), L2(Ω2)), we deduce that for
any σ in the latter space, Rψι(σ) → Rψ(σ) is the weak operator topology
of B(L2(Ω1), L2(Ω2)). Using again the boundedness of (Rψι)ι, we deduce
that Rψι(σ) → Rψ(σ) in the w∗-topology of B(L2(Ω1), L2(Ω2)

)
for any

σ ∈ K(L2(Ω1), L2(Ω2)) and finally that Rψι → Rψ in the w∗-topology of
B
(
K(L2(Ω1), L2(Ω2)), B(L2(Ω1), L2(Ω2)

)
. �

3. Triple operator integral mappings

Multiple operator integrals appeared in many recent papers with various
definitions, see in particular [1, 2, 3, 4, 29, 34]. In this section we provide a
definition of triple operator integrals associated to a triple (A,B,C) of nor-
mal operators on H, based on the construction of a natural w∗-continuous
mapping from L∞(λA×λB×λC) into B2(S2(H)×S2(H), S2(H)), see The-
orem 3.3. We will show in Corollary 3.9 that this mapping is actually an
isometry. Further the construction extends to multiple operator integrals,
see Proposition 3.4. It turns out that this construction is equivalent to an
old definition of multiple operator integrals due to Pavlov [26]; this will be
explained in Remark 3.6.
In Subsection 3.2, we give an analogue of the construction for functions,

in the spirit of Subsection 2.4. Finally in Subsection 3.3, we establish a
fruitful connection between triple operator integrals associated with oper-
ators and triple operator integrals associated with functions.
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3.1. Triple operator integrals associated with operators

Let H be a separable Hilbert space and let A,B,C be (possibly un-
bounded) normal operators on H. Denote by EA, EB and EC their spectral
measures and let λA, λB and λC be scalar-valued spectral measures for A,
B and C (see Subsection 2.1).
Let E1 ⊂ L∞(λA), E2 ⊂ L∞(λB) and E3 ⊂ L∞(λC) be the spaces of

simple functions on (σ(A), λA), (σ(B), λB) and (σ(C), λC), respectively.
We let

Γ: E1 ⊗ E2 ⊗ E3 −→ B2(S2(H)× S2(H), S2(H))
be the unique linear map such that

(3.1) Γ(f1 ⊗ f2 ⊗ f3)(X,Y ) = f1(A)Xf2(B)Y f3(C)

for any f1 ∈ E1, f2 ∈ E2 and f3 ∈ E3, and for any X,Y ∈ S2(H).

Lemma 3.1. — For all φ ∈ E1 ⊗ E2 ⊗ E3, and for all X,Y ∈ S2(H), we
have

‖Γ(φ)(X,Y )‖2 6 ‖φ‖∞‖X‖2‖Y ‖2.

Proof. — Let φ ∈ E1 ⊗ E2 ⊗ E3. There exists a finite family (F 1
i )i (re-

spectively (F 2
j )j and (F 3

k )k) of pairwise disjoint measurable subsets of σ(A)
(respectively of σ(B) and σ(C)) of positive measures, as well as a family
(mijk)i,j,k of complex numbers such that

(3.2) φ =
∑
i,j,k

mijk χF 1
i
⊗ χF 2

j
⊗ χF 3

k
.

Then we have

(3.3) ‖φ‖∞ = sup
i,j,k
|mijk|.

Let X,Y ∈ S2(H). According to the definition of Γ, we have

Γ(φ)(X,Y ) =
∑
i,j,k

mijkE
A(F 1

i )XEB(F 2
j )Y EC(F 3

k ).

By the pairwise disjointnesses of (F 1
i )i and (F 3

k )k, the elements(∑
j

mijkE
A(F 1

i )XEB(F 2
j )Y EC(F 3

k )
)
i,k

are pairwise orthogonal in S2(H). Hence

‖Γ(φ)(X,Y )‖22 =
∑
i,k

∥∥∥∥∥∑
j

mijkE
A(F 1

i )XEB(F 2
j )Y EC(F 3

k )

∥∥∥∥∥
2

2

.
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Applying the Cauchy–Schwarz inequality and (3.3), we deduce that

‖Γ(φ)(X,Y )‖22

6 ‖φ‖2∞
∑
i,k

(∑
j

∥∥EA(F 1
i )XEB(F 2

j )
∥∥

2

∥∥EB(F 2
j )Y EC(F 3

k )
∥∥

2

)2

6 ‖φ‖2∞
∑
i,k

(∑
j

∥∥EA(F 1
i )XEB(F 2

j )
∥∥2

2

)(∑
j

∥∥EB(F 2
j )Y EC(F 3

k )
∥∥2

2

)

6 ‖φ‖2∞

(∑
i,j

∥∥EA(F 1
i )XEB(F 2

j )
∥∥2

2

)(∑
j,k

∥∥EB(F 2
j )Y EC(F 3

k )
∥∥2

2

)
.

Since the elements EA(F 1
i )XEB(F 2

j ) are pairwise orthogonal in S2(H) we
have ∑

i,j

∥∥EA(F 1
i )XEB(F 2

j )
∥∥2

2 =

∥∥∥∥∥∑
i,j

EA(F 1
i )XEB(F 2

j )

∥∥∥∥∥
2

2

=
∥∥EA (∪iF 1

i

)
XEB

(
∪jF 2

j

)∥∥2
2

6 ‖X‖22.

Similarly, ∑
j,k

∥∥EB(F 2
j )Y EC(F 3

k )
∥∥2

2 6 ‖Y ‖
2
2.

This yields the result. �

We let
G := E1 ⊗ E2 ⊗ E3

‖·‖∞ ⊂ L∞(λA × λB × λC),

equipped with the L∞-norm, and we let τ : L1(λA×λB×λC)→ G∗ be the
canonical map defined by〈

τ(ϕ), φ
〉

=
∫
σ(A)×σ(B)×σ(C)

ϕφ d(λA × λB × λC) , ϕ ∈ L1, φ ∈ G.

This is obviously a contraction.
We claim that τ is actually an isometry. To check this fact, consider

ϕ ∈ E1 ⊗ E2 ⊗ E3, that we write as a finite sum

ϕ =
∑
i,j,k

cijk χF 1
i
⊗ χF 2

j
⊗ χF 3

k
,

with cijk ∈ C\{0} and (F 1
i )i (respectively (F 2

j )j and (F 3
k )k) being pairwise

disjoint measurable subsets of σ(A) (respectively of σ(B) and σ(C)), with
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positive measures. Then

‖ϕ‖1 =
∑
i,j,k

|cijk|λA(F 1
i )λB(F 2

j )λC(F 3
k ).

Let φ be defined by (3.2), with mijk = |cijk|c−1
ijk. Then ‖φ‖∞ = 1 by (3.3)

and 〈
τ(ϕ), φ

〉
=
∑
i,j,k

mijkcijkλA(F 1
i )λB(F 2

j )λC(F 3
k ) = ‖ϕ‖1.

Hence we have ‖τ(ϕ)‖ = ‖ϕ‖1 as expected. Since E1 ⊗ E2 ⊗ E3 is dense in
L1(λA × λB × λC), this implies that τ is an isometry.
According to this property, we now consider L1(λA × λB × λC) as a

subspace of G∗.
By (2.2), (2.3) and (2.8), we have isometric identifications

B2(S2(H)× S2(H), S2(H)) = B(S2(H)
∧
⊗ S2(H), S2(H))

=
(
S2(H)

∧
⊗ S2(H)

∧
⊗ S2(H)

)∗
.

It is easy to check that the duality pairing providing this identification
reads 〈

T,X ⊗ Y ⊗ Z
〉

= tr
(
T (X,Y )Z

)
for any T ∈ B2(S2(H)× S2(H), S2(H)) and any X,Y, Z ∈ S2(H).
We set

E = S2(H)
∧
⊗ S2(H)

∧
⊗ S2(H).

According to Lemma 3.1, Γ uniquely extends to a contraction

Γ̃ : G −→ B2(S2(H)× S2(H), S2(H)) = E∗.

We can therefore consider S = Γ̃∗|E : E → G∗, the restriction of Γ̃∗ to
E ⊂ E∗∗.

Lemma 3.2. — The operator S takes its values in the subspace L1(λA×
λB × λC) of G∗.

Proof. — Let P = H⊗H⊗H⊗H⊗H⊗H. Recall that we identify H⊗H
with the space of finite rank operators onH. ThenH⊗H is a dense subspace
of S2(H). Consequently P is a dense subspace of E. Since S is continuous,
it therefore suffices to show that S(P) ⊂ L1(λA × λB × λC). Consider
η1, η2, η3, ξ1, ξ2, ξ3 in H and ω = ξ1 ⊗ η1 ⊗ ξ2 ⊗ η2 ⊗ ξ3 ⊗ η3. Such elements
span P hence it suffices to check that S(ω) belongs to L1(λA × λB × λC).
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Let f1 ∈ E1, f2 ∈ E2 and f3 ∈ E3. We have

〈S(ω), f1 ⊗ f2 ⊗ f3〉 = 〈ω,Γ(f1 ⊗ f2 ⊗ f3)〉

= tr
([

Γ(f1 ⊗ f2 ⊗ f3)(ξ1 ⊗ η1, ξ2 ⊗ η2)
]
(ξ3 ⊗ η3)

)
= tr

(
f1(A)(ξ1 ⊗ η1)f2(B)(ξ2 ⊗ η2)f3(C)(ξ3 ⊗ η3)

)
= tr

(
(ξ1 ⊗ f1(A)η1)(ξ2 ⊗ f2(B)η2)(ξ3 ⊗ f3(C)η3)

)
= tr

(
(ξ3 ⊗ f1(A)η1) 〈f3(C)η3, ξ2〉 〈f2(B)η2, ξ1〉

)
= 〈f3(C)η3, ξ2〉 〈f2(B)η2, ξ1〉 〈f1(A)η1, ξ3〉 .

Wementioned that the functional calculus ∗-representation πA : L∞(λA)→
B(H) from (2.1) is w∗-continuous. Thus πA is the adjoint of some
wA : S1(H)→ L1(λA). Let h1 = wA(ξ3⊗ η1). Then this element of L1(λA)
(which does not depend on f1) satisfies

〈f1(A)η1, ξ3〉 =
∫
σ(A)

f1h1 dλA .

(A thorough look at the construction of πA shows that h1 is actually the
Radon–Nikodym derivative of the measure dEAη1,ξ3

with respect to λA.)
Similarly, there exist h2 ∈ L1(λB) and h3 ∈ L1(λC) not depending on

f2 and f3 such that 〈f2(B)η2, ξ1〉 =
∫
σ(B) f2h2 dλB and 〈f3(C)η3, ξ2〉 =∫

σ(C) f3h3 dλC . Consequently,

〈S(ω), f1 ⊗ f2 ⊗ f3〉

=
∫
σ(A)×σ(B)×σ(C)

(f1 ⊗ f2 ⊗ f3)(h1 ⊗ h2 ⊗ h3) d(λA × λB × λC).

Since E1 ⊗ E2 ⊗ E3 is dense in G, this implies that

S(ω) = h1 ⊗ h2 ⊗ h3 ∈ L1(λA × λB × λC). �

Theorem 3.3. — There exists a unique w∗-continuous contraction

ΓA,B,C : L∞(λA × λB × λC) −→ B2(S2(H)× S2(H), S2(H)),

such that for any f1 ∈ L∞(λA), f2 ∈ L∞(λB) and f3 ∈ L∞(λC), and for
any X,Y ∈ S2(H), we have

(3.4) ΓA,B,C(f1 ⊗ f2 ⊗ f3)(X,Y ) = f1(A)Xf2(B)Y f3(C).

Proof. — The uniqueness follows from the w∗-density of L∞(λA) ⊗
L∞(λB)⊗ L∞(λC) in the dual space L∞(λA × λB × λC).
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Lemma 3.2 provides a contraction S : E → L1(λA × λB × λC). Then its
adjoint S∗ is a contraction from L∞(λA×λB×λC) into E∗ = B2(S2(H)×
S2(H), S2(H)). We set

ΓA,B,C = S∗.

By construction, ΓA,B,C is w∗-continuous and extends the map Γ defined
by (3.1). Property (3.4) follows from (3.1) by w∗-continuity. �

Later on in Corollary 3.9, we will show that ΓA,B,C is actually an isom-
etry.
Bilinear maps of the form ΓA,B,C(φ) will be called triple operator integral

mappings in this paper. Operators of the form ΓA,B,C(φ)(X,Y ) : H → H
are called triple operator integrals. As indicated in the Introduction, our
goal is to determine the functions φ ∈ L∞(λA×λB×λC) for which the triple
operator integral mapping ΓA,B,C(φ) maps S2(H)× S2(H) into S1(H).
By similar computations (left to the reader), the above construction can

be extended to (n−1)-tuple operator integrals, for any n > 2. One obtains
the following statement, in whichBn−1(S2(H)×S2(H)×· · ·×S2(H), S2(H))
denotes the space of bounded (n−1)-linear maps from the product of (n−1)
copies of S2(H) taking values in S2(H).

Proposition 3.4. — Let n > 2 and let A1, A2, . . . , An be normal op-
erators on H. For any i = 1, . . . , n, let λAi be a scalar-valued spectral
measure for Ai and let Ei ⊂ L∞(λAi) be the space of simple functions on
(σ(Ai), λAi). There exists a unique w∗-continuous contraction

ΓA1,A2,...,An : L∞
(

n∏
i=1

λAi

)
−→ Bn−1(S2(H)× S2(H)× · · · × S2(H) −→ S2(H)),

such that for any fi ∈ L∞(λAi) and for any X1, . . . , Xn−1 ∈ S2(H), we
have

ΓA1,A2,...,An(f1 ⊗ · · · ⊗ fn) = f1(A1)X1f2(A2) · · · fn−1(An−1)Xn−1fn(An).

Remark 3.5. — In the case n = 2, the above proposition boils down to
the original construction of double operator integrals by Birman–Solomjak.
Namely, let A,B be two normal operators on H, and let

ΓA,B : L∞(λA × λB) −→ B(S2(H))

be given by Proposition 3.4. For any φ ∈ L∞(λA×λB), let J (φ) : S2(H)→
S2(H) be the operator constructed in [8, Section 3.1] for the spectral mea-
sures associated with A and B. Then ΓA,B(φ) coincides J (φ).
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We note for further use that ΓA,B is a ∗-representation of the von Neu-
mann algebra L∞(λA × λB) on the Hilbert space S2(H). This is easy to
deduce from our definitions; also, this follows from [8, (3.6) and (3.7)].

Remark 3.6. — As indicated in the introduction of this section, the above
construction turns out to be equivalent to Pavlov’s definition of multiple
operator integrals given in [26]. Let us briefly review Pavlov’s construction
from [26], and explain this “equivalence”. In this remark, we use terminology
and references from [18, Chapter 1].
Let n > 2 and consider normal operators A1, A2, . . . , An as in Proposi-

tion 3.4. Fix operators X1, . . . , Xn−1 in S2(H). Let Ω := σ(A) × σ(A2) ×
· · · × σ(An) and consider the set F consisting of finite unions of subsets of
Ω of the form

∆ = F1 × F2 × · · · × Fn,
where, for any 1 6 i 6 n, Fi is a Borel subset of σ(Ai).
There exists a (necessarily unique) finitely additive vector measure

m : F → S2(H) such that

(3.5) m(∆) = EA1(F1)X1E
A2(F2) · · ·EAn−1(Fn−1)Xn−1E

An(Fn)

for any ∆ as above.
Pavlov first shows that m is a measure of bounded semivariation and

then proves that m is actually countably additive (see [26, Theorem 1]).
Let T be the σ-field generated by F . Since S2(H) is reflexive, it follows
from [18, Chapter 1, Section 5, Theorem 2] that m has a (necessarily
unique) countably additive extension m̃ : T → S2(H). Moreover m̃ is a
measure of bounded semivariation. Then using the fact that for all i, λAi
is a scalar-valued spectral measure for Ai, one can show that

m̃� λA1 × λA2 × · · · × λAn
on F . This implies that L∞(λA1 × λA2 × · · · × λAn) ⊂ L∞(m̃) and hence,
for any φ ∈ L∞(λA1 × λA2 × · · · × λAn), one may define an integral∫

Ω
φ(t) dm̃(t) ∈ S2(H).

See [18, Chapter 1, Section 1, Theorem 13] for details. This element
is defined in [26] as the multiple operator integral associated to φ and
(X1, . . . , Xn−1).
We claim that this construction is equivalent to the one given in the

present paper, namely∫
Ω
φ(t) dm̃(t) = ΓA1,A2,...,An(φ)(X1, . . . , Xn−1).
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To check this identity, let w1, w2 : L∞(λA1×λA2×· · ·×λAn)→ S2(H) be de-
fined by w1(φ) =

∫
Ω φ(t) dm̃(t) and w2(φ) = ΓA1,A2,...,An(φ)(X1, . . . , Xn−1).

For any Z ∈ S2(H), the functional of L∞(λA1 × λA2 × · · · × λAn) taking φ
to
〈∫

Ω φ(t) dm̃(t), Z
〉
induces a countably additive measure on T , which is

absolutely continuous with respect to λA1×λA2×· · ·×λAn . By the Radon–
Nikodym Theorem it is represented by an element of L1(λA1 × λA2 × · · · ×
λAn). Hence w∗1 maps S2(H) into L1(λA1 × λA2 × · · · × λAn). This implies
that w1 is w∗-continuous. We know that w2 is w∗-continuous as well, by
Proposition 3.4. Further it is easy to derive from (3.5) that w1 and w2
coincide on E1 ⊗ · · · ⊗ En. These properties imply the equality w1 = w2 as
claimed.

3.2. Triple operator integrals associated with functions

Let (Ω1, µ1), (Ω2, µ2) and (Ω3, µ3) be three σ-finite measure spaces, and
let φ ∈ L∞(Ω1×Ω2×Ω3). For any J ∈ L2(Ω1×Ω2) and K ∈ L2(Ω2×Ω3),
the function

Λ(φ)(K,J) : (t1, t3) 7→
∫

Ω2

φ(t1, t2, t3)J(t1, t2)K(t2, t3) dµ2(t2)

is a well-defined element of L2(Ω1 × Ω3) with L2-norm less than
‖φ‖∞‖J‖2‖K‖2. Indeed, by the Cauchy–Schwarz inequality, we have∫

Ω1×Ω3

(∫
Ω2

|φ(t1, t2, t3)J(t1, t2)K(t2, t3)|dµ2(t2)
)2

dµ1(t1)dµ3(t3)

6 ‖φ‖2∞
∫

Ω1×Ω3

(∫
Ω2

|J(t1, t2)K(t2, t3)|dµ2(t2)
)2

dµ1(t1)dµ3(t3)

6 ‖φ‖2∞
∫

Ω1×Ω3

(∫
Ω2

|J(t1, t2)|2dµ2(t2)
)

×
(∫

Ω2

|K(t2, t3)|2dµ2(t2)
)

dµ1(t1)dµ3(t3)

6 ‖φ‖2∞
(∫

Ω1×Ω2

|J(t1, t2)|2dµ1(t1)dµ2(t2)
)

×
(∫

Ω2×Ω3

|K(t2, t3)|2dµ2(t2)dµ3(t3)
)
.

Thus Λ(φ) is a bounded bilinear map from L2(Ω2 × Ω3) × L2(Ω1 × Ω2)
into L2(Ω1×Ω3). By the isometric identification between L2(Ω1×Ω2) and
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S2(L2(Ω1), L2(Ω2)) given by (2.9), and their analogues for (Ω2,Ω3) and
(Ω1,Ω3), we may consider that we actually have a bounded bilinear map

Λ(φ) : S2(L2(Ω2), L2(Ω3))× S2(L2(Ω1), L2(Ω2)) −→ S2(L2(Ω1), L2(Ω3)).

In Section 6 we will characterize the functions φ for which Λ(φ) maps
S2(L2(Ω2), L2(Ω3)) × S2(L2(Ω1), L2(Ω2)) into the trace class S1(L2(Ω1),
L2(Ω3)).

Let

E(Ω1,Ω2,Ω3)

= S2(L2(Ω2), L2(Ω3))
∧
⊗ S2(L2(Ω1), L2(Ω2))

∧
⊗ S2(L2(Ω3), L2(Ω1)).

Arguing as in the preceding subsection, we obtain an isometric identifica-
tion

E(Ω1,Ω2,Ω3)∗

= B2(S2(L2(Ω2), L2(Ω3))× S2(L2(Ω1), L2(Ω2)), S2(L2(Ω1), L2(Ω3)))

for the duality pairing given by〈
T, Y ⊗X ⊗ Z

〉
= tr

(
T (Y,X)Z

)
for any bounded bilinear T : S2(L2(Ω2), L2(Ω3)) × S2(L2(Ω1), L2(Ω2)) →
S2(L2(Ω1), L2(Ω3)) and for any X ∈ S2(L2(Ω1), L2(Ω2)), Y ∈ S2(L2(Ω2),
L2(Ω3)) and Z ∈ S2(L2(Ω3), L2(Ω1)).
The following is an analogue of Theorem 3.3 for the present setting.

Proposition 3.7. — The mapping

Λ: L∞(Ω1 × Ω2 × Ω3) −→ E(Ω1,Ω2,Ω3)∗

defined above is a w∗-continuous isometry.

Proof. — Write E = E(Ω1,Ω2,Ω3) for brevity. Consider three functions
J ∈ L2(Ω1 × Ω2), K ∈ L2(Ω2 × Ω3) and L ∈ L2(Ω3 × Ω1). It follows from
the computation at the beginning of the present subsection that

(t1, t3) 7−→
∫

Ω2

|J(t1, t2)||K(t2, t3)|dµ2(t2)

is square integrable. Consequently, the function

ϕ : (t1, t2, t3) 7−→ J(t1, t2)K(t2, t3)L(t3, t1)

belongs to L1(Ω1 × Ω2 × Ω3). Further if XJ ∈ S2(L2(Ω1), L2(Ω2)), YK ∈
S2(L2(Ω2), L2(Ω3)) and ZL ∈ S2(L2(Ω3), L2(Ω1)) denote the Hilbert–
Schmidt operators associated with J , K and L, respectively, then it follows
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from above that〈
Λ(φ), YK ⊗XJ ⊗ZL

〉
E∗,E

=
∫

Ω1×Ω2×Ω3

φϕ d(µ1 ⊗ µ2 ⊗ µ3) = 〈φ, ϕ〉L∞,L1

for any φ ∈ L∞(Ω1×Ω2×Ω3). This readily implies that Λ is w∗-continuous.
We already showed that Λ is a contraction, let us now prove that it is an

isometry. Let φ ∈ L∞(Ω1 × Ω2 × Ω3), with ‖φ‖∞ > 1. We aim at showing
that ‖Λ(φ)‖E∗ > 1. There exist a function ϕ ∈ L1(Ω1×Ω2×Ω3) such that
‖ϕ‖1 = 1 and 〈φ, ϕ〉L∞,L1 > 1. By the density of simple functions in L1,
we may assume that

ϕ =
∑
i,j,k

mijk χF 1
i
⊗ χF 2

j
⊗ χF 3

k
,

where (F 1
i )i (respectively (F 2

j )j and (F 3
k )k) is a finite family of pairwise

disjoint measurable subsets of Ω1 (respectively of Ω2 and Ω3) and mijk ∈ C
for any i, j, k. Let ψ ∈ E be defined by

ψ =
∑
i,j,k

mijk

(
χF 2

j
⊗ χF 3

k

)
⊗
(
χF 1

i
⊗ χF 2

j

)
⊗
(
χF 3

k
⊗ χF 1

i

)
.

For any i, j, k, we have〈
Λ(φ),

(
χF 2

j
⊗ χF 3

k

)
⊗
(
χF 1

i
⊗ χF 2

j

)
⊗
(
χF 3

k
⊗ χF 1

i

)〉
E∗,E

=
∫

Ω1×Ω2×Ω3

φ(t1, t2, t3)χF 1
i
(t1)χF 2

j
(t2)χF 3

k
(t3) dµ1(t1)dµ2(t2)dµ3(t3) .

This implies that
〈Λ(φ), ψ〉E∗,E = 〈φ, ϕ〉L∞,L1 ,

and hence that 〈Λ(φ), ψ〉E∗,E > 1. Now observe that by the definition of
the projective tensor product (see Subsection 2.2), we have

‖ψ‖E 6
∑
i,j,k

|mijk|‖χF 1
i
⊗ χF 2

j
‖2‖χF 2

j
⊗ χF 3

k
‖2‖χF 3

k
⊗ χF 2

j
‖2.

Moreover,

‖χF 1
i
⊗ χF 2

j
‖2 = ‖χF 1

i
‖2‖χF 2

j
‖2 = λ1(F 1

i ) 1
2λ2(F 2

j ) 1
2 .

Likewise,

‖χF 2
j
⊗ χF 3

k
‖2 = λ2(F 2

j ) 1
2λ3(F 3

k ) 1
2 and ‖χF 3

k
⊗ χF 2

j
‖2 = λ3(F 3

k ) 1
2λ1(F 1

i ) 1
2 .

We deduce that

‖ψ‖E 6
∑
i,j,k

|mijk|λ1(F 2
j )λ2(F 2

j )λ3(F 3
k ).
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The right-hand side of this inequality is nothing but the L1-norm of ϕ. Thus
we have proved that ‖ψ‖E 6 ‖ϕ‖1 = 1. This implies that ‖Λ(φ)‖E∗ > 1 as
expected. �

3.3. Passing from operators to functions

Let H be a separable Hilbert space and let A,B and C be normal oper-
ators on H. We keep the notations from Subsection 3.1. We associate the
three measure spaces

(Ω1, µ1) = (σ(C), λC), (Ω2, µ2) = (σ(B), λB)
and (Ω3, µ3) = (σ(A), λA)

and consider the mapping Λ defined in Subsection 3.2 for these three mea-
sure spaces. It maps L∞(λA × λB × λC) into

B2(S2(L2(λB), L2(λA))× S2(L2(λC), L2(λB)), S2(L2(λC), L2(λA))).

The main purpose of this subsection is to establish a precise connection
between this mapping Λ and the triple operator integral mapping ΓA,B,C
from Theorem 3.3.
We may suppose that

λA( · ) = ‖EA( · )e1‖2, λB( · ) = ‖EB( · )e2‖2 and λC( · ) = ‖EC( · )e3‖2

for some separating vectors e1, e2, e3 ∈ H (see Subsection 2.1).
There exists a (necessarily unique) linear map ρA : E1 → H satisfying

ρA(χF ) = EA(F )e1

for any Borel set F ⊂ σ(A). For any finite family (Fi)i of pairwise disjoint
measurable subsets of σ(A) and for any family (αi)i of complex numbers,
we have ∥∥∥∥∥ρA

(∑
i

αiχFi

)∥∥∥∥∥
2

=

∥∥∥∥∥∑
i

αiE
A(Fi)e1

∥∥∥∥∥
2

=
∑
i

|αi|2‖EA(Fi)e1‖2

=
∑
i

|αi|2λA(Fi)

=

∥∥∥∥∥∑
i

αiχFi

∥∥∥∥∥
2

2

.
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Hence ρA extends to an isometry (still denoted by)

ρA : L2(λA) −→ H.

Denote by HA the range of ρA. We obtain

L2(λA)
ρA≡ HA.

We similarly define ρB , ρC and HB ,HC ⊂ H such that

L2(λB)
ρB≡ HB and L2(λC)

ρC≡ HC .

We may consider S2(HB ,HA) as a subspace of S2(H) in a natural way.
Namely we write H = HB

2
⊕ H⊥B and H = HA

2
⊕ H⊥A and identify any

S ∈ S2(HB ,HA) with the matrix(
S 0
0 0

)
∈ S2(HB 2

⊕H⊥B ,HA
2
⊕H⊥A

)
.

We may similarly regard S2(HC ,HB) and S2(HC ,HA) as subspaces of
S2(H).

The next statement means that for any φ ∈ L∞(λA×λB×λC), ΓA,B,C(φ)
maps S2(HB ,HA)×S2(HC ,HB) into S2(HC ,HA) and that under the pre-
vious identifications, this restriction “coincides” with Λ(φ).

Proposition 3.8. — LetX ∈ S2(L2(λB), L2(λA)) and Y ∈ S2(L2(λC),
L2(λB)), and set

X̃ = ρA ◦X ◦ ρ−1
B ∈ S

2(HB ,HA)

and Ỹ = ρB ◦ Y ◦ ρ−1
C ∈ S

2(HC ,HB).

For any φ ∈ L∞(λA × λB × λC), ΓA,B,C(φ)(X̃, Ỹ ) belongs to S2(HC ,HA)
and

(3.6) Λ(φ)(X,Y ) = ρ−1
A ◦ ΓA,B,C(φ)(X̃, Ỹ ) ◦ ρC .

Proof. — We first consider the special case when φ = χF1 ⊗ χF2 ⊗ χF3

for some measurable subsets F1 ⊂ σ(A), F2 ⊂ σ(B) and F3 ⊂ σ(C).
Let U ⊂ σ(A), V, V ′ ⊂ σ(B) and W ⊂ σ(C) and consider the elementary

tensors

X = χV ⊗ χU ∈ S2(L2(λB), L2(λA))

and Y = χW ⊗ χV ′ ∈ S2(L2(λC), L2(λB)).

We associate X̃ and Ỹ as in the statement. Since ρB : L2(λB) → HB is a
unitary, we have ρ−1

B = ρ∗B hence

X̃ = ρB(χV )⊗ ρA(χU ) = EB(V )e2 ⊗ EA(U)e1.
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Likewise,
Ỹ = EC(W )e3 ⊗ EB(V ′)e2.

We have

Λ(φ)(X,Y ) =
∫
σ(B)

φ( · , t2, · )X(t2, · )Y ( · , t2) dλB(t2)

=
∫
σ(B)

χF2(t2)χV (t2)χV ′(t2)χF3χW ⊗ χF1χUdλB(t2)

=
(∫

F2∩V ∩V ′
dλB(t2)

)
χF3∩W ⊗ χF1∩U

= λB(F2 ∩ V ∩ V ′)χF3∩W ⊗ χF1∩U .

Further using the above expressions of X̃ and Ỹ , we have

ΓA,B,Cq(φ)(X̃, Ỹ )

= EA(F1)X̃EB(F2)Ỹ EC(F3)

=
(
EB(V )e2 ⊗ EA(F1 ∩ U)e1

)(
EC(F3 ∩W )e3 ⊗ EB(F2 ∩ V ′)e2

)
=
〈
EB(F2 ∩ V ′)e2, E

B(V )e2
〉
EC(F3 ∩W )e3 ⊗ EA(F1 ∩ U)e1

=
〈
EB(F2 ∩ V ′ ∩ V )e2, e2

〉
EC(F3 ∩W )e3 ⊗ EA(F1 ∩ U)e1

= λB(F2 ∩ V ∩ V ′)EC(F3 ∩W )e3 ⊗ EA(F1 ∩ U)e1.

This shows that ΓA,B,C(φ)(X̃, Ỹ ) belongs to S2(HC ,HA) and that (3.6)
holds true.
By linearity and continuity, this result holds as well for all X ∈

S2(L2(λB), L2(λA)) and all Y ∈ S2(L2(λC), L2(λB)).
Finally since Λ and ΓA,B,C are w∗-continuous, we deduce from the

above special case that the result actually holds true for all φ ∈ L∞(λA ×
λB × λC). �

Corollary 3.9. — The mapping ΓA,B,C from Theorem 3.3 is an isom-
etry.

Proof. — Consider φ ∈ L∞(λA × λB × λC). For any X in S2(L2(λB),
L2(λA)) and Y in S2(L2(λC), L2(λB)), we have

‖Λ(φ)(X,Y )‖2 = ‖ρ−1
A ◦ ΓA,B,C(φ)(X̃, Ỹ ) ◦ ρC‖2

6 ‖ΓA,B,C(φ)(X̃, Ỹ )‖2
6
∥∥ΓA,B,C(φ)

∥∥‖X̃‖2‖X̃‖2
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by Proposition 3.8. Since ‖X̃‖2 = ‖X‖2 and ‖Ỹ ‖2 = ‖Y ‖2, this implies
that

(3.7)
∥∥Λ(φ)

∥∥ 6 ∥∥ΓA,B,C(φ)
∥∥.

By Proposition 3.7, the left-hand side of this inequality is equal to ‖φ‖∞.
Further ΓA,B,C is a contraction. Hence we obtain that ‖ΓA,B,C(φ)‖ =
‖φ‖∞. �

With a similar proof (left to the reader), one can show that the mapping
ΓA1,...,An from Proposition 3.4 in an isometry.

4. Lpσ-spaces

Let (Ω, µ) be a σ-finite measure space and let E be a Banach space.
For any 1 6 p 6 +∞, we let Lp(Ω;E) denote the classical Bochner
space of measurable functions ϕ : Ω→ E (defined up to almost everywhere
zero functions) such that the norm function ‖ϕ( · )‖ belongs to Lp(Ω) (see
e.g. [18, Chapter II]).
We will consider a dual version. Assume that E is separable. A func-

tion φ : Ω → E∗ is said to be w∗-measurable if for all x ∈ E, the function
t ∈ Ω 7→ 〈φ(t), x〉 is measurable. In this case, the function t ∈ Ω 7→ ‖φ(t)‖
is measurable. Indeed, if (xn)n is a dense sequence in the unit sphere of E,
then ‖φ( · )‖ = supn |〈φ( · ), xn〉| is the supremum of a sequence of measur-
able functions, hence is measurable.
Let 1 6 q 6 +∞. By definition, Lqσ(Ω;E∗) is the space of all w∗-

measurable φ : Ω→ E∗ such that ‖φ( · )‖ ∈ Lq(Ω), after taking quotient by
the functions which are equal to 0 almost everywhere. We equip this space
with

‖φ‖q = ‖‖φ( · )‖‖Lq(Ω).

Then (Lqσ(Ω;E∗), ‖ · ‖q) is a Banach space (the proof is the same as in the
scalar case). Further by construction, Lq(Ω;E∗) ⊂ Lqσ(Ω;E∗) isometrically.
Suppose that 1 6 p < +∞ and let 1 < q 6 +∞ be the conjugate

exponent of p. For any φ ∈ Lqσ(Ω;E∗) and any ϕ ∈ Lp(Ω;E), the function
t 7→ 〈φ(t), ϕ(t)〉 is measurable. Indeed any element of Lp(Ω;E) is an almost
everywhere limit of a sequence of Lp(Ω)⊗E, hence it suffices to check this
fact when ϕ ∈ Lp(Ω) ⊗ E. In this case, the measurablity of 〈φ( · ), ϕ( · )〉
is a straightforward consequence of the w∗-measurability of φ. By Hölder’s
inequality, the function 〈φ( · ), ϕ( · )〉 is actually integrable, which yields a
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duality pairing

(4.1) 〈φ, ϕ〉 :=
∫

Ω
〈φ(t), ϕ(t)〉dµ(t) .

Moreover we have

(4.2) |〈φ, ϕ〉| 6 ‖φ‖q‖ϕ‖p.

Theorem 4.1. — The duality pairing (4.1) induces an isometric iso-
morphism

(4.3) Lp(Ω;E)∗ = Lqσ(Ω;E∗).

The above theorem is well-known and has extensions to the non separable
case. However we have not found a satisfactory reference for this simple
(= separable) case and provide a proof below for the sake of completeness.
See [18, Chapter IV] and the references therein for more information.

Recall that we have L1(Ω;E)∗ = B(L1(Ω), E∗) by (2.5). Hence in the
case p = 1, the above theorem yields an isometric identification

(4.4) L∞σ (Ω;F ∗) = B(L1(Ω), F ∗),

a classical result going back to [19, Theorem 2.1.6].
Proof of Theorem 4.1. — The inequality (4.2) yields a contractive map

κ : Lqσ(Ω;E∗) → Lp(Ω;E)∗. Our aim is to show that κ is an isometric
isomorphism.
According to the separability assumption there exists a nondecreasing

sequence (En)n>1 of finite dimensional subspaces of E such that ∪nEn is
dense in E. Since En is finite dimensional, Lqσ(Ω, E∗n) = Lq(Ω, E∗n) and En
satisfies the conclusion of the theorem to be proved, that is,

(4.5) Lp(Ω;En)∗ = Lq(Ω;E∗n)

isometrically (see [18, Chapter IV]). In the sequel we regard Lp(Ω;En) as
a subspace of Lp(Ω;E) in a natural way.
We first note that κ is 1-1. Indeed if φ ∈ Lqσ(Ω;E∗) is such that κ(φ) = 0,

then for any n > 1, φ(t)|En = 0 a.e. by (4.5). Hence φ(t)|∪nEn = 0 a.e.,
which implies that φ(t) = 0 a.e.
Now let δ ∈ Lp(Ω;E)∗, with ‖δ‖ 6 1. Applying (4.5) to the restriction of

δ to Lp(Ω;En) we obtain, for any n > 1, a measurable function φn : Ω→ E∗n
such that ‖φn‖q 6 1 and

∀ ϕ ∈ Lp(Ω)⊗ En, δ(ϕ) =
∫

Ω
〈φn(t), ϕ(t)〉dµ(t) .

ANNALES DE L’INSTITUT FOURIER



TRIPLE OPERATOR INTEGRALS 1417

We may assume that for any n > 1, we have

(4.6) ∀ t ∈ Ω, φn+1(t)|En = φn(t).

Indeed by construction, φn+1|En = φn a.e. and the family (φn)n>1 is count-
able so we can modify all the functions φn on a common negligible set to
get (4.6).
It follows that for any t ∈ Ω, (‖φn(t)‖)n>1 is a nondecreasing sequence,

so we can define a measurable ν : Ω→ [0,∞] by

ν(t) = lim
n
‖φn(t)‖, t ∈ Ω.

If q <∞ we may write∫
Ω
ν(t)q dµ(t) = lim

n

∫
Ω
‖φn(t)‖q dµ(t) 6 1,

by the monotone convergence theorem. This implies that ν is a.e. finite. If
q = ∞, the fact that ‖φn‖∞ 6 1 for any n > 1 implies that ν(t) 6 1 for
a.e. t ∈ Ω. Thus in any case, there exists a negligible subset Ω0 ⊂ Ω such
that ν(t) <∞ for any t ∈ Ω \ Ω0.
If t ∈ Ω\Ω0, then by (4.6) and the density of ∪nEn, there exists a unique

element of E∗, that we call φ(t), such that

∀ n > 1, ∀ x ∈ En, 〈φ(t), x〉 = 〈φn(t), x〉.

Next we set φ(t) = 0 for any t ∈ Ω0. We thus have a function φ : Ω→ E∗.
Let x ∈ E and let (xj)j be a sequence of ∪nEn converging to x. Then

〈φ( · ), xj〉 → 〈φ( · ), x〉 pointwise. Moreover for any j, the function 〈φ( · ), xj〉
is measurable by construction, hence 〈φ( · ), x〉 is measurable. Thus φ is w∗-
measurable.
Now from the definition of φ, we see that δ and κ(φ) coincide on Lp(Ω)⊗

En for any n> 1. Consequently, δ = κ(φ). Moreover ‖φ‖q = limn ‖φn‖q 6 1.
This proves that κ is a metric surjection, and hence an isometric isomor-

phism. �

Remark 4.2. — We already noticed that Lqσ(Ω;E∗) = Lq(Ω;E∗) when
E is finite dimensional. It turns out that for a general Banach space E,
the equality Lqσ(Ω;E∗) = Lq(Ω;E∗) is equivalent to E∗ having the Radon–
Nikodym property, see e.g. [18, Chapter IV]. All Hilbert spaces (more gener-
ally all reflexive Banach spaces) have the Radon–Nikodym property. Later
on we will use this property that for any separable Hilbert space H and
any 1 6 q 6∞, we have

Lqσ(Ω;H) = Lq(Ω;H).
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Let E and F be two separable Banach spaces. Being a completion of
E ⊗ F , their projective tensor product E

∧
⊗ F is separable as well. Recall

that its dual space is equal to B(E,F ∗). Whenever φ : Ω → B(E,F ∗) is a
w∗-measurable function, then for any x ∈ E, the function Tφ(x) : Ω→ F ∗

defined by

(4.7)
[
Tφ(x)

]
(t) =

[
φ(t)

]
(x), t ∈ Ω,

is w∗-measurable.

Corollary 4.3. — The mapping φ 7→ Tφ given by (4.7) induces an
isometric isomorphism

B(E,L∞σ (Ω, F ∗)) = L∞σ (Ω;B(E,F ∗)).

Proof. — By Theorem 4.1 for p = 1, and by (2.3) and (2.4), we have
isometric isomorphisms

B(E,L∞σ (Ω;F ∗)) =
(
E
∧
⊗ L1(Ω;F )

)∗
=
(
E
∧
⊗ L1(Ω)

∧
⊗ F

)∗
= L1(Ω;E

∧
⊗ F )∗

= L∞σ (Ω;B(E,F ∗)).

It is easy to check that the correspondence is given by (4.7). �

Remark 4.4. — Let E1, E2 be two Banach spaces and let U : E∗1 → E∗2
be a w∗-continuous map. For any φ ∈ L∞σ (Ω;E∗1 ), the composition map
U ◦ φ : Ω → E∗2 belongs to L∞σ (Ω;E∗2 ) and the mapping φ 7→ U ◦ φ is a
bounded operator from L∞σ (Ω;E∗1 ) into L∞σ (Ω;E∗2 ), whose norm is equal
‖U‖. It is easy to check that this mapping is w∗-continuous. If further U is
an isometry, then φ 7→ U ◦ φ is an isometry as well.

Applying this elementary principle to the embedding of Γ2(L1(Ω1),
L∞(Ω2)) into the space

B
(
K(L2(Ω1), L2(Ω2)), B(L2(Ω1), L2(Ω2))

)
,

provided by Theorem 2.1, we obtain a w∗-continuous isometric inclusion

(4.8) L∞σ
(
Ω; Γ2(L1(Ω1), L∞(Ω2))

)
⊂ L∞σ

(
Ω;B(K(L2(Ω1), L2(Ω2)), B(L2(Ω1), L2(Ω2)))

)
.
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5. Measurable factorization in L∞σ (Ω; Γ2(E,F ∗))

The main purpose of this section is to prove Theorem 5.1 below. This
result will be applied in Subsection 5.2 (and in Section 6) to the study of
measurable Schur multipliers.

We will say that a measure space (Ω, µ) is separable when L2(Ω, µ) is
separable. This implies that (Ω, µ) is σ-finite and moreover, Lp(Ω, µ) is
separable for any 1 6 p <∞.

5.1. The general case

It follows from Subsection 2.2 that for any separable Banach spaces E,F ,
the space Γ2(E,F ∗) is a dual space with a separable predual. If H is a
separable Hilbert space, then B(E,H) and B(F,H) are also dual spaces
with separable predual.

Theorem 5.1. — Let (Ω, µ) be a separable measure space and let E,F
be two separable Banach spaces. Let φ ∈ L∞σ

(
Ω; Γ2(E,F ∗)

)
. Then there

exist a separable Hilbert space H and two functions

α ∈ L∞σ
(
Ω;B(E,H)

)
and β ∈ L∞σ

(
Ω;B(F,H)

)
such that ‖α‖∞‖β‖∞ 6 ‖φ‖∞ and for any (x, y) ∈ E × F ,

(5.1)
〈
[φ(t)](x), y

〉
=
〈
[α(t)](x), [β(t)](y)

〉
, for a.e. t ∈ Ω.

We will need two lemmas, in which (Ω, µ) denotes an arbitrary σ-finite
measure space.
The first one is a variant of the classical classification of abelian von

Neumann algebras. For any θ ∈ L∞(Ω), and any Hilbert space H, we let
Mθ : L2(Ω;H) → L2(Ω;H) denote the multiplication operator taking any
ϕ ∈ L2(Ω;H) to θϕ.

Lemma 5.2. — Let H be a separable Hilbert space and let π : L∞(Ω)→
B(H) be a w∗-continuous ∗-representation. There exist a separable Hilbert
space H and an isometric embedding ρ : H ↪→ L2(Ω;H) such that for any
θ ∈ L∞(Ω),

ρπ(θ) = Mθρ.

Proof. — Since π is w∗-continuous, there exists a measurable subset
Ω′ ⊂ Ω such that the range of π is isomorphic to L∞(Ω′) in the von Neu-
mann algebra sense and π coincides with the restriction map (apply [27,
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Corollary 2.5.5]). It therefore follows from [16, Theorem II.3.5] that there
exist a measurable partition {Ωn : 16n6∞} of Ω′ and a unitary operator

ρ1 : H −→
2⊕

16n6∞
L2(Ωn; `2n)

such that for any θ ∈ L∞(Ω), ρ1π(θ)ρ∗1 coincides with the multiplication
by θ. (Note that in the above decomposition, the index n may be finite or
infinite and the notation `2∞ stands for `2.) Let

H =
2⊕

16n6∞
`2n

and consider the canonical embedding

ρ2 :
2⊕

16n6∞
L2(Ωn; `2n) −→ L2(Ω;H).

Then ρ = ρ2ρ1 satisfies the lemma. �

It is well-known that for any Hilbert space H, the commutant of

L∞(Ω) ' L∞(Ω)⊗ IH ⊂ B(L2(Ω;H))

coincides with L∞(Ω)⊗B(H). The next statement is a generalization of
this result to the case when H is replaced by Banach spaces.
We consider two separable Banach spaces W1,W2. Note that by (2.3),

B(W1,W
∗
2 ) is a dual space with separable predual. We say that a linear

map
T : L2(Ω;W1) −→ L2

σ(Ω;W ∗2 )
is a module map provided that

∀ ϕ ∈ L2(Ω;W1), ∀ θ ∈ L∞(Ω), T (θϕ) = θT (ϕ).

Next we generalize the notion of multiplication by an L∞-function as fol-
lows. For any ∆ ∈ L∞σ

(
Ω;B(W1,W

∗
2 )
)
, we define a multiplication operator

(5.2) M∆ : L2(Ω;W1) −→ L2
σ(Ω;W ∗2 )

by setting [
M∆(ϕ)

]
(t) = [∆(t)](ϕ(t)), t ∈ Ω,

for any ϕ ∈ L2(Ω;W1). Indeed it is easy to check (left to the reader) that the
function in the right-hand side of the above equality belongs to L2

σ(Ω;W ∗2 ).
Moreover

(5.3) ‖M∆‖ = ‖∆‖∞.
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Each multiplication operator M∆ is a module map, as we have

M∆(θϕ) = M∆θ(ϕ) = θM∆(ϕ)

for any θ ∈ L∞(Ω). The following lemma is a converse.

Lemma 5.3. — Let T : L2(Ω;W1)→ L2
σ(Ω;W ∗2 ) be a module map. Then

there exists a function ∆ ∈ L∞σ
(
Ω;B(W1,W

∗
2 )
)
such that T = M∆.

Proof. — In the scalar case (W1 = W2 = C) this is an elementary result;
the proof consists in reducing to this scalar case.
We define a bilinear map T̂ : W1 × W2 → B(L2(Ω)) by the following

formula. For any w1 ∈W1, w2 ∈W2 and x ∈ L2(Ω), we set[
T̂ (w1, w2)

]
(x) =

{
t 7→

〈[
T (x⊗ w1)

]
(t), w2

〉}
.

Recall the identification L2
σ(Ω;W ∗2 ) = L2(Ω;W2)∗ from Theorem 4.1. If we

consider T as a map from L2(Ω;W1) into L2(Ω;W2)∗, then we have

(5.4)
〈
T (x⊗ w1), y ⊗ w2

〉
=
∫

Ω

([
T̂ (w1, w2)

]
(x)
)

(t) y(t) dµ(t)

for any w1 ∈W1, w2 ∈W2, x ∈ L2(Ω) and y ∈ L2(Ω).
Further for any θ ∈ L∞(Ω) and x ∈ L2(Ω), we have[

T̂ (w1, w2)
]
(θx) =

〈[
T (θ(x⊗ w1))

]
( · ), w2

〉
=
〈
θ( · )

[
T (x⊗ w1)

]
( · ), w2

〉
= θ
[
T̂ (w1, w2)

]
(x),

because T is a module map. Hence T̂ (w1, w2) is a module map.
Let us identify L∞(Ω) with the von Neumann subalgebra of B(L2(Ω))

consisting of multiplication operators. The above property shows that
T̂ (w1, w2) is such a multiplication operator for any w1 ∈ Z1 and w2 ∈ Z2.
Hence we may actually regard T̂ as a bilinear map

T̂ : W1 ×W2 −→ L∞(Ω).

Now observe that applying (2.2), (2.3) and (4.4), we have isometric identi-
fications

B2(W1 ×W2, L
∞(Ω)) = B(W1

∧
⊗W2, L

∞(Ω))

= B(L1(Ω), (W1
∧
⊗W2)∗)

= B(L1(Ω), B(W1,W
∗
2 ))

= L∞σ
(
Ω;B(W1,W

∗
2 )
)
.
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Let ∆ ∈ L∞σ
(
Ω;B(W1,W

∗
2 )
)
be corresponding to T̂ in this identification.

Then we have〈
[∆(t)](w1), w2

〉
=
(
T̂ (w1, w2)

)
(t), w1 ∈W1, w2 ∈W2, t ∈ Ω.

Thus applying (5.4) we obtain that〈
T (x⊗ w1), y ⊗ w2

〉
=
∫

Ω

〈
[∆(t)](w1), w2

〉
x(t)y(t) dµ(t)

=
〈
M∆(x⊗ w1), y ⊗ w2

〉
for any w1 ∈ W1, w2 ∈ W2, x ∈ L2(Ω) and y ∈ L2(Ω). By the density of
L2(Ω)⊗W1 and L2(Ω)⊗W2 in L2(Ω;W1) and L2(Ω;W2), respectively, this
implies that T = M∆. �

Proof of Theorem 5.1. This proof should be regarded as a module version
of the proof of [32, Theorem 3.4]. As in this book we adopt the following
notation. For any finite families (fj)j and (ei)i in E, we write

(fj)j < (ei)i

provided that

∀ η ∈ E∗,
∑
j

|η(fj)|2 6
∑
i

|η(ei)|2.

In the sequel we simply write L2 (resp. L∞) instead of L2(Ω) (resp.
L∞(Ω)) as there is no risk of confusion. Then we set

V = L2 ⊗ E ⊂ L2(Ω;E).

We fix some φ ∈ L∞σ
(
Ω; Γ2(E,F ∗)

)
and we let C = ‖φ‖∞. Then φ is

an element of L∞σ
(
Ω;B(E,F ∗)

)
. Hence according to (5.2) we may consider

the multiplication operator

T = Mφ : L2(Ω;E) −→ L2
σ(Ω;F ∗).

We let I = L∞×E∗. A generic element of I will be denoted by ζ = (θ, η),
with θ ∈ L∞ and η ∈ E∗.
For any v =

∑
s xs ⊗ es ∈ V (finite sum) and ζ = (θ, η) ∈ I, we set

ζ· v =
∑
s

η(es)θxs ∈ L2.

Lemma 5.4. — Let (wj)j and (vi)i be finite families in V such that

(5.5) ∀ ζ ∈ I,
∑
j

‖ζ·wj‖22 6
∑
i

‖ζ· vi‖22.
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Then

(5.6)
∑
j

‖T (wj)‖22 6 C2
∑
i

‖vi‖22.

Proof. — Let (wj)j and (vi)i be finite families in V and assume (5.5).
Consider ei,s, fj,s in E, xi,s, yj,s in L2 such that

vi =
∑
s

xi,s ⊗ ei,s and wj =
∑
s

yj,s ⊗ fj,s.

Let ζ = (θ, η) ∈ I. For any j,

‖ζ·wj‖22 =
∫

Ω

∣∣∣∣∑
s

η(fj,s)θ(t)yj,s(t)
∣∣∣∣2 dµ(t) .

Hence ∑
j

‖ζ·wj‖22 =
∫

Ω
|θ(t)|2

(∑
j

∣∣∣∣∑
s

η(fj,s)yj,s(t)
∣∣∣∣2
)

dµ(t) .

Likewise,∑
i

‖ζ· vi‖22 =
∫

Ω
|θ(t)|2

(∑
i

∣∣∣∣∑
s

η(ei,s)xi,s(t)
∣∣∣∣2
)

dµ(t) .

Thus by (5.5), we have

(5.7)
∫

Ω
|θ(t)|2

(∑
j

∣∣η(wj(t))∣∣2)dµ(t)6
∫

Ω
|θ(t)|2

(∑
i

∣∣η(vi(t))∣∣2)dµ(t).

Let E1 ⊂ E be the subspace spanned by the ei,s and fj,s. Since it is
finite dimensional, its dual space is obviously separable. Let (ηn)n>1 be a
dense sequence of E∗1 and for any n > 1, extend ηn to an element of E∗
(still denoted by ηn). Then for any finite families (fj)j and (ei)i in E1, we
have

(yj)j < (xi)i ⇐⇒ ∀ n > 1,
∑
j

|ηn(fj)|2 6
∑
i

|ηn(ei)|2.

It follows from (5.7) that for almost every t ∈ Ω, we have∑
j

|ηn
(
wj(t)

)
|2 6

∑
i

|ηn
(
vi(t)

)
|2

for every n > 1. Since the functions vi, wj are valued in E1, this implies
that

(wj(t))j < (vi(t))i for a.e. t ∈ Ω.
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By the implication “(i) → (iii)” of [32, Theorem 3.4], this property implies
that for a.e. t ∈ Ω,∑

j

∥∥[φ(t)]
(
wj(t)

)∥∥2
F∗
6 C2

∑
i

∥∥vi(t)∥∥2
E
.

Integrating this inequality on Ω yields (5.6). �

We let Λ be the set of all functions g : I → R for which there exists a
finite family (vi)i in V such that

(5.8) ∀ ζ ∈ I, |g(ζ)| 6
∑
i

‖ζ· vi‖22.

This is a real vector space. We let Λ+ denote its positive part, i.e. the set
of all functions I → R+ belonging to Λ. This is a convex cone. For any
g ∈ Λ we set

p(g) = C2 inf
{∑

i

‖vi‖22

}
,

where the infimum runs over all finite families (vi)i in V satisfying (5.8).
It is easy to check that p is sublinear, that is, p(g + g′) 6 p(g) + p(g′) for
any g, g′ ∈ Λ and p(tg) = tp(g) for any g ∈ Λ and any t > 0.
Next for any g ∈ Λ+, we set

q(g) = sup
{∑

j

‖T (wj)‖22

}
,

where the supremum runs over all finite families (wj)j in V satisfying

(5.9) ∀ ζ ∈ I, g(ζ) >
∑
j

‖ζ·wj‖22.

It is easy to check that q is superlinear, that is, q(g) + q(g′) 6 q(g+ g′) for
any g, g′ ∈ Λ+ and q(tg) = tq(g) for any g ∈ Λ+ and any t > 0.
By Lemma 5.4, q 6 p on Λ+. Hence by the Hahn–Banach Theorem given

in [32, Corollary 3.2], there exists a positive linear functional ` : Λ→ R such
that

(5.10) ∀ g ∈ Λ, `(g) 6 p(g)

and

(5.11) ∀ g ∈ Λ+, q(g) 6 `(g).

Following [32, Chapter 8], we introduce a Hilbert space

Λ2(I, `;L2)
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defined as follows. First we let L(I, `;L2) be the set of all functions G : I →
L2 such that the R-valued function ζ 7→ ‖G(ζ)‖22 belongs to Λ and we set
N(G) =

(
`(ζ 7→ ‖G(ζ)‖22)

) 1
2 for any such function. Then L(I, `;L2) is

a complex vector space and N is a Hilbertian seminorm on L(I, `;L2).
Hence the quotient of L(I, `;L2) by the kernel of N is a pre-Hilbert space.
By definition, Λ2(I, `;L2) is the completion of this quotient space.
For any v ∈ V , the function ζ 7→ ζ· v belongs to L(I, `;L2). Then we

define a linear map
T1 : V −→ Λ2(I, `;L2)

as follows: for any v ∈ V , T1(v) is the class of ζ 7→ ζ· v modulo the kernel
of N . Then we have

‖T1(v)‖2L = `
(
ζ 7→ ‖ζ· v‖2

)
6 p
(
ζ 7→ ‖ζ· v‖22

)
6 C2‖v‖22

by (5.10) and the definition of p. Hence T1 uniquely extends to a bounded
operator

T1 : L2(Ω;E) −→ Λ2(I, `;L2), with ‖T1‖ 6 C.

For any v ∈ V , we have

‖T (v)‖22 6 q
(
ζ 7→ ‖ζ· v‖2

)
6 `
(
ζ 7→ ‖ζ· v‖2

)
= ‖T1(v)‖2.

The resulting inequality ‖T (v)‖2 6 ‖T1(v)‖ implies the existence of a (nec-
essarily unique) bounded linear operator

T2 : T1(V ) −→ L2
σ(Ω;F ∗), with ‖T2‖ 6 1,

such that

(5.12) ∀ v ∈ V, T (v) = T2
(
T1(v)

)
.

(Here and later on in the paper, T1(V ) ⊂ Λ2(I, `;L2) denotes the closure
of T1(V ).)

For any v ∈ V and any θ ∈ L∞, we have

(5.13) ‖T1(θv)‖ 6 ‖θ‖∞‖T1(v)‖.

Indeed write v =
∑
s xs ⊗ es, with es ∈ E and xs ∈ L2. For any γ ∈ L∞

and η ∈ E∗, we have∥∥∥∥∥∑
s

η(es)γθxs

∥∥∥∥∥
2

6 ‖θ‖∞

∥∥∥∥∥∑
s

η(es)γxs

∥∥∥∥∥
2

.
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Hence ‖ζ· (θv)‖ 6 ‖θ‖∞‖ζ· v‖ for any ζ = (γ, η) ∈ I. Since the functional `
is positive on Λ, this implies that `

(
ζ 7→ ‖ζ· (θv)‖2

)
6 ‖θ‖2∞`

(
ζ 7→ ‖ζ· v‖2

)
,

which yields (5.13).
This inequality implies the existence of a (necessarily unique) linear con-

traction
π : L∞ −→ B

(
T1(V )

)
,

such that

(5.14) T1(θv) = π(θ)T1(v), v ∈ L2(Ω;E), θ ∈ L∞.

It is clear that π is a unital homomorphism. This implies that π is a ∗-
representation. Indeed for any unitary θ ∈ L∞, we have I = π(θθ) =
π(θ)π(θ) = π(θ)π(θ) and the two operators π(θ) and π(θ) are contractions.
This implies that π(θ) is a unitary and that

(5.15) π(θ)∗ = π(θ)

Since unitaries generate L∞, (5.15) actually holds true for any θ ∈ L∞.
Let θ ∈ L∞ and assume that (θι)ι is a bounded net of L∞ converging

to θ in the w∗-topology. For any x ∈ L2, θιx → θx in L2 (this uses the
boundedness of the net). By the continuity of T1 this implies that for any
e ∈ E, T1(θιx⊗e)→ T1(θx⊗e) in T1(V ). By linearity, this implies that for
any v ∈ V , T1(θιv)→ T1(θv) in T1(V ). In other words, π(θι)(h)→ π(θ)(h)
for any h ∈ T1(V ). Since the net (π(θι))ι is bounded, this implies that
π(θι)→ π(θ) strongly. Hence π is a w∗-continuous ∗-representation.

Recall that E and L2 are assumed separable, hence the Hilbert space
T1(V ) is separable. By Lemma 5.2, there exists a separable Hilbert space H
and an isometric embedding ρ : T1(V ) ↪→ L2(Ω;H) such that ρπ(θ) = Mθρ

for any θ ∈ L∞. Then for any such θ and any v ∈ L2(Ω;E), we have

ρT1(θv) =
[
ρπ(θ)T1

]
(v) = θρ(T1(v)),

by (5.14). This shows that the composed map

S1 = ρT1 : L2(Ω;E) −→ L2(Ω;H) is a module map.

Define
S2 = T2ρ

∗ : L2(Ω;H) −→ L2
σ(Ω;F ∗).

Let θ ∈ L∞(Ω). For any v ∈ V , we have[
T2π(θ)

]
(T1(v)) = T2T1(θv) = T (θv) = θT (v) = θT2(T1(v))

by (5.14), (5.12) and the fact that T is a module map. This shows that

T2π(θ) = MθT2.
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Further we have ρ∗Mθ =
(
Mθρ

)∗ =
(
ρπ(θ)

)∗ = π(θ)ρ∗. Hence MθS2 =
S2Mθ, that is,

S2 is a module map.
Since ρ∗ρ is equal to the identity of T1(V ), it follows from (5.12) that

T = S2S1.

Thus we have constructed a “module Hilbert space factorization” of T , and
this is the main point.
To conclude, let S2∗ : L2(Ω;F )→ L2(Ω;H∗) be the restriction of the ad-

joint of S2 to L2(Ω;F ). Then S2∗ is a module map. Now apply Lemma 5.3
to S1 and S2∗. Let α ∈ L∞σ (Ω;B(E,H)) and β ∈ L∞σ (Ω;B(F,H∗)) such
that S1 is equal to the multiplication by α and S2∗ is equal to the multi-
plication by β. Given any e ∈ E and f ∈ F , we have∫

Ω

〈[
φ(t)](e), f

〉
x(t)y(t) dµ(t) =

〈
T (x⊗ e), y ⊗ f

〉
= 〈S1(x⊗ e), S2∗(y ⊗ f)

〉
=
∫

Ω

〈
[α(t)](e)x(t), [β(t)](f) y(t)

〉
dµ(t)

=
∫

Ω

〈
[α(t)](e), [β(t)](f)

〉
x(t)y(t) dµ(t)

for any x, y ∈ L2. Applying identification between H∗ and H, this proves
(5.1). By construction, ‖α‖∞ 6 C and ‖β‖∞ 6 1. �

5.2. A special case: Schur multipliers

Let (Ω1, µ1),(Ω2, µ2) and (Ω3, µ3) be three separable measure spaces. We
are going to apply Theorem 5.1 with (Ω, µ) = (Ω2, µ2), E = L1(Ω1) and
F = L1(Ω3).
To any φ ∈ L∞(Ω1×Ω2×Ω3), one may associate φ̃ ∈ L∞σ

(
Ω2;B(L1(Ω1),

L∞(Ω3))
)
as follows. For any r ∈ L1(Ω1),

(5.16)
[
φ̃(t2)

]
(r) =

∫
Ω1

φ(t1, t2, · ) r(t1) dµ1(t1), t2 ∈ Ω2.

According to the obvious identification

L∞(Ω1 × Ω2 × Ω3) = L∞σ
(
Ω2;L∞(Ω1 × Ω3)

)
and (2.10), the mapping φ 7→ φ̃ induces a w∗-homeomorphic isometric
identification

L∞(Ω1 × Ω2 × Ω3) = L∞σ
(
Ω2;B(L1(Ω1), L∞(Ω3))

)
,
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By Remark 4.4, the w∗-continuous contractive embedding Γ2(L1(Ω1),
L∞(Ω3)) ⊂ B(L1(Ω1), L∞(Ω3)) induces a w∗-continuous contractive em-
bedding

L∞σ
(
Ω2; Γ2(L1(Ω1), L∞(Ω3))

)
⊂ L∞σ

(
Ω2;B(L1(Ω1), L∞(Ω3))

)
.

Combining with the preceding identification we obtain a further w∗-cont-
inuous contractive embedding

(5.17) L∞σ
(
Ω2; Γ2(L1(Ω1), L∞(Ω3))

)
⊂ L∞(Ω1 × Ω2 × Ω3).

According to this, we will write φ ∈ L∞σ
(
Ω2; Γ2(L1(Ω1), L∞(Ω3))

)
when φ̃

actually belongs to that space. In this case, for the sake of clarity, we let

‖φ‖∞,Γ2

denote its norm as an element of L∞σ
(
Ω2; Γ2(L1(Ω1), L∞(Ω3))

)
. It is greater

than or equal to its norm as an element of L∞(Ω1 × Ω2 × Ω3).

Theorem 5.5. — Let φ ∈ L∞(Ω1 × Ω2 × Ω3) and C > 0. Then φ ∈
L∞σ
(
Ω2; Γ2(L1(Ω1), L∞(Ω3))

)
and ‖φ‖∞,Γ2 6 C if and only if there exist a

separable Hilbert space H and two functions

a ∈ L∞
(
Ω1 × Ω2;H

)
and b ∈ L∞

(
Ω2 × Ω3;H

)
such that ‖a‖∞‖b‖∞ 6 C and

(5.18) φ(t1, t2, t3) =
〈
a(t1, t2), b(t2, t3)

〉
for a.e. (t1, t2, t3) ∈ Ω1×Ω2×Ω3.

Proof. — Assume that φ belongs to L∞σ
(
Ω2; Γ2(L1(Ω1), L∞(Ω3))

)
, with

‖φ‖∞,Γ2 6 C. According to Theorem 5.1, there exist a Hilbert space H and
two functions

α ∈ L∞σ
(
Ω2;B(L1(Ω1), H)

)
and β ∈ L∞σ

(
Ω2;B(L1(Ω3), H)

)
such that for any r1 ∈ L1(Ω1) and r3 ∈ L1(Ω3),

(5.19)
〈
[φ̃(t2)](r1), r3

〉
=
〈
[α(t2)](r1), [β(t2)](r3)

〉
for a.e. t2 ∈ Ω2.

By (2.4), (2.5) and (4.4) we have isometric identifications

L∞σ
(
Ω2;B(L1(Ω1), H)

)
= L∞σ

(
Ω2; (L1(Ω1)

∧
⊗H∗)∗

)
=
(
L1(Ω2)

∧
⊗ L1(Ω1)

∧
⊗H∗

)∗
= L1(Ω1 × Ω2;H∗)∗

= L∞σ (Ω1 × Ω2;H).
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Moreover L∞σ (Ω1 × Ω2;H) = L∞(Ω1 × Ω2;H), see Remark 4.2. Hence we
finally have an isometric identification

L∞σ
(
Ω2;B(L1(Ω1), H)

)
= L∞(Ω1 × Ω2;H).

Likewise we have an isometric identification

L∞σ
(
Ω2;B(L1(Ω3), H)

)
= L∞(Ω2 × Ω3;H).

Let a ∈ L∞(Ω1×Ω2;H) and b ∈ L∞(Ω2×Ω3;H) be corresponding to α
and β respectively in the above identifications. Then for any r1 ∈ L1(Ω1),

[α(t2)](r1) =
∫

Ω1

a(t1, t2) r1(t1) dµ1(t1) for a.e. t2 ∈ Ω2.

Likewise, for any r3 ∈ L1(Ω3),

[β(t2)](r3) =
∫

Ω3

b(t2, t3) r3(t3) dµ3(t3) for a.e. t2 ∈ Ω2.

Combining (5.19) and (5.16) we deduce that for any r1 ∈ L1(Ω1) and
r3 ∈ L1(Ω3), we have∫

Ω1×Ω3

〈a(t1, t2), b(t2, t3)〉 r1(t1) r3(t3) dµ1(t1)dµ3(t3)

=
〈[
φ̃(t2)

]
(r1), r3

〉
=
∫

Ω1×Ω3

φ(t1, t2, t3)r1(t1) r3(t3) dµ1(t1)dµ3(t3)

for a.e. t2 ∈ Ω2. This implies (5.18) and shows the “only if” part.
Assume conversely that (5.18) holds true for some a in L∞(Ω1 ×Ω2;H)

and some b in L∞(Ω1 × Ω2;H). Using the above identifications, we con-
sider α ∈ L∞σ

(
Ω2;B(L1(Ω1), H)

)
and β ∈ L∞σ

(
Ω2;B(L1(Ω3), H)

)
be cor-

responding to a and b, respectively. Then the above computations lead
to (5.19). This identity means that for a.e. t2 ∈ Ω2, we have a Hilbert space
factorisation φ̃(t2) = β(t2)∗α(t2). This shows that φ ∈ L∞σ

(
Ω2; Γ2(L1(Ω1),

L∞(Ω3))
)
, with ‖φ‖∞,Γ2 6 ‖a‖∞‖b‖∞. �

6. Characterization of S2 × S2 → S1 boundedness

Let H be a separable Hilbert space and let A,B and C be normal oper-
ators on H. Let λA, λB and λC be scalar-valued spectral measures associ-
ated with A, B and C. Recall the definition of the triple operator mapping
ΓA,B,C from Theorem 3.3. The purpose of this section is to characterize the
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functions φ ∈ L∞(λA×λB×λC) such that ΓA,B,C(φ) maps S2(H)×S2(H)
into S1(H).
We shall start with a factorization formula of independent interest. Let

ΓA,B and ΓB,C be the double operator integral mappings associated re-
spectively with (A,B) and with (B,C), see Proposition 3.4. As noted in
Remark 3.5, ΓA,B and ΓB,C are ∗-representations. Recall that they are
w∗-continuous.

In the next statement we will consider the product uv of a function
u ∈ L∞(λA × λB) and a function v ∈ L∞(λB × λC). The meaning is that
we consider

L∞(λA×λB)⊂L∞(λA×λB×λC) and L∞(λB×λC)⊂L∞(λA×λB×λC)

in a canonical way and multiply u and v in this common bigger space.

Lemma 6.1. — Let u ∈ L∞(λA×λB) and v ∈ L∞(λB ×λC). Then, for
all X,Y ∈ S2(H), we have

ΓA,B,C(uv)(X,Y ) = ΓA,B(u)(X)ΓB,C(v)(Y ).

Proof. — Fix X,Y ∈ S2(H). Let u1 ∈ L∞(λA), u2, v1 ∈ L∞(λB) and
v2 ∈ L∞(λC). Consider u = u1⊗u2 ∈ L∞(λA)⊗L∞(λB) and v = v1⊗v2 ∈
L∞(λB)⊗L∞(λC). Then we have uv = u1⊗u2v1⊗v2 ∈ L∞(λA)⊗L∞(λB)⊗
L∞(λC). Therefore

ΓA,B,C(uv)(X,Y ) = u1(A)X(u2v1)(B)Y v2(C)
= u1(A)Xu2(B)v1(B)Y v2(C)

= ΓA,B(u)(X)ΓB,C(v)(Y ).

Now, take u ∈ L∞(λA× λB) and v ∈ L∞(λB × λC). Let (ui)i and (vj)j be
two nets in L∞(λA) ⊗ L∞(λB) and L∞(λB) ⊗ L∞(λC) respectively, con-
verging to u and v in the w∗-topology. By linearity, the previous calculation
implies that for all i, j,

ΓA,B,C(uivj)(X,Y ) = ΓA,B(ui)(X)ΓB,C(vj)(Y ).

Take Z ∈ S2(H) and fix j. Since ΓB,C(vj)(Y )Z belongs to S2(H) we
have

lim
i

tr(ΓA,B(ui)(X)ΓB,C(vj)(Y )Z) = tr(ΓA,B(u)(X)ΓB,C(vj)(Y )Z)

= tr(ΓB,C(vj)(Y )ZΓA,B(u)(X))
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by the w∗-continuity of ΓA,B . Similarly, since ZΓA,B(u)(X) ∈ S2(H), the
w∗-continuity of ΓB,C implies that

lim
j

tr(ΓB,C(vj)(Y )ZΓA,B(u)(X)) = tr(ΓB,C(v)(Y )ZΓA,B(u)(X))

= tr(ΓA,B(u)(X)ΓB,C(v)(Y )Z).

On the other hand, (uivj)i w∗-converges to uvj for any fixed j and (uvj)j
w∗-converges to uv in L∞(λA×λB×λC). Hence the w∗-continuity of ΓA,B,C
implies that

lim
j

lim
i

tr(ΓA,B,C(uivj)(X,Y )Z) = lim
j

tr(ΓA,B,C(uvj)(X,Y )Z)

= tr(ΓA,B,C(uv)(X,Y )Z).

Thus, for all Z ∈ S2(H),

tr(ΓA,B(u)(X)ΓB,C(v)(Y )Z) = tr(ΓA,B,C(uv)(X,Y )Z),

which implies that ΓA,B,C(uv) = ΓA,B(u)(X)ΓB,C(v)(Y ). �

The next theorem is our main result. It should be regarded as an exten-
sion of [12, Corollary 8] to the measurable setting. In the latter statement
one considers a matrix M = {mikj}i,k,j>1 and it is implicitly shown that
the bilinear Schur multiplier associated with M maps S2 × S2 into S1 if
and only ifM belongs to `∞

(
Γ2(`1, `∞)

)
. In the current situation, matrices

are replaced by functions. The scheme of proof of Theorem 6.2 is similar
to the one of [12, Corollary 8] but requires various additional tools.

Theorem 6.2. — Let H be a separable Hilbert space, let A,B and C
be normal operators on H and let φ ∈ L∞(λA × λB × λC). The following
are equivalent :

(1) ΓA,B,C(φ) ∈ B2(S2(H)× S2(H), S1(H)).
(2) There exist a separable Hilbert space H and two functions

a ∈ L∞(λA × λB ;H) and b ∈ L∞(λB × λC ;H)

such that

φ(t1, t2, t3) = 〈a(t1, t2), b(t2, t3)〉

for a.e. (t1, t2, t3) ∈ σ(A)× σ(B)× σ(C).
In this case,

(6.1)
∥∥ΓA,B,C(φ) : S2(H)× S2(H) −→ S1(H)

∥∥ = inf
{
‖a‖∞‖b‖∞

}
,

where the infimum runs over all pairs (a, b) satisfying (2).
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Proof.
(2) → (1). — Assume (2) and let (εk)k∈N be a Hilbertian basis of H.

For any k ∈ N, define

ak = 〈a, εk〉 ∈ L∞(λA × λB) and bk = 〈b, εk〉 ∈ L∞(λB × λC).

We set

|a| =
(∑

n

|ak|2
) 1

2

;

this function belongs to L∞(λA × λB) and we have ‖a‖∞ = ‖|a|‖∞.
Let X ∈ S2(H). Since ΓA,B is a w∗-continuous ∗-representation, we have∑

k

‖ΓA,B(ak)(X)‖22 =
∑
k

〈
ΓA,B(ak)(X),ΓA,B(ak)(X)

〉
=
∑
n

〈
ΓA,B(ak)ΓA,B(ak)(X), X

〉
=
〈
ΓA,B(|a|2)(X), X

〉
6 ‖|a|2‖∞‖X‖22 = ‖a‖2∞‖X‖22.

We prove similarly that if Y ∈ S2(H), then∑
n

‖ΓB,C(bk)(Y )‖22 6 ‖b‖2∞‖Y ‖22.

Consequently, for all X,Y ∈ S2(H), we have the inequalities∑
k

‖ΓA,B(ak)(X)ΓB,C(bk)(Y )‖1

6
∑
k

‖ΓA,B(ak)(X)‖2‖ΓB,C(bk)(Y )‖2

6

(∑
k

‖ΓA,B(ak)(X)‖22

) 1
2
(∑

k

‖ΓB,C(bk)(Y )‖22

) 1
2

6 ‖a‖∞‖b‖∞‖X‖2‖Y ‖2.
Therefore, we can define a bounded bilinear map

Θ: S2(H)× S2(H) −→ S1(H)

by

Θ(X,Y ) =
∞∑
k=1

ΓA,B(ak)(X)ΓB,C(bk)(Y ), X, Y ∈ S2(H),

and we have

(6.2) ‖Θ‖ 6 ‖a‖∞‖b‖∞.
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We claim that
ΓA,B,C(φ) = Θ.

To check this, consider

ãn =
n∑
k=0

ak ⊗ εk and b̃n =
n∑
k=0

bk ⊗ εk

for any n ∈ N. Then we set

φn(t1, t2, t3) =
〈
ãn(t1, t2), b̃n(t2, t3)

〉
=

n∑
k=0

ak(t1, t2)bk(t2, t3).

Fix X,Y ∈ S2(H). We have ΓA,B,C(φn) =
∑n
k=0 ΓA,B,C(akbk) hence by

Lemma 6.1,

ΓA,B,C(φn)(X,Y ) =
n∑
k=0

ΓA,B(ak)(X)ΓB,C(bk)(Y ).

Consequently,

ΓA,B,C(φn)(X,Y ) −→
n→+∞

Θ(X,Y ) in S1(H).

Moreover φn → φ a.e. and (φn)n is bounded in L∞(λA×λB×λC). Indeed,

∣∣φn(t1, t2, t3)
∣∣ 6 ( n∑

k=0
|ak(t1, t2)|2

) 1
2
(

n∑
k=0
|bk(t2, t3)|2

) 1
2

6 ‖a‖∞‖b‖∞.

Hence by Lebesgue’s dominated convergence theorem, w∗-limn→+∞ φn =
φ. The w∗-continuity of ΓA,B,C implies that

ΓA,B,C(φn)(X,Y ) −→
n→+∞

ΓA,B,C(φ)(X,Y )

weakly in S2(H). We conclude that ΓA,B,C(φ)(X,Y ) = Θ(X,Y ).
This shows (1). Furthermore (6.2) yields

(6.3)
∥∥ΓA,B,C(φ) : S2(H)× S2(H) −→ S1(H)

∥∥ 6 ‖a‖∞‖b‖∞.
(1)→ (2). — As in Subsection 3.3, we consider the triple integral map-

pings Λ(φ) in the case when (Ω1, µ1) = (σ(C), λC), (Ω2, µ2) = (σ(B), λB)
and (Ω3, µ3) = (σ(A), λA). Note that these measurable spaces are separa-
ble.
Assume (1) and apply Proposition 3.8, which connects ΓA,B,C(φ) to Λ(φ).

Let

X ∈ S2(L2(λB), L2(λA)) and Y ∈ S2(L2(λC), L2(λB)).
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By (3.6), we have

‖Λ(φ)(X,Y )‖1 = ‖ρ−1
A ◦ ΓA,B,C(φ)(X̃, Ỹ ) ◦ ρC‖1

6 ‖ΓA,B,C(φ)(X̃, Ỹ )‖1
6
∥∥ΓA,B,C(φ) : S2 × S2 −→ S1∥∥‖X‖2‖Y ‖2,

since ‖X̃‖2 = ‖X‖2 and ‖Ỹ ‖2 = ‖Y ‖2. This shows that Λ(φ) maps S2×S2

into S1, with

(6.4)
∥∥Λ(φ) : S2 × S2 −→ S1∥∥ 6 ∥∥ΓA,B,C(φ) : S2 × S2 −→ S1∥∥.

We now extend the proof of [12, Corollary 8] to get a Hilbert space
factorization. For convenience we write H1 = L2(λA), H2 = L2(λB) and
H3 = L2(λC). Each of these spaces naturally identifies with its conjugate
space, hence we will not use conjugation bars as we had to do in Subsec-
tion 2.3.
We have just proved above that Λ(φ) extends to a bounded bilinear map

S2(H2, H1)× S2(H3, H2) into S1(H3, H1). According to the identification

B2(S2 × S2, S2) = B(S2 ∧⊗ S2, S2),

provided by (2.2), it can be also regarded as a bounded linear operator from
the projective tensor product S2(H2, H1)

∧
⊗ S2(H3, H2) into S1(H3, H1).

By (2.9), we may naturally identify S2(H3, H2) and S2(H2, H1) with the
Bochner spaces L2(λB ;H3) and L2(λB ;H1), respectively. We may therefore
regard Λ(φ) as a bounded linear operator

Λ(φ) : L2(λB ;H1)
∧
⊗ L2(λB ;H3) −→ S1(H3, H1).

Property (2.3) and Hilbert space self-duality provide a natural isometric
identification(

L2(λB ;H1)
∧
⊗ L2(λB ;H3)

)∗ = B
(
L2(λB ;H1), L2(λB ;H3)

)
.

We further have S1(H3, H1)∗ = B(H1, H3), by (2.7). We now let

v : B(H1, H3) −→ B
(
L2(λB ;H1), L2(λB ;H3)

)
be the adjoint of Λ(φ) through these identifications.
According to (5.2) and (5.3), we have an isometric embedding

L∞σ
(
λB ;B(H1, H3)

)
⊂ B

(
L2(λB ;H1), L2(λB ;H3)

)
obtained by identifying any ∆∈L∞σ (λB ;B(H1, H3)) with the multiplication
operator M∆. It is easy to check (left to the reader) that this embedding is
w∗-continuous. Hence we may regard the dual space L∞σ

(
λB ;B(H1, H3)

)
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as a w∗-closed subspace of B
(
L2(λB ;H1), L2(λB ;H3)

)
. We aim at show-

ing (6.5) below.
Let ξ ∈ H1 and η ∈ H3, and consider ξ ⊗ η as an element of B(H1, H3).

Take any c ∈ H1, c′, d′ ∈ L2(λB) and d ∈ H3, then regard c′ ⊗ c as an
element of L2(λB ;H1) and d′ ⊗ d as an element of L2(λB ;H3). We have〈[
v(ξ ⊗ η)

]
(c′ ⊗ c), d′ ⊗ d

〉
L2(λB ;H3),L2(λB ;H3)

=
〈
ξ ⊗ η,Λ(φ)

[
(c′ ⊗ c)⊗ (d′ ⊗ d)

]〉
B(H1,H3),S1(H3,H1)

=
∫
σ(A)×σ(B)×σ(C)

φ(t1, t2, t3)ξ(t1)η(t3)c′(t2)d′(t2)c(t1)d(t3) dλA(t1)dλB(t2)dλC(t3).

It readily follows from this formula that for any θ ∈ L∞(λB),〈[
v(ξ ⊗ η)

]
(θc′ ⊗ c), d′ ⊗ d

〉
=
〈[
v(ξ ⊗ η)

]
(c′ ⊗ c), θd′ ⊗ d

〉
.

Since L2(λB) ⊗ H1 and L2(λB) ⊗ H3 are dense in L2(λB ;H1) and
L2(λB ;H3), respectively, this implies that [v(ξ ⊗ η)](θϕ) = θ[v(ξ ⊗ η)](ϕ)
for any ϕ ∈ L2(λB ;H1) and any θ ∈ L∞(λB). By Lemma 5.3, this implies
that v(ξ ⊗ η) belongs to L∞σ

(
λB , B(H1, H3)

)
.

Since v is w∗-continuous and H1 ⊗ H3 is w∗-dense in B(H1, H3), we
deduce that

(6.5) v
(
B(H1, H3)

)
⊂ L∞σ (λB ;B(H1, H3)).

Consider now the restriction v0 = v|K(H1,H3) of v to the subspace
K(H1, H3) of compact operators from H1 into H3. By (6.5), we may write

v0 : K(H1, H3) −→ L∞σ
(
λB ;B(H1, H3)

)
.

Corollary 4.3 provides an identification

B
(
K(H1, H3), L∞σ (λB ;B(H1, H3))

)
= L∞σ

(
λB ;B(K(H1, H3), B(H1, H3))

)
.

Let φ̃ ∈ L∞σ
(
λB ;B(K(H1, H3), B(H1, H3))

)
be corresponding to v0 in this

identification. Then by the preceding computation we have that for any
c, ξ ∈ H1 and d, η ∈ H3,〈[

φ̃(t2)
]
(ξ ⊗ η), d⊗ c

〉
=
∫
σ(A)×σ(C)

φ(t1, t2, t3)ξ(t1)η(t3)c(t1)d(t3) dλA(t1)dλC(t3)

for a.e. t2 in σ(B).
Following Subsection 2.4, for any J ∈L2(λA×λC), we letXJ ∈S2(H1, H3)

be the Hilbert–Schmidt operator with kernel J . Then the above formula
shows that for J = ξ ⊗ η, we have

(6.6)
[
φ̃(t2)

]
(XJ) = Xφ(·,t2,·)J for a.e. t2.
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By density of H1 ⊗ H3 in L2(λA × λC), we deduce that (6.6) holds true
for any J ∈ L2(λA × λC). This means that for a.e. t2, φ( · , t2, · ), regarded
as an element of L∞(λA × λC), is a measurable Schur multiplier, whose
corresponding operator is

φ̃(t2) = Rφ(·,t2,·) : K(L2(λA), L2(λC)) −→ B(L2(λA), L2(λC)).

This shows two things. First, φ̃ belongs to L∞σ
(
λB ; Γ2(L1(λA), L∞(λC))

)
regarded, by (4.8), as a subspace of L∞σ

(
λB ;B(K(H1, H3), B(H1, H3))

)
.

Second, the element of L∞(λA × λB × λC) corresponding to φ̃ through
the inclusion (5.17) is the function φ itself. Thus we have proved that φ ∈
L∞σ
(
λB ; Γ2(L1(λA), L∞(λC))

)
. Further the above reasoning shows (using

the notation ‖ · ‖∞,Γ2 introduced after (5.17)) that

‖φ‖∞,Γ2 6
∥∥Λ(φ) : S2 × S2 −→ S1∥∥.

According to (3.7), this implies that

‖φ‖∞,Γ2 6
∥∥ΓA,B,C(φ) : S2 × S2 −→ S1∥∥.

Now applying Theorem 5.5 yields (2), with

‖a‖∞‖b‖∞ 6
∥∥ΓA,B,C(φ) : S2 × S2 −→ S1∥∥. �

Theorem 6.2 extends to the framework of triple operator integrals asso-
ciated with functions as defined in Subsection 3.2. With similar proofs as
above, we obtain the following.

Theorem 6.3. — Let (Ω1, µ1), (Ω2, µ2) and (Ω3, µ3) be three separable
measure spaces, and let φ ∈ L∞(Ω1 × Ω2 × Ω3). Then Λ(φ) extends to a
bounded bilinear map

Λ(φ) : S2(L2(Ω2), L2(Ω3))× S2(L2(Ω1), L2(Ω2)) −→ S1(L2(Ω1), L2(Ω3))

if and only if there exist a separable Hilbert space H and two functions

a ∈ L∞(Ω1 × Ω2;H) and b ∈ L∞(Ω2 × Ω3;H)

such that
φ(t1, t2, t3) = 〈a(t1, t2), b(t2, t3)〉

for a.e. (t1, t2, t3) ∈ Ω1 × Ω2 × Ω3.

In this case,

(6.7)
∥∥Λ(φ) : S2 × S2 −→ S1∥∥ = inf

{
‖a‖∞‖b‖∞

}
,

where the infimum runs over all pairs (a, b) verifying the above factorization
property.
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7. Additional comments

In this last section, we explain connections between our theorems and
previous results in this area. We first show that Peller’s Theorem from [28]
(mentioned in the Introduction) is a direct consequence of Theorem 6.2.
With the terminology of the present paper, Peller’s Theorem can be stated
as follows.

Theorem 7.1 (Peller [28]). — Let A,B be normal operators on a sepa-
rable Hilbert spaceH and let λA and λB be scalar-valued spectral measures
for A and B. For any ψ ∈ L∞(λA × λB), the following are equivalent.

(1) The double operator integral mapping ΓA,B(ψ) extends to a
bounded map from S1(H) into itself.

(2) There exist a separable Hilbert space H and two functions a ∈
L∞(λA;H) and b ∈ L∞(λB ;H) such that

(7.1) ψ(s, t) = 〈a(s), b(t)〉

for a.e. (s, t) ∈ σ(A)× σ(B).
In this case,∥∥ΓA,B(ψ) : S1(H) −→ S1(H)

∥∥ = inf
{
‖a‖∞‖b‖∞

}
,

where the infimum runs over all pairs (a, b) of functions such that (7.1)
holds true.

Proof. — Consider A,B as above and take an auxiliary normal opera-
tor C on H (this may be the identity map), with a scalar-valued spectral
measure λC . For any ψ ∈ L∞(λA × λB), set

ψ̃ = ψ ⊗ 1 ∈ L∞(λA × λB)⊗ L∞(λC) ⊂ L∞(λA × λC × λB).

We claim that for any X,Y ∈ S2(H),

(7.2) ΓA,C,B(ψ̃)(X,Y ) = ΓA,B(ψ)(XY ).

Indeed for any f1 ∈ L∞(λA) and f2 ∈ L∞(λB), and for any X,Y ∈ S2(H),
we have

ΓA,C,B(f1 ⊗ 1⊗ f2)(X,Y ) = f1(A)XY f2(B).
Hence by linearity, (7.2) holds true for any ψ ∈ L∞(λA) ⊗ L∞(λB). By
the w∗-continuity of ΓA,C,B and of ΓA,B , this identity holds as well for any
ψ ∈ L∞(λA × λB).
We have ‖XY ‖1 6 ‖X‖2‖Y ‖2 for any X,Y ∈ S2(H) and conversely,

for any Z ∈ S1(H), there exist X,Y in S2(H) such that XY = Z and
‖X‖2‖Y ‖2 = ‖Z‖1. Thus given any ψ ∈ L∞(λA×λB), it follows from (7.2)
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that ΓA,C,B(ψ̃) maps S2(H) × S2(H) into S1(H) if and only if ΓA,B(ψ)
maps S1(H) into S1(H) and moreover,∥∥ΓA,C,B(ψ̃) : S2(H)×S2(H) −→ S1(H)

∥∥ =
∥∥ΓA,B(ψ) : S1(H) −→ S1(H)

∥∥.
On the other hand, ψ̃ satisfies condition (2) from Theorem 6.2 if and

only if ψ satisfies condition (2) from Theorem 7.1.
The result therefore follows from Theorem 6.2. �

Remark 7.2. — In this remark, we discuss another formulation of Peller’s
Theorem. Let E,F be Banach spaces. A bounded map u : E → F ∗ is called
integral if there exist a probability measure space (Σ, ν) and two bounded
maps α : E → L∞(ν) and β : F → L∞(ν) such that

(7.3) 〈u(x), y〉 =
∫

Σ

[
α(x)](ω)[β(y)](ω) dν(ω), x ∈ E, y ∈ F.

Let I(E,F ∗) denote the space of all such operators and set I(u) =
inf{‖α‖‖β‖}, where the infimum runs over all such factorizations. Then
I( · ) is a norm on I(E,F ∗) and the latter is a Banach space. Moreover (2.3)
induces an isometric identification

(E
∨
⊗ F )∗ = I(E,F ∗),

where
∨
⊗ is the injective tensor product. We refer e.g. to [18, Chapter VIII,

Theorems 5 & 9] for these definitions and properties.
Grothendieck’s Inequality on tensor products implies that for any mea-

sure spaces (Ω1, µ1) and (Ω2, µ2), and for any z ∈ L1(µ1) ⊗ L1(µ2), we
have ‖z‖∨ 6 γ∗2 (z) 6 K‖z‖∨, where K is a universal constant (see e.g. [33,
Section 3]). Equivalently,

L1(µ1)
∧
⊗γ∗2 L

1(µ2) ≈ L1(µ1)
∨
⊗ L1(µ2)

K-isomorphically. Passing to duals, this yields a w∗-homeomorphic K-
isomorphism

(7.4) Γ2(L1(µ1), L∞(µ2)) ≈ I(L1(µ1), L∞(µ2)).

Let A,B as in Theorem 7.1, let ψ ∈ L∞(λA×λB) and let uψ : L1(λA)→
L∞(λB) be the bounded map associated to ψ (see (2.10)). Condition (2)
from Theorem 7.1 means that uψ ∈ Γ2(L1(λA), L∞(λB)). Hence in Theo-
rem 7.1 above, condition (1) is also equivalent to :

(3) The operator uψ belongs to I(L1(λA), L∞(λB)).
Further it is easy to deduce from the above definition of integral operators
(see (7.3)) that the above property (3) is formally equivalent to :
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(4) There exist a probability measure space (Σ, ν) and two functions
a ∈ L∞(λA × ν) and b ∈ L∞(λB × ν) such that

ψ(s, t) =
∫

Σ
a(s, ω)b(t, ω) dν(ω), a.e.-(s, t).

The equivalence between (1) and (4) is stated in [28, 30], and also in [22, 23]
to which we refer for various proofs. It follows from this analysis that if
condition (1) holds true, then the above factorization (4) can be achieved
with (a, b) satisfying

‖a‖∞‖b‖∞ 6 K
∥∥ΓA,B(ψ) : S1(H) −→ S1(H)

∥∥.
Conversely if (4) holds true, then

‖ΓA,B(ψ) : S1(H) −→ S1(H)‖ 6 ‖a‖∞‖b‖∞.

We note that the original paper [28] makes use of Grothendieck’s In-
equality to establish Theorem 7.1. Our approach shows that this can be
avoided and that Grothendieck’s Inequality is useful only to establish the
equivalence of (4) with (1).

Let us now come back to Theorem 6.2. Let A,B,C and φ as in this the-
orem. It follows from the proof of Theorem 6.2 that the conditions (1)–(2)
in this theorem are equivalent to the fact that φ ∈ L∞σ (λB ; Γ2(L1(λA),
L∞(λC))). Hence according to (7.4), the conditions of Theorem 6.2 are
also equivalent to

(7.5) φ ∈ L∞σ (λB ; I(L1(λA), L∞(λC))).

It is a natural question whether this implies the existence of a probability
measure space (Σ, ν) and two functions a ∈ L∞(λA × λB × ν) and b ∈
L∞(λB×λC×ν) such that φ(t1, t2, t3) =

∫
Σ a(t1, t2, ω)b(t2, t3, ω) dν(ω) for

a.e. (t1, t2, t3). However we haven’t been able to establish this yet.

We now turn to connections between Theorem 3.3 or Proposition 3.4 and
the constructions of multiple operator integrals from [29] and [4].

Let A1, . . . , An be normal operators on a separable Hilbert space H.
Throughout we use the notations of Proposition 3.4. Let (Σ,dµ) be a σ-
finite measure space and, for any i = 1, . . . , n, let

ai : Σ× σ(Ai) −→ C

be a measurable function such that ai(t, · ) ∈ L∞(λAi) for a.e. t ∈ Σ.
Then t 7→ ai(t, · ) is a w∗-measurable function from Σ into L∞(λAi), hence
t 7→ ‖ai(t, · )‖L∞(λAi ) is measurable for any i. Further by composition (see
Remark 4.4), t 7→ ai(t, Ai) is a w∗-measurable function from Σ into B(H).
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Lemma 7.3. — Assume that

(7.6)
∫

Σ
‖a1(t, · )‖L∞(λA1 )‖a2(t, · )‖L∞(λA2 ) · · ·‖an(t, · )‖L∞(λAn )dµ(t) <∞.

Then for any X1, . . . , Xn−1 ∈ S2(H), the function

(7.7) Σ −→ S2(H), t 7−→ a1(t, A1)X1a2(t, A2)X2 · · ·Xn−1an(t, An),

is integrable.

Proof. — Fix X1, . . . , Xn−1 ∈ S2(H). Write X1 = X ′X ′′ with X ′, X ′′ ∈
S4(H), the 4-th order Schatten space onH. By composition, t 7→a1(t,A1)X ′
is a w∗-measurable function from Σ into S4(H). Since S4(H) is reflexive
and separable, it follows from [18, Theorem II.2] that t 7→ a1(t, A1)X ′
is actually measurable from Σ into S4(H). Likewise t 7→ X ′′a2(t, A2) is
measurable from Σ into S4(H). Since

a1(t, A1)X1a2(t, A2) = (a1(t, A1)X ′)(X ′′a2(t, A2)),

it follows that t 7→ a1(t, A1)X1a2(t, A2) is measurable from Σ into S2(H).
One proves similarly that t 7→ X2a3(t, A3) · · ·Xn−1an(t, An) is measurable
from Σ into S2(H). We deduce that the function (7.7) is measurable.
Then the assumption (7.6) ensures that this function is integrable. �

Proposition 7.4. — Assume (7.6) and let φ ∈ L∞(λA1×· · ·×λAn) be
defined by setting

(7.8) φ(t1, t2, . . . , tn) =
∫

Σ
a1(t, t1)a2(t, t2) · · · an(t, tn) dµ(t)

for a.e. (t1, . . . , tn) in σ(A1)× · · · × σ(An). Then

(7.9) ΓA1,...,An(φ)(X1, . . . , Xn−1)

=
∫

Σ
a1(t, A1)X1a2(t, A2)X2 · · ·Xn−1an(t, An) dµ(t)

for any X1, X2, . . . , Xn−1 in S2(H).

Proof. — We introduce ãi : Σ → L∞(λAi) by writing ãi(t) = ai(t, · ) for
any i = 1, . . . , n. Then the function φ̃ : Σ → L∞(λA1 × · · · × λAn) defined
by

φ̃(t) = ã1(t)⊗ ã2(t)⊗ · · · ⊗ ãn(t), t ∈ Σ,
is w∗-measurable. Let ϕ ∈ L1(λA1 × · · · × λAn). Then for a.e. t ∈ Σ, we
have

〈φ̃(t), ϕ〉 =
∫
a1(t, t1) · · · an(t, tn)ϕ(t1, . . . , tn) dλA1(t1) · · · dλAn(tn) .
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Hence by Fubini’s Theorem,

〈φ, ϕ〉 =
∫

Σ
〈φ̃(t), ϕ〉dµ(t) .

Fix X1, X2, . . . , Xn in S2(H). Write Γ = ΓA1,...,An for convenience. Since
this mapping is w∗-continuous, there exists a necessarily unique ϕ ∈
L1(λA1 × · · · × λAn) such that for any ψ ∈ L∞(λA1 × · · · × λAn), we have〈

Γ(ψ)(X1, . . . , Xn−1), Xn

〉
= 〈ψ,ϕ〉.

We shall apply this identity with ψ = φ first, and then with ψ = φ̃(t). Then
we obtain〈

Γ(φ)(X1, . . . , Xn−1), Xn

〉
= 〈φ, ϕ〉

=
∫

Σ
〈φ̃(t), ϕ〉dµ(t)

=
∫

Σ

〈
Γ(φ̃(t))(X1, . . . , Xn−1), Xn

〉
dµ(t) .

By the definition of Γ on elementary tensor products, we have

Γ(φ̃(t))(X1, . . . , Xn−1) = a1(t, A1)X1a2(t, A2)X2 · · ·Xn−1an(t, An)

for a.e. t ∈ Σ. Consequently〈
Γ(φ)(X1, . . . , Xn−1), Xn

〉
=
∫

Σ

〈
a1(t, A1)X1a2(t, A2)X2 · · ·Xn−1an(t, An), Xn

〉
dµ(t) .

This shows (7.9). �

Following [29], the space of all functions φ ∈ L∞(λA1 × · · · × λAn) de-
fined by (7.8) for some a1, . . . , an satisfying (7.6) is called the integral
projective tensor product of the spaces L∞(λA1), . . . , L∞(λAn); this space
is denoted by

L∞(λA1)
∧
⊗i · · ·

∧
⊗i L∞(λAn).

In [4, 29] the authors define a multiple operator integral mapping

Tφ : B(H)× · · · ×B(H) −→ B(H)

for any φ ∈ L∞(λA1)
∧
⊗i · · ·

∧
⊗iL∞(λAn), as follows. Let φ be defined by (7.8)

for some a1, . . . , an satisfying (7.6). Then for any X1, . . . , Xn−1 in B(H),
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the operator Tφ(X1, . . . , Xn−1) is defined by setting

(7.10) tr
(
Tφ(X1, . . . , Xn−1)Z

)
=
∫

Σ
tr
(
a1(t, A1)X1a2(t, A2)X2 · · ·Xn−1an(t, An)Z

)
dµ(t)

for any Z ∈ S1(H). Indeed it follows from [4, Section 4] that for any
X1, . . . , Xn−1 in B(H), the function

Σ −→ B(H), t 7−→ a1(t, A1)X1a2(t, A2)X2 · · ·Xn−1an(t, An),

belongs to L1
σ(Σ;B(H)), and hence t 7→ tr

(
a1(t, A1)X1a2(t, A2)X2 · · ·

Xn−1an(t, An)Z
)
is integrable for any Z ∈ S1(H).

Proposition 7.4 shows that the constructions from the present paper
are compatible with those from [4, 29]. Namely for any φ in the integral
projective tensor product, the restriction of Tφ to S2(H) × · · · × S2(H)
coincides with ΓA1,...,An(φ).

We observe that for any φ ∈ L∞(λA1)
∧
⊗i · · ·

∧
⊗iL∞(λAn), the (n−1)-linear

bounded operator Tφ is separately w∗-continuous. That is, for any 1 6 k 6
n− 1 and for any X1, . . . , Xk−1, Xk+1, . . . , Xn−1 in B(H), the linear map
from B(H) into itself taking any Xk ∈ B(H) to Tφ(X1, . . . , Xn−1) is w∗-
continuous. Let us show this for k = 1, the other cases being similar. We
consider φ given by (7.8). We fix X2, . . . , Xn−1 in B(H) and Z ∈ S1(H).
We let η : B(H)→ C be defined by

η(X) = tr
(
Tφ(X,X2 . . . , Xn−1)Z

)
, X ∈ B(H),

and we aim at showing that the functional η is w∗-continuous. For we
consider Θ: Σ→ S1(H) defined by setting

Θ(t) = a2(t, A2)X2 · · ·Xn−1an(t, An)Za1(t, A1)

for a.e. t ∈ Σ. Arguing as in the proof of Lemma 7.3, one shows that Θ
is measurable and hence that Θ is integrable. Then it follows from (7.10)
that for any X ∈ B(H), we have

η(X) = tr
(
X

∫
Σ

Θ(t) dµ(t)
)
.

This shows that η is w∗-continuous and concludes the proof.
This leads to the following.

Corollary 7.5. — For any φ in the space L∞(λA1)
∧
⊗i · · ·

∧
⊗iL∞(λAn),

the (n− 1)-linear map

ΓA1,...,AN (φ) : S2(H)× · · · × S2(H) −→ S2(H)
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extends to a (necessarily unique) separately w∗-continuous bounded (n−1)-
linear map B(H)× · · · ×B(H)→ B(H).

In the case n = 2, L∞(λA)
∧
⊗i L∞(λB) coincides with the space all func-

tions in L∞(λA × λB) satisfying condition (iv) from Remark 7.2. Equiva-
lently, we have

I(L1(λA), L∞(λB)) ' L∞(λA)
∧
⊗i L∞(λB).

The inclusion “⊂” is obvious. The non trivial reverse inclusion is a well-
known fact which follows from [18, Chapter VII, Theorem 9]. According
to this result (see the beginning of Remark 7.2), it suffices to show that
any φ ∈ L∞(λA)

∧
⊗i L∞(λB) induces a bounded functional on the injective

tensor product L1(λA)
∨
⊗ L1(λB). To check this property, consider

φ(t1, t2) =
∫

Σ
a(t, t1)b(t, t2) dµ(t)

for some measurable functions a : Σ × σ(A) → C and b : Σ × σ(B) → C
such that

K =
∫

Σ
‖a(t, · )‖∞‖b(t, · )‖∞ dµ(t) <∞ .

Then for any finite families (fk)k in L1(λA) and (gk)k in L1(λB), we have∣∣∣∣∣
〈
φ,
∑
k

fk ⊗ gk

〉∣∣∣∣∣ 6
∫

Σ

∣∣∣∣∣∑
k

〈a(t, · ), fk〉〈b(t, · ), gk〉

∣∣∣∣∣ dµ(t)

6 K

∥∥∥∥∥∑
k

fk ⊗ gk

∥∥∥∥∥
L1
∨
⊗L1

,

which proves the result.
We finally turn to the case n = 3. Consider three normal operators

A,B,C on H. It is clear that for any φ ∈ L∞(λA)
∧
⊗i L∞(λB)

∧
⊗i L∞(λC),

ΓA,B,C(φ) extends to a bounded bilinear map S2(H) × S2(H) → S1(H).
Indeed assume that

φ(t1, t2, t3) =
∫

Σ
a(t, t1)b(t, t2)c(t, t3) dµ(t)

for some measurable functions a : Σ × σ(A) → C, b : Σ × σ(B) → C and
c : Σ× σ(C)→ C such that

K =
∫

Σ
‖a(t, · )‖∞‖b(t, · )‖∞‖c(t, · )‖∞ dµ(t) <∞ .
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Then for any X,Y in S2(H),∫
Σ

∥∥a(t, A)Xb(t, B)Y c(t, C)
∥∥

1 dµ(t) 6 K‖X‖2‖Y ‖2.

Hence by Proposition 7.4, ΓA,B,C(φ)(X,Y ) belongs to S1(H) and we have

‖ΓA,B,C(φ)(X,Y )‖1 6 K‖X‖2‖Y ‖2, X, Y ∈ S2(H).

Example 7.6 below shows that the converse is wrong, that is, there exist
functions φ ∈ L∞(λA × λB × λC) such that ΓA,B,C(φ) : S2(H)× S2(H)→
S1(H) although φ does not belong to L∞(λA)

∧
⊗iL∞(λB)

∧
⊗iL∞(λC). (There

are actually a lot of such functions.)

Example 7.6. — In this paragraph, and in Example 7.7 below, we con-
sider families M = {mikj}i,k,j>1 in `∞(N3) to which we associate the bi-
linear Schur multiplier BM : S2 × S2 → S2 defined by

BM (X,Y ) =
[∑
k>1

mikjxikykj

]
i,j>1

, X = [xij ]i,j>1, Y = [yij ]i,j>1 ∈ S2.

Bilinear maps BM are special cases of the bilinear maps Λ(φ) and Γ(φ)
considered in Subsections 3.2 and 3.1.
Let S = {skj}k,j>1 ∈ `∞(N2) and let LS : S2 → S2 be the associated

Schur multiplier defined by

LS
(
[ykj ]k,j>1

)
=
(
[skjykj ]k,j>1

)
, [ykj ]k,j>1 ∈ S2.

Set mikj = skj for any i, j, k > 1. It follows from the above definitions that
for any X,Y ∈ S2,

BM (X,Y ) = XLS(Y ).
Since ‖LS(Y )‖2 6 ‖S‖∞‖Y ‖2, this implies that BM : S2×S2 → S1 bound-
edly. The above formula also implies that BM extends to a bounded bilinear
map B(`2) × B(`2) → B(`2) if and only if LS extends to a bounded map
B(`2)→ B(`2). This holds true if and only if S ∈ `∞

∧
⊗i `∞. Thus whenever

S ∈ `∞(N2) \ `∞
∧
⊗i `∞, BM is bounded from S2 × S2 into S1 but BM is

not bounded from B(`2)×B(`2) into B(`2). In this case, M cannot belong
to `∞

∧
⊗i `∞

∧
⊗i `∞.

Example 7.7. — To complement the above discussion, let us show the
existence of (plenty of) families M ∈ `∞(N3) such that

(1) BM extends to a bounded bilinear map B(`2)×B(`2)→ B(`2);
(2) BM does not extend to a bounded bilinear map S2 × S2 → S1.

ANNALES DE L’INSTITUT FOURIER



TRIPLE OPERATOR INTEGRALS 1445

Let S = {sij}i,j>1 ∈ `∞(N2). Set mi1j = sij for any i, j > 1 and, for
any k > 2, set mikj = 0 for any i, j > 1. For any X = [xij ]i,j>1 and
Y = [yij ]i,j>1 in S2, we have

BM (X,Y ) =
[
sijxi1y1j

]
i,j>1.

For any finite families (αj)j>1 and (βi)i>1 of complex numbers, we have∣∣∣∣∣∑
i,j>1

sijxi1y1jαjβi

∣∣∣∣∣
6 ‖S‖∞

∑
i,j>1

|xi1y1jαjβi|

6 ‖S‖∞

(∑
i>1
|xi1|2

) 1
2
(∑
i>1
|αi|2

) 1
2
(∑
j>1
|y1j |2

) 1
2
(∑
j>1
|βj |2

) 1
2

6 ‖S‖∞‖X‖B(`2)‖Y ‖B(`2)

(∑
i>1
|αi|2

) 1
2
(∑
j>1
|βj |2

) 1
2

,

by the Cauchy–Schwarz inequality. This shows that BM satisfies (i).
We now claim that if BM extends to a bounded bilinear map S2×S2 →

S1, then LS extends to a bounded map B(`2) → B(`2). Indeed suppose
that

K =
∥∥BM : S2 × S2 −→ S1∥∥ <∞.

Consider a finite matrix [zij ]i,j>1 and finite families (αi)i>1 and (βj)j>1 of
complex numbers. Let X = [xij ]i,j>1 be defined by setting xi1 = αi for any
i > 1 and, for any j > 2, xij = 0 for any i > 1. Likewise, let Y = [yij ]i,j>1
be defined by setting y1j = βj for any j > 1 and, for any i > 2, yij = 0 for
any j > 1. Then

‖X‖2 =
(∑
j>1
|βj |2

) 1
2

and ‖Y ‖2 =
(∑
i>1
|αi|2

) 1
2

.

Hence

∣∣tr(BM (X,Y )Z
)∣∣ 6 K‖Z‖B(`2)

(∑
j>1
|βj |2

) 1
2
(∑
i>1
|αi|2

) 1
2

.

Since
tr
(
BM (X,Y )Z

)
=
∑
i,j>1

sijxi1y1jzji =
∑
i,j>1

sijαiβjzji,
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this implies that∣∣∣∣∣∑
i,j>1

sijzjiαiβj

∣∣∣∣∣ 6 K‖Z‖B(`2)

(∑
j>1
|βj |2

) 1
2
(∑
i>1
|αi|2

) 1
2

.

This implies that LS extends to a bounded map B(`2)→ B(`2) and proves
the claim.
Thus for any S ∈ `∞(N2)\`∞

∧
⊗i`∞, the associated familyM satisfies (2).

We finally refer to [20, 24] for the study of multilinear measurable Schur
multipliers which extend to completely bounded maps

B(L2)× · · · ×B(L2) −→ B(L2).

Added, April 2020

After a first version of this paper was circulated in 2017, some of its
results have been used in [9, 10, 13, 25, 38].
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