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SPECTRAL PICARD–VESSIOT FIELDS
FOR ALGEBRO-GEOMETRIC SCHRÖDINGER

OPERATORS

by Juan J. MORALES,
Sonia L. RUEDA & Maria-Angeles ZURRO (*)

Abstract. — This work is a Galoisian study of the spectral problem LΨ = λΨ,
for an algebro-geometric second order differential operators L, with coefficients
in a differential field, whose field of constants C is algebraically closed and of
characteristic zero. Our approach regards the spectral parameter λ as an algebraic
variable over C, forcing the consideration of a new field of coefficients for L − λ,
whose field of constants is the field C(Γ) of the spectral curve Γ. Since C(Γ) is no
longer algebraically closed, the need arises of a new algebraic structure, generated
by the solutions of the spectral problem over Γ, called “Spectral Picard–Vessiot
field” of L−λ. An existence theorem is proved using differential algebra, allowing to
recover classical Picard–Vessiot theory for each λ = λ0. For rational spectral curves,
the appropriate algebraic setting is established to solve LΨ = λΨ analytically and
to use symbolic integration. We illustrate our results for Rosen-Morse solitons.
Résumé. — Ce travail est une étude Galoisienne du problème spectral LΨ = λΨ,

pour les opérateurs différentiels algébro-géométriques du second ordre L, avec des
coefficients dans un corps différentiel, dont le corps de constantes C est algébri-
quement clos et de caractéristique zéro. Notre approche considère le paramètre
spectral λ une variable algébrique sur C, ce qui amène à considérer un nouveau
corps de coefficients pour L− λ, dont le corps de constantes est le champ C(Γ) de
la courbe spectrale Γ. Puisque C(Γ) n’est plus algébriquement clos, le besoin se fait
sentir d’une nouvelle structure algébrique, générée par les solutions du problème
spectral sur Γ, appelée « Corps spectral de Picard–Vessiot » de L−λ. On prouve un
théorème d’existence en utilisant l’algèbre différentielle, permettant de retrouver
la théorie classique de Picard–Vessiot pour chaque λ = λ0. Pour les courbes spec-
trales rationnelles, on établit le cadre algébrique approprié pour résoudre LΨ = λΨ
de manière analytique et pour utiliser l’intégration symbolique. Nous illustrons nos
résultats pour les solitons de Rosen-Morse.
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spectral curve.
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1. Introduction

Algebro-geometric operators are deeply linked to the integrabillity of
partial differential equations of solitonic type, a review on this subject can
be found in [4, 19, 21, 37]. In this paper we describe the differential field
structure generated by the solutions of the spectral problem

(1.1) LΨ = λΨ,

for an algebro-geometric second order operator L, with coefficients in a
differential field (Σ, ∂), whose field of constants C is algebraically closed
and of characteristic zero. The novelty of our approach is to regard the
spectral parameter λ to be an algebraic variable over C. This forces the
consideration of a carefully chosen new field of coefficients for L−λ, whose
field of constants provides the natural constants of this spectral problem,
the field of rational functions on a plane algebraic curve, the so called
spectral curve.
The goal of this work is a Galoisian study of the algebro-geometric spec-

tral problem (1.1). In [5], the Galoisian approach has also been followed
from the point of view of D-module theory. One of our guiding ideas is the
strong connection between the integrability (ie, solvability in closed form)
of the direct and the inverse problems for the Schrödinger equation. By
“direct problem” we understand, given the potential to obtain the eigen-
functions and the eigenvalues. The “inverse problem” would be to obtain
the potential from some suitable spectral data. In fact, this was also the
motivation for Drach in his 1919 papers [17, 18], about the integrability in
closed form of the equation

d2y

dx2 = (ϕ(x) + h)y (I)

where h is the spectral parameter. So he wrote in [17]:
« Il est donc très important de connaître les cas où une sim-
plification se presente dans l’intégration de (I), en laissant
le paramètre h arbitraire. Nous avons réussi à déterminer la
fonction ϕ dans tous les cas où l’intégrale y peut s’obtenir
par quadratures. . . »

Moreover he said that to study this problem it is possible to use the classical
theory of Picard about linear equations (Picard–Vessiot theory). In other
words, he considered the integrability of the direct problem in the sense
of the Picard–Vessiot theory. One could use the classical Picard–Vessiot
theory [49] for each choice of λ = λ0 ∈ C and obtain the minimal field
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extension of the coefficient field of L − λ0 that contains the solutions of
LΨ = λ0Ψ. A first attempt to use classical Picard–Vessiot theory was made
by Y.V. Brezhnev in [7] that, following the ideas of Drach [17, 18], exhibited
formulas for the solutions Ψ = Ψ(x, λ) by means of theta functions. But
along his papers Drach indicates that the constants are functions of the
spectral parameter h.
The alternative we present considers λ as an algebraic parameter over the

coefficient field K, which is not a free parameter but verifies the equation
of a plane algebraic curve, the spectral curve, defined by a polynomial
f(λ, µ) = 0. Our construction allows new achievements in the study of
algebro-geometric operators, as we explain next.
Algebro-geometric operators [56] are characterized in this paper by ha-

ving a nontrivial centralizer; see also [23]. Moreover, in the case of second
order operators we can prove that the centralizer is the ring C[L,A], for an
appropriate minimal odd order operator A, which is isomorphic to the ring
C(Γ) of an affine plane algebraic curve Γ. The curve Γ is the celebrated
spectral curve discovered by Burchnall and Chaundy in their visionary ar-
ticle [10], where a correspondence was established between algebraic curves
and pairs of commuting ordinary differential operators; see also [44]. Thus
for algebro-geometric operators the spectral parameter λ is not a free pa-
rameter since f(λ, µ) = 0, and it also provides an algebraic relation between
the operators L and A, f(L,A) = 0.

In Section 2 we explain the connection between algebro-geometric ope-
rators, non trivial centralizers and the stationary Korteveg de Vries (KdV)
hierarchy of differential equations. More precisely, algebro-geometric second
order operators in normal form (i.e. with 0 coefficient in ∂) are Schrödinger
operators L = −∂2 + u, with potential u verifying one of the equations
of the KdV hierarchy (see Appendix A). In fact we establish the following
result.

Theorem A. — Given Ls = −∂2 + us the following statements are
equivalent.

(1) Ls is algebro-geometric.
(2) There exists a unique monic operator A2s+1 of minimal order 2s+1

such that C(Ls) = C[Ls, A2s+1] and A2
2s+1 + R2s+1(Ls) = 0, with

R2s+1(λ) in C[λ] of degree 2s+ 1.
(3) us is a KdV -potential of KdV level s (i.e. it satisfies one of the

KdVs equations of the KdV-hierarchy, see Appendix A).

TOME 71 (2021), FASCICULE 3
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Hence, without loss of generality, we restrict to this case. The spectral
curve is then defined by fs(λ, µ) = µ2 + R2s+1(λ) = 0 and it is appro-
priate to consider the smallest differential field K = C〈us〉 containing us
and C, as the coefficient field of Ls, to study the Galoisian properties of
Ls− λ. Furthermore, the operator Ls− λ determines as coefficient field an
extended field of the curve, more precisely the fraction field K(Γs) of the
domain K[Γs] = K[λ, µ]/(fs). An important contribution of this paper is
to establish its field of constants in Theorem 3.5.

Theorem B. — The field of constants of K(Γs) is C(Γs).

In Section 4, we construct the minimal field extension E of K(Γs) con-
taining the solutions of (1.1). We call this new differential field structure
spectral Picard–Vessiot field over the curve Γs, since

C(Γs) ⊂ K(Γs) ⊂ E .

The field of constants C(Γs) attached to the spectral coupled problem

(1.2) LsΨ = λΨ , A2s+1Ψ = µΨ ,

is no longer an algebraically closed field, forcing an adapted new Picard–
Vessiot theory where the structure of the spectral curve plays an essential
role.
The differential algebra theory developed for the algebraic integration of

the Risch differential equation in [9], by M. Bronstein and other authors,
was essential to prove the main results of this paper. The Subresultant
Theorem B.3, in Appendix B, guarantees the existence of an “intrinsic”
right (common) factor ∂−φs of Ls−λ (and As−µ) inK(Γs)[∂], linked to the
uniqueness of A2s+1. The common solution of (1.2), is the transcendental
element Ψs, which is the hyperexponential defined by ∂Ψs = φsΨs over
K(Γs).
The main result of this paper is the following existence theorem for spec-

tral Picard–Vessiot extensions. It is based on Theorem 4.11, where we prove
that E is a transcendental Liouvillian extensionK(Γs)〈Ψs〉 ofK(Γs), whose
field of constants is the field of the curve C(Γs).

Theorem C. — Let Ls be an algebro-geometric Schrödinger operator
with spectral curve Γs. Let us consider ∂ − φs, the intrinsic right factor of
Ls − λ in K(Γs)[∂], and a nonzero solution Ψs defined by the differential
relation ∂(Ψs) = φsΨs. Then K(Γs)〈Ψs〉 is a spectral Picard–Vessiot field
over the curve Γs of the equation (Ls − λ)(Ψ) = 0.

Traditionally the spectral curve was assumed to be non-singular [7, 21,
31]. Nevertheless Burchnall and Chaundy in their 1931 paper [11] realized
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that spectral curves with singularities need a special treatment. They stu-
died the case of cuspidal curves, which are in fact singular rational curves,
defined by µ2 − λ2s+1 = 0 for a particular type of Schrödinger operators.

We show how the study of (1.1) by means of classical Picard–Vessiot
theory, for λ = λ0 ∈ C, is recovered. It is important to note that the
spectral curve may be singular, to consider the spectral problem (1.2) at
each point P0 = (λ0, µ0) of Γs, that is

(1.3) LsΨ = λ0Ψ, A2s+1Ψ = µ0Ψ.

We give the classical Picard–Vessiot extension EP0 of K, the coefficient field
of L−λ0, in Section 5, Theorems 5.3 and 5.4, distinguishing the treatment
of singular and non-singular points of Γ. The differential algebra developed
to solve the Risch differential equation in [9] is again the key to prove
these results. For all nonsingular points, but a finite number, this is the
Liouvillian extension K〈y0〉 by a transcendental element y0, which is the
common solution of (1.3). In fact ∂y0 = φ0y0, where the common factor
∂−φ0 = ∂−φs(P0) of L−λ0 and A−µ0 is obtained by the specialization to
P0 of the common factor of problem (1.2). Moreover, for u = u(x) ∈ C∞(R)
it is the well known Baker–Akhiezer function y0 = Ψ(P0, x, x0) in [21].
Furthermore, at singular points we obtain a description of the sequence of
differential field extensions of K to obtain EP0 (see Theorem 5.4).
In Section 6 we restrict to the case of rational spectral curves, where

the field of the curve is the field of rational functions C(τ) in an al-
gebraic parameter τ . Considering a rational parametrization of Γ, say
ℵ(τ) = (χ1(τ), χ2(τ)), the spectral problem (1.1) in one-parameter form is

(1.4) LΨ = χ1(τ)Ψ .

The chosen parametrization establishes an isomorphism between K(Γ) and
K(τ), which is now the coefficient field of L− χ1(τ).
More precisely, the isomorphism establised by the parametrization pro-

vides a right factor ∂ − φ̃s of Ls − χ1(τ). In Section 6, we show that the
spectral Picard–Vessiot field of Ls−λ is isomorphic to a Liouvillian exten-
sion K(τ)〈Υs〉 of the coefficient field K(τ) of L−χ1(τ), by a transcendental
element Υs, see Theorem 6.3. We prove the next result.

Theorem D. — Let Ls be an algebro-geometric Schrödinger operator
with rational spectral curve Γs. The Liouvillian extension K(τ)〈Υs〉 of
K(τ), by a nonzero solution Υs of (∂− φ̃s)Υ = 0 is isomorphic to a spectral
Picard–Vessiot field over the curve Γs of the equation (Ls − λ)(Ψ) = 0.

TOME 71 (2021), FASCICULE 3
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We can finally show the advantages of constructing solutions of the spec-
tral problem (1.1) using a global rational parametrization of the spec-
tral curve in C(τ)2, instead of a local parametrization by Puiseux series
in C〈〈τ〉〉2. The coefficient field K(τ), where τ is now a free parameter,
allows to say much more about the hyperexponential Υs. Whenever us is
transcendental over C(τ) the algebraic integration algorithms in [9] would
allow to compute Υs, see Remark 6.4. We illustrate this fact by means
of a family of Rosen-Morse potentials in Example 6.5. Moreover, we esta-
blished the appropriate algebraic setting to solve the spectral problem (1.1)
analytically for rational curves, possibly with singularities. Whenever the
potential u = u(x) is an analytic potential in some complex domain, we
describe the analytic character of the common solution of problem (1.4) in
Theorem 6.6.
To finish, recall that for an algebro-geometric potential us, the spectral

parameter λ of problem (1) is not a free parameter. On the contrary, the
original spectral problem (1.1) in one-parameter form (1.4), where τ is
a free parameter, falls into the recently developed parametrized Picard–
Vessiot theory (see for example [2, 12, 25, 39]), and this provides new lines
of research on the parametric behavior of the solutions of (1.1).

Organization of the paper

Section 2 presents the relation between algebro-geometric potentials, cen-
tralizers and theKdV hierarchy (proving Theorem A). Section 3 establishes
the field of constants of the field K(Γ), with Γ the spectral curve (Theo-
rem B is part of Theorem 3.5). Spectral Picard–Vessiot fields, are defined
and explicitly constructed in Section 4 (Theorems 4.11 and C). We recover
the classical Picard–Vessiot extensions at each value λ = λ0; this is done
in Section 5, by Theorems 5.3 and 5.4. For rational spectral curves we
prove Theorem D in Section 6. The existence of a free parameter τ , allows
to use symbolic integration algorithms. We illustrate the obtained results
by a family of Rosen-Morse potentials in Example 6.5. In this situation,
λ = λ(τ), and Theorem 6.6 establishes the analyticity of the common solu-
tion in a domain of C2, around almost every point (x, τ). Some concluding
remarks are contained in Section 7.

Notation

For concepts in differential algebra and differential Galois theory we refer
the reader to [15, 40, 41, 49]. Let us consider algebraic variables λ and
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µ with respect to ∂. Thus ∂λ = 0 and ∂µ = 0 and we can extend the
derivation ∂ of K to the polynomial ring K[λ, µ]. Hence (K[λ, µ], ∂) is
a differential ring whose ring of constants is C[λ, µ]. Given a differential
commutative ring R with non trivial derivation ∂, let us denote by R[∂]
the ring of differential operators with coefficients in R and commutation
rule [∂, a] = ∂a − a∂ = ∂(a), a ∈ R, where ∂a denotes the product in the
noncommutative ring R[∂] and a′ = ∂(a) is the image of a by the derivation
map.

2. Algebro-geometric operators of second order

Let us consider a differential operator L with coefficients in a differen-
tial field (Σ, ∂), whose field of constants C is algebraically closed and of
characteristic zero. There are several characterizations of algebro-geometric
operator, see for instance [56], and also [23]. We state next what we use as
the base characterization of algebro-geometric operators for this work, the
Burchnall and Chaundy Theorem [10], adapted from [56, Section 2]. We
consider the nontrivial case of operators L 6∈ C[∂].

Theorem 2.1. — Let L be an order n differential operator in Σ[∂]\C[∂].
The following are equivalent:

(1) There exists an operator P in Σ[∂] of order m, relatively prime with
n, and a polynomial f(λ, µ) = µn + Rm(λ) in C[λ, µ], with Rm of
degree m, such that f(L,P ) = 0.

(2) There exists an operator P in Σ[∂] of order m, relatively prime with
n, such that [L,P ] = 0.

When one of these two equivalent conditions is satisfied, we will call L an
algebro-geometric operator.

In the case of second order differential operators we would like to high-
light the structure of the centralizer C(L) of L in the ring of differential
operators Σ[∂].

Theorem 2.2. — Let L be a second order differential operator in Σ[∂].
The following are equivalent:

(1) L is an algebro-geometric operator.
(2) The centralizer of L is nontrivial, C(L) 6= C[L]. More precisely, there

exists a unique monic operator A2s+1 of minimal order 2s+ 1 such
that C(L) = C[L,A2s+1] and A2

2s+1 +R2s+1(L) = 0, with R2s+1(λ)
in C[λ] of degree 2s+ 1.

TOME 71 (2021), FASCICULE 3
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Proof. — Whenever the centralizer is nontrivial, C(L) 6= C[L], by [22,
Theorem 1.2], there exists an operator X2s+1 of minimal order 2s + 1 in
the centralizer such that C(L) equals the free C[L]-module of rank 2 with
basis {1, X2s+1}, that is

(2.1) C(L) = {p0(L) + p1(L)X2s+1 | p0, p1 ∈ C[L]} = C[L]〈1, X2s+1〉.

Thus C(L) equals the C-algebra C[L,X2s+1] generated by L and X2s+1.
In addition, any operator of the form P = X2s+1 + p0(L), with p0 of

degree d 6 s is a generator of C(L) = C[L,P ]. By [22, Theorem 1.13]
there exist a, b ∈ C[λ] such that X2

2s+1 = a(L)X2s+1 + b(L). Since P 2 =
(X2s+1 + p0(L))2 and {1, X2s+1} is a basis as C(L) module of the central-
izer, we obtain that for p0 = −a/2 then P = X2s+1 − (1/2)a(L) satisfies
P 2 +R2s+1(L) = 0 where R2s+1(λ) = −b(λ)− (1/4)a(λ)2 must be a poly-
nomial of degree 2s + 1. Observe that P is unique up to multiples αP ,
α ∈ C, so we choose the monic A2s+1. �

We introduce next the terminology that will be useful to explain our
contribution to the extensively studied commuting pair L,A2s+1.

Definition 2.3. — Given an algebro-geometric operator L of second
order, we call the monic operator A2s+1 of minimal order 2s + 1 in C(L)
such that C(L) = C[L,A2s+1] and A2

2s+1 + R2s+1(L) = 0, with R2s+1(λ)
in C[λ] of degree 2s + 1, the partner of L, and say that L is an algebro-
geometric operator of level s and denote it by Ls.

Let us assume now that the algebro-geometric operator Ls of level s is
in normal form, see [56, (2)]. Thus Ls is a Schrödinger operator

Ls = −∂2 + us, with us ∈ Σ.

We prove in Appendix A that us verifies one of the equations of the cele-
brated stationary KdV hierarchy. This is probably a well known result, but
we could not find a proof of it, so we include the proof there for completion.
Proof of Theorem A. — By Theorem 2.2 and Appendix A the equiva-

lences follow. �

Given a Schrödinger operator Ls, to decide if it is algebro-geometric one
has to look for a nontrivial commuting operator. To look for A2s+1 one
possibility is forcing the commutator of Ls with an arbitrary operator of
order 2n+1 to be zero, starting with n = 1. The determination of the level
s is intrinsically related to the determination of the vector of integration
constants cs ∈ Cs, see Theorem A.1, and it is necessary for the effective
computation of the partner A2s+1 of Ls. The algorithmic treatment of these
results can be found in [42].
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Observe that by Theorem A.1, A2s+1 is a differential operator with coeffi-
cients in the differential field C〈us〉. Once we fix us ∈ Σ, we will work in
the differential subfield K = C〈us〉 of Σ.

3. The differential field of the spectral curve

Let us consider an algebro-geometric Schrödinger operator Ls = −∂2+us
of level s and partner operator A2s+1, as defined in Section 2. In other
words, now we are fixing a KdV-potential us in Σ and considering com-
muting differential operators Ls and A2s+1 in K[∂] with K = C〈us〉. By
Theorem 2.2, there exists a polynomial

(3.1) fs(λ, µ) = µ2 +R2s+1(λ)

in C[λ, µ] such that fs(Ls, A2s+1) = 0. The constant coefficients poly-
nomial fs is called the Burchnall–Chaundy (BC) polynomial of the pair
{Ls, A2s+1}, since the first result of this sort appeared in [10]. We denote
by Γs the affine algebraic curve in C2 determined by fs(λ, µ) = 0, which is
called the spectral curve of the pair {Ls, A2s+1}.
Recall that the rank of a pair of differential operators is the greatest

common divisor of their orders, [58]. Observe that all pairs {Ls, A2s+1}
studied in this paper are rank 1 pairs. But also note that the same spectral
curve could correspond to pairs of algebro-geometric operators with diffe-
rent rank. For instance the algebraic curve defined by µ2 − λ3 = 0 is the
spectral curve of the rank 1 pair

L1 = −∂2 + 2
x2 and A3 = ∂3 − 3

x2 ∂ + 3
x3 ,

in C(x)[∂] with ∂ = d/dx, but it is also of the spectral curve of the famous
pair of rank 2 operators posted by Dixmier see [48], which moreover is a
“true rank” 2 pair (see also [48] for the definition of “true rank”)

H2 + 2x and H2 + 3
2(xH +Hx) , with H = ∂2 + x2.

The case of rank r > 1 corresponds to a vector bundle of rank r over
the spectral curve. These bundles are related with the “inverse” spectral
problem, [33, 34]. A difficult interesting problem is to give new “true rank”
r pairs. Important contributions were made by Davletshina, Grinevich,
Mironov, Mokhov, Oganesyan, Pogorelov Shamaev, and Zheglov (see [48],
and the references therein).

Traditionally BC polynomials are computed as characteristic polyno-
mials [21]. We would like to point out that once A2s+1 has been calculated,
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by Previato’s Theorem (see [47] or [42, Theorem 5.4]) one can compute
fs by means of the differential resultant. Moreover, by [58] the differential
resultant of Ls − λ and A2s+1 − µ is related with the rank r by

(3.2) ∂ Res(Ls − λ,A2s+1 − µ) = frs .

In Appendix B we summarize the definition and main properties of this
tool.
Observe that fs(λ, µ) is an irreducible polynomial in C[λ, µ], since it has

odd degree in λ and degree 2 in µ. Let us denote by (fs) the prime ideal ge-
nerated by fs in C[λ, µ] or K[λ, µ], abusing the notation and distinguishing
them by the context. Let us consider the monomial lexicographical order
with µ > λ in C[λ, µ]. Given p ∈ C[λ, µ], let us denote by pN the normal
form of p with respect to (fs) (that is, pN is the remainder of dividing p
by fs in C[λ, µ], see [14]). Observe that pN is a polynomial in C[λ, µ] of
degree one in µ. This reduction with respect to (fs) will allow us to prove
the next two results.

Theorem 3.1. — Let I = (Ls − λ,A2s+1 − µ) be the ideal generated
by Ls − λ and A2s+1 − µ in K[λ, µ][∂]. Let (fs) be the ideal generated by
fs in C[λ, µ]. The differential elimination ideal I ∩ C[λ, µ] verifies

(3.3) (fs) = I ∩ C[λ, µ] = {p ∈ C[λ, µ] | p(Ls, A2s+1) = 0}.

Proof. — By Theorem B.2, fs ∈ I. Thus we have the next chain of
inclusions of ideals in C[λ, µ]

(fs) ⊆ I ∩ C[λ, µ] ⊆ J = {p ∈ C[λ, µ] | p(Ls, A2s+1) = 0}.

We will prove that J ⊂ (fs) and therefore the equality holds.
Given p ∈ J , we can write p = hfs + pN , for h ∈ C[λ, µ]. If we

assume that pN is nonzero then pN = a(λ) + b(λ)µ, a, b ∈ C[λ]. There-
fore a(Ls) = −b(Ls)A2s+1 which is a contradiction since a(Ls) has even
order and b(Ls)A2s+1 has odd order. This proves that pN is identically zero
and that p ∈ (fs). �

Let us denote by C(Γs) and K(Γs) the fraction fields of the domains

(3.4) C[Γs] = C[λ, µ]
(fs)

and K[Γs] = K[λ, µ]
(fs)

respectively. Observe that C(Γs) and K(Γs) are usually interpreted as ra-
tional functions on the algebraic curve Γs defined by the polynomial fs.
The next result gives a description of the centralizer of Ls, alternative to
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the famous one given by I. Schur [51], in terms of pseudodifferential ope-
rators. As a consequence the quotient field of the centralizer is a function
field of one variable.

Proposition 3.2. — The centralizer CD(Ls) = C[Ls, A2s+1] of Ls in
D = C〈us〉[∂] and the domain C[Γs] are isomorphic commutative rings.

Proof. — Given p + (fs) in C[Γs] it has a representative given by the
normal form pN = a(λ) + b(λ)µ of p with respect to (fs). By (2.1) we
establish the isomorphism sending p+ (fs) to a(Ls) + b(Ls)A2s+1. �

In the history of this problem one can find different approaches that go
from a local to a global treatment, “to work over the spectral curve”. Note
that the affine curve Γs could have singular points.
One could fix a point P0 = (λ0, µ0) of Γs, in which case the differential

operators

(3.5) Ls − λ0 and A2s+1 − µ0 belong to K[∂].

Hence one may even write (λ0, R2s+1(λ0)1/2), whenever R2s+1(λ0) 6= 0, as
in [7, 21].
In the seminal works of Krichever [31, 32], the formal Baker–Akhiezer

function is given using a local parametrization (τ2, µ(τ)). See also [43, 58].
Local parametrizations around a point P0 are generally obtained as Puiseux
series, see for instance [52, Section 2.5]. They always exist in the field of
Puiseux series C〈〈τ〉〉 and the differential operators

(3.6) Ls − τ2 and A2s+1 − µ(τ) belong to K〈〈τ〉〉[∂].

Their analytical behavior depends on the type of point of the curve (sin-
gular or regular). Those local expansions would allow a local parametric
study of the spectral problem (3.6).
In the visionary works of Burchnall and Chaundy [10] and [11], the at-

tention is driven towards the case of singular curves, for which their re-
sults regarding Abelian equations are no longer valid. In [11] they analyze
cuspidal curves defined by µn − λm = 0, n,m coprime, by means of the
global parametrization (χ1(τ), χ2(τ)) = (τm, τn).
We propose two new approaches “to work over the spectral curve”. First,

we consider λ and µ as generic variables and assume that

(3.7) Ls − λ , A2s+1 − µ belong to K(Γs)[∂].

As operators in K[λ, µ][∂], by Remark B.4(1), they do not have a common
factor, since ∂ Res(Ls−λ,A2s+1−µ) is nonzero, it equals the BC polynomial
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fs. Considering them as operators in K(Γs)[∂], they have a common right
factor, see Section 4.
Second, in the case of rational curves, see Section 6, we establish the

coupling governed by a global parameterization (χ1(τ), χ2(τ)) in C(τ)2

and consider that differential operators

(3.8) Ls − χ1(τ) , A2s+1 − χ2(τ) belong to K(τ)[∂].

Observe that K(τ) is a much smaller field than K〈〈τ〉〉. The possibility of
obtaining a global parametrization depends on the genus g of the curve Γs
and ultimately of its singular locus, see for instance [3]. If the curve Γ is ra-
tional, g = 0, there are symbolic algorithms to obtain a global parametriza-
tion [52]. If Γs is an elliptic curve, g = 1, it can be parametrized by elliptic
functions in C, [53]. For g > 2 this is a difficult open problem, some con-
tributions have been made in this direction, for instance by Y.V. Brezhnev
in [6].
We can properly describe now the problem solved in this paper. We work

with an algebro-geometric Schrödinger operator

(3.9) Ls − λ in K(Γs)[∂]

to define, in Section 4, the minimal field extension of K(Γs) that contains
the solutions of (Ls − λ)Ψ = 0. In the remaning of this section we prove
that C(Γs) is the field of constants of K(Γs).
We extend the derivation ∂ of K to the polynomial ring K[λ, µ] by

(3.10) ∂
(∑

ai,jλ
iµj
)

=
∑

∂(ai,j)λiµj , ai,j ∈ K

with ring of constants C[λ, µ]. Let (fs) be the ideal generated by fs in
K[λ, µ]. Observe that for any p ∈ K[λ, µ] it holds that

(3.11) ∂(pfs) = ∂(p)fs + p∂(fs) = ∂(p)fs

since fs ∈ C[λ, µ]. This implies that (fs) is a differential ideal in (K[λ, µ], ∂).
Let us consider the domains in (3.4) and observe that C[Γs] ↪→ K[Γs].
Secondly we consider the standard differential structure of the quotient
ring K[Γs] given by the following:

(3.12) ∂̃(q + (fs)) = ∂(q) + (fs), q ∈ K[λ, µ].

Observe that ∂̃ is a derivation in K[Γs] since (fs) is a differential ideal. By
abuse of notation we also denote by ∂̃ its extension to the fraction field
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K(Γs). The next commutative diagram summarizes the situation:

K[Γs] �
� // K(Γs)

C[Γs]
?�

OO

� � // C(Γs)
?�

OO

To work in the ring K[Γs] we will consider special representatives of its
elements, fixing the monomial lexicographical order with µ > λ in K[λ, µ].
Given p + (fs) ∈ K[Γs], with representative p ∈ K[λ, µ], let us denote by
pN the normal form of p with respect to (fs) (see [14]). We will call pN
the normal form of p on Γs. Observe that pN is a polynomial in K[λ, µ] of
degree one in µ. The following observations will be very important in what
follows.

Remark 3.3. — Given q and h polynomials in K[λ, µ] of degree one in µ.
(1) If h is a factor of q then q = βh for some nonzero β in K[λ].
(2) q = a+ bµ is irreducible in K[λ, µ] if and only if gcd(a, b) = 1.
(3) Given q of degree one in µ, we can factor it as q = Λq̂ where

Λ ∈ K[λ] and q̂ is irreducible of degree one in µ.

Proposition 3.4. — Let q be a polynomial in K[λ, µ] of degree greater
or equal than one in µ.

(1) Let q+ (fs) be a nonzero element in K[Γs]. There exists a nonzero
T ∈ K[λ, µ] and a nonzero Λ ∈ K[λ] such that Tq+(fs) = Λ+(fs).

(2) Every nonzero p
q in K(Γs) equals r

Λ in K(Γs) where r ∈ K[λ, µ]
and Λ ∈ K[λ].

Proof. — The polynomials q and fs can be seen as polynomials in µ

with coefficients in the field K(λ). By hypothesis, fs does not divide q in
K[λ, µ]. This implies that fs does not divide q in K(λ)[µ], since fs is monic
by (3.2); therefore they are coprime. There exist A,B ∈ K(λ)[µ] such that
Aq +Bfs = 1, see [14, Chapter 1, Section 5, Proposition 6]. We can write
A(λ, µ) = g(λ, µ)/a(λ) and B(λ, µ) = h(λ, µ)/b(λ), with g, h ∈ K[λ, µ] and
nonzero a, b ∈ K[λ]. Thus bgq + ahfs = ab in K[λ, µ]. In K[Γs] we have

(3.13) (T + (fs))(q + (fs)) = Λ(λ) + (fs), with T = bg and Λ = ab.

Given a nonzero p+(fs) inK[Γs] from (3.13) we have Tqp+(fs) = Λp+(fs)
thus p

q equals Tq
Λ in K(Γs) and for r = Tq statement (2) follows. �

We are now ready to prove Theorem B.
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Theorem 3.5.
(1) The ring of constants of (K[Γs], ∂̃) is C[Γs].
(2) (Theorem B) The field of constants of (K(Γs), ∂̃) is C(Γs).

Proof. — Let us consider p + (fs) in K[Γs] such that ∂̃(p + (fs)) = 0.
Let pN = a + bµ be its normal form on Γs, then ∂(a) + ∂(b)µ ∈ (fs) in
K[λ, µ]. Then ∂(a) = ∂(b) = 0. Hence p + (fs) belongs to C[Γs], which
proves statement (1).
Let us also consider v ∈ K(Γs) such that ∂̃(v) = 0. By Proposition 3.4(2),

we have v = p
Λ1

in K(Γs), with p ∈ K[λ, µ] and Λ1 ∈ K[λ].
If p = Λ2 ∈ K[λ] then ∂̃(v) = H

Λ2
1
in K(Γs) with H = ∂(Λ2)Λ1−∂(Λ1)Λ2.

Thus 0 = Λ2
1∂̃(v) = H + (fs). Since H is a polynomial in K[λ] then H = 0.

Hence Λ2 = γΛ1, with γ in the field of constants C(λ) of K(λ), and v = γ

in K(Γs). Consequently v ∈ C(Γs).
If p /∈ K[λ], by Remark 3.3 we can write v = pN

Λ1
in K(Γs), where the

normal form on Γs of p equals pN = a+ bµ. Now 0 = Λ2
1∂̃(v) = H + (fs),

with
H = Λ1∂(pN )− ∂(Λ1)pN .

Since the degree in µ of H equals one then H = 0 in K[λ, µ]. This implies
that pN divides ∂(pN ) and by Remark 3.3, ∂(pN ) = βpN , with β ∈ K[λ].
Thus a and b are solutions of the linear differential equation ∂(Ψ) = β(λ)Ψ
then a = cb, c = c1/c2 with c1, c2 ∈ C[λ]. Therefore v = b(c2+µ)

c1λ1
in K(Γs)

and

0 = ∂̃(v) = (c1 + µ)∂̃(w)⇐⇒ ∂̃(w) = 0, with w = b

c1Λ1
in K(Γs).

Thus w ∈ C(Γs), which proves that v ∈ C(Γs), and statement (2) is
proved. �

4. Spectral Picard–Vessiot fields

We are ready now to introduce the main concept of this paper, the spec-
tral Picard–Vessiot (PV) field of the equation

(4.1) (Ls − λ)Ψ = 0,

where, as before, Ls = −∂2 + us is an algebro-geometric Schrödinger ope-
rator of level s. We consider (Ls − λ)(Ψ) = 0 as an homogeneous linear
differential equation of second order with coefficients in (K(Γs), ∂̃). Since ∂̃
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extends the derivation ∂ of K, as can be deduced from (3.12), when there
is no room for confusion we write ∂ instead of ∂̃.
Let us recall the definition of Picard–Vessiot extension following Kaplans-

ky (see [15, 29, 49] for instance).

Definition 4.1. — Let y(n) + an−1y
(n−1) + · · · + a1y

′ + a0y = 0 be a
linear homogeneous differential equation with coefficients in the differential
field Σ. We say that a differential field E containing Σ is a Picard–Vessiot
extension of Σ for the above equation, if the following conditions are satis-
fied:

(1) E = Σ〈u1, . . . , un〉, the differential field extension of Σ generated by
a fundamental set of solutions {u1, . . . , un} of y(n) + an−1y

(n−1) +
· · ·+ a1y

′ + a0y = 0.
(2) E and Σ have the same field of constants.

In this paper we use Picard–Vessiot extensions as in Definition 4.1, but,
since Ls is an algebro-geometric operator we will be able to give a pre-
cise description of its Picard–Vessiot field in connection with its spectral
curve. We will call this particular field structure spectral Picard–Vessiot
field over the curve. Due to its importance for this paper we present next
the definition.

Definition 4.2. — A differential field extension E of K(Γs) is called a
spectral Picard–Vessiot field over the curve Γs of the equation (Ls−λ)(Ψ) =
0 if the following conditions are satisfied:

(1) E = K(Γs)〈Ψ1,Ψ2〉, the differential field extension ofK(Γs) genera-
ted by Ψ1,Ψ2, where {Ψ1,Ψ2} is a fundamental set of solutions of
(Ls − λ)(Ψ) = 0.

(2) E and K(Γs) have the same field of constants C(Γs).

Afterwards, we will prove its existence highlighting the importance of its
field of constants C(Γs) and proving that it is a transcendental Liouvillian
extension of K(Γs).
For the convenience of the reader, we recall some definitions from diffe-

rential algebra. Let K be a differential field and Σ a differenttial extension
of K. An element t in Σ is a primitive over K if Dt ∈ K; the element t is an
hyperexponential over K if Dt/t ∈ K; and t is called Liouvillian element of
Σ if t is either algebraic, or a primitive or an hyperexponential over K. The
field Σ is a Liouvillian extension of K if there are t1, . . . , tn in Σ such that
Σ = K(t1, . . . , tn) and ti is Liouvillian over K(t1, . . . , ti−1) for i = 1, . . . , n.
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The next proposition shows that, as an element of K(Γs)[∂], the algebro-
geometric operator Ls − λ has an intrinsic order one (right) factor, that is
linked to the (unique) partner A2s+1 of Ls.

Proposition 4.3. — The monic greatest common (right) divisor of the
differential operators Ls − λ and A2s+1 − µ in K(Γs)[∂] is the order one
operator

∂ − φs, where φs = µ+ α(λ)
ϕ(λ) ,

for α and ϕ nonzero polynomials in K[λ]. Moreover φs is nonzero in K(Γs)
and we call ∂ − φs the intrinsic right factor of Ls − λ.

Proof. — As defined in Appendix B, let us consider the differential resul-
tant G0 and first subresultant G1 of Ls−λ and A2s+1−µ in (B.2) and (B.3)
respectively. Since G0 is zero in K(Γs) by Theorem B.3 the greatest com-
mon factor of Ls−λ and A2s+1−µ is nontrivial. In addition G1 is an order
one differential operator

G1 = (−µ− α(λ)) + ϕ(λ)∂

where α and ϕ are nonzero polynomials in K[λ] and by Theorem B.3 it is
the greatest common right divisor.
We will also write φs to denote the element φs in K(Γs). Observe that

φs = 0 in K(Γs) if and only if µ + α + (fs) = 0 in K[Γs]. But this is not
possible since fs, which has degree 2 in µ, is not a factor of µ+α in K[λ, µ].
This proves the last claim. �

Remark 4.4. — We proved Proposition 4.3 using the Differential Sub-
resultant Theorem B.3. In addition the first subresultant G1 = ϕ2∂ + ϕ1,
see (B.3), of Ls−λ and A2s+1−µ can be used to compute the factor ∂−φs,
see [42] for an algorithmic approach.

We have the next factorization over the spectral curve

(4.2) Ls − λ = (−∂ − φs)(∂ − φs), in K(Γs)[∂],

since, once this right factor is set, the only possibility as a left factor is
−∂ − φs. Let us define φ+ := φs before obtaining another factorization
of Ls − λ. Observe that the BC-polynomial of Ls − λ and A2s+1 + µ is
also fs(λ,−µ) = fs(λ, µ). Applying Proposition 4.3, we obtain another
factorization of Ls − λ, namely

(4.3) Ls − λ = (−∂ − φ−)(∂ − φ−), in K(Γs)[∂],
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with
φ− = −µ+ α(λ)

ϕ(λ) .

Both φ+ and φ− are solutions of the Riccati equation ∂(φ) + φ2 = us + λ

with coefficients in K(Γs).
Nonzero solutions Ψ+ and Ψ− of (Ls−λ)(Ψ) = 0 are defined respectively

by the differential relations

(4.4) ∂(Ψ+) = φ+Ψ+ and ∂(Ψ−) = φ−Ψ−

and hence Ψ+ and Ψ− belong to the differential closure of the field K(Γs),
[30]. Therefore

∂(Ψ+)
Ψ+

= φ+ and ∂(Ψ−)
Ψ−

= φ−

belong toK(Γs) andK(Γs)〈Ψ+〉 andK(Γs)〈Ψ−〉 are Liouvillian extensions
of K(Γs).

Lemma 4.5. — Given Ψ+ and Ψ− as in (4.4), it holds that:
(a) {Ψ+,Ψ−} is a fundamental set of solutions of (Ls − λ)(Ψ) = 0.
(b) Ψ+Ψ− ∈ K(Γs).

Proof. — Trivially Ψ+ and Ψ− are nonzero solutions of Ls − λ. We will
prove that their wronskian is nonzero. Observe that µ is a constant in
K(Γs) , that is µ ∈ C(Γs) and furthermore it is nonzero, and the operator
Ls−λ is in normal form. Since ∂(w(Ψ+,Ψ−)) = 0, w(Ψ+,Ψ−) belongs to
C(Γs). The following computation

(4.5) w(Ψ+,Ψ−)
Ψ+Ψ−

= ∂(Ψ+)
Ψ+

− ∂(Ψ−)
Ψ−

= φ+ − φ− = 2µ
ϕ

implies that w(Ψ+,Ψ−) 6= 0 in C(Γs). This formula implies that

(4.6) Ψ+Ψ− = ϕw(Ψ+,Ψ−)
2µ ∈ K(Γs),

which completes the proof. �

Remark 4.6. — Notice that Lemma 4.5(b) establishes that the product of
two solutions belongs to the field of coefficients of the Schrödinger operator.
Thus, the Picard–Vessiot structures K(Γs)〈Ψ±〉 will also benefit from this
fact, analogously to the classical case, whenever a particular value λ = λ0
is chosen. In this case, since Hermite [27], Halphen [24], Drach [17, 18], the
study of the second symmetric power of the operator is fundamental to
analyze the Lamé equation (see Wittaker–Watsom [57, page 570 and the
references therein]).
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We would like to point out that the function of Lemma 4.5(b) was also
used in the important work of Gelfand and Dickii to study the asymptotic
behavior of the resolvent, see [20].

By Lemma 4.5(b) the next equality of differential filed extensions of
K(Γs) holds

(4.7) K(Γs)〈Ψ+,Ψ−〉 = K(Γs)〈Ψ+〉 = K(Γs)〈Ψ−〉.

Let us denote by Ψs = Ψ+, which is defined by the differential relation
∂(Ψs) = φsΨs. We will prove that the Liouvillian extension

(4.8) K(Γs) ⊂ K(Γs)〈Ψs〉

is transcendental, showing that Ψs is a transcendental element over K(Γs).
In fact, this is intrinsically related to the determination of the subfield of
constants of the field K(Γs)〈Ψs〉. For this purpose we will use results from
the book of M. Bronstein (see [9] and the references therein). We quote
here some results from [9] for the convenience of the reader.

Definition 4.7 ([9, Definition 3.4.3]). — Let (F, δ) be a differential
field. We say that φ ∈ F is a logarithmic derivative of a F -radical if there
exist a nonzero v in F and an integer n 6= 0 such that nφ = δv/v.

Theorem 4.8 ([9, Theorem 5.1.2]). — If t is an hyperexponential over F
and Dt/t is not a logarithmic derivative of a F -radical, then t is a monomial
over F , the field of constants of F (t) equals the field of constants of F ; and
S = F . Conversely, if t is transcendental and hyperexponential over F , and
the field of constants of F (t) equals the field of constants of F then Dt/t
is not a logarithmic derivative of a F -radical.

Theorem 4.9 ([9, Corollary 3.3.1]). — Let (F,D) be a differential field
and let E be a separable algebraic extension of F . Let also C be the constant
field of F with respect to the derivation D and let CE be the algebraic
closure of C in E, i.e. the subfield of all the elements of E that are algebraic
over C. Then D can be extended uniquely to E, call it D̃, and the field of
constants of E with respect to D̃ is also CE . In addition, if E is algebraically
closed, then the field of constants of E with respect to D̃ is an algebraic
closure of C.

The next diagram corresponds to Theorem 4.9.

CE �
� // (E, D̃)

C �
� // (F,D)
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Observe that if there exists a nonzero v ∈ K(Γs) and a nonzero integer
n such that

∂̃(v)
nv

= φs = ∂̃(Ψs)
Ψs

then for c = Ψn
s /v we have ∂̃(c) = 0 and also Ψn

s − cv = 0. This ensures
that Ψs is algebraic over a differential field that is generated by K(Γs) and
a possibly new constant c. We will prove that this is not the case for Ψs.

Lemma 4.10. — There does not exists a nonzero v ∈ K(Γs) such that
φs = ∂̃(v)

nv for a nonzero integer n. That is, φs is not a logarithmic derivative
of a K(Γs)-radical.

Proof. — Let us assume that there exists v ∈ K(Γs), v 6= 0, ∂̃(v) 6= 0
such that φs = ∂̃(v)

nv for a nonzero integer n. By Proposition 3.4(2), we can
write v = p

Λ1
in K(Γs) for some nonzero p ∈ K[λ, µ] and Λ1 ∈ K[λ]. Let

pN be the normal form of p on Γs.
Let us consider the polynomial in K[λ, µ]

(4.9) H = [∂(pN )Λ1 − pN∂(Λ1)]ϕ− npNΛ1(µ+ α).

Recall that φs = µ+α
ϕ as in Theorem 4.3, hence α,ϕ ∈ K[λ] and

∂̃(v)
nv
− φs = H

npNΛ1ϕ
= 0 in K(Γs).

Now we apply Proposition 3.4(1), for q = npNΛ1ϕ. Then there exists
nonzero T ∈ K[λ, µ] and a nonzero Λ2 ∈ K[λ] such that

0 = Λ2H

npNΛ1ϕ
= Λ2H

q
= TH

1 in K(Γs).

Therefore in K(λ, µ)

Λ2H

npNΛ1ϕ
= Nfs, for some N ∈ K[λ, µ].

Finally we obtain

(4.10) Λ2 [[∂(pN )Λ1 − pN∂(Λ1)]ϕ− npNΛ1(µ+ α)] = npNΛ1ϕNfs.

If pN ∈ K[λ] then the degree in µ of the LHS of (4.10) is 1 and of RHS
of (4.10) is at least 2. Thus this is not possible. We have proved that v
cannot be equal to γ in K(Γs), with γ ∈ K(λ). Hence it remains to check
the case where pN is not in K[λ].
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Let us assume that pN /∈ K[λ]. By (4.10), pN is a factor of Λ1Λ2∂(pN )ϕ.
Then by Remark 3.3(1), ∂(pN ) = Λ3pN , with Λ3 ∈ K[λ]. Hence equal-
ity (4.10) becomes

(4.11) Λ2 [[Λ3Λ1 − ∂(Λ1)]ϕ− nΛ1(µ+ α)] = nλ1ϕNfs.

Observe that the degree in µ of the LHS of (4.11) is 1 and of RHS of (4.11)
is at least 2. But this is a contradiction. Therefore we conclude that such
v does not exist, which proves the result. �

It is an immediate consequence of the results in [9] that the previous
lemma is equivalent to the next theorem.

Theorem 4.11. — Let Ls be an algebro-geometric Schrödinger oper-
ator with spectral curve Γs. Let us consider the intrinsic right factor of
Ls−λ from Proposition 4.3, ∂−φs, in K(Γs)[∂]. A nonzero solution Ψs of
(Ls − λ)Ψ = 0 defined by the differential relation ∂(Ψs) = φsΨs is trans-
cendental over K(Γs) and the field of constants of K(Γs)〈Ψs〉 equals the
field of constants of K(Γs).

Proof. — By Lemma 4.10, applying Theorem 4.8 ([9, Theorem 5.1.2]) to
the hyperexponential t = Ψs and the differential field (K(Γs), ∂̃), the result
follows. �

We then proved the existence of the spectral Picard–Vessiot field over
the curve Γs of the equation (Ls − λ)(Ψ) = 0.
Proof of Theorem C. — Theorem C is a direct consequence of Lem-

ma 4.5, Theorem 4.11 and Definition 4.2. �

We illustrate Theorem C with the following commutative diagram, whose
second row shows the fields of constants:

K(Γs) �
� // K(Γs)〈Ψs〉

C(Γs)

OO

C(Γs).
?�

OO

In the next two sections we show applications of this new structure, the
spectral PV field of the operator Ls − λ.

5. Classical Picard–Vessiot fields

Let Ls = −∂2 + us be an algebro-geometric Schrödinger operator with
spectral curve Γs and nonconstant potential us. For any fixed P0 = (λ0, µ0)
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in Γs, we will describe the Picard–Vessiot (PV) extension over K = C〈us〉
of Ls − λ0.
We recall that, when a particular value of the spectral parameter is fixed,

in the definition of the PV extension for Ls − λ0, the field of constants
used to be an algebraically closed field C of characteristic 0, see [49] and
also [1]. Then, now we are looking for a differential field Σ = K〈y1, y2〉,
the differential field extension of K generated by y1, y2, where {y1, y2} is a
fundamental set of solutions of (Ls − λ0)(y) = 0, whose field of constants
is also C. We will call Σ classical Picard–Vessiot Extension in this case.
For a nonsingular point P0 of Γs, the dimension of the space of common

solutions of Ls−λ0 and A2s+1−µ0 is known to be one, [58, Theorem 5.8].
In the next proposition we prove that this holds even for singular points.

Proposition 5.1. — For every P0 = (λ0, µ0) in Γs the differential ope-
rators Ls−λ0 and A2s+1−µ0 have a greatest common right factor of order
one ∂ − φ0 in K[∂] with nonzero

(5.1) φ0 = µ0 + α(λ0)
ϕ(λ0) ∈ K.

Proof. — By the Subresultant Theorem B.3, Ls − λ0 and A2s+1 − µ0
have a common factor of order one in K[∂], namely ϕ1(P0) +ϕ2(P0)∂ the
specialization of (B.3) to P0 = (λ0, µ0), hence ϕ2(λ0) 6= 0 �

For a fixed P0 = (λ0, µ0) (singular or not) of Γs, we have the factorization

(5.2) Ls − λ0 = (−∂ − φ0)(∂ − φ0), in K[∂].

Let us denote by y0 a nonzero solution of (∂ − φ0)(y) = 0. Thus y0 is a
common solution of

(5.3)
{

(Ls − λ0)(y) = 0,
(A2s+1 − µ0)(y) = 0.

For us an analytic function in a suitable complex domain, y0 is the sta-
tionary Baker–Akhiezer function

y0 = Ψ(P0, x, x0) = exp
(∫ x

x0

φs(P0, x
′) dx′

)
, P0 ∈ Γs.

Traditionally the Baker–Akhiezer function is only defined for nonsingular
affine points of Γs ([21, (1.41)]).

Proposition 5.2. — For any P0 in Γs, let us consider a nonzero solution
y0 in a differential closure of the differential field K of (∂ − φ0)y = 0. The
field of constants of the differential field K〈y0〉 is C.
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Proof. — Being defined by y′0/y0 = φ0 ∈ K, we know that K〈y0〉 is a
Liouvillian extension of K. If y0 is algebraic, the result follows by Theo-
rem 4.9 ([9, Corollary 3.3.1]). If y0 is transcendental the result follows by [9,
Theorems 5.1.1 and 5.1.2]. �

To describe the PV extension of Ls−λ0, we must distinguish two different
types of point P0 = (λ0, µ0) in the curve, the ones with µ0 6= 0 and those
with µ0 = 0, that is the finite set

(5.4) Zs = Γs ∩ (C × {0}) = {(λ, 0) |R2s+1(λ) = 0}.

Observe that Zs contains all the affine singular points and ramification
points of Γs.

Theorem 5.3. — Let us fix P0 = (λ0, µ0) in Γs\Zs. The PV extension
of the equation (Ls − λ0)y = 0, is the Liouvillian extension K〈y0〉 of K by
a nonzero solution y0 of (∂ − φ0)y = 0 as in (5.2).

Proof. — Applying Proposition 5.1 to the point P ′0 = (λ0,−µ0) gives a
new factorization

Ls − λ0 = (−∂ − φ0−)(∂ − φ0−), in K[∂].

Then we have

(5.5) φ0+ = φ0 = µ0 + α(λ0)
ϕ(λ0) and φ0− = −µ0 + α(λ0)

ϕ(λ0) .

Hence we consider nonzero solutions y+ and y− of the differential equations
∂(y) = φ0+y and ∂(y) = φ0−y respectively, in a differential closure of K.
The equality

w(y+, y−)
y+y−

= φ0+ − φ0− = 2
ϕ(λ0)µ0 6= 0

implies thatW0 = w(y+, y−) 6= 0 in C. Therefore {y+, y−} is a fundamental
set of solutions of (Ls − λ0)(y) = 0. Moreover

y+y− = ϕ(λ0)W0

2µ0
∈ K,

hence K〈y+, y−〉 = K〈y+〉. In addition, by Proposition 5.2, K〈y+〉 and K
have the same field of constants C, which proves that K〈y+〉 is the PV field
of Ls − λ0. �

Observe that (∂ − φ0)(y0) = 0 implies (−∂ − φ0)(y−1
0 ) = 0. Thus a

solution of the Risch differential equation

(5.6) ∂(y)− φ0y = y−1
0

over the differential field K〈y0〉, see [9, Section 6], would be a solution of
(Ls − λ0)(y) = 0 because of the factorization (5.2).
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Theorem 5.4. — Let us fix (λ0, 0) in Zs. Given nonzero solutions y0
of (∂ − φ0)y = 0 as in (5.2) and y1 of (5.6), we have a chain of Liouvillian
extensions

(5.7) K ⊂ K〈y0〉 ⊂ K〈y0, y1〉

with field of constants C, and then K〈y0, y1〉 is the PV extension of
(Ls − λ0)y = 0.

Proof. — By Proposition 5.2 the field of constants of K〈y0〉 is C. Let
us assume that y1 /∈ K〈y0〉. We have a fundamental system of solutions
{y0, y1} of (Ls − λ0)(y) = 0 since

w(y0, y1)
y0y1

= ∂(y0)
y0
− ∂(y1)

y1
= −1
y0y1

.

Remains to prove that the field of constants of K〈y0, y1〉 is C.
Let ŷ1 be a nonzero solution of ∂−y−1

0 . Without loss of generality, we can
take y1 = y0ŷ1 as the solution of (5.6). Observe that K〈y0, y1〉 = K〈y0, ŷ1〉
is a Liouvillian extension ofK〈y0〉 and ŷ1 is a primitive element overK〈y0〉.
If ∂(ŷ1) is a not the derivative of an element of K〈y0〉, by [9, Theorem 5.1.1]
the field of constants of K〈y0, ŷ1〉 is C. Otherwise ∂(ŷ1) = ∂(N0), N0 ∈
K〈y0〉. Derivating y1/y0 = ŷ1 we have ∂(y1)/y1 = ∂(y0)/y0 + ∂(ŷ1), and
hence ∂(y1)/y1 ∈ K〈y0〉.
Moreover if the hyperexponential y1 is a logarithmic derivative of a

K〈y0〉-radical then, by (5.6), y1 ∈ K〈y0〉, which is a contradiction. Thus
Theorem 4.11 ([9, Theorem 5.1.2]) implies that the field of constants of
K〈y0, y1〉 is the field of constants of K〈y0〉, that is C. �

Remark 5.5. — We would like to point out that the classical solutions
of the Lamé equation correspond exactly to the case contemplated here
when µ = 0, see [57] and the references therein. Then their Picard–Vessiot
extensions are given by (5.7). Their Galois groups are studied in [40].

For all but a finite number of points in Γs, we summarize the situation
in the next commutative diagram:

C(Γs) // K(Γs)
Liouvillian // K(Γs)〈Ψs〉

C

OO

// K

OO

at P0∈Γs // K〈y0〉

OO

for K = C〈us〉. In fact, in previous notations, this diagram holds for each
P0 6∈ Zs in (5.4). In other words, for the non-branch points of Γs, we have
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a good specialization process to obtain the classical Picard–Vessiot field
from the spectral Picard–Vessiot field.

6. One-parameter spectral PV fields for rational curves

In this section we assume that the spectral curve Γs of the pair {Ls, A2s+1}
is an affine rational curve, i.e. its closure in P2 is birrationally equivalent
to P1 ([26, p. 78]). Hence an open subset Ũ of Γs is isomorphic to a Zariski
open subset U of the affine line A1. Then we have

(6.1) C(Γs)
ρ1' C(τ) with ρ1(λ) = χ1(τ) and ρ1(µ) = χ2(τ)

for a complex parameter τ such that

(6.2) ℵ : U 3 τ → (χ1(τ), χ2(τ)) ∈ Γs
is a regular isomorphism, and then C(Γs) ' C(U).

Let us consider next the differential structure of K(τ) = C〈us〉(τ). Re-
call that τ is an algebraic indeterminate over C〈us〉, which allows to ex-
tend the derivation ∂ = d/dx of C〈us〉 to C〈us〉(τ) since ∂(τ) = 0. Then
we extend the isomorphism ρ1 to an isomorphism of differential fields
C(Γs)〈us〉 ' C(τ)〈us〉. Since C(τ)〈us〉 = C〈us〉(τ), the composition of ρ1
with the natural isomorphism C〈us〉(Γs) ' C(Γs)〈us〉 gives an isomor-
phism, let us call it also ρ1,

(6.3) K(Γs) = C〈us〉(Γs) ' C〈us〉(τ) = K(τ).

The next commutative diagram of differential fields illustrates the differ-
ential algebraic situation:

(6.4)

K(Γs)
ρ1 // K(τ)

C(Γs)
?�

OO

ρ1 // C(τ)
?�

OO

Moreover, ρ1 extends naturally to an isomorphism % between the rings of
differential operators K(Γs)[∂] and K(τ)[∂].
Using Proposition 4.3, we obtain the right common factor %(∂ − φs) of

Ls − χ1(τ) = %(Ls − λ) and A2s+1 − χ2(τ) = %(A2s+1 − µ) in K(τ)[∂].
Let us define φ̃s = ρ1(φs). Observe that φ̃s is a nonzero element of K(τ)
since, by Proposition 4.3, φs is nonzero in K(Γs). Furthermore, since the
isomorphism respects the ring structure, from (4.2) we obtain

(6.5) Ls − χ1(τ) = (−∂ − φ̃s)(∂ − φ̃s), in K(τ)[∂].
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Furthermore, we have factorizations

Ls − χ1(τ) = (−∂ − φ̃+)(∂ − φ̃+) = (−∂ − φ̃−)(∂ − φ̃−)

where φ̃+ = φ̃s and φ̃− = ρ(φ−) are distinct solutions of the same Riccati
equation ∂(φ) + φ2 = us − χ1(τ), since ρ1 respects the differential field
structure. In the differential closure K̂(τ) of K(τ) [30], we consider nonzero
solutions Υ+ and Υ− respectively of the ordinary differential equations

(6.6) ∂(Υ) = φ̃+Υ and ∂(Υ) = φ̃−Υ.

Lemma 6.1. — Let Υ+ and Υ− as in (6.6), it holds that:
(1) {Υ+,Υ−} is a fundamental set of solutions of (Ls−χ1(τ))(Υ) = 0.
(2) Υ+Υ− ∈ K(τ).

Proof. — The proof is analogous to the proof of Lemma 4.5, noting that
w(Υ+,Υ−)

Υ+Υ−
= φ̃+ − φ̃− = ρ1(φ+ − φ−) = ρ1

(
2
ϕ
µ

)
6= 0

since 2
ϕµ 6= 0 and ρ1 is an isomorphism. �

By Lemma 6.1, 2 we have K(τ)〈Υ+,Υ−〉 = K(τ)〈Υ+〉 = K(τ)〈Υ−〉. We
denote Υs = Υ+. Now we can apply the differential algebraic results in [9],
to the hyperexponential Υs and the differential field (K(τ), ∂), regarding
the integration problem of φ̃s = ∂Υs/Υs in K(τ).

Lemma 6.2. — The element φ̃s of K(τ) is not a logarithmic derivative
of a K(τ)-radical.

Proof. — Let us assume that there exists w ∈ K(τ), w 6= 0, ∂(w) 6= 0
such that φ̃s = ∂(w)

nw for a nonzero integer n. Since ρ1 is an isomorphism,
w = ρ1(v), with v ∈ K(Γs), v 6= 0, ∂̃(v) 6= 0. Then

φ̃s = ρ1(φs) = ρ1

(
∂̃(v)
nv

)
= ∂(w)

nw

implies φs = ∂̃(v)
nv contradicting Lemma 4.10. �

Theorem 6.3. — Let Ls be an algebro-geometric Schrödinger operator
with rational spectral curve Γs parametrized by (χ1(τ), χ2(τ)) ∈ C(τ)2.
Let ∂ − φ̃s be the intrinsic right factor of Ls − χ1(τ) as in (6.5). The
Liouvillian extension K(τ)〈Υs〉 of K(τ), by a nonzero solution Υs ∈ K̂(τ)
of (∂− φ̃s)Υ = 0, is a transcendental extension with field of constants C(τ).

Proof. — By Lemma 6.2 and [9, Theorem 5.1.2] the result follows. �
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In Theorem C of the introduction, we gave the field structure of the
spectral Picard–Vessiot field for any spectral curve. In Theorem D of the
introduction, we give its parametric presentation whenever the spectral
curve is a rational curve. We are ready to prove Theorem D.

Proof of Theorem D. — The isomorphism ρ1 in (6.4) extends naturally
to an isomorphism between differential fields

ρ̂1 : K(Γs)〈Ψs〉 −→ K(τ)〈Υs〉

by sending a nonzero solution Ψs of (∂ −φs)Ψ = 0, as in Theorem 4.11, to
Υs. Hence diagram (6.4) extends to the following commutative diagram of
differential fields, whose second row shows the fields of constants:

K(Γs)〈Ψs〉
ρ̂1 // K(τ)〈Υs〉

C(Γs)
?�

OO

ρ1 // C(τ)
?�

OO

Hence we have proved the required statement. �

The global rational parametrization of the spectral curve allows us to be
more specific about the integral representation of Υs, which was defined
in (6.6) as a solution of (∂ − φs)Υ = 0. Moreover, we have the following
sequence of differential fields,

(6.7) C(Γs) ≡ C(τ) ⊂ C〈us〉(τ) = K(τ) ⊂ K(τ)〈Υs〉.

with Υs a transcendental element over C〈us, τ〉, by Theorem 6.3. We can
finally show the advantages of constructing solutions of the spectral prob-
lem (1.1) using a global rational parametrization of the spectral curve in
C(τ)2, instead of a local parametrization by Puiseux series in C〈〈τ〉〉2. We
do so by means of a family of Rosen-Morse potentials in Example 6.5 to
illustrate Remark 6.4, and establishing the appropriate algebraic setting to
solve problem (1.1) analytically obtaining Theorem 6.6.

Remark 6.4. — Recall that ∂ − φ̃s is an operator in K(τ)[∂] where

K(τ) = C〈us〉(τ) = C(τ)〈us〉.

If us is a monomial over the differential field C(τ) one can address the
integration of (∂ − φs)Υ = 0 in the differential algebraic setting of [9],
Chapter 5. Then the differential integration theorems and algorithms in [9]
can be used to compute Υs in an elementary extension of C(τ) if it exists.
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Example 6.5. — Let us consider the family of Rosen-Morse potentials

(6.8) us = −s(s+ 1)
cosh2(x)

, s > 1,

which belong to the differential field K = C〈cosh(x)〉 = C(ex), with
derivation ∂ = d/dx and field of constants C. It is well known that the
Schrödinger operators −∂2 + us are algebro-geometric, [42, 55]. In [42], we
gave algorithms to compute A2s+1. By means of the differential resultant
∂ Res(Ls−λ,A2s+1−µ) the defining polynomial fs of Γs can be computed,

fs(λ, µ) = µ2 + λ

s∏
κ=1

(λ+ κ2)2,

see for instance [21, Example 1.31]. By means of the first differential sub-
resultant of Ls − λ and A2s+1 − µ their right common factor ∂ − φs is
obtained. For s = 1

φ1 =
µ+ 1

2∂(ϕ)
ϕ

= (z2 + 1)3µ+ z4 − z2

(z2 + 1)((z2 + 1)2λ+ z4 + z2 + 1) ,

where ϕ = λ+ 1− 1
η2 , with η = cosh(x) and z = ex. All the curves Γs are

rational, in particular they admit a polynomial global parametrization

(6.9) ℵs(τ) = (χ1(τ), χ2(τ)) =
(
−τ2,−τ

s∏
κ=1

(τ2 − κ2)
)
,

with τ transcendental over C(ex). Replacing λ = χ1(τ) and µ = χ2(τ) in
φs we obtain φ̃s(x, τ), which is a rational function in C(τ)(z). Since z = ex

is transcendental over C(τ), we are in the situation of Remark 6.4. Using
the symbolic integration package of Maple 18 to obtain Υs as int(φ̃s, x).
For instance the primitive of φ̃1 equals

Υ1 = (τ − 1) z2 + τ + 1
z2 + 1 exτ ,

replacing λ = −τ2 and µ = −τ(τ2−1) in φ1; observe that all functions are
analytic outside the analytic set E =

{
z4 + z2 + 1− (z2 + 1)2τ2 = 0

}
⊂

C2. By (6.7) the corresponding sequence of differential fields is:

C(Γ1) ≡ C(τ) ⊂ C〈ex〉(τ) ⊂ C(ex, τ)〈Υ1〉,

since C
〈

−2
cosh2(x)

〉
(τ) = C(ex, τ). Moreover, Theorem 6.3 guaranties that

the function Υ1 is transcendental over C(ex, τ), and Theorem D that
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C(ex, τ)〈Υ1〉 is the minimal field extension where the solutions of the spec-
tral problem

(6.10)
(
−∂2 + −2

cosh2(x)

)
Ψ = −τ2Ψ

can be expressed as an element of a differential field with field of constants
C(τ). In fact, any solution of the above problem is of the form

Ψ(x, τ) = c1(τ)Υ1(x, τ) + c2(τ)Υ−(x, τ),

with ci(τ) ∈ C(τ) and Υ−(x, τ) = ϕ
2µΥ1

= (−(z2+1)2τ2+z4+z2+1)(z2+1)2

−2τ(τ2−1)((τ−1)z2+τ+1) e−xτ .

Next we will establish the appropriate algebraic setting to solve the spec-
tral problem (1.1) analytically.

For an analytic potential us(x) in a complex domainD in C, we will prove
that (∂ − φs)Υ = 0 has an analytic solution in an open neighborhood of
each point in some open subset of C2. Since Γs is defined by µ2 +R2s+1(λ),
its singular locus Sing(Γs) is contained in the finite set Zs = {(λ, 0) ∈ C2 :
R2s+1(λ) = 0}, and we can assume that U ∩ Zs = ∅. As a consequence, at
any fixed τ0 ∈ U we have

(6.11) χ1(τ) = g1(τ)
h1(τ) , χ2(τ) = g2(τ)

h2(τ)

for some polynomials gi, hi in C[τ ] and a neighborhood Uτ0 of τ0 in U where
hi(τ) 6= 0. Then, in U , we break down the spectral problem:

(6.12)
(
−∂2 + us(x)− χ1(τ)

)
Υ = 0 , (A2s+1 − χ2(τ)) Υ = 0

into two steps. First we compute the right common factor of the operator
−∂2+us(x)−χ1(τ) and A2s+1−χs(τ) with τ in U to obtain a one parameter
family of common right first order factors, say ∂ − φ̃s(x, τ). Secondly, we
address the resolubility of the first-order equation that generates the one
dimensional space of common solutions of (6.12):

(6.13)
(
∂ − φ̃s(x, τ)

)
Υ = 0 , for x ∈ D, τ ∈ U.

Finally we can give a fundamental matrix for the linear differential equa-
tion (−∂2 + us(x) − χ1(τ))Υ = 0 that varies continuously in τ ∈ U , see
Theorem 6.6. We use concepts from Complex Analytical Geometry (see for
example [36]).
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Theorem 6.6. — Let −∂2 +us(x) be an algebro-geometric Schrödinger
operator, with us(x) an analytic potential in a complex open set D. Let us
assume that the spectral curve Γs of Ls − λ is a rational curve. Then, for
each c in a domain Ωc ⊂ D × U ⊂ C2, the equation

(6.14) (∂ − φ̃s(x, τ))Υ = 0

has an analytic solution Υ(x, τ) in a subdomain of Ωc.

Proof. — Having a rational parametrization of the spectral curve Γs al-
lows to write

(6.15) φ̃s(x, τ) = N1(x, τ)
N2(x, τ)

with N1, N2 ∈ C{us(x)}[τ ]. For some open domain D1 ⊆ D then (6.15) is a
well defined analytic function in (D1×U)\E ⊂ C2 where E is the analytic
set {N2(x, τ) = 0}.

For a fixed c = (x0, τ0) ∈ (D1 × U)\E there exists an open domain
Ωc ⊂ (D1 × U)\E where the differential equation

(6.16) (∂ − φ̃s(x, τ))Υ = 0

has an analytic solution Υ(x, τ) in an open subdomain Ω̃c of Ωc
(see [28]). �

Remark 6.7. — Observe that Theorem 6.6 guaranties the existence of a
sheaf structure of spectral Picard–Vessiot fields, ΛΛΛ = ΛΛΛ(Γs), on a tubular
neighborhood W ⊂ C2 of Γs, possibly outside of an analytic set (E in the
proof of the previous theorem). For almost all c ∈ W , each fiber ΛΛΛc is
isomorphic to the differential field of germs at c of meromorphic functions
on the spectral curve Γs over K extended with a solution Υc of (6.14).
Moreover, when W ′ ⊂W is quasi-compact, the space of sections Γ(W ′,ΛΛΛ)
has a field structure and then ΛΛΛ is a torsion free sheaf overW . The relation
between the sheaf ΛΛΛ, the K-points of Γs, and its singular locus over C, is
an intriguing question that we will study in future works.

7. Concluding remarks

We have generalized the concept of classical Picard–Vessiot extension
of Ls − λ0 over K, with algebraically closed constant field C, to define
a spectral Picard–Vessiot field for Ls − λ over K(Γs) with constant field
C(Γs), which is not necessarily algebraically closed. These spectral Picard–
Vessiot fields admit a specialization process at each P0 = (λ0, µ0) in Γs
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that allowed us to give the classical Picard–Vessiot extensions ΣP0/K of
Ls− λ0 in Section 5. In addition, one could analyze the Differential Galois
group Gal(ΣP0/K) with the approaches given in [1, 8, 54].

Whenever the spectral curve Γs is hyperelliptic, a solution Ψs of prob-
lem (1.1), is expressed in [21, Theorem 1.20] in terms of Θ-functions, this
is the well known Baker–Akhiezer function. Also in the hyperelliptic case,
the work of Brezhnev ([8] and references there in) combines the expression
of φs in terms of Θ-functions, associated to the spectral curve, with the
definition of classical Picard–Vessiot extensions. It remains open to com-
bine the new spectral Picard–Vessiot structure we have defined with the
extensively developed Θ-function approach for the hyperelliptic case.
In Section 6 we studied the case of rational spectral curves transforming

the original spectral problem (1.1) into a spectral problem

(7.1) (−∂2 + us − χ1(τ))Υ = 0

with a free parameter τ . In this case the spectral Picard–Vessiot field
of (1.1) is isomorphic to a transcendental Liouvillian extension K(τ)(Υs).
In this context much more can be said about the hyperexponential Υs. In
the coefficient field K(τ) = C(τ)〈us〉, the differential integration theorems
and algorithms of M. Bronstein in [9], and other references there in, can
now be used to compute Υs. In addition we showed how, in the case of
analytic potentials, the algebraic techniques developed in Section 4 (for all
spectral curves) combined with a global rational parametrization of the
curve, allowed us to solve the spectral problem (1.1) analytically in closed
form when the spectral curve is a rational curve and has singular points,
see Theorem 6.6 and Remark 6.7.
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Appendix A. KdV potentials

The purpose of this appendix is to define KdV potentials and prove that
−∂2 +us is algebro-geometric only for a KdV potential us. We present the
KdV hierarchy and the family of differential operators of its Lax repre-
sentation with the language of differential algebra [50]. The KdV-hierarchy
was studied for the first time in the paper [20]. We follow the normalization
in [21], see also [42, Section 3].
Let us consider a differential indeterminate u over C. We will call formal

Schrödinger operator to the operator L(u) = −∂2 + u with coefficients in
the ring of differential polynomials C{u} = C[u, u′, u′′, . . .], where u′ stands
for ∂(u) and u(n) = ∂n(u), n ∈ N, where N is the set of positive integers
including 0.
Let us consider the pseudo differential operator

(A.1)
R = −1

4∂
2 + u+ 1

2u
′∂−1

and its (formal) adjoint R∗ = −1
4∂

2 + u− 1
2∂
−1u′,

in the ring of pseudo-differential operators in ∂ with coefficients in C{u}
(see [22]) where ∂−1 is the inverse of ∂, ∂−1∂ = ∂∂−1 = 1. Recall that the
(formal) adjoint operator of T =

∑m
k=−d ak∂

k, ak ∈ C{u} is defined by
T ∗ =

∑m
k=−d(−1)k∂kak, see [46, Theorem 5.31].

Observe that R∗ = ∂−1R∂. The operator R∗ is a recursion operator of
the KdV equation (see [46, p. 319]). Applying the recursion operator R,
we define:

(A.2) kdv0 := u′, kdvn := R(kdvn−1), for n > 1.

Applying R∗ we define:

(A.3) v0 := 1, vn := R∗(vn−1), for n > 1.

Hence for n ∈ N it holds 2∂(vn+1) = kdvn. We will call the differential
polynomials kdvn the KdV differential polynomials. By [42, Lemma 3.1],
the formulas for kdvn and vn give differential polynomials in C{u}.
As in [21], we define a family of differential operators in C{u}[∂] of odd

order (see also [16, 45])

(A.4) P1(u) := ∂, P2n+1(u) := vn∂−
1
2∂(vn) +P2n−1(u)L(u), for n > 1.

The operators P2n+1(u) have the important property (see for instance [42,
Lemma 3.2])

(A.5) [P2n+1(u), L(u)] = kdvn(u)
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it is the multiplication operator by the kdvn differential polynomial. This
is the famous Lax representation of kdvn, see [21, 45]. We will call the
differential operators P2n+1(u) the KdV differential operators.

Note that after replacing the differential variable u by a potential us ∈ Σ
we obtain a Schrödinger operator Ls = L(us) and differential operators
{P s2n+1 = P2n+1(us)}n>0, whose coefficients belong to the differential field
K = C〈us〉 with derivation ∂ and field of constants C. The next theorem
tells us how to construct the partner A2s+1 of an algebro-geometric Ls.

Theorem A.1. — Let Ls = −∂2 + us be an algebro-geometric Schröd-
inger operator of level s with partner A2s+1. Then there exists a vector of
constants cs = (cs1, . . . , css) ∈ Cs such that

A2s+1 = P2s+1(us) + cs1P2s−1(us) + · · ·+ cssP1(us).

Furthermore us verifies the equation KdVs(u, cs) = 0 of the KdV-hierarchy
defined by the differential polynomial in C{u}

(A.6) KdVs(u, cs) = kdvs(u) + cs1 kdvs−1(u) + · · ·+ css kdv0(u).

Proof. — Let us assume that A2s+1 is monic. Since {P s2i+1}i6s and
{Lis}i6s are families of operators in K[∂] of odd and even orders less than
2s+ 1 respectively, we divide A2s+1 by those families and write

(A.7) A2s+1 =
s∑
i=0

q2i+1P
s
2i+1 +

s∑
i=0

q2iL
i
s

with q2s+1 = 1 and q2i+1, q2i ∈ K. Let us compute next the commutator of
the right hand side of (A.7) with Ls. Observe that [a, Ls] = ∂2(a)+2∂(a)∂,
for a ∈ K and

[q2i+1P
s
2i+1, Ls] = −∂2(q2i+1)P s2i+1 − 2∂(q2i+1)∂P s2i+1 + q2i+1 kdvi(us)

and
[q2iL

i
s, Ls] = [q2i, Ls]Lis = (∂2(q2i) + 2∂(q2i)∂)Lis.

The only term of order 2i + 2 is the leading term of ∂P s2i+1 and the only
term of order 2i+ 1 is the leading term of ∂Lis. Since [A2s+1, Ls] = 0 then
∂(q2i) = 0 and ∂(q2i+1) = 0. Therefore [q2iL

i
s, Ls] = 0 and q2i+1 = csi ∈ C,

i = 0, . . . , n implies that

0 =
s∑
i=0

csi kdvi(us) and A2s+1 =
s∑
i=0

csiP
s
i ,

which proves the result. �
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Let us review the converse of the previous theorem, which is [42, Theo-
rem 5.3], see [21]: For a vector cn = (c1, . . . , cn) of algebraic indeterminates
it holds by (A.5) and (A.6) that,

(A.8)
[
L(u) ,

n∑
i=0

ciPi(u)
]

= KdVn(u, cn), in C{u}[∂].

Let as assume we are given Ls = −∂2 + us such that us is a solution of
an equation of the KdV-hierarchy (A.6), which means the following. There
exists a vector of constants cn = (cn1 , . . . , cns ) ∈ Cn such that after replacing
u by us and cn by cn then

(A.9) [Ls,
n∑
i=0

cni Pi(us)] = KdVn(us, cn) = 0 in K[∂].

If s is minimal with the previous property, then there exists a unique vector
of constants cs such that KdVs(u,cs) = 0 and, by [42, Proposition 4.2],
C(Ls) = C[Ls, A2s+1]. See for instance [42, Section 4] for more details on
the behaviour of the integration constants of the KdV-hierarchy.

Definition A.2. — We say that us in Σ is a KdV-potential of KdV
level s if it verifies the KdVs equation (A.6) of the KdV-hierarchy for a
vector of constants cs ∈ Cs, that is KdVs(us, cs) = 0, and s is minimal
with this property.

Appendix B. Differential Subresultant Theorem

We summarize next the definition and some important properties of dif-
ferential resultants and subresultants to be used in this article. We use
mainly the presentation given in [13], see also [35] and the recent report [38].

Let us consider differential operators P and Q of orders n and m re-
spectively with coefficients in a differential integral domain (D, ∂), whose
quotient field K is equipped with the same derivation ∂. The ring K[∂] is a
left Euclidean integral domain and therefore every left ideal is left princi-
pal. If ord(P ) > ord(Q) then P = qQ+r with ord(r) < ord(Q), q, r ∈ K[∂].
Let us denote by gcd(P,Q) the greatest common (left) divisor of P and Q.
As in the commutative case of polynomials in one variable,G = gcd(P,Q)

can be expressed in a unique way as G = AP +BQ, where the orders of A
and B satisfy the natural restrictions. The search for A and B is equivalent
to the resolution of a linear system defined by a linear map

Sk : Kn+m−2k −→ Kn+m−k

(an−k−1, . . . , a0, bm−k−1, . . . , b0) 7−→ coefficients of AP +BQ ,
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when searching for a gcd Gk of order k, k = 0, 1, . . . , N := min{n,m} − 1.
The matrix Sk(P,Q) of this linear map is the coefficient matrix of the
extended system of differential operator

Ξk = {∂m−1−kP, . . . ∂P, P, ∂n−1−kQ, . . . , ∂Q,Q}.

Observe that Sk(P,Q) is a matrix with n + m − 2k rows and n + m −
k columns, with entries in D. Let Gk be the determinant polynomial of
Sk(P,Q) in D[∂] (see [35] or the proof of Theorem B.2 for the construction).

Definition B.1. — The subresultant sequence of P and Q is the se-
quence {Gk}Nk=0 of differential operators in D[∂]. The differential resultant
of P and Q is the zero order operator

(B.1) ∂ Res(P,Q) := G0 = det(S0(P,Q)).

Theorem B.2 ([38, Theorem 3.10]). — Let P,Q ∈ D[∂]. The resultant
∂ Res(P,Q) of P and Q belongs to the ideal (P,Q) generated by P and Q
in D[∂].

The next theorem gives us a method to look for gcd(P,Q) and is essential
for the main results of this paper.

Theorem B.3 ([13, Theorem 4]. Differential Subresultant Theorem).
Given differential operators P and Q in D[∂], gcd(P,Q) is a differential
operator of order r if and only if:

(1) Gk is the zero operator for k = 0, 1, , . . . , r − 1 and,
(2) Gr is nonzero.

Then gcd(P,Q) = Gr.

Remark B.4.
(1) The gcd(P,Q) is nontrivial (it is not in K) if and only if G0 =

∂ Res(P,Q) = 0.
(2) Given Gr = gcd(P,Q) then P = PGr and Q = QGr, P ,Q ∈ K[∂].

In this paper, we will use the case of differential operators P = ∂2 + a0
and Q = ∂2s+1 + · · ·+ b1∂+ b0, s > 1 in K[∂], for a differential field (K, ∂).
Observe that P − λ and Q − µ are differential operators with coefficients
in the differential domain D = K[λ, µ]. The differential resultant

(B.2) G0 = ∂ Res(P − λ,Q− µ) = −µ2 − λ2s+1 + · · ·

is the determinant of the matrix S0(P − λ,Q − µ), whose coefficients are
in K[λ, µ] and it belongs to the elimination ideal

(P − λ,Q− µ) ∩K[λ, µ].

ANNALES DE L’INSTITUT FOURIER



SPECTRAL PICARD–VESSIOT FIELDS 1321

The first subresultant G1 is a differential operator of order 1, the de-
terminant polynomial of the matrix S1(P − λ,Q− µ), whose rows are the
coefficients of

Ξ1 = {∂2s(P − λ), ∂(P − λ), P − λ,Q− µ}

and whose columns are indexed by ∂2s+1, · · · , ∂, 1. The first subresultant
equals

(B.3) G1 = ϕ1 + ϕ2∂,

with ϕ1 = det(S0
1) and ϕ2 = det(S1

1), where S0
1 and S1

1 are the submatri-
ces of S1 obtained by removing columns indexed by ∂ and 1 respectively.
Observe that

(B.4) det(S0
1) = −µ− α(λ) and det(S1

1) = ϕ2(λ),

for polynmials α,ϕ2 ∈ K[λ].

Example B.5. — Given P = ∂2 + a0 and Q = ∂3 + b2∂
2 + b1∂ + b0 in

K[∂]. The differential resultant ∂ Res(P−λ,Q−µ) is the determinant of the
matrix S0(P −λ,Q−µ), whose rows are the coefficients of the polynomials
in Ξ0 = {∂2(P − λ), ∂(P − λ), P − λ, ∂(Q− µ), Q− µ} and whose columns
are indexed by ∂4, . . . , ∂, 1. Take now the coefficient matrix

S1(P − λ,Q− µ) =

 1 0 a0 − λ a′0
0 1 0 a0 − λ
1 b2 b1 b0 − µ


of Ξ1 = {∂P, P −λ,Q−µ}. The first subresultant G1 = det(S0

1)+det(S1
1)∂

where

S0
1 =

 1 0 a′0
0 1 a0 − λ
1 b2 b0 − µ

 , S1
1 =

 1 0 a0 − λ
0 1 0
1 b2 b1

 .
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