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CLASSIFICATION OF FOLIATIONS
OF DEGREE THREE ON P2

C WITH A FLAT
LEGENDRE TRANSFORM

by Samir BEDROUNI & David MARÍN (*)

Abstract. — The set F(3) of foliations of degree three on the complex pro-
jective plane can be identified with a Zariski’s open set of a projective space of
dimension 23 on which acts Aut(P2

C). The subset FP(3) of F(3) consisting of foli-
ations of F(3) with a flat Legendre transform (dual web) is a Zariski closed subset
of F(3). We classify up to automorphism of P2

C the elements of FP(3). More pre-
cisely, we show that up to an automorphism there are 16 foliations of degree three
with a flat Legendre transform. From this classification we deduce that FP(3) has
exactly 12 irreducible components. We also deduce that up to an automorphism
there are 4 convex foliations of degree three on P2.

Résumé. — L’ensemble F(3) des feuilletages de degré trois du plan projectif
complexe s’identifie à un ouvert de Zariski dans un espace projectif de dimen-
sion 23 sur lequel agit le groupe Aut(P2

C). Le sous-ensemble FP(3) de F(3) formé
des feuilletages de F(3) ayant une transformée de Legendre (tissu dual) plate est un
fermé de Zariski de F(3). Nous classifions à automorphisme de P2

C près les éléments
de F(3); plus précisément, nous montrons qu’à automorphisme près il y a 16 feuille-
tages de degré 3 ayant une transformée de Legendre plate. De cette classification
nous obtenons la décomposition de F(3) en ses composantes irréductibles. Nous en
déduisons aussi la classification à automorphisme près des feuilletages convexes de
degré 3 de P2

C.

Introduction

A (regular) d-web on (C2, 0) is the data of a family {F1,F2, . . . ,Fd} of
regular holomorphic foliations on (C2, 0) which are pairwise transverse at
the origin. The first significant result in the study of webs was obtained
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by W. Blaschke and J. Dubourdieu around 1920. They have introduced,
for any regular 3-web W on (C2, 0), a differential 2-form K(W) known
as the Blaschke curvature of W, whose vanishing implies ([5]) that W is
analytically equivalent to the trivial 3-web defined by dx.dy.d(x+ y). The
curvature of a d-web W with d > 3 is defined as the sum of the Blaschke
curvatures of all 3-subwebs of W. A web with zero curvature is called flat.
This notion is useful for the classification of maximal rank webs. Indeed, a
result of N. Mihăileanu shows that the flatness is a necessary condition for
the maximality of the rank, see for instance [16, 22].
Recently, the study of global holomorphic webs defined on complex sur-

faces has been updated, see for instance [10, 21, 18]. In the sequel we
will focus on webs of the complex projective plane. A (global) d-web on
P2
C is given in an affine chart (x, y) by an implicit differential equation
F (x, y, y′) = 0, where F (x, y, p) =

∑d
i=0 ai(x, y)pd−i ∈ C[x, y, p] is a re-

duced polynomial whose coefficient a0 is not identically zero. In a neigh-
borhood of a point z0 = (x0, y0) such that a0(x0, y0)∆(x0, y0) 6= 0, being
∆(x, y) the p-discriminant of F , the integral curves of this equation define
a regular d-web on (C2, z0).
The curvature of a web W on P2

C is a meromorphic 2-form with poles
along the discriminant ∆(W), see Section 1.2.
D. Marín and J.V. Pereira have shown, in [18], how to associate to every

degree d foliation F on P2
C, a global d-web on the dual projective plane P̌2

C,
called Legendre transform of F and denoted by LegF . The leaves of LegF
are the dual curves of the leaves of F , see Section 1.1.
The set F(d) of degree d foliation on P2

C can be naturally identified with
a Zariski open subset of the projective space P(d+2)2−2

C . The automorphism
group of P2

C acts on F(d); the orbit of an element F ∈ F(d) under the
action of Aut(P2

C) = PGL3(C) will be denoted by O(F). The subset FP(d)
of F(d) consisting of F ∈ F(d) such that LegF is flat is Zariski closed in
F(d) and saturated by the action of Aut(P2

C).
In [18] the authors pose a problem concerning the geometry of webs on

P2
C which, in the framework of the foliations on P2

C, consists in the de-
scription of certain irreducible components of FP(d). The first nontrivial
case that we encounter is the one where d = 3. In this paper we describe
the decomposition of FP(3) into its irreducible components. In order to
do this, we begin by establishing the classification, up to isomorphism, of
the foliations of FP(3). In a previous work [3], we have shown ([3, Theo-
rem 5.1]) that up to isomorphism there are eleven homogeneous foliations
(i.e. invariant by homotheties) of degree 3, denoted H1, . . . ,H11, with a
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flat Legendre transform. On the other hand, we have also proved ([3, The-
orem 6.1]) that if a foliation of FP(3) has only non-degenerate singularities
(i.e. singularities with Milnor number 1), then it is linearly conjugated to
the Fermat foliation F3 defined by the 1-form (x3 − x)dy − (y3 − y)dx. In
Section 2 by studying the flatness of the dual web of a foliation F ∈ F(3)
having at least one degenerate singularity, we obtain the classification, up
to automorphism of P2

C, of the elements of FP(3).

Theorem A. — Up to automorphism of P2
C there are sixteen foliations

of degree three H1, . . . ,H11,F1, . . . ,F5 on the complex projective plane
having a flat Legendre transform. They are respectively described in affine
chart by the following 1-forms

(1) ω1 = y3dx− x3dy;
(2) ω2 = x3dx− y3dy;
(3) ω3 = y2(3x+ y)dx− x2(x+ 3y)dy;
(4) ω4 = y2(3x+ y)dx+ x2(x+ 3y)dy;
(5) ω5 = 2y3dx+ x2(3y − 2x)dy;
(6) ω6 = (4x3 − 6x2y + 4y3)dx+ x2(3y − 2x)dy;
(7) ω7 = y3dx+ x(3y2 − x2)dy;
(8) ω8 = x(x2 − 3y2)dx− 4y3dy;
(9) ω9 = y2 ((−3 + i

√
3)x+ 2y

)
dx+ x2 ((1 + i

√
3)x− 2i

√
3y
)

dy;
(10) ω10 = (3x+

√
3y)y2dx+ (3y −

√
3x)x2dy;

(11) ω11 = (3x3 +3
√

3x2y+3xy2 +
√

3y3)dx+(
√

3x3 +3x2y+3
√

3xy2 +
3y3)dy;

(12) ω1 = y3dx+ x3(xdy − ydx);
(13) ω2 = x3dx+ y3(xdy − ydx);
(14) ω3 = (x3 − x)dy − (y3 − y)dx;
(15) ω4 = (x3 + y3)dx+ x3(xdy − ydx);
(16) ω5 = y2(ydx+ 2xdy) + x3(xdy − ydx).

The orbits of F1 and F2 are both of dimension 6 which is the minimal
dimension possible, and this in any degree greater than or equal to 2 ([11,
Proposition 2.3]). D. Cerveau, J. Déserti, D. Garba Belko and R. Meziani
have shown that in degree 2 there are exactly two orbits of dimension 6
([11, Proposition 2.7]). Theorem A allows us to establish a similar result in
degree 3:

Corollary B. — Up to automorphism of P2
C the foliations F1 and

F2 are the only foliations that realize the minimal dimension of orbits in
degree 3.

TOME 71 (2021), FASCICULE 4



1760 Samir BEDROUNI & David MARÍN

A. Beltrán, M. Falla Luza and D. Marín have shown in [4] that FP(3)
contains the set of foliations F ∈ F(3) whose leaves which are not straight
lines do not have inflection points. These foliations are called convex. From
these works ([4, Corollary 4.7]) and from Theorem A we deduce the classi-
fication, up to automorphism of P2

C, of convex foliations of degree 3 on P2
C.

Corollary C. — Up to automorphism of P2
C there are four convex

foliations of degree three on the complex projective plane, namely the foli-
ations H1,H3,F1 and F3.

This corollary is an analog in degree 3 of a result on the foliations of
degree 2 due to C. Favre and J. V. Pereira ([13, Proposition 7.4]).

According to [18, Theorem 3], we know that the closure in F(3) of the or-
bit O(F3) of the Fermat foliation F3 is an irreducible component of FP(3).
To our knowledge, at present, this is the only explicit example of an ir-
reducible component of FP(3) appearing in the literature. By analyzing
the incidence relations between the closures of the orbits of Hi and Fj , we
obtain the decomposition of FP(3) into its irreducible components.

Theorem D. — The closures being taken in F(3) we have

O(F1) = O(F1), O(F2) = O(F2),

O(F3) = O(F1) ∪ O(H1) ∪ O(H3) ∪ O(F3),

O(F4) = O(F1) ∪ O(F2) ∪ O(F4),

O(H1) = O(F1) ∪ O(H1), O(H2) = O(F2) ∪ O(H2),

O(H3) = O(F1) ∪ O(H3), O(H8) = O(F2) ∪ O(H8),

O(H5) = O(F1) ∪ O(H5), O(H4) ⊃ O(F2) ∪ O(H4),

O(H7) ⊃ O(F1) ∪ O(H7), O(H6) ⊃ O(F2) ∪ O(H6),

O(H9) ⊂ O(F1) ∪ O(H9), O(H11) ⊂ O(F2) ∪ O(H11),

O(H10) ⊂ O(F1) ∪ O(F2) ∪ O(H10), O(F5) ⊂ O(F2) ∪ O(F5)

with

dimO(F1) = 6, dimO(F2) = 6, dimO(Hi) = 7, i = 1, . . . , 11,
dimO(F4) = 7, dimO(F5) = 7, dimO(F3) = 8.

In particular,
• the set FP(3) has exactly twelve irreducible components, namely
O(F3), O(F4), O(F5), O(H2), O(Hk), k = 4, 5, . . . , 11;

ANNALES DE L’INSTITUT FOURIER
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• the set of convex foliations of degree three in P2
C is exactly the

closure O(F3) of O(F3) (it is therefore an irreducible closed subset
of F(3)).

Acknowledgment

The authors would like to thank Dominique Cerveau and Frank Loray
for their interest in this work.

1. Preliminaries

1.1. Webs

Let k > 1 be an integer. A (global) k-web W on a complex surface S
is given by an open covering (Ui)i∈I of S and a collection of symmetric
k-forms ωi ∈ Symk Ω1

S(Ui) with isolated zeroes satisfying:
(a) there exists gij ∈ O∗S(Ui ∩Uj) such that ωi coincides with gijωj on

Ui ∩ Uj ;
(b) at every generic point m of Ui, ωi(m) factorizes as the product of

k pairwise non collinear 1-forms.
The subset of points of S not satisfying condition (b) is called the discrimi-
nant ofW and it is denoted by ∆(W). When k = 1 this condition is always
satisfied and we recover the usual definition of a holomorphic foliation on
S. The cocycle (gij) defines a line bundle N on S, which is called normal
bundle of W, and the local k-forms ωi patch together to form a global
section ω ∈ H0(S, Symk Ω1

S ⊗N).
A global k-web W on S is said decomposable if there are global webs

W1,W2 on S with no common subweb such that W is the superposition of
W1 and W2. In this case we will write W =W1 �W2. Otherwise it is said
that W is irreducible. We will say that W is completely decomposable if
there exist global foliations F1, . . . ,Fk on S such that W = F1 � · · ·�Fk.
For more details see [21].
In this work we restrict ourselves to the case S = P2

C. In this case,
every k-web W on P2

C can be defined in a given affine chart (x, y) by a
polynomial k-symmetric form ω =

∑
i+j=k aij(x, y)dxidyj , with isolated

zeroes and whose discriminant is not identically zero. Thus, W is defined
by a polynomial differential equation F (x, y, y′) = 0 of degree k in y′. A

TOME 71 (2021), FASCICULE 4
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k-web W on P2
C is said of degree d if the number of points where a generic

line of P2
C is tangent to W is equal to d, it is equivalent to require that W

has normal bundle N = OP2
C
(d+ 2k). It is well known, see for instance [21,

Proposition 1.4.2], that the webs of degree 0 are the algebraic webs (whose
leaves are the tangent lines of a given reduced algebraic curve).
The authors in [18] associate to every k-web of degree d > 1 on P2

C,
a d-web of degree k on the dual projective plane P̌2

C, called the Legendre
transform ofW and denoted by LegW. The leaves of LegW are of the form
Ľ = {TmL : m ∈ L} ⊂ P̌2

C where L ⊂ P2
C is a leaf of W. More explicitly,

let (x, y) be an affine chart of P2
C and consider the affine chart (p, q) of P̌2

C
associated to the line {y = px− q} ⊂ P2

C. Let F (x, y; p) = 0, p = dy
dx , be an

implicit differential equation definingW. Then LegW is given in the affine
chart (p, q) of P̌2

C by the implicit differential equation

F̌ (p, q;x) := F (x, px− q; p) = 0, with x = dq
dp .

In particular, if F is a foliation of degree d > 1 on P2
C defined by a 1-form

ω = A(x, y)dx + B(x, y)dy, where A,B ∈ C[x, y], gcd(A,B) = 1, then
LegF is the irreducible d-web of degree 1 on P̌2

C defined by

A(x, px− q) + pB(x, px− q) = 0, with x = dq
dp .

Conversely, every irreducible d-web of degree 1 on P̌2
C is necessarily the

Legendre transform of a certain foliation of degree d on P2
C (see [18]).

1.2. Curvature and flatness

We recall here the definition of the curvature of a k- web W. We assume
first that W is a germ of completely decomposable k-web on (C2, 0), W =
F1 � · · ·�Fk. For each 1 6 i 6 k, let ωi be a 1-form defining the foliation
Fi with isolated singularity at 0. After [20], for each triple (r, s, t) with
1 6 r < s < t 6 k, we define ηrst = η(Fr � Fs � Ft) as the unique
meromorphic 1-form satisfying the following equalities:

d(δst ωr) = ηrst ∧ δst ωr
d(δtr ωs) = ηrst ∧ δtr ωs
d(δrs ωt) = ηrst ∧ δrs ωt

where δij denotes the function defined by ωi ∧ ωj = δij dx∧ dy. Since each
1-form ωi is well defined up to multiplication by an invertible element of

ANNALES DE L’INSTITUT FOURIER
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O(C2, 0), it follows that each 1-form ηrst is well defined up to addition of
a closed holomorphic 1-form. Thus, the 1-form

η(W) = η(F1 � · · ·� Fk) =
∑

16r<s<t6k
ηrst

is well defined up to addition of a closed holomorphic 1-form. The curvature
of the web W = F1 � · · ·� Fk is by definition the 2-form

K(W) = K(F1 � · · ·� Fk) = d η(W).

It can be checked that K(W) is a meromorphic 2-form with poles along
the discriminant ∆(W) of W, canonically associated to W. More precisely,
for every dominant holomorphic map ϕ, we have K(ϕ∗W) = ϕ∗K(W).
Now, if W is a (not necessarily completely decomposable) k-web on a

complex surface S then its pull-back by a suitable Galoisian branched cov-
ering is totally decomposable. The invariance of the curvature of this new
web by the action of the Galois group of the covering allows to bring it down
in a global meromorphic 2-form on S, with poles along the discriminant of
W (see [18]).

A k-web W is called flat if its curvature K(W) vanishes identically.
We recall a formula due to A. Hénaut [15] which gives the curvature of

a planar 3-web W given by an implicit differential equation

F (x, y, p) := a0(x, y)p3 + a1(x, y)p2 + a2(x, y)p+ a3(x, y) = 0, p = dy
dx.

Putting

R := Result(F, ∂p(F )) =

∣∣∣∣∣∣∣∣∣∣

a0 a1 a2 a3 0
0 a0 a1 a2 a3

3a0 2a1 a2 0 0
0 3a0 2a1 a2 0
0 0 3a0 2a1 a2

∣∣∣∣∣∣∣∣∣∣
6≡ 0

α1 =

∣∣∣∣∣∣∣∣∣∣

∂y(a0) a0 −a0 0 0
∂x(a0) + ∂y(a1) a1 0 −2a0 0
∂x(a1) + ∂y(a2) a2 a2 −a1 −3a0
∂x(a2) + ∂y(a3) a3 2a3 0 −2a1

∂x(a3) 0 0 a3 −a2

∣∣∣∣∣∣∣∣∣∣
TOME 71 (2021), FASCICULE 4
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and

α2 =

∣∣∣∣∣∣∣∣∣∣

0 ∂y(a0) −a0 0 0
a0 ∂x(a0) + ∂y(a1) 0 −2a0 0
a1 ∂x(a1) + ∂y(a2) a2 −a1 −3a0
a2 ∂x(a2) + ∂y(a3) 2a3 0 −2a1
a3 ∂x(a3) 0 a3 −a2

∣∣∣∣∣∣∣∣∣∣
,

we have that the curvature of the 3-web W is given by [15]

(1.1) K(W) =
(
∂y

(α1

R

)
− ∂x

(α2

R

))
dx ∧ dy.

1.3. Singularities and inflection divisor of a foliation on the
projective plane

A degree d holomorphic foliation F on P2
C is defined in homogeneous

coordinates (x, y, z) by a 1-form

ω = a(x, y, z)dx+ b(x, y, z)dy + c(x, y, z)dz,

where a, b and c are homogeneous polynomials of degree d + 1 without
common factor and satisfying the Euler condition iRω = 0, where R =
x ∂
∂x+y ∂

∂y+z ∂
∂z denotes the radial vector field and iR is the interior product

by R. The singular locus SingF of F is the projectivization of the singular
locus of ω Singω = {(x, y, z) ∈ C3 | a(x, y, z) = b(x, y, z) = c(x, y, z) = 0}.

Let C ⊂ P2
C be an algebraic curve with homogeneous equation F (x, y, z) =

0. We say that C is an invariant curve by F if C r SingF is a union of (or-
dinary) leaves of the regular foliation F|P2

CrSingF . In algebraic terms, this
is equivalent to require that the 2-form ω ∧ dF is divisible by F , i.e. it
vanishes along each irreducible component of C.
When each irreducible component of C is not F-invariant, for every point

p of C we define the tangency order Tang(F , C, p) of F with C at p as follows.
We fix a local chart (u, v) such that p = (0, 0); let f(u, v) = 0 be a reduced
local equation of C at a neighborhood of p and let X be a vector field
defining the germ of F at p. We denote by X(f) the Lie derivative of f
with respect to X and by 〈f,X(f)〉 the ideal of C{u, v} generated by f and
X(f). Then

Tang(F , C, p) = dimC
C{u, v}
〈f,X(f)〉 .

It is easy to see that this definition is well-posed, and that Tang(F , C, p) <
+∞ because C is not F-invariant.

ANNALES DE L’INSTITUT FOURIER
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Let us recall some local notions attached to the pair (F , s), where s ∈
SingF . The germ of F at s is defined, up to multiplication by a unity in
the local ring Os at s, by a vector field X = A(u, v) ∂∂u + B(u, v) ∂∂v . The
algebraic multiplicity ν(F , s) of F at s is given by

ν(F , s) = min{ν(A, s), ν(B, s)},

where ν(g, s) denotes the algebraic multiplicity of the algebraic function
g at s. Let us denote by Ls the family of straight lines through s which
are not invariant by F . For every line `s of Ls, we have the inequalities
1 6 Tang(F , `s, s) 6 d. This allows us to associate to the pair (F , s) the
following natural (invariant) integers

τ(F , s) = min{Tang(F , `s, s) | `s ∈ Ls},
κ(F , s) = max{Tang(F , `s, s) | `s ∈ Ls}.

The invariant τ(F , s) represents the tangency order of F with a generic
line passing through s. It is easy to see that

τ(F , s) = min{k > 1: det(Jks X,Rs) 6= 0} > ν(F , s),

where Jks X denotes the k-jet of X at s and Rs is the radial vector field
centered at s.
The singularity s is called radial of order n − 1 if ν(F , s) = 1 and

τ(F , s) = n.
The Milnor number of F at s is the integer

µ(F , s) = dimCOs/〈A,B〉,

where 〈A,B〉 denotes the ideal of Os generated by A and B.
The singularity s is called non-degenerate if µ(F , s) = 1, or equivalently

if the linear part J1
sX of X possesses two non-zero eigenvalues λ, µ. In

this case, the quantity BB(F , s) = λ
µ + µ

λ + 2 is called the Baum–Bott
invariant of F at s (see [1]). By Briot–Bouquet’s Theorem (see [8] for a
generalization to any singularity) there is at least a germ of curve C at s
which is invariant by F . Up to local diffeomorphism we can assume that
s = (0, 0), TsC = {u = 0 } and J1

sX = λu ∂
∂u + (εu + µv) ∂∂v , where we can

take ε = 0 if λ 6= µ. The quantity CS(F , C, s) = λ
µ is called the Camacho–

Sad index of F at s along C.
Finally, let us recall the notion of inflection divisor of F . Let Z = E ∂

∂x +
F ∂
∂y +G ∂

∂z be a homogeneous vector field of degree d on C3 non collinear
to the radial vector field describing F , i.e. such that ω = iRiZdx∧ dy ∧ dz.
The inflection divisor of F , denoted by IF , is the divisor of P2

C defined by

TOME 71 (2021), FASCICULE 4
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the homogeneous equation

(1.2)

∣∣∣∣∣∣
x E Z(E)
y F Z(F )
z G Z(G)

∣∣∣∣∣∣ = 0.

This divisor has been studied in [19] in a more general context. In particular,
the following properties has been proved.

(1) On P2
C r SingF , IF coincides with the curve described by the in-

flection points of the leaves of F ;
(2) If C is an irreducible algebraic curve invariant by F then C ⊂ IF if

and only if C is an invariant line;
(3) IF can be decomposed into IF = Iinv

F +Itr
F , where the support of Iinv

F
consists in the set of invariant lines of F and the support of Itr

F is
the closure of the inflection points along the leaves of F which are
not lines;

(4) The degree of the divisor IF is 3d.
The foliation F will be called convex if its inflection divisor IF is totally

invariant by F , i.e. if IF is a product of invariant lines.

2. Foliations of FP(3) having at least one degenerate
singularity

2.1. Case of a degenerate singularity of algebraic multiplicity at
most 2

In [2, Appendix A] the first author gives a computational proof of the
following statement.

Proposition 2.1. — Let F be a degree three foliation on P2
C having a

degenerate singularity of algebraic multiplicity at most 2. Then the dual
3-web LegF of F is not flat.

In this appendix the matter is about a proof by contradiction: first, the
author assumes that there is a foliation F of degree 3 on P2

C such that the
3-web LegF is flat and such that the singular locus SingF contains a point
m satisfying µ(F ,m) > 2 and ν(F ,m) 6 2; then, he explicitly calculates
the curvature of LegF by Formula (1.1) and he shows that the condition
K(LegF) ≡ 0 contradicts the hypothesis degF = 3.

Problem 2.2. — Give a non-computational proof of Proposition 2.1.
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2.2. Case of a degenerate singularity of algebraic multiplicity 3

In this paragraph we are interested in the foliations F ∈ FP(3) which
have a degenerate singularity m of algebraic multiplicity 3. We distinguish
two cases according to whether SingF = {m} or {m}  SingF .

2.2.1. The singular locus is reduced to a point of algebraic multiplicity 3

We start by establishing the following statement classifying the foliations
of F(3) whose singular locus is reduced to a point of algebraic multiplicity 3.

Proposition 2.3. — Let F be a foliation of degree 3 on P2
C with ex-

actly one singularity. Let ω be a 1-form defining F . If this singularity is of
algebraic multiplicity 3, then up to isomorphism ω is of one of the following
types

(1) x3dx+ y2(cx+ y)(xdy − ydx), c ∈ C;
(2) x3dx+ y(x+ cxy + y2)(xdy − ydx), c ∈ C;
(3) x3dx+ (x2 + cxy2 + y3)(xdy − ydx), c ∈ C;
(4) x2ydx+ (x3 + cxy2 + y3)(xdy − ydx), c ∈ C;
(5) x2ydx+ (x3 + δ xy + y3)(xdy − ydx), δ ∈ C∗;
(6) x2ydy + (x3 + cxy2 + y3)(xdy − ydx), c ∈ C;
(7) xy(xdy − λ ydx) + (x3 + y3)(xdy − ydx), λ ∈ C \ {0, 1};
(8) xy(y− x)dx+ (c0 x

3 + c1x
2y+ y3)(xdy− ydx), c0(c0 + c1 + 1) 6= 0.

These eight 1-forms are not linearly conjugated with each other.

This proposition is an analog in degree 3 of a result on the foliations of
degree 2 due to D. Cerveau, J. Déserti, D. Garba Belko and R. Meziani
([11, Proposition 1.8]). The proof that we will give is very close to that
of [11]; it will result from Lemmas 2.4, 2.5, 2.6 and 2.7 stated below. In
these four lemmas F denotes a foliation of degree three on P2

C defined by
a 1-form ω and such that

(1) the unique singularity of F is O = [0 : 0 : 1];
(2) the jets of order 1 and 2 of ω at (0, 0) are zero, i.e. ν(F , O) = 3.

In this case

ω = A(x, y)dx+B(x, y)dy + C(x, y)(xdy − ydx),

where A, B and C are homogeneous polynomials of degree 3. The foliation
F being of degree three, the tangent cone xA+yB of ω at (0, 0) can not be
identically zero. The polynomial C is also not identically zero, otherwise
the line at infinity would be invariant by F which would therefore have a
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singularity on this line, which is excluded. We will reason according to the
nature of the tangent cone which, a priori, can be four lines, three lines,
two lines or a single line.

Lemma 2.4. — Every irreducible factor L of xA+yB divides gcd(A,B)
and does not divide C. In particular, the tangent cone of ω at (0, 0) is not
the union of four distinct lines.

Proof. — Up to isomorphism, we can assume that L = x; then x divides
B. Thus on the line x = 0 the form ω writes as

A(0, y)dx− y C(0, y)dx = y3 (A(0, 1)− y C(0, 1)) dx.

Since O is the unique singularity of F , the product A(0, 1)C(0, 1) is zero.
The point [0 : 1 : 0] being non-singular, C(0, 1) is non-zero and as a result
A(0, 1) = 0; hence x divides A but not C. �

Lemma 2.5. — If the tangent cone of ω at (0, 0) is the union of three
distinct lines, then up to automorphisms of P2

C, ω is of type

xy(y − x)dx+ (c0 x
3 + c1x

2y + y3)(xdy − ydx), c0(c0 + c1 + 1) 6= 0.

Proof. — We can assume that xA+ yB = ∗x2y(y−x), ∗ ∈ C∗; it follows
that ω writes ([12])

x2y(y − x)
(
λ0

dx
x

+ λ1
dy
y

+ λ2
d(y − x)
y − x

+ δd
(y
x

))
+ (c0 x

3 + c1x
2y + c2xy

2 + c3y
3)(xdy − ydx), δ, λi, ci ∈ C.

Therefore we have

A(x, y) = y
(

(y − x)(λ0 x− δy)− λ2x
2
)
,

B(x, y) = x
(

(y − x)(λ1x+ δy) + λ2xy
)
,

C(x, y) =
3∑
i=0

cix
3−iyi.

According to Lemma 2.4, the polynomial xy(y − x) divides A and B but
not C, which means that

A(0, 1) = A(1, 0) = A(1, 1) = B(0, 1) = B(1, 0) = B(1, 1) = 0
and C(0, 1)C(1, 0)C(1, 1) 6= 0.

It follows that δ = λ1 = λ2 = 0 and that c0c3(c0 + c1 + c2 + c3) 6= 0. The
foliation F being of degree three λ0 is non-zero; we can therefore assume
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that λ0 = 1, hence

ω = xy(y − x)dx+ (c0 x
3 + c1x

2y + c2xy
2 + c3y

3)(xdy − ydx).

After conjugating ω by the homothety
( 1
c3
x, 1

c3
y
)
, we can normalize the

coefficient c3 to 1; as a consequence

ω = xy(y − x)dx+ (c0 x
3 + c1x

2y + c2xy
2 + y3)(xdy − ydx),

c0(c0 + c1 + c2 + 1) 6= 0.

The conjugation by the automorphism
(

x
1+c2y

, y
1+c2y

)
of P2

C allows us to
cancel c2. Hence the statement holds. �

Lemma 2.6. — If the tangent cone of ω at (0, 0) is composed of two
distinct lines, then up to isomorphism ω is of one of the following types

(1) x2ydx+ (x3 + cxy2 + y3)(xdy − ydx), c ∈ C;
(2) x2ydx+ (x3 + δ xy + y3)(xdy − ydx), δ ∈ C∗;
(3) x2ydy + (x3 + cxy2 + y3)(xdy − ydx), c ∈ C;
(4) xy(xdy − λ ydx) + (x3 + y3)(xdy − ydx), λ ∈ C \ {0, 1}.

Proof. — Up to linear conjugation we are in one of the two following
situations

(a) xA+ yB = ∗x3y, ∗ ∈ C∗;
(b) xA+ yB = ∗x2y2, ∗ ∈ C∗.

Let us start by studying the eventuality (a). In this case the 1-form ω writes
([12])

x3y

(
λ0

dx
x

+ λ1
dy
y

+ d
(
δ1xy + δ2y

2

x2

))
+ (c0 x

3 + c1x
2y + c2xy

2 + c3y
3)(xdy − ydx), λi, δi, ci ∈ C.

Then we have

A(x, y) = y(λ0x
2 − δ1xy − 2δ2y

2),

B(x, y) = x(λ1x
2 + δ1xy + 2δ2y

2),

C(x, y) =
3∑
i=0

cix
3−iyi.

According to Lemma 2.4, the polynomial xy divides A and B but not C.
As a result δ2 = λ1 = 0 and c0c3 6= 0. The foliation F being of degree
three the coefficient λ0 is non-zero and we can assume it equals 1. Thus F
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is described by

ω = x2ydx+ δ1xy(xdy − ydx)

+ (c0 x
3 + c1x

2y + c2xy
2 + c3y

3)(xdy − ydx).

The diagonal linear transformation
(

1
c0
x, 3
√

1
c3c2

0
y
)
allows us to assume that

c0 = c3 = 1; as a consequence

ω = x2ydx+ (x3 + δ1xy + c1x
2y + c2xy

2 + y3)(xdy − ydx).

If δ1 = 0, resp. δ1 6= 0, by conjugating ω by(
x

1 + c1y
,

y

1 + c1y

)
,

resp.

 x

1−
(
c2
δ1

)
y −

(
δ1c1+c2
δ2

1

)
x
,

y

1−
(
c2
δ1

)
y −

(
δ1c1+c2
δ2

1

)
x

,
we reduce ourselves to c1 = 0, resp. c1 = c2 = 0, that is, to

ω = x2ydx+ (x3 + c2xy
2 + y3)(xdy − ydx),

resp. ω = x2ydx+ (x3 + δ1xy + y3)(xdy − ydx);

hence the two first announced models.
Let us now consider the possibility (b). In this case ω writes ([12])

x2y2
(
λ0

dx
x

+ λ1
dy
y

+ d
(
δ1x

2 + δ2y
2

xy

))
+ (c0 x

3 + c1x
2y + c2xy

2 + c3y
3)(xdy − ydx), λi, δi, ci ∈ C.

Here A(x, y) = y(δ1x
2 +λ0 xy−δ2y

2) and B(x, y) = x(δ2y
2 +λ1xy−δ1x

2).
According to Lemma 2.4 again, xy divides gcd(A,B) and does not divide
C, which is equivalent to δ1 = δ2 = 0 and c0c3 6= 0.

The foliation F being of degree three the sum λ0 + λ1 is non-zero; then
one of the coefficients λi is non-zero and we can obviously normalize it to 1.
Since the lines of the tangent cone (i.e. x = 0 and y = 0) play a symmetrical
role, it suffices to treat the eventuality λ1 = 1. Thus F is given by

ω = xy(xdy + λ0ydx) + (c0 x
3 + c1x

2y + c2xy
2 + c3y

3)(xdy − ydx),
(λ0 + 1)c0c3 6= 0.
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Let α be in C such that α3 = 1
c3c2

0
; let us put β = c0α

2. After conjugating
ω by (αx, βy), we can assume that c0 = c3 = 1; as a result

ω = xy(xdy + λ0ydx) + (x3 + c1x
2y + c2xy

2 + y3)(xdy − ydx),
λ0 + 1 6= 0.

If λ0 = 0, resp. λ0 6= 0, by conjugating ω by(
x

1− c1x
,

y

1− c1x

)
, resp.

 x

1 +
(
c2
λ0

)
y − c1x

,
y

1 +
(
c2
λ0

)
y − c1x

 ,

we reduce ourselves to c1 = 0, resp. c1 = c2 = 0, that is, to

ω = x2ydy + (x3 + c2xy
2 + y3)(xdy − ydx),

resp. ω = xy(xdy + λ0ydx) + (x3 + y3)(xdy − ydx), λ0(λ0 + 1) 6= 0,

which are the two last announced models. �

Lemma 2.7. — If the tangent cone of ω at (0, 0) is reduced to a single
line, then up to isomorphism ω is of one of the following types

(1) x3dx+ y2(cx+ y)(xdy − ydx), c ∈ C;
(2) x3dx+ y(x+ cxy + y2)(xdy − ydx), c ∈ C;
(3) x3dx+ (x2 + cxy2 + y3)(xdy − ydx), c ∈ C.

Proof. — We can assume that the tangent cone is the line x = 0; then ω
writes as

x4
(
λ

dx
x

+ d
(
δ1x

2y + δ2xy
2 + δ3y

3

x3

))
+ (c0 x

3 + c1x
2y + c2xy

2 + c3y
3)(xdy − ydx), λ, δi, ci ∈ C.

Then we have

A(x, y) = λx3 − δ1x
2y − 2δ2xy

2 − 3δ3y
3,

B(x, y) = x(δ1x
2 + 2δ2xy + 3δ3y

2),

C(x, y) =
3∑
i=0

cix
3−iyi.

According to Lemma 2.4, x divides A and B but not C; as a result δ3 = 0
and c3 6= 0. The foliation F being of degree three the coefficient λ is non-
zero and we can assume that λ = 1. The conjugation by the homothety( 1
c3
x, 1

c3
y
)
allows us to assume that c3 = 1. Thus F is described by

ω = x3dx+ (δ1x
2 + 2δ2xy + c0 x

3 + c1x
2y + c2xy

2 + y3)(xdy − ydx).
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We have the following three possibilities to study
• δ2 6= 0;
• δ1 = δ2 = 0;
• δ2 = 0, δ1 6= 0.

(1). — If δ2 6= 0, then by conjugating ω by
(
α2x, α3/2y − αδ1x

)
, where

α = 2δ2, we reduce ourselves to δ1 = 0 and δ2 = 1
2 . As a result F is given

by

ω = x3dx+ (xy + c0 x
3 + c1x

2y + c2xy
2 + y3)(xdy − ydx).

The conjugation by the diffeomorphism
(

x
1+c0y−c1x

, y
1+c0y−c1x

)
allows us

to assume that c0 = c1 = 0; as a consequence

ω = x3dx+ y(x+ c2xy + y2)(xdy − ydx),

hence the second announced model.
(2). — If δ1 = δ2 = 0 the 1-form ω writes

ω = x3dx+ (c0 x
3 + c1x

2y + c2xy
2 + y3)(xdy − ydx).

Let α be in C such that 3α2 + 2c2α + c1 = 0. After conjugating ω by
(x, y + αx), we can assume that c1 = 0. Then the conjugation by the
diffeomorphism (

x

1 + c0y
,

y

1 + c0y

)
allows us to cancel c0; hence the first announced model.
(3). — When δ2 = 0 and δ1 6= 0, the form ω writes

ω = x3dx+ (δ1x
2 + c0 x

3 + c1x
2y + c2xy

2 + y3)(xdy − ydx).

By conjugating ω by
(
δ4

1x, δ
3
1y
)
, we can assume that δ1 = 1. Then by

conjugating by(
x

1− c1y − (c0 + c1)x,
y

1− c1y − (c0 + c1)x

)
,

we reduce ourselves to c0 = c1 = 0, that is, to the third announced model.
�

Proof of Proposition 2.3. — It suffices to choose affine coordinates (x, y)
such that the point (0, 0) is singular of F and to use Lemmas 2.4, 2.5, 2.6
and 2.7. �

We are now ready to describe up to isomorphism the foliations of FP(3)
whose singular locus is reduced to a point of algebraic multiplicity 3.
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Proposition 2.8. — Let F be a foliation of degree 3 on P2
C with exactly

one singularity. Assume that this singularity is of algebraic multiplicity 3
and that the 3-web LegF is flat. Then F is linearly conjugated to the
foliation F2 described by the 1-form

ω2 = x3dx+ y3(xdy − ydx).

Proof. — Let ω be a 1-form describing F in an affine chart (x, y) and let
(p, q) be the affine chart of P̌2

C corresponding to the line {px−qy = 1} ⊂ P2
C.

Up to linear conjugation ω is of one of the eight types of Proposition 2.3.
• If ω = x3dx+y2(cx+y)(xdy−ydx), c ∈ C, then the 3-web LegF is

given by the differential equation q(q′)3 +cq′+1 = 0, where q′ = dq
dp .

The explicit computation of K(LegF) leads to

K(LegF) = −4c2(2c3 + 27q)
q2(4c3 + 27q)2 dp ∧ dq;

as a result LegF is flat if and only if c = 0, in which case

ω = ω2 = x3dx+ y3(xdy − ydx).

• If ω = x3dx + y(x + cxy + y2)(xdy − ydx), c ∈ C, then LegF is
described by the differential equation F (p, q, w) := qw3 +pw2 +(c−
q)w+ 1 = 0, where w = dq

dp . The explicit computation of K(LegF)
shows that it has the form

K(LegF) =
∑
i+j66 ρ

j
i (c)piqj

∆(p, q)2 dp ∧ dq,

where ∆ is the w-discriminant of F and the ρji ’s are polynomials in
c with ρ5

1(c) = 4 6= 0; hence K(LegF) 6≡ 0.
Similarly, we verify that LegF can not be flat when F is given

by one of the last six 1-forms of Proposition 2.3. �

2.2.2. The singular locus contains a point of algebraic multiplicity 3 and
is not reduced to this point

We begin by proving four lemmas.

Lemma 2.9. — Let F be a foliation of degree three on P2
C, let m be a

singular point of F and let ω be a 1-form describing F . Assume that this
singularity is of algebraic multiplicity 3 and that the 3-web LegF is flat.
Then

• either F is homogeneous;
• or the 3-jet of ω at m is not saturated.

TOME 71 (2021), FASCICULE 4



1774 Samir BEDROUNI & David MARÍN

Remark 2.10. — Let us note that a foliation of degree d on P2
C is homo-

geneous if and only if it has a singularity of maximal algebraic multiplicity
(i.e. equal to d) and an invariant line not passing through this singularity.

Proof. — Let us choose a system of homogeneous coordinates [x : y :
z] ∈ P2

C in which m = [0 : 0 : 1]. The condition ν(F ,m) = 3 assures
that every 1-form ω defining F in the affine chart (x, y) is of type ω =
θ3 + C3(x, y)(xdy − ydx), where θ3 (resp. C3) is a homogeneous 1-form
(resp. a homogeneous polynomial) of degree 3; the 1-form θ3 represents the
3-jet of ω at (0, 0).

Let us assume that θ3 is saturated; we will prove that F is necessarily
homogeneous. Let us denote by H the homogeneous foliation of degree
three on P2

C defined by θ3; H is well defined thanks to the hypothesis on
θ3. Let us consider the family of homotheties ϕ = ϕε = (ε x, εy). We have

1
ε4ϕ

∗ω = θ3 + εC3(x, y)(xdy − ydx)

which tends to θ3 as ε tends to 0; it follows that H ∈ O(F). The 3-web
LegF is by hypothesis flat; it is therefore the same for the 3-web LegH. The
foliation H is then linearly conjugated to one of the eleven homogeneous
foliations given by Theorem 5.1 of [3]. Thus, according to [3, Table 1],H has
at least one non-degenerate singularity m0 satisfying BB(H,m0) 6∈ {4, 16

3 }.
Let (Fε)ε∈C be the family of foliations defined by ωε = θ3+εC3(x, y)(xdy−
ydx). From what precedes, for ε 6= 0 the foliation Fε belongs to O(F)
and for ε = 0 we have Fε=0 = H. The singularity m0 of H is “stable”;
there is a family (mε)ε∈C of non-degenerate singularities of Fε such that
mε=0 = m0. The Fε’s being conjugated for ε 6= 0, BB(Fε,mε) is locally
constant; as a result BB(Fε,mε) = BB(H,m0) for ε small. In particular
F has a non-degenerate singularity m′ verifying BB(F ,m′) = BB(H,m0)
so that BB(F ,m′) 6∈ {4, 16

3 }. According to [3, Lemma 6.7] through the
point m′ pass exactly two lines invariant by F , of which at least one is
necessarily distinct from (mm′); this implies, according to Remark 2.10,
that F is homogeneous. �

Lemma 2.11. — Let F be a foliation of degree three on P2
C with a

singular pointm of algebraic multiplicity 3. Let ω be a 1-form describing F .
Assume that the singular locus of F is not reduced tom and that the 3-jet of
ω at m is not saturated. Then up to isomorphism ω is of the following type

y(a0 x
2 +a1xy+y2)dx+xy(b0 x+b1y)dy+x(x2 +c1xy+c2y

2)(xdy−ydx),

where a0, a1, b0, b1, c1, c2 are complex numbers such that the degree of the
associated foliation is 3.
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Proof. — The condition ν(F ,m) = 3 assures the existence of a system
of homogeneous coordinates [x : y : z] ∈ P2

C in which m = [0 : 0 : 1] and F
is defined by a 1-form ω of type

ω = A(x, y)dx+B(x, y)dy + C(x, y)(xdy − ydx),

where A, B and C are homogeneous polynomials of degree 3. Since J3
(0,0)ω

is by hypothesis not saturated, we can write

A(x, y) = (h0 x+ h1y)(a0 x
2 + a1xy + a2y

2)

and B(x, y) = (h0 x+ h1y)(b0 x
2 + b1xy + b2y

2).

Let us write C(x, y) =
∑3
i=0 cix

3−iyi. The hypothesis SingF 6= {m} allows
us to assume that the point m′ = [0 : 1 : 0] is singular of F , which amounts
to assuming that c3 = h1b2 = 0. The foliation F being of degree three the
product h1a2 is non-zero and as a result b2 = 0; replacing h0 = h′0h1, ai =
a′ia2, bi = b′ia2, cj = c′jh1a2, with i ∈ {0, 1} and j ∈ {0, 1, 2}, we can
assume that h1 = a2 = 1. Thus ω writes

ω = (h0 x+ y)
(
(a0 x

2 + a1xy + y2)dx+ x(b0 x+ b1y)dy
)

+ x(c0 x
2 + c1xy + c2y

2)(xdy − ydx).

The conjugation by the diffeomorphism (x, y − h0 x) allows us to cancel h0;
as a consequence

ω = y
(
(a0 x

2 + a1xy + y2)dx+ x(b0 x+ b1y)dy
)

+ x(c0 x
2 + c1xy + c2y

2)(xdy − ydx).

The equality degF = 3 implies that c0 6= 0. By conjugating ω by the homo-
thety

(
1
c0
x, 1

c0
y
)
, we reduce ourselves to c0 = 1, that is, to the announced

model. �

Lemma 2.12. — Let F be a foliation of degree d > 2 on P2
C. If m ∈

SingF is such that ν(F ,m) = d, then for any m′ ∈ SingF \ {m} we
have ν(F ,m′) 6 d− 1.

Proof. — We know (see for instance [14, p. 158]) that if s is a singularity
of F and if X = A(u, v) ∂∂u +B(u, v) ∂∂v is a vector field defining the germ of
F at s, then ν(F , s)2 6 ν(A, s) · ν(B, s) 6 µ(F , s). We also know (see [6])
that

∑
s∈SingF µ(F , s) = d2 + d + 1. Let us assume now that there is

m ∈ SingF such that ν(F ,m) = d; let m′ be a point of SingF \ {m}. It
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follows that

ν(F ,m)2 + ν(F ,m′)2 6 d2 + d+ 1 =⇒ ν(F ,m′) 6
√
d+ 1

=⇒ ν(F ,m′) 6 d− 1,

because d > 2. �

Lemma 2.13. — Let F be a foliation of degree three on P2
C with a

singular point m of algebraic multiplicity 3. Assume that the singular locus
of F is not reduced to m and that the 3-web LegF is flat. Then any
singularity m′ distinct from m is non-degenerate, the line (mm′) is F-
invariant and

• either F is homogeneous;
• or CS(F , (mm′),m′) ∈ {1, 3} for any m′ ∈ SingF r {m}.

Proof. — Let m′ be a singular point of F distinct from m. According
to Lemma 2.12 the equalities degF = 3 and ν(F ,m) = 3 imply that
ν(F ,m′) 6 2. If the singularity m′ were degenerate, then, according to
Proposition 2.1, the 3-web LegF would not be flat, which is impossible by
hypothesis. Therefore µ(F ,m′) = 1.
Since degF = 3, τ(F ,m) = 3 and τ(F ,m′) > 1, the line (mm′) is invari-

ant by F (otherwise we would have 3 = degF =
∑
p∈(mm′) Tang(F , (mm′),

p) > τ(F ,m) + τ(F ,m′) > 4).
Let us assume that it is possible to choose m′ in such a way that

CS(F , (mm′),m′) 6∈ {1, 3}; we will show that F is necessarily homoge-
neous. The equality µ(F ,m′) = 1 and the condition CS(F , (mm′),m′) 6= 1
imply that BB(F ,m′) 6= 4.

• If BB(F ,m′) 6= 16
3 , then, according to [3, Lemma 6.7], through

the point m′ passes a line invariant by F and distinct from the
line (mm′), which implies, according to Remark 2.10, that F is
homogeneous;

• If BB(F ,m′) = 16
3 , then, according to [2, Lemma 3.12], through

the singularity m′ passes a line ` invariant by F and such that
CS(F , `,m′) = 3; as we have assumed that CS(F , (mm′),m′) 6= 3,
we deduce that ` 6= (mm′), which implies (Remark 2.10) that F is
homogeneous. �

We are now able to describe up to isomorphism the foliations of FP(3)
whose singular locus contains a point of algebraic multiplicity 3 and is not
reduced to this point.

Proposition 2.14. — Let F be a foliation of degree three on P2
C. As-

sume that F has a singularity of algebraic multiplicity 3 and that SingF
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is not reduced to this singularity. Assume moreover that the 3-web LegF
is flat. Then either F is homogeneous, or F is, up to the action of an
automorphism of P2

C, defined by one of the following 1-forms

(1) ω1 = y3dx+ x3(xdy − ydx);
(2) ω4 = (x3 + y3)dx+ x3(xdy − ydx);
(3) ω5 = y2(ydx+ 2xdy) + x3(xdy − ydx).

Proof. — Let us assume that F is not homogeneous; we must show
that up to linear conjugation F is described by one of the three 1-forms
ω1, ω4, ω5.

Let us denote by m the singularity of F of algebraic multiplicity 3. Let ω
be a 1-form describing F in an affine chart (x, y) of P2

C. Since by hypothesis
LegF is flat, it follows, according to Lemma 2.9, that the 3-jet of ω at
m is not saturated. By hypothesis we have SingF 6= {m}. As a result,
Lemma 2.11 assures us that ω is, up to isomorphism, of the following type

y(a0 x
2 + a1xy + y2)dx+ xy(b0 x+ b1y)dy

+ x(x2 + c1xy + c2y
2)(xdy − ydx), ai, bi, cj ∈ C.

In this situation, m = [0 : 0 : 1], m′ := [0 : 1 : 0] ∈ SingF and the line
(mm′) = (x = 0) is invariant by F ; moreover, a straightforward computa-
tion shows that CS(F , (mm′),m′) = 1 + b1. Lemma 2.13 then implies that
b1 ∈ {0, 2}.

If b0 6= 0, resp. (b0, b1) = (0, 2), resp. b0 = b1 = 0, c2 6= 0, resp. b0 = b1 =
c2 = 0, c1 6= 0, then by conjugating ω by

(
b2

0 x

1− c1b0 x
,

b3
0y

1− c1b0 x

)
, resp.

(
x

1−
(
c2
2
)
x
,

y

1−
(
c2
2
)
x

)
,

resp.
(
c−1

2 x, c
−3/2
2 y

)
, resp.

(
c−2

1 x, c−3
1 y

)
,

we reduce ourselves to (b0, c1) = (1, 0), resp. c2 = 0, resp. c2 = 1, resp.
c1 = 1. Therefore, it suffices us to treat the following possibilities

(b0, b1, c1) = (1, 0, 0), (b0, b1, c1) = (1, 2, 0),
(b0, b1, c2) = (0, 2, 0), (b0, b1, c2) = (0, 0, 1),
(b0, b1, c1, c2) = (0, 0, 1, 0), (b0, b1, c1, c2) = (0, 0, 0, 0).

Let us place ourselves in the affine chart (p, q) of P̌2
C associated to the

line {py − qx = 1} ⊂ P2
C; the 3-web LegF is described by the differential
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equation

F (p, q, w) := pw3 + (a1p+ b1q − c2)w2 + (a0p+ b0q − c1)w − 1 = 0,

with w = dq
dp .

The explicit computation of K(LegF) shows that it has the form

K(LegF) =
∑
i+j66 ρ

j
ip
iqj

∆(p, q)2 dp ∧ dq,

where ∆ is the w-discriminant of F and the ρji ’s are polynomials in the
parameters ai, bi, cj .

Step 1. — If (b0, b1, c1) = (1, 0, 0), then the explicit computation of
K(LegF) leads to ρ5

0 = 4c2 and

ρ1
2 = a2

0(a0 + 8a1)c3
2 − (177a2

0 − 60a0 − 24a0a1 − 84a0a
2
1 + 24a2

1 + 24a3
1)c2

2

+(108a2
1 − 36a1 − 81a0)c2 + 81,

so that the system ρ5
0 = ρ1

2 = 0 has no solutions. So this first case does not
happen.

Step 2. — When (b0, b1, c1) = (1, 2, 0), the explicit computation of
K(LegF) gives us:

ρ6
0 = −4(6a0 − 5a1 + 4),

ρ5
1 = −4(12a2

0 + 20a0 − 10a0a1 − 3a2
1),

ρ0
5 = 32a5

0c2 − 8(a2
1c2 + 2a1c2 + 12)a4

0 + 4(a3
1c2 + 4a2

1 + a1 − 12)a3
0

+ (4a2
1 − 5a1 + 30)a2

0a
2
1 − 4a0a

4
1;

it is easy to see that the system ρ6
0 = ρ5

1 = ρ0
5 = 0 has no solutions. So this

second case is not possible.

Step 3. — If (b0, b1, c2) = (0, 2, 0), then the explicit computation of
K(LegF) shows that:

ρ0
1 = 24c4

1, ρ4
1 = −256a2

0, ρ4
0 = 64(14a1 + 3a0c1),

so that a0 = a1 = c1 = 0. As a consequence, in this third case, F is given by

ω5 = y2(ydx+ 2xdy) + x3(xdy − ydx);

we verify by computation that its Legendre transform is flat.
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Step 4. — When (b0, b1, c2) = (0, 0, 1), the explicit computation of
K(LegF) gives us:

ρ0
5 = 2a2

0(4a0 − a2
1)(2a2

0 − 6a0 − a0a1c1 + 2a2
1),

ρ0
1 = 2(c2

1 − 4)
(
(12a0 − a2

1)c2
1 − (5a0 + 18)a1c1 + a2

0 − 24a0 + 14a2
1 + 27

)
,

ρ0
4 = 2a1(2a4

0 + 24a3
0 − 54a2

0 − 5a2
0a

2
1 + 30a0a

2
1 − 4a4

1)

− (60a3
0 − 36a2

0 − 11a2
0a

2
1 + 45a0a

2
1 − 8a4

1)a0c1 + (24a0 − 5a2
1)a2

0a1c
2
1,

ρ0
2 = 3(5a2

0 + 52a0 − 2a2
1 + 27)a1c

2
1 − (64a2

0 + 60a0 − 7a0a
2
1 + 7a2

1)c3
1

− 2a1(a2
0 + 162a0 − 48a2

1 − 27) + (8a0 − a2
1)a1c

4
1

− (a3
0 − 177a2

0 − 81a0 + 84a0a
2
1 + 108a2

1 + 81)c1;

the system ρ0
1 = ρ0

2 = ρ0
4 = ρ0

5 = 0 is equivalent to (a0, a1, c1) ∈ {(1, 2, 2),
(1,−2,−2)}, as an explicit computation shows. If (a0, a1, c1) = (1, 2, 2),
resp. (a0, a1, c1) = (1,−2,−2), then ω writes

ω = (x+ y)2(ydx+ x(xdy − ydx)),

resp. ω = (x− y)2(ydx+ x(xdy − ydx)),

which contradicts the equality degF = 3.
Step 5. — When (b0, b1, c1, c2) = (0, 0, 1, 0), the explicit computation of

K(LegF) shows that:

ρ0
3 = −2a2

0(6a0 + a0a1 − 2a2
1)(4a0 − a2

1),

ρ0
0 = −81− 60a0 + 8a0a1 + 81a1 − 7a2

1 − a3
1,

ρ0
1 = −4(a1 − 3)(6a2

0 − 9a0a1 − a0a
2
1 + 2a3

1);

the system ρ0
0 = ρ0

1 = ρ0
3 = 0 is verified if and only if (a0, a1) = (2, 3), in

which case
ω = (x+ y)

(
y(y + 2x)dx+ x2(xdy − ydx)

)
,

but this contradicts the equality degF = 3.
Step 6. — If (b0, b1, c1, c2)=(0, 0, 0, 0), then ω=y(a0x

2 +a1xy+y2)dx+
x3(xdy − ydx); the differential equation describing LegF writes

F (p, q, q′) = p(q′)3 + a1p(q′)2 + a0pq
′ − 1 = 0, with q′ = dq

dp .

We study two eventualities according to whether a1 is zero or not.
Substep 6.1. — When a1 = 0 the explicit computation of K(LegF)

gives us

K(LegF) = − 48a4
0p

(4a3
0p

2 + 27)2 dp ∧ dq;
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as a result LegF is flat if and only if a0 = 0, in which case F is described by

ω1 = y3dx+ x3(xdy − ydx).

Subtep 6.2. — If a1 6= 0, then by conjugating ω by
(
α2x, α3y

)
, where

α = 1
3a1, we can assume that a1 = 3. In this case the explicit computation

of K(LegF) shows that

K(LegF) = −
12 (a0 − 3)

(
a2

0(4a0 − 9)p+ 27(a0 − 2)
)

(a2
0(4a0 − 9)p2 + 54(a0 − 2)p+ 27)2 dp ∧ dq;

as a consequence LegF is flat if and only if a0 = 3, in which case

ω = y(3x2 + 3xy + y2)dx+ x3(xdy − ydx).

After replacing ω by ϕ∗ω, where ϕ(x, y) = (x,−x− y) , the foliation F is
given in the affine coordinates (x, y) by the 1-form

ω4 = (x3 + y3)dx+ x3(xdy − ydx). �

Remark 2.15. — The five foliations F1, . . . ,F5 have the following prop-
erties:

(i) # SingF2 = 1, # SingF3 = 13 and # SingFj = 2 for j = 1, 4, 5;
(ii) Fj is convex if and only if j ∈ {1, 3};
(iii) Fj has a radial singularity of order 2 if and only if j ∈ {1, 3, 4};
(iv) Fj admits a double inflection point if and only if j ∈ {2, 4}.

The verifications of these properties are easy and left to the reader.

Remark 2.16. — The sixteen foliations H1, . . . ,H11, F1, . . . ,F5 are not
linearly conjugated. Indeed, by construction, the Fj ’s are not homogeneous
and are therefore not conjugated to the homogeneous foliations Hi. The
Hi’s are not linearly conjugated ([3, Theorem 5.1]). Finally, the fact that
the Fj ’s are not linearly conjugated follows from the properties (i), (ii) and
(iii) above.

Theorem A follows from [3, Theorems 5.1, 6.1], Propositions 2.1, 2.8,
2.14 and Remark 2.16.

Proof of Corollary C. — According to [4, Corollary 4.7] every convex
foliation of degree three on P2

C has a flat Legendre transform and is therefore
linearly conjugated to one of the sixteen foliations given by Theorem A.
The statement then follows from the fact that the only convex foliations
appearing in this theorem are H1,H3,F1 and F3. �
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3. Orbits under the action of PGL3(C)

In this section, we describe the irreducible components of FP(3). We
start by determining the dimensions of the orbits O(Hi),O(Fj) under the
action of Aut(P2

C) = PGL3(C). Next we classify up to isomorphism the
foliations of F(3) which realize the minimal dimension of the orbits in de-
gree 3. Finally, we study the closure of the orbits O(Hi),O(Fj) in F(3) and
we prove the Theorem D describing the irreducible components of FP(3).

3.1. Isotropy groups and dimensions of the orbits O(Hi) and
O(Fj)

Definition 3.1. — Let F be a foliation on P2
C. The subgroup of Aut(P2

C)
(resp. Aut(P̌2

C)) which preserves F (resp. LegF) is called the isotropy group
of F (resp. LegF) and is denoted by Iso(F) (resp. Iso(LegF)); Iso(F) and
Iso(LegF) are algebraic groups.

Remark 3.2. — Let F be a foliation on P2
C. If [a : b : c] are the homoge-

neous coordinates in P̌2
C associated to the line {ax + by + cz = 0} ⊂ P2

C,

then

Iso(LegF) =
{

[a : b : c] ·A−1
∣∣∣A ∈ PGL3(C), [x : y : z] · t

A ∈ Iso(F)
}
.

More precisely, the isomorphism τ : Aut(P2
C) → Aut(P̌2

C) which, for A in
PGL3(C), sends [x : y : z] · t

A into [a : b : c] · A−1 induces an isomorphism
from Iso(F) onto Iso(LegF).

The following result is elementary and its proof is left to the reader.

Proposition 3.3. — The groups Iso(Hi) and Iso(Fj) are given by

(1) Iso(H1) =
{

[±x : y : αz], [± y : x : αz]
∣∣∣α ∈ C∗};

(2) Iso(H2) =
{

[±x : y : αz], [± y : x : αz], [± ix : y : αz], [± iy : x :

αz]
∣∣∣α ∈ C∗};

(3) Iso(H3) =
{

[ x : y : αz], [ y : x : αz]
∣∣∣α ∈ C∗};

(4) Iso(H4) =
{

[ x : y : αz], [ y : x : αz]
∣∣∣α ∈ C∗};

(5) Iso(H5) =
{

[ x : y : αz]
∣∣∣α ∈ C∗};

(6) Iso(H6) =
{

[ x : y : αz]
∣∣∣α ∈ C∗};

(7) Iso(H7) =
{

[±x : y : αz]
∣∣∣α ∈ C∗};
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(8) Iso(H8) =
{

[ x : y : αz], [4y − x : y : αz]
∣∣∣α ∈ C∗};

(9) Iso(H9) =
{

[ x : y : αz], [ x− y : x : αz], [y : y − x : αz]
∣∣∣α ∈ C∗};

(10) Iso(H10) =
{

[ x : y : αz], [−y : x : αz]
∣∣∣α ∈ C∗};

(11) Iso(H11) =
{

[ x : y : αz], [y : x : αz], [ξ5 x : x + ξ y : αz], [ξ−5 x :
x+ ξ−1 y : αz], [ξ5 y : y+ ξ x : αz], [ξ−5 y : y+ ξ−1 x : αz], [ξ5 x− y :
x+ξ−1 y : αz], [ξ−5 x−y : x+ξ y : αz], [ξ5 x+ξ4 y : x : αz], [ξ−5 x+
ξ−4 y : x : αz], [ξ5 y+ ξ4 x : y : αz], [ξ−5 y+ ξ−4 x : y : αz]

∣∣∣α ∈ C∗}
where ξ = eiπ/6;

(12) Iso(F1) =
{

[α2x : α3y : z + β x]
∣∣∣α ∈ C∗, β ∈ C};

(13) Iso(F2) =
{

[α4x : α3y : z + β x]
∣∣∣α ∈ C∗, β ∈ C};

(14) Iso(F3) =
{

[±x : ± y : z], [± y : ±x : z], [±x : ± z : y], [± z : ±x :

y], [± y : ± z : x], [± z : ± y : x]
}
;

(15) Iso(F4) =
{

[ x : y : z + αx], [ jx : y : z + αx], [ j2x : y : z + αx]
∣∣∣

α ∈ C
}

where j = e2iπ/3;

(16) Iso(F5) =
{

[α2x : α3y : z]
∣∣∣α ∈ C∗}.

In particular, the dimensions of the orbits O(Hi) and O(Fj) are the fol-
lowing

dimO(F1) = 6, dimO(F2) = 6, dimO(Hi) = 7, i = 1, . . . , 11,
dimO(F4) = 7, dimO(F5) = 7, dimO(F3) = 8.

3.2. Description of degree three foliations F such that
dimO(F) = 6

Proposition 2.3 of [11] asserts that if F is a foliation of degree d >
2 on P2

C, then the dimension of O(F) is at least 6, or equivalently, the
dimension of Iso(F) is at most 2. Notice that these bounds are attained by
the foliations F (d)

1 and F (d)
2 defined in the affine chart z = 1 respectively

by the 1-forms

ω
(d)
1 = yddx+ xd(xdy − ydx) and ω

(d)
2 = xddx+ yd(xdy − ydx).

Indeed, it is easy to check that{(
αd−1x

1 + βx
,
αdy

1 + βx

)∣∣∣∣α ∈ C∗, β ∈ C} ⊂ Iso(F (d)
1 )
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and {(
αd+1x

1 + βx
,
αdy

1 + βx

)∣∣∣∣α ∈ C∗, β ∈ C} ⊂ Iso(F (d)
2 ),

so that dim Iso(F (d)
i ) > 2, i = 1, 2, and so dim Iso(F (d)

i ) = 2.

Remark 3.4. — By construction, we have F (3)
1 = F1 and F (3)

2 = F2.

D. Cerveau, J. Déserti, D. Garba Belko and R. Meziani have shown that
up to isomorphism of P2

C the quadratic foliations F (2)
1 and F (2)

2 are the
only foliations realizing the minimal dimension of the orbits in degree 2
([11, Proposition 2.7]). Corollary B stated in the Introduction is a similar
result in degree 3.

Proof of Corollary B. — Let F be a degree three foliation on P2
C such

that dimO(F) = 6. Since Iso(LegF) is isomorphic to Iso(F), we have that

dim Iso(LegF) = dim Iso(F) = 8− 6 = 2.

Let us fix m ∈ P̌2
Cr∆(LegF) and let Wm be the germ of the 3-web LegF

at m. After É. Cartan [9] the equality dim Iso(LegF) = 2 implies that
Wm is parallelizable and so flat. Since the curvature LegF is holomorphic
on P̌2

C r ∆(LegF), we deduce that LegF is flat. Therefore F is linearly
conjugate to one of the 16 foliations given by Theorem A. Proposition 3.3
and the hypothesis dimO(F) = 6 allows us to conclude. �

3.3. Closure of the orbits and irreducible components of FP(3)

We begin by studying the closure of the orbits O(Hi) and O(Fj) in F(3),
then we prove Theorem D describing the irreducible components of FP(3).

The following definition will be useful.

Definition 3.5 ([11]). — Let F and F ′ be two foliations of F(3). We
say that F degenerates onto F ′ if the closure O(F) (inside F(3)) of O(F)
contains O(F ′) and O(F) 6= O(F ′).

Remarks 3.6. — Let F and F ′ be two foliations such that F degenerates
onto F ′. Then

(i) dimO(F ′) < dimO(F);
(ii) if LegF is flat then LegF ′ is also flat;
(iii) deg Iinv

F 6 deg Iinv
F ′ , equivalently deg Itr

F > deg Itr
F ′ . In particular, if F

is convex then F ′ is also convex.
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As we have already noted in the Introduction, D. Marín and J. V. Pereira
have shown in [18] that the closure of the orbit O(F3) of F3 is an irreducible
component of FP(3). Assertion (2) in the proposition below gives a more
precise description.

Proposition 3.7.
(1) The orbits O(F1) and O(F2) are closed.
(2) O(F3) = O(F1) ∪ O(H1) ∪ O(H3) ∪ O(F3).

Proof. — First assertion follows from Corollary B and Remark 3.6(i).
By Corollary C and Remark 3.6(iii), F3 can degenerate only onto F1,H1

or H3. Let us show that this is the case. Consider the family of homotheties
ϕ = ϕε =

(
x
ε ,

y
ε

)
. We have that

−ε4ϕ∗ω3 = (y3 − ε2y)dx+ (ε2x− x3)dy

tends to ω1 as ε goes to 0. Thus, the foliation F3 degenerates onto H1.

In the affine chart x = 1, F1, resp. F3, is given by

θ1 = dy − y3dz, resp. θ3 = (y3 − y)dz − (z3 − z)dy;

consider the family of automorphisms σ =
(
y
ε , 2 + 6ε2z

)
. A direct compu-

tation shows that

−ε6σ
∗θ3 = (1 + 11ε2z + 36ε4z2 + 36ε6z3)dy + (ε2y − y3)dz

which tends to θ1 as ε tends to 0. Thus F3 degenerates onto F1.

In homogeneous coordinates H3, resp. F3, is given by

Ω3 = z y2(3x+ y)dx− z x2(x+ 3y)dy + xy(x2 − y2)dz,

resp. Ω3 = x3(ydz − zdy) + y3(zdx− xdz) + z3(xdy − ydx);

by putting ψ = [x− y : 2ε z − x− y : x+ y] we obtain

1
8εψ

∗Ω3 = z y(y − ε z)(3x+ y − 2ε z)dx

− z x(x− ε z)(x+ 3y − 2ε z)dy + xy(x2 − y2)dz

which tends to Ω3 as ε goes to 0. As a consequence F3 degenerates
onto H3. �

Remark 3.8. — By combining Assertion 2. of Proposition 3.7 and Corol-
lary C, we deduce that the set of convex foliations of degree three on P2

C is
exactly the closure O(F3) of O(F3) and is therefore an irreducible closed
subset of F(3).

Next result is an immediate consequence ofCorollaryB andRemark 3.6(i).
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Corollary 3.9. — Let F be an element of F(3) such that dimO(F) 6
7. Then

O(F) ⊂ O(F) ∪ O(F1) ∪ O(F2).

The following result provides a necessary condition for a degree three
foliation on P2

C degenerates onto the foliation F1.

Proposition 3.10. — Let F be an element of F(3). If F degenerates
onto F1, then F possesses a non-degenerate singular point m satisfying
BB(F ,m) = 4.

Proof. — Assume that F degenerates onto F1. Then there exists an an-
alytic family (Fε) of foliations defined by 1-forms ωε such that Fε ∈ O(F)
for ε 6= 0 and Fε=0 = F1. The non-degenerate singular point m0 of F1 is
“stable”, i.e. there is an analytic family (mε) of non-degenerate singular
points of Fε such that mε=0 = m0. The Fε’s being conjugated to F for
ε 6= 0, the foliation F admits a non-degenerate singular point m such that

∀ ε ∈ C∗, BB(Fε,mε) = BB(F ,m).

Since µ(Fε,mε) = 1 for every ε in C, the function ε 7→ BB(Fε,mε) is
continuous, hence constant on C. As a result

BB(F ,m) = BB(Fε=0,mε=0) = BB(F1,m0) = 4. �

Corollary 3.11. — The foliations H2,H8,H11 and F5 do not degen-
erate onto F1.

A sufficient condition for the degeneration of a degree three foliation into
F1 is the following:

Proposition 3.12. — Let F be an element of F(3) such that F1 6∈
O(F). If F possesses a non-degenerate singular point m satisfying

BB(F ,m) = 4 and κ(F ,m) = 3,

then F degenerates onto F1.

Proof. — Assume that F has a such singular point m. The equality
κ(F ,m) = 3 assures the existence of a line `m through m which is not
invariant by F and such that Tang(F , `m,m) = 3. Taking an affine coor-
dinate system (x, y) such that m = (0, 0) and `m = (x = 0), the foliation
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F is defined by a 1-form ω of the following type

(∗x+ βy + ∗x2 + ∗xy + ∗y2 + ∗x3 + ∗x2y + ∗xy2 + ∗y3)dx

+ (αx+ ry + ∗x2 + ∗xy + sy2 + ∗x3 + ∗x2y + ∗xy2 + γ y3)dy

+ (∗x3 + ∗x2y + ∗xy2 + ∗y3)(xdy − ydx),
with ∗, r, s, α, β, γ ∈ C.

Along the line x = 0 the 2-form ω ∧ dx writes as (ry + sy2 + γ y3)dy ∧ dx.
The equality Tang(F , `m,m) = 3 is equivalent to r = s = 0 and γ 6= 0. The
equalities r = 0, µ(F ,m) = 1 and BB(F ,m) = 4 imply that β = −α 6= 0.
Thus ω writes as

(∗x− αy + ∗x2 + ∗xy + ∗y2 + ∗x3 + ∗x2y + ∗xy2 + ∗y3)dx

+ (αx+ ∗x2 + ∗xy + ∗x3 + ∗x2y + ∗xy2 + γ y3)dy

+ (∗x3 + ∗x2y + ∗xy2 + ∗y3)(xdy − ydx),
where ∗ ∈ C, α, γ ∈ C∗.

Put ϕ =
(
ε3x, εy

)
and fix (i, j) ∈ Z2

+ \ {(0, 0)}. Notice that
(1) ϕ∗(xiyjdx) = ε3i+j+3xiyjdx is divisible by ε4 and 1

ε4ϕ
∗(xiyjdx)

tends to 0 as ε tends to 0 except for (i, j) = (0, 1);
(2) ϕ∗(xiyjdy) = ε3i+j+1xiyjdy is divisible by ε4 except for (i, j) =

(0, 1) and (i, j) = (0, 2). If (i, j) /∈ {(0, 1), (0, 2), (0, 3), (1, 0)}, then
the 1-form 1

ε4ϕ
∗(xiyjdy) tends to 0 as ε goes to 0.

Therefore

lim
ε→0

1
ε4ϕ

∗ω = α(xdy − ydx) + γ y3dy.

The foliation defined by α(xdy − ydx) + γ y3dy is conjugated to F1
because, as a straightforward computation shows, it is a convex foliation
whose singular locus is formed of two points. As a result F degenerates
onto F1. �

Corollary 3.13. — The foliations H1,H3,H5,H7 and F4 degenerate
onto F1.

The converse of Proposition 3.12 is false as the following example shows.

Example 3.14. — Let F be the degree 3 foliation on P2
C defined in the

affine chart z = 1 by

ω = xdy − ydx+ (y2 + y3)dy.
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The singular locus of F consists of the two points m = [0 : 0 : 1] and
m′ = [1 : 0 : 0]; moreover

µ(F ,m) = 1, BB(F ,m) = 4, κ(F ,m) = 2, µ(F ,m′) > 1.

The foliation F degenerates onto F1; indeed, putting ϕ =
( 1
ε3x,

1
εy
)
, we

have that

lim
ε→0

ε4ϕ∗ω = xdy − ydx+ y3dy.

Next, we give a necessary condition for a degree three foliation on P2
C

degenerates onto F2:

Proposition 3.15. — Let F be an element of F(3). If F degenerates
onto F2, then deg Itr

F > 2.

Proof. — If F degenerates onto F2 then deg Itr
F > deg Itr

F2
. A straightfor-

ward computation shows that Itr
F2

= y2 so that deg Itr
F2

= 2. �

Corollary 3.16. — The foliations H5 and H9 do not degenerate
onto F2.

A sufficient condition for that a degree three foliations on P2
C degenerates

onto F2 is the following:

Proposition 3.17. — Let F be an element of F(3) such that F2 6∈
O(F). If F possesses a double inflection point, then F degenerates onto
F2.

Proof. — Assume that F possesses such a point m. We take an affine
coordinate system (x, y) such that m = (0, 0) is a double inflection point of
F and x = 0 is the tangent line to the leaf of F passing through m. Let ω
be a 1-form defining F in these coordinates. Since TmF = (x = 0), ω has
the following type

(α+ ∗x+ ∗y + ∗x2 + ∗xy + ∗y2 + ∗x3 + ∗x2y + ∗xy2 + ∗y3)dx

+ (∗x+ ry + ∗x2 + ∗xy + sy2 + ∗x3 + ∗x2y + ∗xy2 + βy3)dy

+ (∗x3 + ∗x2y + ∗xy2 + ∗y3)(xdy − ydx),
with ∗, r, s, β,∈ C, α ∈ C∗.

Along the line x = 0, the 2-form ω ∧ dx writes as (ry+ sy2 + β y3)dy ∧ dx.
The fact that (0, 0) is a double inflection point is equivalent to r = s = 0
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and β 6= 0. Thus ω writes as

(α+ ∗x+ ∗y + ∗x2 + ∗xy + ∗y2 + ∗x3 + ∗x2y + ∗xy2 + ∗y3)dx

+ (∗x+ ∗x2 + ∗xy + ∗x3 + ∗x2y + ∗xy2 + βy3)dy

+ (∗x3 + ∗x2y + ∗xy2 + ∗y3)(xdy − ydx),
where ∗ ∈ C, α, β ∈ C∗.

We consider the following family of automorphisms ϕε = ϕ = (ε4x, εy).
Fix (i, j) ∈ Z2

+ and notice that
(1) ϕ∗(xiyjdx) = ε4i+j+4xiyjdx is divisible by ε4 and 1

ε4ϕ
∗(xiyjdx)

tends to 0 as ε tends to 0 except for i = j = 0;
(2) ϕ∗(xiyjdy) = ε4i+j+1xiyjdy is divisible by ε4 except for (i, j) ∈
{(0, 0), (0, 1), (0, 2)}. If (i, j) /∈ {(0, 0), (0, 1), (0, 2), (0, 3)}, then the
1-form 1

ε4ϕ
∗(xiyjdy) tends to 0 as ε goes to 0.

We obtain that

lim
ε→0

1
ε4ϕ

∗ω = αdx+ βy3dy.

Clearly αdx + βy3dy defines a foliation which is conjugated to F2; as a
result F degenerates onto F2. �

Corollary 3.18. — The foliations H2,H4,H6,H8 and F4 degenerate
onto F2.

Example 3.19 (Jouanolou). — Consider the degree three foliation FJ on
P2
C defined in the affine chart z = 1 by

ωJ = (x3y − 1)dx+ (y3 − x4)dy;

this example is due to Jouanolou ([17]). Historically it is the first explicit
example of foliation without invariant algebraic curves ([17]); it is also a
foliation without non-trivial minimal set ([7]). The point m = (0, 0) is a
double inflection point of FJ because TmFJ = (x = 0) and ωJ ∧ dx

∣∣
x=0 =

y3dy ∧ dx; thus FJ degenerates onto F2.

The converse of Proposition 3.17 is false as the following example shows.

Example 3.20. — Let F be the degree 3 foliation on P2
C defined in the

affine chart z = 1 by
ω = dx+ (y2 + y3)dy.

A straightforward computation shows that F has no double inflection
point. This foliation degenerates onto F3 in the following way. Putting
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ϕ =
( 1
ε4x,

1
εy
)
, we obtain that

lim
ε→0

ε4ϕ∗ω = dx+ y3dy.

Theorem D follows directly from Theorem A, Propositions 3.3, 3.7 and
Corollaries C, 3.9, 3.11, 3.13, 3.16, 3.18.

Problem 3.21. — Give a criterion for deciding whether or not a degree
three foliation on P2

C degenerates onto F1 or F2.

Thanks to Corollary 3.9, an affirmative answer to this problem would
allows us to decide whether or not an orbit of dimension 7 in F(3) is closed.
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