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QUOTIENT SINGULARITIES OF PRODUCTS OF TWO
CURVES

by Kentaro MITSUI (*)

ABSTRACT. — We give a method to resolve a quotient surface singularity which
arises as the quotient of a product action of a finite group on two curves. In the
characteristic zero case, the singularity is resolved by means of a continued fraction,
which is known as the Hirzebruch—Jung desingularization. We develop the method
in the positive characteristic case where the square of the characteristic does not
divide the order of the group.

RESUME. — Nous donnons une méthode pour résoudre une singularité quotient
de surface qui se présente comme le quotient d’une action produit d’un groupe
fini sur deux courbes. En caractéristique nulle, la singularité est résolue au moyen
d’une fraction continue (désingularisation de Hirzebruch—Jung). Nous développons
la méthode dans le cas de la caractéristique strictement positive ou le carré de la
caractéristique ne divise pas l'ordre du groupe.

1. Introduction

We give a method to resolve a quotient surface singularity which arises
as the quotient of a product action of a finite group on two curves. In the
characteristic zero case, the singularity is resolved by means of a continued
fraction, which is known as the Hirzebruch—Jung desingularization ([5], [7],
[3, §10.2]). The intersection matrix of the exceptional locus is determined
by this continued fraction, which gives formulas for invariants associated
with the singularity. Nevertheless, few results are known in the positive
characteristic case where the characteristic divides the order of the group
(see [10, 1.4] for the history) while the existence of a desingularization of
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1494 Kentaro MITSUI

a two-dimensional excellent scheme is known ([2], [9]). In this paper, we
give an explicit desingularization and calculate the intersection matrix and
invariants by means of plural continued fractions in the case where the
square of the characteristic does not divide the order of the group. Our
result generalizes those in [6] and [10] as explained below. A special case
of our result answers the question on the intersection matrix in [10, §1]. In
the following, we explain our result by comparing it with the characteristic
zero case or more generally the tame quotient case.

Let k be an algebraically closed field of characteristic p > 0 and G be a
finite group of order #G. Assume that G faithfully acts on the complete
discrete valuation ring k[x;] over k for any ¢ € {1,2}. Put R = k[z1,z2]
and X := Spec R. Take the quotient

(1.1) g: X —Y =X/G

of X by the product action of GG. The singularity of Y may be resolved by
a proper birational morphism A : Y Y. By E}, we denote the exceptional
locus of h with reduced structure. The desingularization h of Y is called
good (resp. minimal good) if any singularity of Fj is a node, and any
irreducible component of E}, is regular (resp. h is minimal among all good
desingularizations, i.e., h is good, and, if h = h’ o A", and A’ is a good
desingularization, then h” is an isomorphism). Let €; be an intersection
matrix of Ej. Put

(1.2) 0 = |det Qp],

which does not depend on the choice of h whenever h is good (Proposi-
tion 5.5). By Z we denote the fundamental cycle of h (Section 6). The
fundamental genus py (resp. the geometric genus p,) of the singularity of
Y is defined as the arithmetic genus of Z (resp. the dimension of th*OY
over k). The singularity of Y is said to be rational if p, = 0, which is
equivalent to the condition py = 0 [1, Theorem 3].

In the case p f #G, the Hirzebruch—Jung desingularization of Y is min-
imal good whose exceptional locus is a chain of the projective lines. More-
over, the equalities 6 = #G and py = p, = 0 hold. In particular, the
singularity of Y is rational.

Assume that p > 0 and p | #G. Note that G has the unique p-Sylow
subgroup H. Although H has a normal subgroup of order p, few results are
known even in the simplest case H = Z/pZ. In the following, we assume
that H = Z/pZ. Our main theorems give a minimal good desingularization
of Y whose exceptional locus is a star-shaped tree of the projective lines
(Theorem 3.4; its proof is given in Section 4) and the intersection matrix of
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QUOTIENT SINGULARITIES OF PRODUCTS OF TWO CURVES 1495

the exceptional locus by means of three continued fractions (Theorem 3.6;
its proof is given in Section 5). As a corollary, we calculate 6 (Theorem 1.2;
its proof is given in Section 5) and give algorithms to obtain Z (Section 6),
ps (Section 6), and p, (Sections 7-8).

Take a generator o of H. For i € {1,2}, we denote the maximal ideal of
klz:] by m;, take the valuation v; of k[[z;] with v;(k[z;] \ {0}) = Z>0, and
put
(1.3) a; =vi(oz; —x;) — 1, d=gced(a1,a2), and a; = %.

Note that a; € Zzp since the action of G on k[z;] is faithful, and the
multiplicative identity is the unique p-th root of unity in k. The definition of
«; does not depend on the choice of the generator o of H or the uniformizer
x; of k[z;] since m$! is generated by {rx — 2|7 € H,z € m;}. Since

i
dimy m;/m? = 1, we identify Auty(m;/m?) with £*. Then the action of G
on m;/m? induces a character p;: G — k*. Put

d
(1.4) m:=#(G/H), n:=ordp}'p;*, and d = —.
n

Note that d’ € Z (Lemma 3.1).

Example 1.1. — Assume that p > 3, G = Z/pZ x Z/27, and k[x;] is the
extension of kfJy;] defined as k[y;][x:]/(P;) for any ¢ € {1,2}, where

Pi=al —y' e~y
Put 0 :=(1,0) € G and 7 := (0,1) € G. Suppose that the equality
(o2, 0Yi, T2, TYi) = (i + Yi, Yi, —Tiy —Yi)
holds for any ¢ € {1,2}. Then H = Z/pZ, G/H = Z/2Z, (o1,02) =
(p - 17p - 1)7 (0'170'2) = (17 1>, and (m7n7d7 d/) = (27 1ap - 17p - 1) Put
¢ :={(1,1),(1,2),(2,2)}, wvi; =uwy, for (i,j) € ,
and
Y = T1Y2 — T2y1-
Then {y; ;}ij)ee U {y} C R, and the equalities
P
T1 T T X2 1— 1— P B
(2omY (2 2\ BB
Y1 Y2 Y1 Y2 h Y2
hold in k((x1, x2)). By multiplying both sides by yf’2, we obtain the equality

D p—1 pTil ;72;1 _
Y=o vtz vl —v3 ) =0
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1496 Kentaro MITSUI

in R. Put
U=k[Y11,Y22], T=U[Y12]/(Q), and S:=T[Y]/(P),
where
2 -1 21 21
Q=Y —YiiYsy and P=Y? VPV + YLQ(YLf ~ Yy 2 )

Then T (resp. S) is a Cohen—Macaulay local ring of dimension two whose
singular locus is defined by the maximal ideal, which implies that T' (resp.
S) is a normal integral domain by Serre’s criterion for normality. We regard
S as a subring of R by the injective k-algebra homomorphism S — R,
Y =y, Y, =y, for (i,5) € ®. Then U C T C S C RY C R are finite
extensions of normal integral domains. For an extension A’/A of integral
domains, we denote the degree of the extension of their fields of fractions by
[A” : A]. Then the equalities [R : U] = 4p?, [R: R®] = 2p, and [T : U] = 2
give the equality [R® : T] = p. Thus, since S # T, the equality [R® : S] = 1
holds, which implies that RS = S. As a result, we obtain the isomorphism

R = kY, Y11,Y19,Y22]/(P,Q).

The explicit description of R® is complicated even in the case of the above
simple action. We explain how to overcome this difficulty after stating our
theorems on the invariants. We obtain a simple formula for §:

THEOREM 1.2. — The equality § = p® T'm holds.

Although the formula for py is complicated in general (Corollary 6.1),
the formula may be simplified in the case G = Z/pZ:

THEOREM 1.3. — Assume that G = Z/pZ. Then the equality

(p — 1)(min{en, ag} — 1)

2
holds. In particular, the singularity of Y is rational if and only if a; = 1 or
Qg = 1.

pPr=

In contrast to 6 and py, the formula for p, is complicated even in the
case G 2 Z/pZ (Theorem 8.7). Nevertheless, the formula may be simplified
in some special cases:

THEOREM 1.4. — Assume that G = Z/pZ, a1 = ag, and oy | (p — 1).
Put o := «ay. Then the equality

pg:”zlml (r= (e + (et

p

i=1
holds.

ANNALES DE L’INSTITUT FOURIER
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When G = Z/pZ, our result in the local setting generalizes the previously
known results in the global setting in the case ay =1 or ap =1 [10] and in
the case a1 = az = p — 1 [6]. Our approach is different from those in [10]
and [6]. The former [10] applies the Néron model of the Jacobian of a curve.
The intersection matrix of the exceptional locus is calculated under certain
conditions of the global geometry which are essentially used. The latter [6]
uses an explicit defining equation of the invariant ring of the action on the
product of two curves.

Let us briefly explain our method. We first take a proper birational mor-
phism X — X induced by a subdivision 30 of a toric fan so that the
action of G on X may be lifted to that on X. Next, we take the quotient
Y =X /G. The > point is that all singularities of Y are toric if we appro-
priately choose AO We may determine the fans of the toric singularities of
Y. The Hirzebruch—Jung desingularizations of these toric singularities give
a minimal good desingularization of Y. We finally remark that, in other
different situations, it has been observed that an appropriate blowing-up
with a lifting of a group action may reduce a serious singularity to milder
ones, e.g., Kirwan’s partial desingularization of the quotient of a reductive
group action on a complex projective variety. However, the blowing-up is
non-singular in contrast to X , which is singular whenever a; # as (Re-
mark 3.3). Our method may be regarded as a new variant.

2. Notation and Convention

Let (B;)7_; be a sequence of integers greater than one. We denote the
Hirzebruch—Jung continued fraction

B, —
By —

by [Bi]l_y = [Bi,...,B.] [3, §10.2]. Put B := [B;]’_,. Then B € Q.
Conversely, any rational number greater than one can be uniquely expressed
as a Hirzebruch—Jung continued fraction. There exists a unique (Mg, M) €
72 such that B = My/M; and ged(My, My) = 1. For i € Z satisfying
1 <i<r, we put

(2.1) Mi+1 = MzBl — Mifl.

TOME 71 (2021), FASCICULE 4
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Note that M;/M;1 = [B;lj_;, for any i € Z satisfying 0 < i <r —1,
M, =1, and M, = 0. The (r + 2)-tuple

(Ml):i(% = (M07 M17 ey Mrv Mr+1)
is called the vector associated with B, and the r x r matrix

-B 1

1 —By 1 O

1 —Bs

: 1
1 -B_; 1

O 1 _Br

is called the matrix associated with B. Note that det Q = (—1)"M,.

Let W be a regular k-scheme of dimension two. Take divisors D and D’
on W. Assume that D’ is effective, and the support of D’ is proper over k.
We define the intersection number of D and D' by D-D’ .= x(Ow (D)|p/)—
X(Opr). The definition may be Q-linearly extended to the case where D

and D’ are Q-divisors, and the support of D’ is proper over k [8, 13.1.b].
Note that D - D’ = D’ - D whenever the supports of both D and D’ are
proper over k [8, 13.1.d]. We denote the self-intersection number D - D of
D by D2

We denote the number of the elements of a finite set S by #5.

3. Main Theorems

In this section, we state our main theorems. Their proofs are given in
Sections 4-5. We use the notation introduced in Section 1. Assume that
p>0and HXZ/pZ. Put

(3.1) m =
n
LEMMA 3.1. — The rational numbers m' and d’ are integers.

Proof. — The equalities ord p; = ord p; = m show that m’ € Z. Take 7 €
G (resp. u € Z) so that the image of 7 under the quotient homomorphism
G — G/H is a generator of G/H (resp. the equality 77 1or = o* holds).
Since o = 70, the equality p;(7) = up;(7)* ! holds for any i € {1,2}.
Thus, the equality pi* = p5? holds, which concludes that d' € Z. O

ANNALES DE L’INSTITUT FOURIER
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For ¢ € {1,2}, we put

(32) Y; = H TL;.

TEH
H
Then kfz;]" = k[y;]-
LEMMA 3.2. — The integer «; is coprime to p for any i € {1,2}.

Proof. — Choose i € {1,2}. Put

F(T)=1T" + i FiT9 = ﬁ(T — ola;) € K[y ][T)
j=0 j=0

and

J={jeZ|0<j<p—2,Fj41 #0}.
Since v; (k[y;]\{0}) = pZ>o, the integers (v;(Fj+1)+]); e are different from
each other. Thus, by taking the valuations of both sides of the equalities

. dF n .
Z(j + 1) Fjpa] = 7 (@) = H(xi —olz;),
jeJ j=1
we conclude that there exists j € J such that v;(Fj11)+7 = (p—1)(e; +1),
which implies that p— 1 # (p — 1)(«; + 1) mod p. Therefore, the integer «;
is coprime to p. O

Since p fdajas (Lemma 3.2), there exists a unique e € Z such that
(3.3) pledajaz+1 and 0<e<p.
We simply call an N-dimensional cone in R? an N-cone. We define vectors
(vi)3_, on R? lattices (T';)3_, of R?, and 2-cones (¥;)?_, in the following
way (Figure 3.1):
vo = (az2,a1);  v1=(1,0); v2=(0,1); wv3:=(le);
Dy = Zvy + Zvg; Tz = Zm'vi + Zpvg;
1= {(l1,12) € To | I € pZ, pl = pi' };
Ty i={(l1,12) €To | l2 € pZ, p* = p3 };
Yo = Ryovr + Ryovz; X1 = Ryovg + Ryovy;
Yo = R}(ﬂ)o + R;(ﬂ)g; Y3 = R>0U2 + R>0U3.

By A we denote the fan induced by the 2-cone 3. We deﬁnef} fan &0
as the subdivision of Ag by the 1-cone R>qvg. The subdivision Ay of Ay
induces a proper birational morphism

(3.5) o: X — Ai = Spec k[x1, x2]

TOME 71 (2021), FASCICULE 4
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D)
2o

¥
Vo
(05X ] (05X ]

X3

(X ]

Figure 3.1. The vectors (v;)3_, and 2-cones (3;)5_,

[3, 3.3.4.a and 3.4.11], where (x1, x2) corresponds to the dual of the basis
(v1,v2) [3, 1.2.18]. Take the morphism

(3.6) L X ——= A2

induced by the k-algebra homomorphism k[x1, x2] = R, x; — «; for i €
{1,2}. By

(3.7) fiX—=X
we denote the base change of ¢ via ¢.

Remark 3.3. — The following statements are equivalent [3, 3.1.19.a]:

(1) X is regular;

(2) X is smooth over k;

(3) Ay is smooth [3, 3.1.18.a];

(4) a1 = aqg;

(5) a1 = Q9.
If the above equivalent statements hold, then any of ¢ and f is a blowing-up
at the origin [3, 3.3.12]. In the general case, the morphism f is a blowing-up
along the ideal generated by the monomials {xlll xlf | a1ls + agly > ajas}
in 1 and 25 [3, 7.1.13, 7.1.9.b, and 11.3.1]. In particular, the definition

ANNALES DE L’INSTITUT FOURIER



QUOTIENT SINGULARITIES OF PRODUCTS OF TWO CURVES 1501

of f does not depend on the choice of the uniformizer x; of k[x;] for any
ie€{1,2}.

The action of G on X uniquely lifts to that on X since rz/z € R* for
any T € G and any monomial x in x; and z5. Take the quotient q: XY
of X by G and the unique morphism g: Y 5Y satisfying gog = go f (1.1).
By Ef we denote the exceptional locus of f with reduced structure. Put
E = G(E¢). By Dy (resp. D2) we denote the divisor on X defined by x1
(resp. x2). For i € {1,2}, we take the strict transform D; of D; via f and
put Q; == E N (7(51) Put

I={1,2,3}, Ii={i€Z|3<i<d +2}, and ILy:=IUIs.

For ¢ € I, by Z; we denote the completion of the toric singularity associated
with ¥; in T'; ®7 R [3, 1.2.18].

THEOREM 3.4. — The following statements hold.

(1) All singular points of Y are contained in E, and the number of
these singular points is equal to d’' +2. Both Q1 and Q4 are singular
points of Y. By (Qi)ier,, we denote the singular points of Y. The
completion of the singularity at Q1 (resp. Q2, resp. Q; for any
i € I3) is isomorphic to Zy (resp. Za, resp. Z3)

(2) Take the Hirzebruch-Jung desingularizations h:Y —Y of the sin-
gularities of Y. Put h = go h. We denote the exceptional locus of h
(resp. the preimage of Q); under hfori e L) with reduced struc-
ture by E}, (resp. E;) and the strict transform of E via h by Eg.
Then E}, is a union of the projective lines any of whose singularities
is a node and whose dual graph is a star-shaped tree with central
node (resp. d’ + 2 branches) corresponding to Ey (resp. (E;)icr1.,)-

(3) The desingularization h: Y — Y of Y is minimal good.

(4) Fori € {1,2}, by D; we denote the strict transform of q(D;) via h.
Then the equality ﬁleh = 1 holds, and the irreducible component
of E}, intersecting with ﬁz corresponds to the end of the branch
corresponding to E;.

We obtain the following diagram with commutative triangle and square:

y_ Moy

%
(3.8) \ l
%

TOME 71 (2021), FASCICULE 4
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For ¢ € I,)1, we denote the irreducible components of E; starting from the
irreducible component intersecting with Fy by

(3.9) (Eij)ity

(Figure 3.2). By Q) we denote the intersection matrix of Fj, with respect
to the ordered basis Ey followed by (E; ;); ; with dictionary order.

D EQ,s
2 ’ Eat21 Eat22  Eat2s, .,
Figure 3.2. The dual graph of E;, U Dy UD,
Put
1
(3.10) y o ddmatl g
p

(3.3). Since ged(a,az2) = 1 (1.3), the sequence of Z-modules and homo-
morphisms

Vi v2

0 Z z? Z 0

is exact, where v1(lg) = lg(az, —a1) and va(l1,l2) = a1ly +asls. Thus, there
exists a unique (b, ba, c1, co) € Z* such that

(311) Vg(bg,bl):llg(CQ,Cl):l/, 0 < by < ag, and 0<c; <ag.
Since (by — c2,b1 — ¢1) € Ker v, there exists a unique ng € Z such that
(312) Vl(no) = (bQ — Ca, b1 — Cl).

LeMMA 3.5. — Take i € {1,2} and (I1,12) € T'g. Assume that l; € pZ.
Then there exists a minimum n' € Z such that

pn'vo + m/(ll,lg) eIl;N3y.
Moreover, the following holds:
p(n' —n)vg +m/ (I, 12) € T; \ Xo.

Proof. — The equalities ord p; = ordpy = m = m/n (3.1) show that
ord pT" 2 p; ™! | n. Thus, since vy = (az,a;) (3.4) and ord p?™* p,P** =
n (1.4), there exists n’ € Z such that

(3.13) pn'vg +m/(l1,12) € T;.

ANNALES DE L’INSTITUT FOURIER
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Since pnvy € 'y N T, any element of n' + nZ satisfies (3.13). Thus, the
lemma follows from the fact that vy is contained in the interior of ¥o. [

Put
(3.14) v} == (pba,eda; — pb1) and vh = (edas — pca, pey).
These vectors appear in the definition of defining functions of Ey (Lem-
ma 4.3(1)). For each i € {1,2}, Lemma 3.5 implies that there exists a
minimum n; € Z such that

(3.15) pnivg +m'v, € Ty N .

These vectors appear as a part of the data of the subdivisions of the fans
corresponding to the Hirzebruch—Jung desingularizations h (Section 5). We
define (bl,bg,ﬁl,@) c7* by

(3.16) (pba,b1) = pnyvg +m/'v}, and  (Cy,pci) = pnavo + m'vh.

Put

/ /
(3.17) ¢ = P’;e} by == W ted,
and

(318) (m15m27m35 klak27k3) = (pnahpna/Qapabh/c\Qapel - m/e).

For i € I, by §; we denote the r; x r; matrix associated with m;/k; (Sec-
tion 2), where ged(m;, k;) = 1 and 0 < k; < m; (Lemma 5.1(4)). By ©; we
denote the 1 X r; matrix whose first entry is the unique non-zero entry and
equal to one.

THEOREM 3.6. — The equalities s; = r1, Sg =19, s; = r3 for any i € I3
(see (3.9) for (;)ier., ), and
by ©1 Oy O3 --- O3
o, M
t@g QQ O
= | o, Q3
o, () Q

hold, where the number of each O3, 103, and 3 is equal to d'. Put
Tiot = 1+ 71 + 70 +d'rs.

Then the number of the irreducible components of Ej, is equal to ri., and
the equality
det Qp = (—1)"orpd Tim

TOME 71 (2021), FASCICULE 4
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holds.

COROLLARY 3.7. — Assume that ged(ag,as) = 1. Then d = d' =
((1.3)~(1.4)) and 6 = p?*m (1.2).

Note that the following equalities and inequalities hold (3.11):

da; — pb 1
(3.19) Q<M:a71_ <ﬂ<@;
Db ag pazby a2 bo
das — 1
(3.20) o< Cdaz—per _az L0202
pci aj paicy a1 c1

COROLLARY 3.8. — Assume that G = Z/pZ. Then m = m’ = n =
ordpy =ordpy =1 ((1.4) and (3.1)),d=d’' (1.4),¢’ =1 ((3.17) and (3.3)),
T'y = Zpvi + Zvs, and 'y = I's = Zwvy + Zpvs. In particular, we conclude
that vy € T'y and v} € T’y (3.14), which implies that (ng,n1,n2) = ((¢1 —
b1)/a1,0,0) ((3.12) and (3.15)) since 0 < eda; — pby < pa; (3.19) and
0 < edag —pca < pag (3.20). Thus, we obtain the equalities (51,52,61,62) =
(eday — pby, ba, c1, edag — pea) (3.16), (mq, ma, mg, k1, ko, k3) = (pa1, paz, p,
eday — pby,edas — pea,p — e) (3.18), EZ = ((by — c1)/a1) — d (3.17), and
§ = pitt (1.2).

Example 3.9. — Although Efj < —2 for any (i, j), the equality E2 = —
can hold. Assume that G = Z/pZ and (a3,a2) = (p+ 1,2p + 1). Then
(d,e,a1,a9,b1,b3,c1,00) = (Lp—1,p+1,2p+1,1,2p—3,1,2p—3) ((1.3),
(3.3), and (3.11)), which implies that E3 = —1 (Corollary 3.8).

COROLLARY 3.10. — Assume that oy = a2 and oy | (p — 1). Put
o = ay. Then (d, e, a1, az2,b1,b2,c1,c2) = (o, (p—1)/,1,1,0,1,1,0) ((1.3),
(3.3), and (3.11)).

(1) Assume that G = Z/pZ. Then E} = —a — 1 and § = p**! (Corol-
lary 3.8). In particular, if « = 1 (resp. p — 1), then E2 = —2 (resp.
—p) and § = p? (resp. pP).

(2) Assume that m = p—1 and n = 1. Then m' = p — 1 (3.1),
d =« (l4),e¢ =e ((3.17) and (3.3)), (ng,n1,n2) = (1,2—p,2—p)
((3.12) and (3.15)), (b1, ba,¢1,0) = (1,1,1,1) (3.16), (mq,my, ms,
ki,ko,k3) = (p,p,p,1,1,e) (3.18), EZ = —2 (3.17), and § =
P p—1) (12).

4. Singularities
We use the notation introduced in Section 3. For each ¢ € {1,2}, the

valuation v; and the action of G on k[z;] uniquely extend to those on

ANNALES DE L’INSTITUT FOURIER
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k((z;). Then k(z:)" = k((y;) (3.2). Put

Ki= @ k-yl Ckly ' C k()
J€Z<o\PZ<o
LEMMA 4.1. — For any i € {1,2}, there exists a unique z; € K; satisfy-

ing the following condition: there exists t; € k((x;)) such that t! —t; = z;
and ot; = t; + 1. In particular, the k((y;))-algebra homomorphism

k(y)[T)/ (TP =T = z) — k(@:),  Tr—t
is bijective.
Proof. — Choose i € {1,2}. Put K = k((y;)). Choose a separable closure
K5 of k((x;)). Put Gx = Gal(K*P/K). We define an endomorphism p of

the additive group K*°P by = +— aP —z. The exact sequence of G g-modules
and G g-equivariant homomorphisms

5

0 F, Ksop Ksop 0

induces K/p(K) = H'(K,F,) = Hom(Gk,F,). We denote the composite
of the quotient homomorphism K — K/p(K) and this isomorphism by
v: K — Hom(Gg,Fp). Take z € K. Choose t € K*P so that t¥ —t = 2.
Then ¢(z)(1) = 7(t) — t € F, for any 7 € Gk, and the Galois extension
corresponding to Ker(z) is equal to K(t) C K*P. Note that p(ayl’) =
aPy?™ — ay! for any (a,n) € k x Z, which implies that k[y;] C p(K). Thus,
the restriction of ¥ to IC; is bijective. Therefore, there exists a unique z; €
KC; such that ¢(z;) is equal to the composite of the quotient homomorphism
Gr — Gal(k((z;))/K) and the isomorphism Gal(k((z;))/K) — Fp, 0 — 1,
which concludes the proof. O

LEMMA 4.2. — For any i € {1,2}, there exists a uniformizer ¥; of k[z;]
such that o(Z;)~% = (Z;)~% + 1 in k((z;)).

Proof. — Choose i € {1,2}. Take z; and ¢; given by Lemma 4.1. Then
p | vi(t;) since v;(2;) € pZeo \ p*Z<o. Thus, we may take (a,b) € Z2
satisfying av;(t;) + bp = 1. Put 7; = t%y°. Then p } a and v;(%;) = 1,
which gives the equalities
—Ul(tz) = 'UZ(EZ) — Ul(tl) —1= ’UZ'(O'EZ' — 52) —1= Q.

Thus, since p f «; (Lemma 3.2), there exists a uniformizer Z; of k[x;]] such

that (z;)® = t; !, which concludes the proof. O
By Lemma 4.2 and Remark 3.3, we may assume that the equality
(4.1) ox; P =ua; " +1
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holds in k((«;)) for any ¢ € {1, 2} after replacing the uniformizer x; of k[x;].

For i € {0,1,2,3}, we denote the dual lattice of I'; by I'Y and the dual cone

of %; by ©Y. The toric variety X (3.5) has an affine covering (Z/{ 1,Us), where

U; == Speck[EY NTY] for i € {1,2}. The base changes of Uy and U, via
1 (3.6) give an affine covering (U, U3) of X (3.7). Put

aagt fori € {0,2},

=l 1

Uy=U,NU, and T, = _
x] xy fori=1,

where
v ifi=0 (3.4),
vy + vy =4 ° o (3.4)
v, ifie{l,2} (3.14).
LEMMA 4.3. — The following statements hold.

(1) Both x|, and a5, are defining functions of Ef N Uo.

(2) The restriction x(|g, g, (resp. (xg)*l\Efmﬁz) is a parameter of
Ern (zl (=2 A}) (resp. Ey N Uy (& A})) and a defining function of
Ef N Dy (resp. Ef n D2).

(3) Take (I1,l5) € Z? and 7 € G. Put x == z''22. Then the ratio-
nal function Tx/x on X is a nowhere-zero regular function on X
whose restriction to Ey is equal to the constant function with value
p1(7)" pa(T)t2

Proof. — Let us show Statements (1) and (2). The following equalities
hold ((3.11) and (3.14)):

Vo aj
4.2 det = det = —1:
(42) ¢ (vi) ¢ (pbg eday —pb1> ’
Vo\ a2 ay \
(4.3) det (vé) = det (eda2 " e pcl> =1.

Thus, the following holds:
(4.4) Zwg + vy = Zwvg + Zvly =To; vy € X1;  vh € .
We define 2-cones in the following way (Figure 4.1):

¥1 =Rsovo + Rxov) C 15 ) = Rxovp + Rxovh C o

For i € {1,2}, we denote the dual cone of ¥ by (X})V. By E,; we denote
the exceptional locus of ¢: X — A? (3.5) with reduced structure. Take the
Hirzebruch—Jung desingularizations $ . X' — X of the toric blowing-up of
X by the 1-cones Rsov} and Rsqv} [3, §10.2]. Then the strict transform
of Ey4 via ¢ corresponds to the 1-cone Rsovg [3, 3.2.6 and 3.3.21], which
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Vo e f

Figure 4.1. The vectors v} and v) and the 2-cones ¥} and ¥,

is contained in the union of the two affine open subsets Spec k[(X])Y NTy]
(=2 A2) and Speck[(Z5)Y NTY] (= A2) of X’ since ¢ is induced by a
subdivision of Ag [3, 10.2.3] containing ¥} and XY (4.4). Taking the base
change via ¢ (3.6), we obtain a desingularization f: X' — X of X and two
affine open subsets (U7, U}) of X’ satisfying the following conditions:

(a) f induces isomorphisms U] N U4 = U, and E.nU = ErN U, for
each i € {1,2}, where E} is the strict transform of E via f,

(b) 7|y (vesp. 25|yy) is a defining function of E} NUj (resp. B} NU3);

(c) $6|E}0U1’ (resp. ($6)_1|E}nU§) is a parameter of E N U] (= A})
(resp. E} NUS (=2 AL));

(d) xblus (resp. (x5)~'u;) is a defining function of Di NU] (resp. DyN
U}), where D (resp. D) is the preimage of Dy (resp. Dy) under f
with reduced structure.

Thus, Statements (1) and (2) hold. Let us show Statement (3). We have
only to show the case x = z; for i € {1,2}. The equality 7Z; = p;(7)Z; holds
in m;/m?, where Z; is the image of 2; under the quotient homomorphism
m; — m;/m?. Thus, the rational function 7z;/z; on X is a nowhere-zero
regular function on X whose value at D; N Dy is equal to p;(7). Since
f(Ef) = D1 N Dy, Statement (3) holds. O

Although Lemma 4.3 (1) gives two defining functions of Ey N Uy, we use
only 2} in the following. Choose ¢ € kU {oo}. Put

zy—c ifcek,
T(ey =
© (xy)~! otherwise.

We introduce the following notation:
15(0): the closed point on Ey defined by () = 0;
@(C): the closed point q~(15(c)) on F;
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R(c): the completion of Ox p =~ with respect to the maximal ideal;
Ey )+ the base change of Ey via the morphism Spec E(c) — )N(;
G(c): the stabilizer subgroup of the action of G at P(.);
Ney: the order of G(.);
G’: the preimage of nZ/mZ under the quotient homomorphism G —
G/H =2 Z/mZ (14).
Then the equality

(G,pm) if c € {0,000},

4.5 Gy Ney) =
(4.5) (G, Neeoy) {(G/,pm,) otherwise (3.1)

holds. If ¢ ¢ {0,00}, then Ey () is the spectrum of the complete discrete
valuation ring R/ () with uniformizer z ()|, ,, and the action of G|,
on Ey ) is trivial (Lemma 4.3). Put

C={Cek|¢t=1}, Se = (R, and T = (Re)%.

Then (9)7’@(6) C T(C) cS ) C E(c) are extensions of normal integral do-

mains. In the following, we study T(C), which is a completion of (9}7’@(6)
with respect to the maximal ideal. For an extension A’/A of integral do-
mains, we denote the degree of the extension of their fields of fractions by
[A’ : A]. Then the equalities

(4.6) [E(C) : §(C)] =D and [ﬁ(c) : Tv(c)] = N(C)
hold. We define elements of k((z,x2)) by

— /o / — a1 —Q2
y(c) = H Tﬂ?(c), Y = H TIq, Z =T — Ty
TEH TEH

(4.1), and

Z = yll’l ygz P

((3.2), (3.3), and (3.11)). Then y(o) € S(o), ¥1/(x1)P € (R(e))*, and

(47) o 1— (zp)? € (R)* ifi=1and c¢ CU{oo},
. x,7'z = b
' (xp)" = 1€ (R()* ifi=2andc¢ CU{0}.
If c € C, then 27" z/x () € (E(C))X7 which implies that y(c)/xfc) c (E(C))x_
If ¢ € C (resp. ¢ ¢ CU{o0}, resp. ¢ ¢ C'U{0}), then z’/(xfc)x’l) € (}NB(C))X

(vesp. 2’ /2] € (R())™, resp. 2’ /((z))*a}) € (ﬁ(c))x). In each case of (4.7),

we may take T;(.) € R(c) so that (T;))* = 27! since p f a; (Lemma 3.2).
Then Ei(c)/xi € (}N‘B(C))X and -;fi(c) € g(c) since (/i"i(c))ai € g(c) and #H = p.
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DEFINITION 4.4. — For each i € {1,2}, the character p;: G — k* fac-
tors through the quotient homomorphism G — G/H and induces a char-
acter p;: G/H — k* since Ker p; = H. Put p = (py)Pbr—edo1(py)Pb2,

Take z € S (¢) \ 10}. We consider one of the following cases:

(1) c€{0,00} and 72/x € (g(c))X for any T € G/H;
(2) ¢ ¢{0,00}.
Then we define the linearization of x by

Lz = Z ¢,

TEG(C) /H

where (; in Case (1) (resp. Case (2)) is the image of Tx/x in the residue
field k of S(.) (resp. p(r)" for the unique | € Zx satisfying z/(z})" € R,
and (z/(x)")| g, (., #0).

Remark 4.5. — The equality ord p|g,y = m’ holds ((1.4), (3.1), and
(4.2)). The map G(/H — k*, 7 + (; is a character, the equality
7(Lxz) = (; Lz holds for any 7 € G(.)/H, and the following statements

hold: in Case (1), (Lz)/x € (g(c))x; in Case (2), (Lz)/(x})! € ]Ai;(c) and
(Lx) /(@) e, (o, = m' (x/(2)))] g, ., (Lemma 4.3).

PROPOSITION 4.6. — Assume that ¢ ¢ C U {0,00}. Then the equality
T(c = k[Ly(c, (Lz) '] holds. In particular, the ring T(C) is regular and
Ly (resp. (Lz")™ ') is a parameter (resp. a defining function) of E at Q (c)-

Proof. — Put y,(¢) == L2’ € S(c) Since y1(¢) /2] € (E(C))X, the equalities
R(C) = k[[l‘(d,ﬁﬁﬂ] = k[[z(c)hyl(c)]]
hold (Lemma 4.3). Put
20(c) ‘= Ly(c) € T(C) and S(C) = k[[zo(c),yl(c)ﬂ - §(0)~

Then S C S ) C E(C) are finite extensions of normal integral domains

since the S(c)/(y1(c))-module R(C)/(yl(C ) is generated by {.Z‘(c ;. Thus,
since the equalities

[Rie): Syl =p = [Re) : S(o)]
hold (4.6), the equality S¢.) = S(.) holds. Put
Z1(c) = yﬂ;) S T(C) and T(c = k[[Zo(c » Z1(c) H C T(c .

Then T{.) C T(C) cs (c) are finite extensions of normal integral domains

since the 7\.-module S (¢) is generated by {y1 C)} o . Thus, since the
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equalities
[S() 1 Tiey)) = m' = [S(e) : T(o)]

hold (4.6), the equality T\ = f(c) holds. Since z (. (resp. x}) is a parameter
(resp. a defining function) of Ef at Ig(c) (Lemma 4.3), the regular function

2Zo(c) (resp. z1(¢)) is a parameter (resp. a defining function) of E at @(c). a

Assume that ¢ € C'U {0, 00}. Put

1 ife=0, 1 .
) (v1, -v2) ife=0,
j=192 ifc=o00, (wi,w)=q ~F '
Zv1,v9) otherwise,
5 th

3 otherwise,

and
Aj = Zw1 + ng.
We denote the dual lattice of A; by AJV and the dual of the basis (v1,v3)

(resp. (w1, wz)) by (v, vy) (resp. (wy,wy)). We define vy € T'Y and wy €
AY in the following way:

(4.8)
a1vy —agvy  if ¢ =0, pajwy — agwy  if c=0,
vy =4 —a1v) +agvy ifc=o00, wy =% —ajw) + paswy if ¢ = oo,
—evy + vy otherwise; —ewy + pwy otherwise.

Then the equality
(4.9) (wv wY wV) — (pv(\J/a UY,pvgv) if c=0,
. 0»*1>» = ( v v ¥ h '
pvy ,pvy,vy) otherwise

holds. We define submonoids of Ty by

2 2

Bg = 2220@/ and Bg := 222010;/.
i=0 i=0

Put

(1'173327L§1(0),Ly2) if c=0,

T1(e)> T2(c)> c)s c)) = ~
( Hep T2 e 2 )) {(33173327Ly1a[/x2(00)) if ¢ = oo.

If ¢ € C, then we put

Z(c) = (y(c)yi)y(zl)—dalaz’ f(c) = (LZ(C))((E/l)dalaz_pV7
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and

(xl(c)7 Z2(¢)r Y1(e)» y2(c))
= (T(e)s (T(e) @1, (L)) (Ly) ™42, (L)) (Lyy) ")

(3.10), where Z(c)/(f(c) (z)Pr—dma2) € (R(e))*, Z() € R(c), and L) E (o)
is a uniformizer of R)/(x}). Put
(4.10) To(e) = :Elll(c)xl;(c) (resp. Yo(e) = ylll(c)yé"‘(c)),
where vy = l1vY + lavy (vesp. wy = Lywy + lawy) (4.8). Note that the
equality
(z(e), @1, 22) if ¢ € {0,000},

4.11 To(c), T1(e): T2(c)) = ~ o
(4.11) (@o(@), T1(e)> T2(0) {(a:’l,x(c),(x@))%ﬁ) otherwise

holds, and yi(c)/xiic) € (E(C))X for any 7 € {0, 1,2}, where w; = l;v; (4.9).
Thus, we conclude that x;) € ]:3(6) and y;c) € g(c) for any ¢ € {0,1, 2}.
Put

R(¢) = k[2o(e), T1(e) T2(e)] € Riey and S() = E[Yo(e), ¥1(e)» Y2(e)] € S(o-

For a commutative monoid B, by k[B] we denote the completion of the
monoid ring k[B] with respect to the ideal generated by B\ {0}.

LEMMA 4.7. — Take the following k-algebra homomorphisms:
pr: k[Xo, X1, Xo] — k[Bg], X; — v, fori€ {0,1,2};
ps: k[Yo, Y1, Ya] — k[Bs], Y; — w, fori € {0,1,2};
br: k[Xo, X1, Xo] — Ry, Xi — x4 for i € {0,1,2};
bs: k[Yo, Y1, Y] — S0, Yi = yi(e) for i € {0,1,2}.

Then ¢r (resp. ¢s) factors through pr (resp. ps) and induces a k-algebra
homomorphism ¢r: k[Br] — Ry (resp. bs: k[Bs] — S(¢)). Moreover,
the homomorphisms ¢ and ¢g are bijective.

Proof. — The equalities ¢r(br) = 0 and ¢g(bs) = 0 hold (4.10), where
(X0 = XoX52, Y™ — Yo¥§2) if e =0,
(br,bs) = { (XoX7* — X352, YoV —Y*) if ¢ = o0,
(XoX§ — X0, YoV — YY) otherwise.

Thus, the equalities Kerpr = (bg) and Kerps = (bg) (4.8) prove the
first statement. Since ¢r and ¢g are surjective homomorphisms between
Noetherian local integral domains of same dimension, they are bijective. O
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Take the normalization Ry (resp. S(.)) of R(c) (resp. S(c)).

LEMMA 4.8. — The following statements hold.

(1) The k-algebra Ry (resp. S()) is isomorphic to k[X NT{] (resp.
k[X} N AY]), where x;() (resp. yi(e)) maps to v; (resp. wy’) for
i e 10,1,2).

(2) The equalities R(c) = R and §(C) = S(¢) hold.

Proof. — By Lemma 4.7, we identify R (resp. S()) with k[Br] (resp.
E[Bs]), where x;.) (resp. yi(c)) is identified with v} (resp. wy’) for i €
{0,1,2}. Put

Br=%] NIy and Bg:=%/NAJ.

Since Bg (resp. Bg) is the saturation of the commutative monoid Bg
(resp. Bs), the k-algebra k[Bg] (resp. k[Bg]) is the normalization of k[Bg]
(resp. k[Bgs]) [3, 1.3.8], which implies that k[Bg] (resp. k[Bs]) is the nor-
malization of k[Bg] (resp. k[Bs]). Thus, the equalities R,y = k[BRg]
and S, = k[Bs] hold, which proves Statement (1). Therefore, since
]i'[[ERH = E(c) (4.11), the equality E(C) = R(c) holds. Note that g(c) C
S(c)y C Ry are finite extensions of normal integral domains since the equal-
ity Br = J(v" + Bs) holds, where v" runs through the finite set
{livY + vy € Bg | max{|l1],|l2|} < pmax{ai,az,e}}.
Thus, since the equalities
[E(C) : §(c)] = [Fg . A;/] = [A] : Fo] =p= [R(C) : g(c)]
hold (4.6), the equality §(C) = §(C) holds, which proves Statement (2). O
LEMMA 4.9. — The equality
N(Zl{llwlv +lhws € AJ | phph =1} ife=0,
ry = N(;)l{llwlv +lws € A} | pPlpls =1} if e = oo,
N(;)l{llwlv +lowy € Aj | 1o € m'Z}  otherwise

holds (4.5). In particular, the equality Ryow NTY = Z>0N(;)1lw;/ holds,
where
n ifce {0,00} and i =0,
m  ifc € {0,00} and i € {1, 2},
m’ ifce C andi € {0,2},
1 ifceCandi=1.

| =
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Proof. — Take e; € Z (resp. es € Z) satisfying pi* = pb (resp. p} = p5?).
Then the equality
Zpmuy + Zmug + Z(pvr + e1v2) if ¢ =0,
I'j =  Zmuvy + Zpmos + Z(eqvy + pua)  if ¢ = oo,
Zm' vy + Zpvg otherwise
holds, which gives the equality
Zwq + Zwy + Z%(wl +ejwe) if =0,
N(_C)lfj = Zwi + Zwy + Z%(egwl +wsg) if ¢ = o0,
Zawq + Z#wg otherwise.
Thus, the equalities
Zmwy + Zmwy + Z(eywy —wy) if ¢ =0,

Ny = (N Ty)Y = § Zmwy + Zmwy + Z(wY — eqwy)  if ¢ = oo,

Zwy + Zm'wy otherwise
hold, which concludes the proof. O
PROPOSITION 4.10. — The k-algebra T(C) is isomorphic to k[X} NTY],
where ylll(c)yé"’(c) maps to w¥ for any w¥ = N(_C)l(llwlv + lwy) € XY N
Iy (4.5).

Proof. — By multiplying 1";-/ by N(), we have only to show that the k-
algebra f(c) is isomorphic to k[XY N N, T'Y], where yil(c)y?(c) maps to w"
for any v = lywy + lawy € XY N NI} Put

ES = E;/ N A;/, Br = E;/ N N(C)F}/, and T(c) = /{J[[ET]]
By Lemma 4.8, we identify 5(6) with k[Bg], where Yi(c) is identified with
w; for i € {0,1,2}. Since N(,)A; C I';, we conclude that Br C Bg. Thus,
we may regard T as a subring of S(.). Note that Ty C Ty C S(.) are
finite extensions of normal integral domains (Lemma 4.9) since the equality
Bgs = J(w" + Br) holds, where w" runs through the finite set
{liwy + lywy € By ’ max{|l1], [l2|} < N(y max{ai,az}}.

Thus, since the equalities

(S : Tl = [A] : N Ty] = Mo _ N
’ J []-—‘;/ . A;/] [AJ : FQ] [FO : FJ]
N, _
(©)
= =[S : T
» [S(e) : To)]
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hold (4.6), the equality T' (C) = (c) holds, which concludes the proof. O

Proof of Theorem 3.4. — Lemma 4.3 shows that the action of G on E;
induces a faithful action of G/G' (2 Z/nZ) on Ey (= P}) with fixed locus
{15(0 ) }- Moreover, the equalities Q1 = Q(O and Qo = Q(OO hold.
Thus, Proposmons 4.6 and 4.10 show the following. For any i € {1,2}, the
scheme Y has a singularity at (Q; whose completion is isomorphic to Z;. The
other singularities are contained in E, their number is equal to d’, and any
of their completions is isomorphic to Z3. Therefore, Statement (1) holds.
For ¢ € C U {0, 0}, we denote the preimage of Q(C) under h with reduced
structure by FE(. Since yqo c)/x(c) € (R(c)) for any ¢ € {0,00} (resp.
Y1)/ (T())? € (E(C))X for any ¢ € C), Proposition 4.10 and Lemma 4.9
show that Yo(e) (resp. ¥1(¢)) is a parameter of Ey and a defining function
of E(.) at the closed point Ey N E) for any ¢ € {0,00} (resp. ¢ € C),
which proves Statement (2). In particular, the desingularization h of Y is
good. Moreover, since the desingularization h of Y is minimal good, and
FEy intersects with more than two irreducible components {Ehl}?:lz of Ey,
the desingularization h of ¥ is minimal good, which proves Statement (3).
Since yq(0) /7] € (E(OO))X (resp. yo(0)/2h € (é(o))x), Proposition 4.10 and
Lemma 4.9 show that Yi(oo) (resp. yé%)) is a parameter of Dy (resp. ﬁl)
and a defining function of E} at the closed point Dyn Ej, (resp. Din Ep),
which proves Statement (4). O

5. Intersection Matrix

We use the notation introduced in Section 4. Recall that (v;, [';, Eiﬁ:o
(resp. (my, k;)icr) is introduced in (3.4) (resp. (3.18)). Put

(pgg,gl) =pnivg + m'v] fori=1 (3.16),

Vi = 4 (¢a,p¢1) = pnovg + m'vhy fori =2 (3.16),
(m/, pe’) fori =3 ((3.1) and (3.17)).

LEMMA 5.1. — The following holds:

(1) Zvy + Zpnvg = T'1, Zvs + Zpnvy = 'y, and Zvs + Zpvs = T's;
(2) v; € %, for any i € I;

(3) m;v; —k;pnvg = pmu; for any i € {1,2} and mgv3 —kspva = pm/us;
(4) ged(my, ki) =1 and 0 < k; < m; for any i € I.
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Proof. — We denote the left hand side in (1) by I'; in each case i € I.
Note that the following equalities hold ((4.2)—(4.3)):

(5.1) det( ) =m det(v?> =-m’; det (E()) =m/' det (U?) =m/;
vy V2 Uy
£l )
m'  pe
det (U3> (m pi ) = pe/ —m’e.
U3
)~(

Equalities (5.1

(5.2) det

(5.2) give the following equalities:

[Co: T4 =pnm’ = pm = [[g: T4];

[Co: 5] = pnm’ = pm = [[g : Tal;

[FO N FS] = pm = [FO . ].—‘3]
Thus, since I, C T, the equality I} = T'; holds for any ¢ € I, which
proves (1). Since m’ > 0, Equalities (5.1) show that ¥; € 3; for any i €
{1,2}. Since p fm’e (3.3) and ¢’ = [m’e/p] (3.17), the inequalities
(5.4) 0<pe—me<p
hold. In particular, Equalities (5.3) show that v3 € X3, which concludes the

proof of (2). Equalities (5.1) show (3). Thus, Lemma 3.5, Inequalities (5.4),
and (1)—(3) show (4). O
For ¢ € kU {oo}, by Q(c) we denote the closed point Ey N (h)~ (Q(C )

onY. By Ej; we denote the exceptional locus of h with reduced structure.
Put

(860 Y10} ¥oi))  Tor e =0,
W1(0): V2(0)) = § Y (00)s ?/1(00)?/2(00)) for ¢ = o,
(Y1) yl(c)yQ(c)) for ce C.
Proposition 4.10 and Lemmas 4.9 and 5.1 (1)—(2) show the following:

LEMMA 5.2. — For any ¢ € CU{0, 00}, the rational function ¥ ) (resp.
Ua(c)) is regular and defines Ej, (resp. Ep) at Q(c).

LEMMA 5.3. — The equality E3 = —by holds (3.17).

Proof. — We define an element of k((x1,22))¢ by

’

2= H T( Z p(T')lT'z'>

reG/G  \r'eG//H
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(Definition 4.4). For any ¢ € k\ (C U {0}), Proposition 4.6 implies that
Z is a defining function of nE at @(C), which implies that Z is a defining
function of nEy at Q) since the restriction Y\ E; — Y\ {Qi}ier,, of h
is an isomorphism (Theorem 3.4 (2)). Note that the following holds:

Y1(0) §2(0) z =

{<xo>m’ higgie ()" }C(R“’” |

U1(o0) y2(oo) z } ~
9 A An ) C ROO ;

{i ot e ) < i)

{ Y1(c) Ya(c) (F1e)"™ Da(e )"} (R
()P (@)™ P (@)™ (F (o) me (@)™ @7

T1(0)" W)™ 2 B
(ZE'/ )m ’ (il'/ )'m - (c)s
1 1
and
{((?71(0))”6,@2(0))"(17’1)m)lEf,@) (Z(z1) ™) By 0

(E(C))me ‘Efm 7 (E(C))quﬁ(C)

} € (Bio/(@)"

for any ¢ € C. The equality nv; = pnn;vp + mv} holds for any i € {1,2}.
Thus, since v} + vh = (ed + png)ve ((3.12) and (3.14)), the equality nvy =
(pnnb+med)vy —mu] holds, where nf, := m/ng+mns. Therefore, we conclude
that

~ ~

€ (R(O))Xa

(Y1(0))™ (Y2(0))"
and
(/Z\(x/l)_m)|Ef,(c)
(W10)™ W2(0))™ (=)™ B (0
for any ¢ € C. Thus, Lemma 5.2 implies that there exist an open neighbor-
hood U of Ey in Y and a divisor Dy on U such that the intersection
of the supports of Dy and Ejy is contained in {Q)}eccc, Dulg, = 0,
and zy € HO(U,L), where zyy = Z|y and £ = Oy(Dy — nEp). Put
T = (L/ZuOv)| g, Since #{Q(c)}cec = d' (1.4), the equalities

€ (lﬁ(c)/(ﬂfi))X

RO(T) = ny +nb+ne'd = m'ng +ny +ny +ne'd
hold. Therefore, the equalities
—nEg = (Dy — nEy) - Ey = deg L], = h°(T)

conclude the proof. O
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Put
(5.5) (di,da,d3) = (1,1,d")

(1.4), where d; is equal to the number of the singular points of ¥ corre-
sponding to Z; in Theorem 3.4 (1) for any i € I.

LEMMA 5.4. — The equality

(bo - Z Cil:i)pnalaz =m/

ier "

holds ((1.3)—(1.4), (3.1), (3.17)—(3.18), and (5.5)).
Proof. — The following equalities hold:

bopnayas = pm'az(c1 — b) + p(n1 + n2)aiay + pe'dayay;

dik; ~ .
<Z )pnalag = byag + Caay + (pe’ — m’e)dajas
ier M
= —pm/(asby + a1c2) + p(ny + ne)aias
+ (pe’ + m'e)dayas.

By subtracting the second from the first, we obtain the equalities

(2

(bo — Z diki)pnalag = pm/(aica + aser) — m'edajag = m’,
ier i

which concludes the proof. g

Proof of Theorem 3.6. — Let us show the first statement. Theorem 3.4 (2)
shows that h is a good desingularization, and the dual graph of F}, is a star-
shaped tree with central node (resp. d’ + 2 branches) corresponding to Ey
(resp. the exceptional loci (Ej)ier,, of the Hirzebruch-Jung desingulariza-
tions). Take [ € Iy. Put ¢ := min{l, 3}. Proposition 4.10 and Lemma 5.1
show that the intersection matrix of E; with respect to the ordered basis
(E1,5)75, is equal to €; [3, 10.2.3 and 10.4.4], which is the r; x r; matrix
associated with m;/k; (Section 2). In particular, the equality s; = r; holds.
Moreover, Lemma 5.3 gives the equality EZ = —bg, which concludes the
proof of the first statement.

Let us show the last equality. By €2, we denote the submatrix of €,
formed by deleting the first row and the first column. By I’ we denote the
multiset consisting of d; copies of ¢ for ¢ € I. Then the equality

det ), = —by H det Q; — Z det €, Hdet QO
iel’ el iel'\{i"}
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holds. Since the equalities
det Qz = (—l)rimi and det Q; = (—1)”71/@2‘
hold for any i € I (Section 2), the equality

diki !
det Qp = (—1)"tet <b0 — Z : )mlmgmg

ier "

holds. Thus, since (my,mg, ms) = (pnai, pnaz,p) (3.18), Lemma 5.4 con-
cludes the proof. a

Proof of Theorem 1.2. — By taking the absolute values of both sides of
the equality

det Qp = (1)t pd+lm
Theorem 3.6), we obtain the desired equality § = A+l O
( quality 6 = p

Finally, we show that § does not depend on the choice of a good desin-
gularization.

PRrOPOSITION 5.5. — Let Xy be the spectrum of an excellent normal
local ring of dimension two with algebraically closed residue field. For
i € {1,2}, let f;: X; — Xo be a good desingularization of Xy. By Ey,
we denote the exceptional locus of f; with reduced structure. Let €1y, be
an intersection matrix of Ey, (with respect to an ordered basis of the irre-
ducible components of Ey,). Then the equality |det Qy, | = |det Qy,| holds.

Proof. — The good desingularizations f; and fo of X are dominated by
a good desingularization of X, via proper birational morphisms, each of
which is a finite succession of blowing-ups at closed points. Thus, we may
assume that fo = fi 0 f3, and f3 is a blowing-up at a closed point P on Xj.
Let A be an r x r intersection matrix of the irreducible components of Ey,
that do not contain P. By s we denote the number of the irreducible com-
ponents of Ey that contain P. Since the absolute value of the determinant
of an intersection matrix does not depend on the choice of an ordered basis
of the irreducible components, we may assume that the equalities

A B 0
Qfl = tA B and Qf2 = tB Cl D
B C 0 'D -1

hold, where B is an r x s matrix, C' and C’ are s x s matrices, D is an
s x 1 matrix, and all entries of C' — C’ and D are equal to one. Thus, the
equality det 2y, = —det Qf, holds, which concludes the proof. O
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6. Fundamental Cycle

We use the notation introduced in Section 3. By Div;l|r we denote the
set of positive divisors on Y whose supports are contained in FEj;. The
fundamental cycle Z of h is the minimum divisor in

{D eDiv) | VD' e€Div{f, D-D" <0},
which always exists [1, p. 132]. We may write

Z=XEo+ Y iAi,jE@j,

1€l j=1

where Ao € Z3>o and A; j € Zx¢. Since Z is minimum, the equality

Ny g)jis = Nis )iy
holds for any (iy,42) € I3 (Theorem 3.6). Thus, in the following, we study
Ao and (A; ;)i for i € I. Recall that the actions of G on k[z;] and k2]
determine the integers ai, a2, m, n, by, and (m,, ki, d;)icr ((1.3)—(1.4),
(3.17)—(3.18), and (5.5)). For u € Z, we put

ku = uby — Y d; [“k]

i€l

Then Lemma 5.4 gives the equality

um uk;
6.1 = E d.:
(6.1) fru pn2ajas e Z< m; >’

(3

where (z) == [2] — 2 for x € R. Since Ey = P} (Theorem 3.4(2)), we may
calculate Z and py by means of the formulas for a desingularization with
star-shaped dual graph whose branches are induced by the Hirzebruch—
Jung desingularizations [12, §3]:
COROLLARY 6.1. — For i € I, we denote the vector associated with
m;/k; by (vi%j);fol (Section 2) and put A; o = Ag. Then the equalities
[ Aij—1vij
XM =min{fueZ|u>1andk, >0} and X\ ;= |—7

Vi, j—1

hold for any (i,j) € I x Z satisfying 1 < j < r;. Moreover, the equalities

pr=—(ho— 1)<A0b0 + 1) +) d; AOZ_:T“]“

el u=1 mi

0= (g +1) + o 3 ()

hold.
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Proof. — The first two equalities follow from Theorem 3.6 and [12, §3,
pp. 282-283]. Take a closed point P on Ey. Since Ey = P} (Theorem 3.4(2)),
Theorem 3.6 gives the equality p; = 32027 " 1 (Og, (£, P)) [12, 3.1]. Since
h*(Og,(kP)) = —k—1 for any k € Zo, the equality py = — Zi(:ll(/iu—i—l)

holds, which concludes the proof. O

Example 6.2. — Assume that a3 = ag = m = p —1 and n = 1. Then
d =p-—1, (mi, ki) = (p,1) for any i € I, and by = 2 (Corollary 3.10),
which implies that x, = 2u — (p + 1)[u/p]. If p = 2 (resp. p > 2), then
k1 =—1and ko =1 (resp. Kk, = 2u— (p+1) < —2 for any u € Z satisfying
1 <u<(p—1)/2 and K(p41)/2 = 0). Thus, the equalities

22 et ([ -2

hold. In particular, the singularity of Y is rational if and only if p = 2.
Put A; :== A; 1 for ¢ € I. Let us estimate the quotient A;/Ao.

LEMMA 6.3. — The following inequalities hold:

Ai k; .
(6.2) /\—O>E for any i € I
i k; m

6.3 dif -2 )< "
(6.3) ; <>\0 mz) pn2aias

m )\1 ,52
6.4 _m A2
(6-4) pnfaias Ao nao
(6.5) m A2 @

_pn2a1a2 S X nay
Moreover, the following statements hold:
(1) the inequality in (6.2) is an equality for ¢ € I if and only if m;
divides \o;
(2) the last inequality in (6.4) (resp. (6.5)) is an equality if and only if
the inequality in (6.2) is an equality for any i € {2,3} (resp. {1,3});
(3) if the equivalent statements in (2) hold, then the first inequality
in (6.5) (resp. (6.4)) is an equality.

Proof. — Since A\g = 1 and \; = [Aok;/m;]| for any ¢ € T (Corollary 6.1),

the equality
Ai ki 1/ Aok
)\o m; B )\0 m;
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holds, which proves (6.2) and (1). Since k), = 0 (Corollary 6.1), the in-

equality
dl' )\0]{1 m
Z Ao \ m; S n2aia
i1 0 i p 102

holds (6.1), which proves (6.3). In particular, the inequalities

o M1
= )\0 m; = pn2dia1a2

hold for any i € I. Thus, the equalities

kq m /52 k‘Q m /C\l
—+—F—=—" and —+ S — =
my pncaias nas mao pncaias najy

((3.11), (3.16), and (3.18)) show the other statements. O

THEOREM 6.4. — Assume that G = Z/pZ. Then the following equality
holds:

(pa1, eday — pby,pc1, (p—e)ay) ifa; < as,
(A0, A1, A2, A3) = < (pag, pba, edas — pca, (p — €)az) if a1 > ag,
(pp—1,p—1,p—e) otherwise.

Remark that a1 = as = 1 if a; = ay (1.3).

Proof. — By (Aj, A}, AL, \5) we denote the right hand side. We use Corol-
lary 3.8. The equality

u <u(eda1 —pby) > <u(eda2 — pca) > d< u(p —e) >
Raq = - - o Ty
paias pai paz b

holds (6.1). If a1 = as, then x), = 1. Since the equalities

u(eday — pby) _ u(paibs — 1) and u(edag — pea) _ u(pagey — 1)
pai paiaz paz pajasz

hold (3.11), the equality ty, = 0 holds if a1 # a». Thus, since ky, > 0,
the inequality Ao < A{ holds. Lemma 6.3 (3) implies that either A;/Ag #
ba/as or Aa/Aog # c¢1/a; holds. In the former case (resp. the latter case),
the inequality A\g > paj (resp. A\g > paz) holds (6.4) (resp. (6.5)). Since

0 = pmin{aj,as}, we obtain the inequality A\g > Aj. Thus, the equality
Ao = Aj holds. Therefore, the equality A; = A} for any i € I follows from
Lemma 6.3 (1)—(2). O

TOME 71 (2021), FASCICULE 4



1522 Kentaro MITSUI

LEMMA 6.5. — Take (a,b,c) € Zx1XZx1 xZ. Assume that ged(b, c) = 1.
Then the equalities

bZ_:1<l§,>—“(b2” and abi[ﬂ_a(abcﬂ;cl)

u=0

hold.

Proof. — Since (uc)zglgfl is a complete system of representatives of

Z/VZ in Z for any ug € Z, the equalities

ab—1 b—1
Z<uc>azu a(b—1)
u=0 b u=0 b 2

hold. Thus, the equalities

ai:l[ubc—‘ _ai:l<1zc+<1;c>> _ a(abc+l;—c—1)

u=0 u=0
hold. O
Proof of Theorem 1.3. — We may assume that a; < as. Theorem 6.4
gives the equality A\g = pa;. Since the equalities
ko  edag —pca 1 1
TTTQ B baz B 671 - paiaz

hold (3.20), the equality

<uk2 > <u01 > U
I = — +

mao ay paiaz
holds for any u € Z satisfying 0 < v < pa;. Thus, Corollary 6.1 and
Lemma 6.5 give the equalities

py=—(pa1 — 1)(1 + 1)

2&2
pa;—1
k k
=2 (Ga) (o) e+ (50)
u—1 pax ai paiaz p
pa; —1
- 2&2 - (pal B 1)
par—1 plai—1) pai—1  (p—1a
+ 2 + 2 + 2a2 + 2
(- - 1)
2 )
which concludes the proof. (|
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7. Canonical Divisor

We use the notation introduced in Section 3. A canonical divisor K}, of
h is a Q-divisor on Y satisfying the following conditions:
(1) the support of K}, is contained in Ep;
(2) for any integral exceptional divisor F of h, the adjunction formula
K, - E + E? = —2 holds.
Note that the right hand side —2 is equal to the degree of a canonical
divisor of E (2 P}). By Condition (1), we may write

K, = pokp + Z iﬂi,jEi,j7

i€l j=1

where g € Q and p;; € Q. In this section, we show the unique existence
of K, and calculate K, and K7.

LEMMA 7.1. — Let M and K be integers satisfying ged(M,K) = 1
and 0 < K < M. Take the Hirzebruch-Jung continued fraction [B;]}_;
of M/K (Section 2) and the unique K' € Z satisfying M | KK’ — 1 and
0 < K' < M. We denote the vector associated with M/K (resp. M/K')
by V' (resp. V') (Section 2) and the vector whose entries are the reverse of

the entries of V' by W:
V=(MK,... 1,00 and W=(0,1,...,K',M).
Then {V, W} is a basis of the kernel of the Q-homomorphism
L:Q* — Q" (A5 — (Ajm1 — 4B + Ajn)jn

Take pr € Q. Then there exists a unique U = (U; )T+1 € Q"*? such that
L(U) = (B; —2)'_; and (Uy,Ur+1) = (i, 0). Moreover, the equalities

Jj=1
w1 /
U=—-V —W U
M +M +
(u+1)K+1 p+1+K'
= - 1., — -1
</‘L? M ) ) M )0

hold, where U’ == (— )T+1 e Q2.

Proof. — By the definition of the entries of V and V' (2.1) and the equal-
ity M/K' = [Bry1-4]5—; [3, 10.2.6], we conclude that {V,W} C Ker L.
Thus, since V and W are linearly independent over Q, and the equal-
ity dimg Ker L = 2 holds, the set {V,W} is a basis of Ker L. Take U =
(U; );Jr(l) € Q2. Since L(U') = (B; — 2)j_,, the following statements are
equivalent:
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(1) L(U) = (B; = 2)j=1;

(2) U—-U'"€KerL;

(3) there exists a unique (a,b) € Q? such that U = aV + bW + U".
Assume that the above equivalent statements hold. Then (U, Urt1) =
(aM —1,bM —1). Thus, the equality (Up, Uy4+1) = (1,0) holds if and only
if (a,b) = ((p+1)/M,1/M), which concludes the proof. O

DEFINITION 7.2. — We use the notation introduced in Lemma 7.1. By
U(p, M, K) we denote the vector (U;);_; € Q" formed by deleting the
first and last entries of the unique U = (Uj);i_é € Q2 satisfying L(U) =
(Bj —2)j—1 and (Uo, Ur41) = (1, 0).

=1
THEOREM 7.3. — There exists a unique canonical divisor of h. More-

over, the equalities

a1 +as — (p—1)daia
,uozl 2 (/ ) 192
m

((1.3) and (3.1)) and

(7.1) (11.5)521 = Ulpo, mia, ki)
(3.18) hold for any | € Iy, where i :== min{l, 3}.

Proof. — Take the Hirzebruch—Jung continued fraction [b; ;|5 of m;/k;
for ¢ € I. Put 0 == po and py 5,41 = 0 for | € L. Condition (2) on K,

for E; ; is satisfied if and only if the equality

B =1 — f,ibi g+ 41 = bij — 2

holds, where ¢ := min{l,3} (Theorem 3.6). Thus, Condition (2) on K}
for all E; ; is satisfied if and only if Equality (7.1) holds for any [ € Iy
(Lemma 7.1). If these equivalent statements hold, then the equality

(po+ ki +1
my

M1 = 1

holds for any [ € I,; (Lemma 7.1), which gives the equalities

2 =D dipis = Qd/+2((uo+1)cifi +:;-)

l€Tan i€l i€l

(5.5). Condition (2) on K}, for Fy is satisfied if and only if the equality

—(po + 1)bo + Z Hig = —2
l€lan
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holds (Theorem 3.6). Thus, Condition (2) on K}, is satisfied if and only
if Equality (7.1) holds for any I € L, and the rational number g is a
solution of the equation

(uo+1)(bo—zdk> d’+2—

iel m; i€l mi

Lemma 5.4 gives a unique solution of this equation

naia 1 1 d
o =2 1/2<—d’+ - +>—1
m pna; pnaz p

ay + a2 — (p — 1)dajas

= m/ — 1’

which concludes the proof. O

LEMMA 7.4. — We use the notation introduced in Lemma 7.1. Then
the equality

U+ DK+ +K' +1 ¢
ZU =Up+2— 7 +Z(2—Bj)
j=1

holds.

Proof. — Lemma 7.1 gives the following equalities for any j € Z satisfy-
ingl<j<<nr
—Uj1+U;Bj —Ujt1 =2 - Bj; Upp1 = 0;
(Up+1)(K+1)+ K" +1

- 2= .
i U+ U,
By adding both sides, we obtain the desired equality. O
THEOREM 7.5. — We use the notation introduced in Theorem 7.3. For

i € I, we take the Hirzebruch-Jung continued fraction [b; ;|;_, of m;/k;
and the unique k; € Z satisfying m; | k;k; — 1 and 0 < k} < m;. Then the
equalities

Kjp = po(bo —2)+ > di Y pij(bij —2)

i€l j=1

= po(bo — 2) + (d' +2)(po +2)

(o +D)(ki +1) + kK +1 &
+Zd< ( ml) +> (2= biy)

i€l =1

hold ((3.17) and (5.5)).

TOME 71 (2021), FASCICULE 4



1526 Kentaro MITSUI

Proof. — Since K}, - E = —E? — 2 for any integral exceptional divi-
sor E of h, the first equality follows from Theorem 3.6. Since (Uid);i:l =
U(po, my, k;) for any i € I, the last equality follows from Lemma 7.4. O

8. Geometric Genus

We use the notation introduced in Section 3. The geometric genus p,
of the singularity of Y is most difficult to compute. The difficulty derives
from that of the calculation of the dimension of the differential forms on the
product of two curves invariant under the product action of G (Lemma 8.3).
In this section, we calculate p, in the case G = Z/pZ by generalizing the
method in [6].

LEMMA 8.1. — Let o be a positive integer coprime to p and z be a
rational function on P}. Assume that z is regular on P} \ {0}, and the
order of the pole of z at 0 is equal to «. We denote the normal model of
the equation TP — T = z by w: C' — P}, and the pull-back of the coordinate
function of A}, = P}, \ {oo} via 7w by y. Choose a rational function x on C
satisfying xP — x = z. For (i, j) € Z?, we put

I G |
wij=a'y 7T dy.

Put O = 7=1(0), where 7 is totally ramified. For a non-zero rational dif-
ferential form w on C, by vo(w) we denote the order of the zero of w at O,
which is negative if w has a pole at O. Then the equality

vo(wi;) = (p—i)a—jp—1
holds. In particular, if vo(w; ;) = vo(wy j) and |t —i'| < p — 1, then
(1,5) = (i',5).

Proof. — Since 2P — x = z, the equality vo(dz) = vo(y~*tdy) holds,
and the order of the zero of 71 (resp. y) at O is equal to a (resp. p). Thus,
the equalities

vo(dz) = —a—1 and wvo(dy) =pla+1)+vo(dz)=(p—1)(a+1)

hold. Since w; ; = (z71)} 'y ~7~1dy, the equality vo(w; ;) = (p—i)a—jp—1
holds. Therefore, since p f «, the last statement holds. O

We denote the genus of a proper smooth k-curve W by g(W).
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LEMMA 8.2. — We use the notation introduced in Lemma 8.1. By G,
we denote the Galois group of 7, which is isomorphic to Z/pZ. By Vo we
denote the k-vector space H°(C, Q) with Gr-module structure. Put

@M:{@ﬁEZQ1<i<p—1mﬂ1<j<[@_nal—%n
b

Then w; ; € Vi for any (i,7) € ®. Put J :={j | (1,j) € ®}. Forj € J,
by Vi ; we denote the k-subspace of Vi generated by {w; ; | (3,7) € ®o}.
Then the following statements hold.

(1) For any i € Z satisfying 1 < i < p — 1, the equality

#{j | dimy Vors > i} = {(p—p)a} .

holds.

(2) The rational differential form wy 1 (= y~2dy) on C' is regular and
nowhere-zero on C'\ {O}. In particular, the equality 29(C) — 2 =
vo(w1,1) holds.

(3) The equalities

hold.

(4) The family (w; ;). j)es.,, is a basis of Vo, and the inclusions Vg j —
Ve for all j € J induce an isomorphism

Ve = P Ve,
jeJ

(5) For any j € J, the Gr-module V¢ ; is indecomposable, and the

G -invariant k-subspace Vg 7 s generated by wy ;.
Proof. — The inequalities

@—0@—12{@—0aw_1

p p

hold for any (i,7) € @, since p f @ and 1 < i < p — 1. Thus, since the
equalities

p—1t)a—1 .

b1 )

p

hold for any (i,j) € ®, (Lemma 8.1), the integers (vo(wi,;)), s, are
non-negative and different from each other (Lemma 8.1). Thus, since z,
y~', and y~?dy are regular on C'\ {O}, we conclude that w; ; € Vi for any

vo(wij) = (p—i)a—jp—1 ZP(
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(i,4) € ®q, and the elements of (w; ;)i j)es, are linearly independent. In
particular, for any i € Z satisfying 1 < ¢ < p — 1, the equalities

(p—ﬂ 1
p

hold, which proves Statement (1). Since the restriction C\{O} — P} \{0} of
m is étale, and wq ; is equal to the pull-back via 7 of a rational differential
form on Pi that is regular and nowhere-zero on P} \ {0}, Statement (2)
holds. Thus, Lemma 8.1 gives the first equality of Statement (3). Lemma 6.5
gives the equalities

e

(- D(a+1) p—1)(a—1)

_ _
*f*(?*l)* 9 :

which concludes the proof of Statement (3). Since dimy Vo = g(C'), State-
ment (4) follows from Statement (3). Take a generator o, of G so that
ox(x) =x + 1. For any (i, ) € ®,, the equalities

B | dimg Vo > i) = #0 | (.4) € @0} = [

or(wiy) = (x+1)" "y ldy = Zl <Z/ 11)“’3
hold, which proves Statement (5). O

Assume that G = Z/pZ. Lemma 4.1 shows that, for each ¢ € {1,2}, we
may take z; € k[y; 1] so that the completion of the normal model m;: C; —
P} of the equation T? —T = z; at 0 induces the extension k[z;]/k[y;]. Then
the action of G on Spec k[z;] extends to that on C; with fixed locus {O;},
where O; = 7; '(0). Moreover, the action of G' on Spec k[z1,22] extends
to the product action of G on Cy x Cy with fixed locus {O; x Os}.

In order to simplify the notation, we use the same notation in the global
case as in the local case. Put X := C; x Cs. Take the quotient ¢q: X —
Y = X/G of X by G. Then Y is a normal surface, which implies that ¥’
is Cohen-Macaulay. By wx (resp. wy) we denote the dualizing sheaf of X
(resp. Y). Put X' :== X \ {O1 x Oz} and Y’ == ¢(X’).

LEMMA 8.3. — The equality

WOwy) = ZTC“] o] o=t o)

i P p 2
holds.
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Proof. — The diagram

H(Y,wy) —— H°(Y', wy|y")

| |

HO(Xa WX)G I HO(X/7WX|X')G

is commutative, where the horizontal arrows are induced by the restric-
tions, and the vertical arrows are induced by the pull-back via ¢. Since
both X and Y are normal surfaces, the dualizing sheaves wy and wy are
reflexive. Thus, the horizontal arrows in the above diagram are bijective.
Since the restriction X’ — Y’ of ¢ is étale, the right vertical arrow is
bijective. Therefore, the equality h°(wy) = dimy H°(X,wx )% holds. For
i € {1,2}, we take the decomposition H°(C;, Q¢ ) = @
Lemma 8.2(4). Then the equality

e Ve, ,; given by

dimy H'(X,wx)% = Y min{dimy Ve, ;,, dimg Ve, 5, }
(J1,92)€J1 X J2

holds (see the second paragraph of the proof of [6, 2.4]). Since the right
hand side is equal to

p—1

Z #{jl | dimy, VCI:jl 2 Z} ’ #{j2 | dimy, VCQ:jZ 2 i}’
i=1

Lemma 8.2(1) gives the equality

=551 (5]

Thus, Lemma 6.5 concludes the proof. O
Theorem 3.4 gives a desingularization of Y. We use the same notation
in the global case as in the local case (3.8).

LEMMA 8.4. — The equality h'(Oy ) = 0 holds.

Proof. — Since Y has only rational singularities, the equality h' (Oy) =
h'(Oy) holds. Thus, we have only to show that h'(Oy) = 0. Put F =
(C1 x O2) U (01 x C2) C X. Take the normalization Fx of F% and the
normalization Fg (resp. Fy) of the strict transform of F% (resp. q(F%))
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via f (resp. g). Then we obtain the diagram with commutative squares

v x T . x

1]

F qr F fr Fy

where Gr (resp. fr) is induced by ¢ (resp. f), and the vertical arrows are
the projections. The above diagram induces a diagram with commutative
squares

HY(Y,05) HY(X,0%) HY(X,0x)

| | |

Hl(Ff/7OF)_/) H}Il(}?f(a(QF;() <;H1(FX’OFX)

Since fp: Fg = Fx (& C1 U C3), the right lower arrow is bijective. Since
X is regular, the right upper arrow is bijective. Since X = Cy x Cs, the
right vertical arrow is bijective. Thus, the middle arrow is bijective. Since

v = Pp UP}. the equality H'(Fy, O, ) = 0 holds. Therefore, the lemma
follows from the fact that the left upper arrow is injective [6, 4.2]. |

We denote the topological Euler characteristic of a proper curve or a
proper smooth surface W over a separably closed field by e(W). Recall
that the number of the irreducible components of Ej, is equal to o (The-
orem 3.6).

LEMMA 8.5. — The equality
e(Y) = (p—1)(a1 = 1)(az = 1) + 10t + 4
holds.

Proof. — The first projection X = Cy x Cy — C; induces a morphism
Y - IP}. Take the generic point 1 (resp. ) of Pi (resp. C;) and a geometric
generic point 77 of C7, where the composite 7 — 6 — 7 is induced by a
separable closure of the function field of P; with Galois group G,. For
¢ € {0,n,0,7}, we put )75 =Y xp1 &. Since PicY is finitely generated
(Lemma 8.4), and the homomorphism PicY — Pic Y77 induced by the
first projection Y =Y XpL1 = Y is surjective, the group Pic Y is finitely
generated. Note that Pic Y77 = Picy o/ (n) since the Leray spectral sequence

for the second projection Yn =Y XpL 1 =1 and G, o v, induces an exact
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sequence of commutative groups and homomorphisms

0 Picn Pic }/}n — Pic?n/n (n) —— Brn,

Picn = 0 by Hilbert’s theorem 90, and Brn = 0 by Tsen’s theorem. Thus,
we may take a prime number [ different from p so that Picy /n( n)[l] =0,
where we denote the [-torsion subgroup of a commutative e group P by P[I].
We define a G,-module by M = H* (Y"’Ml,Yﬁ) Since Yg = (9 Xgpeck 0
over 0, the equality dimg, M = 2¢(C5) holds, and the action of G, on M
induces that of G. The Kummer sequence

‘.G

— 1

1 Iy, Gy, m¥,

induces a Gy-equivariant isomorphism M = Picy /n(MII], which implies
that MC = Picy ., (m[l] = 0. Therefore, Serre’s measure of wild ramifica-
tion of M at 0 € P}, [11, §I p. 3] is given by

8o = dimy, M/M% = 2g(C:

= X i e MM = (e

where the i-th ramification group of 8/n is given by
G ifq < aq,

1 otherwise.

G; :{T€G|v1(ﬂv1x1)>i+l}{

The reduction of }A/o is a union of the 7y, + 1 projective lines any of whose
singularities is a node and whose dual graph is a tree (Theorem 3.4(2)
and (4)), which implies that the equality e()A/O) = T'tot + 2 holds. Since
Y;, = (9 Xgpeck 7] OVer 7, the equalities e(Y—) = ¢e(C3) = 2 —2¢g(C3) hold.
Thus, Dolgachev’s formula [4, Theorem 1.1] gives the equalities

e(YV) = e(Yy)e(PL) +e(Yo) — e(Y5) + 8o = 2(ar — 1)g(Ca) + Frop + 4.

Therefore, Lemma 8.2 (3) concludes the proof. O
Take the canonical divisor
d+2 s;
Ky = poFo + Z Zﬂi7jEi,j
i=1 j=1

of h (Theorem 7.3). For i € {1,2}, by y; (resp. F;) we denote the pull-back
of the coordinate function of A} = PP} \ {oo} (resp. the prime divisor on
P} with support 0 € P}) via the morphism Y - P} induced by the i-th
projection X = €y x C; — (. By Ky we denote the canonical divisor of
Y defined by the rational differential form y; Zdys A Yoy 2dy, on Y.
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PRrROPOSITION 8.6. — The following equalities hold:

29(Cy) —2 29(C3) — 2
Ky =y 2 MO0 =2 200 2

-1 1 -1 1
:Kh+<(p )(a1 + )_2)F1+<(p )(a2 + )_2>F2;
p p

2(p—1)%(a1 + D) (ag +1

K2 =K} + (p—1)"(e1 + (e )—4(p—1)(a1+a2)+8.

p

Proof. — By F we denote the right hand side of the first equality minus
K},. Since the restriction X’ — Y’ of g (vesp. h=1(Y') — Y’ of h) is étale
(resp. an isomorphism), Lemma 8.2 (2) shows that the support of Ky — F is
contained in the exceptional locus of h. For any integral exceptional divisor
E of h, the adjunction formula gives the equalities

(Ky —F)-E=Ky -E=-E*-2=K;,-E

since F; - E = 0 for any i € {1,2}. Thus, the first equality follows from
the uniqueness of Kj (Theorem 7.3). The second equality follows from
Lemma 8.2(3). Therefore, the last equality follows from the equalities F7 -
Fy=pand K, - F; = F; - F; =0 for any i € {1,2}. O

THEOREM 8.7. — Assume that G = Z/pZ. Then the equality

PRI 12p 12

Dy = Zirﬂ [Wﬂ C(p=DBp=2(ar+D(aa+1)  KZ+ 7o

holds.

Remark 8.8. — The last term of the above equality is determined by
and ag (Theorems 7.5 and 3.6 and Corollary 3.8).

Proof. — Since h*(Oy) = 0 (Lemma 8.4), the Leray spectral sequence
for h: Y — Y and Oy and the Grothendieck duality give the equalities

pg = h*(Oy) — h*(Oy) = b (wy) — x(Oy) + 1,

respectively. Thus, since 12x(Oy) = K?/ + e(?) by Noether’s formula,
Lemmas 8.3 and 8.5 and Proposition 8.6 give the equalities
K2 +e(Y PIlr; ‘ K2
pgho(w)y()ﬂz[mlw Paﬂ S Ki+riot

12 p p | 12p 12

i=1
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where
S = 6p(p — 1)(a1 + az)
+2(p—1)%(a1 + 1)(az + 1) — 4p(p — 1)(a1 + a2) + 8p
+pp—1)(ar —1)(a2 —1) +4p—12p
=(@-1EBp—-2)(a1+1)(az+1),
which concludes the proof. O
Proof of Theorem 1.4.— We use the notation introduced in Theo-

rems 7.3 and 7.5. Corollaries 3.8 and 3.10 give the equalities m = m/ =
1,d =d, (deai,a3) = (a,(p — 1)/, 1,1), (mq1, ma, mg, k1, ko, k3) =
(p,p,p,p—1,p—1,p—e), and by = a+ 1. Thus, the equalities (dy, da,d3) =
(1,1,c), (K}, K5, k5) = (p—1,p—1,0a), and pp = 1 — (p — 1) hold. Since
p/(p—1) =12,...,2] (p— 1 copies of 2) and p/(p —€) = [2,...,2,e + 1]
(a — 1 copies of 2 followed by e + 1), the equalities

T
Ttot :1—|—2(p—1)—&—oz2 and Zdizm_bi’j) =a—-p+1
el j=1

hold. Thus, Theorem 7.5 gives the equalities

Kp = po(bo —2) + (a+2) (o +2) +a—p+1
(ot+Vp+p  (mot+hp—etl)+a+tl
P p
(p — D(-pa® +o® +4a +2) —a® — p?
P

—9.

)

which gives the equality

—D(a+1)(—pa+2a+p+2
K24+ = 2= D@ )P p+2)
p
Therefore, Theorem 8.7 concludes the proof. g
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