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QUOTIENT SINGULARITIES OF PRODUCTS OF TWO
CURVES

by Kentaro MITSUI (*)

Abstract. — We give a method to resolve a quotient surface singularity which
arises as the quotient of a product action of a finite group on two curves. In the
characteristic zero case, the singularity is resolved by means of a continued fraction,
which is known as the Hirzebruch–Jung desingularization. We develop the method
in the positive characteristic case where the square of the characteristic does not
divide the order of the group.
Résumé. — Nous donnons une méthode pour résoudre une singularité quotient

de surface qui se présente comme le quotient d’une action produit d’un groupe
fini sur deux courbes. En caractéristique nulle, la singularité est résolue au moyen
d’une fraction continue (désingularisation de Hirzebruch–Jung). Nous développons
la méthode dans le cas de la caractéristique strictement positive où le carré de la
caractéristique ne divise pas l’ordre du groupe.

1. Introduction

We give a method to resolve a quotient surface singularity which arises
as the quotient of a product action of a finite group on two curves. In the
characteristic zero case, the singularity is resolved by means of a continued
fraction, which is known as the Hirzebruch–Jung desingularization ([5], [7],
[3, §10.2]). The intersection matrix of the exceptional locus is determined
by this continued fraction, which gives formulas for invariants associated
with the singularity. Nevertheless, few results are known in the positive
characteristic case where the characteristic divides the order of the group
(see [10, 1.4] for the history) while the existence of a desingularization of
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1494 Kentaro MITSUI

a two-dimensional excellent scheme is known ([2], [9]). In this paper, we
give an explicit desingularization and calculate the intersection matrix and
invariants by means of plural continued fractions in the case where the
square of the characteristic does not divide the order of the group. Our
result generalizes those in [6] and [10] as explained below. A special case
of our result answers the question on the intersection matrix in [10, §1]. In
the following, we explain our result by comparing it with the characteristic
zero case or more generally the tame quotient case.
Let k be an algebraically closed field of characteristic p > 0 and G be a

finite group of order #G. Assume that G faithfully acts on the complete
discrete valuation ring k[[xi]] over k for any i ∈ {1, 2}. Put R := k[[x1, x2]]
and X := SpecR. Take the quotient

(1.1) q : X −→ Y := X/G

of X by the product action of G. The singularity of Y may be resolved by
a proper birational morphism h : Ŷ → Y . By Eh we denote the exceptional
locus of h with reduced structure. The desingularization h of Y is called
good (resp. minimal good) if any singularity of Eh is a node, and any
irreducible component of Eh is regular (resp. h is minimal among all good
desingularizations, i.e., h is good, and, if h = h′ ◦ h′′, and h′ is a good
desingularization, then h′′ is an isomorphism). Let Ωh be an intersection
matrix of Eh. Put

(1.2) δ := |det Ωh|,

which does not depend on the choice of h whenever h is good (Proposi-
tion 5.5). By Z we denote the fundamental cycle of h (Section 6). The
fundamental genus pf (resp. the geometric genus pg) of the singularity of
Y is defined as the arithmetic genus of Z (resp. the dimension of R1h∗OŶ
over k). The singularity of Y is said to be rational if pg = 0, which is
equivalent to the condition pf = 0 [1, Theorem 3].
In the case p 6 | #G, the Hirzebruch–Jung desingularization of Y is min-

imal good whose exceptional locus is a chain of the projective lines. More-
over, the equalities δ = #G and pf = pg = 0 hold. In particular, the
singularity of Y is rational.
Assume that p > 0 and p | #G. Note that G has the unique p-Sylow

subgroup H. Although H has a normal subgroup of order p, few results are
known even in the simplest case H ∼= Z/pZ. In the following, we assume
that H ∼= Z/pZ. Our main theorems give a minimal good desingularization
of Y whose exceptional locus is a star-shaped tree of the projective lines
(Theorem 3.4; its proof is given in Section 4) and the intersection matrix of
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the exceptional locus by means of three continued fractions (Theorem 3.6;
its proof is given in Section 5). As a corollary, we calculate δ (Theorem 1.2;
its proof is given in Section 5) and give algorithms to obtain Z (Section 6),
pf (Section 6), and pg (Sections 7–8).
Take a generator σ of H. For i ∈ {1, 2}, we denote the maximal ideal of

k[[xi]] by mi, take the valuation vi of k[[xi]] with vi(k[[xi]] \ {0}) = Z>0, and
put

(1.3) αi := vi(σxi − xi)− 1, d := gcd(α1, α2), and ai := αi
d
.

Note that αi ∈ Z>1 since the action of G on k[[xi]] is faithful, and the
multiplicative identity is the unique p-th root of unity in k. The definition of
αi does not depend on the choice of the generator σ of H or the uniformizer
xi of k[[xi]] since mαi+1

i is generated by {τx − x | τ ∈ H,x ∈ mi}. Since
dimk mi/m

2
i = 1, we identify Autk(mi/m2

i ) with k×. Then the action of G
on mi/m

2
i induces a character ρi : G→ k×. Put

(1.4) m := #(G/H), n := ord ρa1
1 ρ−a2

2 , and d′ := d

n
.

Note that d′ ∈ Z (Lemma 3.1).

Example 1.1. — Assume that p > 3, G = Z/pZ×Z/2Z, and k[[xi]] is the
extension of k[[yi]] defined as k[[yi]][xi]/(Pi) for any i ∈ {1, 2}, where

Pi := xpi − y
p−1
i xi − yi.

Put σ := (1, 0) ∈ G and τ := (0, 1) ∈ G. Suppose that the equality

(σxi, σyi, τxi, τyi) = (xi + yi, yi,−xi,−yi)

holds for any i ∈ {1, 2}. Then H ∼= Z/pZ, G/H ∼= Z/2Z, (α1, α2) =
(p− 1, p− 1), (a1, a2) = (1, 1), and (m,n, d, d′) = (2, 1, p− 1, p− 1). Put

Φ := {(1, 1), (1, 2), (2, 2)}, yi,j := yiyj for (i, j) ∈ Φ,

and
y := x1y2 − x2y1.

Then {yi,j}(i,j)∈Φ ∪ {y} ⊂ RG, and the equalities(
x1

y1
− x2

y2

)p
−
(
x1

y1
− x2

y2

)
− (y1−p

1 − y1−p
2 ) = P1

yp1
− P2

yp2
= 0

hold in k((x1, x2)). By multiplying both sides by yp1,2, we obtain the equality

yp − yp−1
1,2 y + y1,2

(
y
p−1

2
1,1 − y

p−1
2

2,2

)
= 0
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1496 Kentaro MITSUI

in R. Put

U := k[[Y1,1, Y2,2]], T := U [Y1,2]/(Q), and S := T [Y ]/(P ),

where

Q := Y 2
1,2 − Y1,1Y2,2 and P := Y p − Y p−1

1,2 Y + Y1,2

(
Y
p−1

2
1,1 − Y

p−1
2

2,2

)
.

Then T (resp. S) is a Cohen–Macaulay local ring of dimension two whose
singular locus is defined by the maximal ideal, which implies that T (resp.
S) is a normal integral domain by Serre’s criterion for normality. We regard
S as a subring of R by the injective k-algebra homomorphism S → R,
Y 7→ y, Yi,j 7→ yi,j for (i, j) ∈ Φ. Then U ⊂ T ⊂ S ⊂ RG ⊂ R are finite
extensions of normal integral domains. For an extension A′/A of integral
domains, we denote the degree of the extension of their fields of fractions by
[A′ : A]. Then the equalities [R : U ] = 4p2, [R : RG] = 2p, and [T : U ] = 2
give the equality [RG : T ] = p. Thus, since S 6= T , the equality [RG : S] = 1
holds, which implies that RG = S. As a result, we obtain the isomorphism

RG ∼= k[[Y, Y1,1, Y1,2, Y2,2]]/(P,Q).

The explicit description ofRG is complicated even in the case of the above
simple action. We explain how to overcome this difficulty after stating our
theorems on the invariants. We obtain a simple formula for δ:

Theorem 1.2. — The equality δ = pd
′+1m holds.

Although the formula for pf is complicated in general (Corollary 6.1),
the formula may be simplified in the case G ∼= Z/pZ:

Theorem 1.3. — Assume that G ∼= Z/pZ. Then the equality

pf = (p− 1)(min{α1, α2} − 1)
2

holds. In particular, the singularity of Y is rational if and only if α1 = 1 or
α2 = 1.

In contrast to δ and pf , the formula for pg is complicated even in the
case G ∼= Z/pZ (Theorem 8.7). Nevertheless, the formula may be simplified
in some special cases:

Theorem 1.4. — Assume that G ∼= Z/pZ, α1 = α2, and α1 | (p − 1).
Put α := α1. Then the equality

pg =
p−1∑
i=1

⌈
iα

p

⌉2
− (p− 1)(α+ 1)(α+ 2)

6

holds.
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When G ∼= Z/pZ, our result in the local setting generalizes the previously
known results in the global setting in the case α1 = 1 or α2 = 1 [10] and in
the case α1 = α2 = p − 1 [6]. Our approach is different from those in [10]
and [6]. The former [10] applies the Néron model of the Jacobian of a curve.
The intersection matrix of the exceptional locus is calculated under certain
conditions of the global geometry which are essentially used. The latter [6]
uses an explicit defining equation of the invariant ring of the action on the
product of two curves.
Let us briefly explain our method. We first take a proper birational mor-

phism X̃ → X induced by a subdivision ∆̃0 of a toric fan so that the
action of G on X may be lifted to that on X̃. Next, we take the quotient
Ỹ := X̃/G. The point is that all singularities of Ỹ are toric if we appro-
priately choose ∆̃0. We may determine the fans of the toric singularities of
Ỹ . The Hirzebruch–Jung desingularizations of these toric singularities give
a minimal good desingularization of Y . We finally remark that, in other
different situations, it has been observed that an appropriate blowing-up
with a lifting of a group action may reduce a serious singularity to milder
ones, e.g., Kirwan’s partial desingularization of the quotient of a reductive
group action on a complex projective variety. However, the blowing-up is
non-singular in contrast to X̃, which is singular whenever α1 6= α2 (Re-
mark 3.3). Our method may be regarded as a new variant.

2. Notation and Convention

Let (Bi)ri=1 be a sequence of integers greater than one. We denote the
Hirzebruch–Jung continued fraction

B1 −
1

B2 −
1

. . . −
1
Br

by [Bi]ri=1 = [B1, . . . , Br] [3, §10.2]. Put B := [Bi]ri=1. Then B ∈ Q>1.
Conversely, any rational number greater than one can be uniquely expressed
as a Hirzebruch–Jung continued fraction. There exists a unique (M0,M1) ∈
Z2
>0 such that B = M0/M1 and gcd(M0,M1) = 1. For i ∈ Z satisfying

1 6 i 6 r, we put

(2.1) Mi+1 := MiBi −Mi−1.

TOME 71 (2021), FASCICULE 4
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Note that Mi/Mi+1 = [Bj ]rj=i+1 for any i ∈ Z satisfying 0 6 i 6 r − 1,
Mr = 1, and Mr+1 = 0. The (r + 2)-tuple

(Mi)r+1
i=0 = (M0,M1, . . . ,Mr,Mr+1)

is called the vector associated with B, and the r × r matrix

Ω :=



−B1 1
1 −B2 1 0

1 −B3
. . .

. . . . . . 1
1 −Br−1 10 1 −Br


is called the matrix associated with B. Note that det Ω = (−1)rM0.

Let W be a regular k-scheme of dimension two. Take divisors D and D′
on W . Assume that D′ is effective, and the support of D′ is proper over k.
We define the intersection number of D and D′ by D·D′ := χ(OW (D)|D′)−
χ(OD′). The definition may be Q-linearly extended to the case where D
and D′ are Q-divisors, and the support of D′ is proper over k [8, 13.1.b].
Note that D · D′ = D′ · D whenever the supports of both D and D′ are
proper over k [8, 13.1.d]. We denote the self-intersection number D ·D of
D by D2.
We denote the number of the elements of a finite set S by #S.

3. Main Theorems

In this section, we state our main theorems. Their proofs are given in
Sections 4–5. We use the notation introduced in Section 1. Assume that
p > 0 and H ∼= Z/pZ. Put

(3.1) m′ := m

n
.

Lemma 3.1. — The rational numbers m′ and d′ are integers.

Proof. — The equalities ord ρ1 = ord ρ2 = m show thatm′ ∈ Z. Take τ ∈
G (resp. u ∈ Z) so that the image of τ under the quotient homomorphism
G → G/H is a generator of G/H (resp. the equality τ−1στ = σu holds).
Since στ = τσu, the equality ρi(τ) = uρi(τ)αi+1 holds for any i ∈ {1, 2}.
Thus, the equality ρα1

1 = ρα2
2 holds, which concludes that d′ ∈ Z. �

ANNALES DE L’INSTITUT FOURIER
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For i ∈ {1, 2}, we put

(3.2) yi :=
∏
τ∈H

τxi.

Then k[[xi]]H = k[[yi]].

Lemma 3.2. — The integer αi is coprime to p for any i ∈ {1, 2}.

Proof. — Choose i ∈ {1, 2}. Put

F (T ) = T p +
p−1∑
j=0

FjT
j :=

p−1∏
j=0

(T − σjxi) ∈ k[[yi]][T ]

and
J := {j ∈ Z | 0 6 j 6 p− 2, Fj+1 6= 0}.

Since vi(k[[yi]]\{0}) = pZ>0, the integers (vi(Fj+1)+j)j∈J are different from
each other. Thus, by taking the valuations of both sides of the equalities∑

j∈J
(j + 1)Fj+1x

j
i = dF

dT (xi) =
p−1∏
j=1

(xi − σjxi),

we conclude that there exists j ∈ J such that vi(Fj+1)+j = (p−1)(αi+1),
which implies that p− 1 6≡ (p− 1)(αi + 1) mod p. Therefore, the integer αi
is coprime to p. �

Since p 6 | da1a2 (Lemma 3.2), there exists a unique e ∈ Z such that

(3.3) p | eda1a2 + 1 and 0 < e < p.

We simply call an N -dimensional cone in R2 an N -cone. We define vectors
(vi)3

i=0 on R2, lattices (Γi)3
i=0 of R2, and 2-cones (Σi)3

i=0 in the following
way (Figure 3.1):

(3.4)

v0 := (a2, a1); v1 := (1, 0); v2 := (0, 1); v3 := (1, e);
Γ0 := Zv1 + Zv2; Γ3 := Zm′v1 + Zpv2;

Γ1 := {(l1, l2) ∈ Γ0 | l1 ∈ pZ, ρl21 = ρl12 };

Γ2 := {(l1, l2) ∈ Γ0 | l2 ∈ pZ, ρl21 = ρl12 };
Σ0 := R>0v1 + R>0v2; Σ1 := R>0v0 + R>0v1;
Σ2 := R>0v0 + R>0v2; Σ3 := R>0v2 + R>0v3.

By ∆0 we denote the fan induced by the 2-cone Σ0. We define a fan ∆̃0
as the subdivision of ∆0 by the 1-cone R>0v0. The subdivision ∆̃0 of ∆0
induces a proper birational morphism

(3.5) φ : X̃ −→ A2
k = Spec k[χ1, χ2]

TOME 71 (2021), FASCICULE 4
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��

��

•
v1

•v2

Σ0

��

��

•
v1

•v2
•
v0

Σ1

Σ2

��

��

•
v1

•v2
•
v3

Σ3

Figure 3.1. The vectors (vi)
3
i=0 and 2-cones (Σi)

3
i=0

[3, 3.3.4.a and 3.4.11], where (χ1,χ2) corresponds to the dual of the basis

(v1, v2) [3, 1.2.18]. Take the morphism

(3.6) ι : X �� A2
k

induced by the k-algebra homomorphism k[χ1,χ2] → R, χi �→ xi for i ∈
{1, 2}. By

(3.7) f : �X �� X

we denote the base change of φ via ι.

Remark 3.3. — The following statements are equivalent [3, 3.1.19.a]:

(1) �X is regular; (2) �X is smooth over k; (3) �Δ0 is smooth [3, 3.1.18.a]; (4)

a1 = a2; (5) α1 = α2. If the above equivalent statements hold, then any of

φ and f is a blowing-up at the origin [3, 3.3.12]. In the general case, the

morphism f is a blowing-up along the ideal generated by the monomials

{xl1
1 x

l2
2 | a1l2 + a2l1 � a1a2} in x1 and x2 [3, 7.1.13, 7.1.9.b, and 11.3.1].

In particular, the definition of f does not depend on the choice of the

uniformizer xi of k[[xi]] for any i ∈ {1, 2}.
The action of G on X uniquely lifts to that on �X since τx/x ∈ R× for

any τ ∈ G and any monomial x in x1 and x2. Take the quotient �q : �X → �Y
of �X by G and the unique morphism g : �Y → Y satisfying g ◦ �q = q ◦ f

(1.1). By Ef we denote the exceptional locus of f with reduced structure.

ANNALES DE L’INSTITUT FOURIER

Figure 3.1. The vectors (vi)3
i=0 and 2-cones (Σi)3

i=0

[3, 3.3.4.a and 3.4.11], where (χ1, χ2) corresponds to the dual of the basis
(v1, v2) [3, 1.2.18]. Take the morphism

(3.6) ι : X // A2
k

induced by the k-algebra homomorphism k[χ1, χ2] → R, χi 7→ xi for i ∈
{1, 2}. By

(3.7) f : X̃ // X

we denote the base change of φ via ι.

Remark 3.3. — The following statements are equivalent [3, 3.1.19.a]:
(1) X̃ is regular;
(2) X̃ is smooth over k;
(3) ∆̃0 is smooth [3, 3.1.18.a];
(4) a1 = a2;
(5) α1 = α2.

If the above equivalent statements hold, then any of φ and f is a blowing-up
at the origin [3, 3.3.12]. In the general case, the morphism f is a blowing-up
along the ideal generated by the monomials {xl11 x

l2
2 | a1l2 + a2l1 > a1a2}

in x1 and x2 [3, 7.1.13, 7.1.9.b, and 11.3.1]. In particular, the definition

ANNALES DE L’INSTITUT FOURIER
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of f does not depend on the choice of the uniformizer xi of k[[xi]] for any
i ∈ {1, 2}.

The action of G on X uniquely lifts to that on X̃ since τx/x ∈ R× for
any τ ∈ G and any monomial x in x1 and x2. Take the quotient q̃ : X̃ → Ỹ

of X̃ by G and the unique morphism g : Ỹ → Y satisfying g◦ q̃ = q◦f (1.1).
By Ef we denote the exceptional locus of f with reduced structure. Put
Ẽ := q̃(Ef ). By D1 (resp. D2) we denote the divisor on X defined by x1

(resp. x2). For i ∈ {1, 2}, we take the strict transform D̃i of Di via f and
put Qi := Ẽ ∩ q̃(D̃i). Put

I := {1, 2, 3}, I3 := {i ∈ Z | 3 6 i 6 d′ + 2}, and Iall := I ∪ I3.

For i ∈ I, by Zi we denote the completion of the toric singularity associated
with Σi in Γi ⊗Z R [3, 1.2.18].

Theorem 3.4. — The following statements hold.
(1) All singular points of Ỹ are contained in Ẽ, and the number of

these singular points is equal to d′+2. Both Q1 and Q2 are singular
points of Ỹ . By (Qi)i∈Iall we denote the singular points of Ỹ . The
completion of the singularity at Q1 (resp. Q2, resp. Qi for any
i ∈ I3) is isomorphic to Z1 (resp. Z2, resp. Z3).

(2) Take the Hirzebruch–Jung desingularizations h̃ : Ŷ → Ỹ of the sin-
gularities of Ỹ . Put h := g ◦ h̃. We denote the exceptional locus of h
(resp. the preimage of Qi under h̃ for i ∈ Iall) with reduced struc-
ture by Eh (resp. Ei) and the strict transform of Ẽ via h̃ by E0.
Then Eh is a union of the projective lines any of whose singularities
is a node and whose dual graph is a star-shaped tree with central
node (resp. d′ + 2 branches) corresponding to E0 (resp. (Ei)i∈Iall).

(3) The desingularization h : Ŷ → Y of Y is minimal good.
(4) For i ∈ {1, 2}, by D̂i we denote the strict transform of q(Di) via h.

Then the equality D̂i ·Eh = 1 holds, and the irreducible component
of Eh intersecting with D̂i corresponds to the end of the branch
corresponding to Ei.

We obtain the following diagram with commutative triangle and square:

(3.8)
Ŷ

h̃ //

h ��

Ỹ

g

��

X̃
q̃oo

f

��
Y X.

qoo

TOME 71 (2021), FASCICULE 4
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For i ∈ Iall, we denote the irreducible components of Ei starting from the
irreducible component intersecting with E0 by

(3.9) (Ei,j)sij=1

(Figure 3.2). By Ωh we denote the intersection matrix of Eh with respect
to the ordered basis E0 followed by (Ei,j)i,j with dictionary order.10 KENTARO MITSUI

•
E1,1•

E1,2•
E1,s1◦

�D1

•
E2,1

•
E2,2

•
E2,s2

◦
�D2

•
E3,1 •

E3,2 •
E3,s3

•
Ed�+2,1

•
Ed�+2,2

•
Ed�+2,sd�+2

•
E0

Figure 3.2. The dual graph of Eh ∪ �D1 ∪ �D2

Put

(3.10) ν :=
eda1a2 + 1

p
∈ Z

(3.3). Since gcd(a1, a2) = 1 (1.3), the sequence of Z-modules and homo-

morphisms

0 �� Z
ν1 �� Z2 ν2 �� Z �� 0

is exact, where ν1(l0) = l0(a2,−a1) and ν2(l1, l2) = a1l1+a2l2. Thus, there

exists a unique (b1, b2, c1, c2) ∈ Z4 such that

(3.11) ν2(b2, b1) = ν2(c2, c1) = ν, 0 < b2 � a2, and 0 < c1 � a1.

Since (b2 − c2, b1 − c1) ∈ Ker ν2, there exists a unique n0 ∈ Z such that

(3.12) ν1(n0) = (b2 − c2, b1 − c1).

Lemma 3.5. — Take i ∈ {1, 2} and (l1, l2) ∈ Γ0. Assume that li ∈ pZ.
Then there exists a minimum n� ∈ Z such that

pn�v0 +m�(l1, l2) ∈ Γi ∩ Σ0.

Moreover, the following holds:

p(n� − n)v0 +m�(l1, l2) ∈ Γi \ Σ0.

Proof. — The equalities ord ρ1 = ord ρ2 = m = m�n (3.1) show that

ord ρm
�l2

1 ρ−m�l1
2 | n. Thus, since v0 = (a2, a1) (3.4) and ord ρpa1

1 ρ−pa2

2 = n

(1.4), there exists n� ∈ Z such that

(3.13) pn�v0 +m�(l1, l2) ∈ Γi.

Since pnv0 ∈ Γ1 ∩ Γ2, any element of n� + nZ satisfies (3.13). Thus, the

lemma follows from the fact that v0 is contained in the interior of Σ0. �
Put

(3.14) v�1 := (pb2, eda1 − pb1) and v�2 := (eda2 − pc2, pc1).
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Figure 3.2. The dual graph of Eh ∪ D̂1 ∪ D̂2

Put

(3.10) ν := eda1a2 + 1
p

∈ Z

(3.3). Since gcd(a1, a2) = 1 (1.3), the sequence of Z-modules and homo-
morphisms

0 // Z
ν1 // Z2 ν2 // Z // 0

is exact, where ν1(l0) = l0(a2,−a1) and ν2(l1, l2) = a1l1 +a2l2. Thus, there
exists a unique (b1, b2, c1, c2) ∈ Z4 such that

(3.11) ν2(b2, b1) = ν2(c2, c1) = ν, 0 < b2 6 a2, and 0 < c1 6 a1.

Since (b2 − c2, b1 − c1) ∈ Ker ν2, there exists a unique n0 ∈ Z such that

(3.12) ν1(n0) = (b2 − c2, b1 − c1).

Lemma 3.5. — Take i ∈ {1, 2} and (l1, l2) ∈ Γ0. Assume that li ∈ pZ.
Then there exists a minimum n′ ∈ Z such that

pn′v0 +m′(l1, l2) ∈ Γi ∩ Σ0.

Moreover, the following holds:

p(n′ − n)v0 +m′(l1, l2) ∈ Γi \ Σ0.

Proof. — The equalities ord ρ1 = ord ρ2 = m = m′n (3.1) show that
ord ρm

′l2
1 ρ−m

′l1
2 | n. Thus, since v0 = (a2, a1) (3.4) and ord ρpa1

1 ρ−pa2
2 =

n (1.4), there exists n′ ∈ Z such that

(3.13) pn′v0 +m′(l1, l2) ∈ Γi.
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Since pnv0 ∈ Γ1 ∩ Γ2, any element of n′ + nZ satisfies (3.13). Thus, the
lemma follows from the fact that v0 is contained in the interior of Σ0. �

Put

(3.14) v′1 := (pb2, eda1 − pb1) and v′2 := (eda2 − pc2, pc1).

These vectors appear in the definition of defining functions of Ef (Lem-
ma 4.3(1)). For each i ∈ {1, 2}, Lemma 3.5 implies that there exists a
minimum ni ∈ Z such that

(3.15) pniv0 +m′v′i ∈ Γi ∩ Σ0.

These vectors appear as a part of the data of the subdivisions of the fans
corresponding to the Hirzebruch–Jung desingularizations h̃ (Section 5). We
define (̂b1, b̂2, ĉ1, ĉ2) ∈ Z4 by

(3.16) (pb̂2, b̂1) = pn1v0 +m′v′1 and (ĉ2, pĉ1) = pn2v0 +m′v′2.

Put

(3.17) e′ :=
⌈
m′e

p

⌉
, b0 := m′n0 + n1 + n2

n
+ e′d′,

and

(3.18) (m1,m2,m3, k1, k2, k3) := (pna1, pna2, p, b̂1, ĉ2, pe
′ −m′e).

For i ∈ I, by Ωi we denote the ri × ri matrix associated with mi/ki (Sec-
tion 2), where gcd(mi, ki) = 1 and 0 < ki < mi (Lemma 5.1(4)). By Θi we
denote the 1× ri matrix whose first entry is the unique non-zero entry and
equal to one.

Theorem 3.6. — The equalities s1 = r1, s2 = r2, si = r3 for any i ∈ I3
(see (3.9) for (si)i∈Iall), and

Ωh =



−b0 Θ1 Θ2 Θ3 · · · Θ3
tΘ1 Ω1
tΘ2 Ω2 0
tΘ3 Ω3
...

. . .
tΘ3 0 Ω3


hold, where the number of each Θ3, tΘ3, and Ω3 is equal to d′. Put

rtot := 1 + r1 + r2 + d′r3.

Then the number of the irreducible components of Eh is equal to rtot, and
the equality

det Ωh = (−1)rtotpd
′+1m
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holds.

Corollary 3.7. — Assume that gcd(α1, α2) = 1. Then d = d′ = 1
((1.3)–(1.4)) and δ = p2m (1.2).

Note that the following equalities and inequalities hold (3.11):

0 < eda1 − pb1
pb2

= a1

a2
− 1
pa2b2

<
a1

a2
6
a1

b2
;(3.19)

0 < eda2 − pc2
pc1

= a2

a1
− 1
pa1c1

<
a2

a1
6
a2

c1
.(3.20)

Corollary 3.8. — Assume that G ∼= Z/pZ. Then m = m′ = n =
ord ρ1 = ord ρ2 = 1 ((1.4) and (3.1)), d = d′ (1.4), e′ = 1 ((3.17) and (3.3)),
Γ1 = Zpv1 + Zv2, and Γ2 = Γ3 = Zv1 + Zpv2. In particular, we conclude
that v′1 ∈ Γ1 and v′2 ∈ Γ2 (3.14), which implies that (n0, n1, n2) = ((c1 −
b1)/a1, 0, 0) ((3.12) and (3.15)) since 0 < eda1 − pb1 < pa1 (3.19) and
0 < eda2−pc2 < pa2 (3.20). Thus, we obtain the equalities (̂b1, b̂2, ĉ1, ĉ2) =
(eda1− pb1, b2, c1, eda2− pc2) (3.16), (m1,m2,m3, k1, k2, k3) = (pa1, pa2, p,

eda1 − pb1, eda2 − pc2, p − e) (3.18), E2
0 = ((b1 − c1)/a1) − d (3.17), and

δ = pd+1 (1.2).

Example 3.9. — Although E2
i,j 6 −2 for any (i, j), the equality E2

0 = −1
can hold. Assume that G ∼= Z/pZ and (α1, α2) = (p + 1, 2p + 1). Then
(d, e, a1, a2, b1, b2, c1, c2) = (1, p− 1, p+ 1, 2p+ 1, 1, 2p− 3, 1, 2p− 3) ((1.3),
(3.3), and (3.11)), which implies that E2

0 = −1 (Corollary 3.8).

Corollary 3.10. — Assume that α1 = α2 and α1 | (p − 1). Put
α := α1. Then (d, e, a1, a2, b1, b2, c1, c2) = (α, (p−1)/α, 1, 1, 0, 1, 1, 0) ((1.3),
(3.3), and (3.11)).

(1) Assume that G ∼= Z/pZ. Then E2
0 = −α − 1 and δ = pα+1 (Corol-

lary 3.8). In particular, if α = 1 (resp. p− 1), then E2
0 = −2 (resp.

−p) and δ = p2 (resp. pp).
(2) Assume that m = p − 1 and n = 1. Then m′ = p − 1 (3.1),

d′ = α (1.4), e′ = e ((3.17) and (3.3)), (n0, n1, n2) = (1, 2−p, 2−p)
((3.12) and (3.15)), (̂b1, b̂2, ĉ1, ĉ2) = (1, 1, 1, 1) (3.16), (m1,m2,m3,

k1, k2, k3) = (p, p, p, 1, 1, e) (3.18), E2
0 = −2 (3.17), and δ =

pα+1(p− 1) (1.2).

4. Singularities

We use the notation introduced in Section 3. For each i ∈ {1, 2}, the
valuation vi and the action of G on k[[xi]] uniquely extend to those on
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k((xi)). Then k((xi))H = k((yi)) (3.2). Put

Ki :=
⊕

j∈Z<0\pZ<0

k · yji ⊂ k[y−1
i ] ⊂ k((yi)).

Lemma 4.1. — For any i ∈ {1, 2}, there exists a unique zi ∈ Ki satisfy-
ing the following condition: there exists ti ∈ k((xi)) such that tpi − ti = zi
and σti = ti + 1. In particular, the k((yi))-algebra homomorphism

k((yi))[T ]/(T p − T − zi) −→ k((xi)), T 7−→ ti

is bijective.

Proof. — Choose i ∈ {1, 2}. Put K := k((yi)). Choose a separable closure
Ksep of k((xi)). Put GK := Gal(Ksep/K). We define an endomorphism ℘ of
the additive group Ksep by x 7→ xp−x. The exact sequence of GK-modules
and GK-equivariant homomorphisms

0 // Fp // Ksep ℘ // Ksep // 0

induces K/℘(K) ∼= H1(K,Fp) = Hom(GK ,Fp). We denote the composite
of the quotient homomorphism K → K/℘(K) and this isomorphism by
ψ : K → Hom(GK ,Fp). Take z ∈ K. Choose t ∈ Ksep so that tp − t = z.
Then ψ(z)(τ) = τ(t) − t ∈ Fp for any τ ∈ GK , and the Galois extension
corresponding to Kerψ(z) is equal to K(t) ⊂ Ksep. Note that ℘(ayni ) =
apypni −ayni for any (a, n) ∈ k×Z, which implies that k[[yi]] ⊂ ℘(K). Thus,
the restriction of ψ to Ki is bijective. Therefore, there exists a unique zi ∈
Ki such that ψ(zi) is equal to the composite of the quotient homomorphism
GK → Gal(k((xi))/K) and the isomorphism Gal(k((xi))/K) → Fp, σ 7→ 1,
which concludes the proof. �

Lemma 4.2. — For any i ∈ {1, 2}, there exists a uniformizer x̂i of k[[xi]]
such that σ(x̂i)−αi = (x̂i)−αi + 1 in k((xi)).

Proof. — Choose i ∈ {1, 2}. Take zi and ti given by Lemma 4.1. Then
p 6 | vi(ti) since vi(zi) ∈ pZ<0 \ p2Z<0. Thus, we may take (a, b) ∈ Z2

satisfying avi(ti) + bp = 1. Put x̃i := tai y
b
i . Then p 6 | a and vi(x̃i) = 1,

which gives the equalities

−vi(ti) = vi(x̃i)− vi(ti)− 1 = vi(σx̃i − x̃i)− 1 = αi.

Thus, since p 6 | αi (Lemma 3.2), there exists a uniformizer x̂i of k[[xi]] such
that (x̂i)αi = t−1

i , which concludes the proof. �

By Lemma 4.2 and Remark 3.3, we may assume that the equality

(4.1) σx−αii = x−αii + 1
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holds in k((xi)) for any i ∈ {1, 2} after replacing the uniformizer xi of k[[xi]].
For i ∈ {0, 1, 2, 3}, we denote the dual lattice of Γi by Γ∨i and the dual cone
of Σi by Σ∨i . The toric variety X̃ (3.5) has an affine covering (Ũ1, Ũ2), where
Ũ i := Spec k[Σ∨i ∩ Γ∨0 ] for i ∈ {1, 2}. The base changes of Ũ1 and Ũ2 via
ι (3.6) give an affine covering (Ũ1, Ũ2) of X̃ (3.7). Put

Ũ0 := Ũ1 ∩ Ũ2 and x′i :=
{
xl21 x

−l1
2 for i ∈ {0, 2},

x−l21 xl12 for i = 1,

where

l1v1 + l2v2 =
{
v0 if i = 0 (3.4),
v′i if i ∈ {1, 2} (3.14).

Lemma 4.3. — The following statements hold.
(1) Both x′1|Ũ0

and x′2|Ũ0
are defining functions of Ef ∩ Ũ0.

(2) The restriction x′0|Ef∩Ũ1
(resp. (x′0)−1|Ef∩Ũ2

) is a parameter of
Ef ∩ Ũ1 (∼= A1

k) (resp. Ef ∩ Ũ2 (∼= A1
k)) and a defining function of

Ef ∩ D̃1 (resp. Ef ∩ D̃2).
(3) Take (l1, l2) ∈ Z2 and τ ∈ G. Put x := xl11 x

l2
2 . Then the ratio-

nal function τx/x on X̃ is a nowhere-zero regular function on X̃

whose restriction to Ef is equal to the constant function with value
ρ1(τ)l1ρ2(τ)l2 .

Proof. — Let us show Statements (1) and (2). The following equalities
hold ((3.11) and (3.14)):

det
(
v0
v′1

)
= det

(
a2 a1
pb2 eda1 − pb1

)
= −1;(4.2)

det
(
v0
v′2

)
= det

(
a2 a1

eda2 − pc2 pc1

)
= 1.(4.3)

Thus, the following holds:

(4.4) Zv0 + Zv′1 = Zv0 + Zv′2 = Γ0; v′1 ∈ Σ1; v′2 ∈ Σ2.

We define 2-cones in the following way (Figure 4.1):

Σ′1 := R>0v0 + R>0v
′
1 ⊂ Σ1; Σ′2 := R>0v0 + R>0v

′
2 ⊂ Σ2.

For i ∈ {1, 2}, we denote the dual cone of Σ′i by (Σ′i)∨. By Eφ we denote
the exceptional locus of φ : X̃ → A2

k (3.5) with reduced structure. Take the
Hirzebruch–Jung desingularizations φ̃ : X ′ → X̃ of the toric blowing-up of
X̃ by the 1-cones R>0v

′
1 and R>0v

′
2 [3, §10.2]. Then the strict transform

of Eφ via φ̃ corresponds to the 1-cone R>0v0 [3, 3.2.6 and 3.3.21], which
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��

��

•
v1

•
v�1

•v2 •
v�2

•v0
Σ�

1

Σ�
2

Figure 4.1. The vectors v�1 and v�2 and the 2-cones Σ�
1 and Σ�

2

�f : X � → �X of �X and two affine open subsets (U �
1, U

�
2) of X

� satisfying the

following conditions:

(1) �f induces isomorphisms U �
1 ∩ U �

2
∼= �U0 and E�

f ∩ U �
i
∼= Ef ∩ �Ui for

each i ∈ {1, 2}, where E�
f is the strict transform of Ef via �f ;

(2) x�
1|U �

1
(resp. x�

2|U �
2
) is a defining function of E�

f ∩U �
1 (resp. E�

f ∩U �
2);

(3) x�
0|E�

f∩U �
1
(resp. (x�

0)
−1|E�

f∩U �
2
) is a parameter of E�

f ∩ U �
1 (∼= A1

k)

(resp. E�
f ∩ U �

2 (∼= A1
k));

(4) x�
0|U �

1
(resp. (x�

0)
−1|U �

2
) is a defining function of D�

1∩U �
1 (resp. D�

2∩
U �
2), where D�

1 (resp. D�
2) is the preimage of �D1 (resp. �D2) under �f

with reduced structure.

Thus, Statements (1) and (2) hold. Let us show Statement (3). We have

only to show the case x = xi for i ∈ {1, 2}. The equality τxi = ρi(τ)xi holds

in mi/m
2
i , where xi is the image of xi under the quotient homomorphism

mi → mi/m
2
i . Thus, the rational function τxi/xi on X is a nowhere-zero

regular function on X whose value at D1 ∩ D2 is equal to ρi(τ). Since

f(Ef ) = D1 ∩D2, Statement (3) holds. �
Although Lemma 4.3 (1) gives two defining functions of Ef ∩ �U0, we use

only x�
1 in the following. Choose c ∈ k ∪ {∞}. Put

x(c) :=

�
x�
0 − c if c ∈ k,

(x�
0)

−1 otherwise.

We introduce the following notation:

�P(c): the closed point on Ef defined by x(c) = 0;
�Q(c): the closed point �q( �P(c)) on �E;
�R(c): the completion of O �X, �P(c)

with respect to the maximal ideal;

Ef,(c): the base change of Ef via the morphism Spec �R(c) → �X;

G(c): the stabilizer subgroup of the action of G at �P(c);

SUBMITTED ARTICLE : QUOT4.TEX

Figure 4.1. The vectors v′1 and v′2 and the 2-cones Σ′1 and Σ′2

is contained in the union of the two affine open subsets Spec k[(Σ′1)∨ ∩Γ∨0 ]
(∼= A2

k) and Spec k[(Σ′2)∨ ∩ Γ∨0 ] (∼= A2
k) of X ′ since φ̃ is induced by a

subdivision of ∆̃0 [3, 10.2.3] containing Σ′1 and Σ′2 (4.4). Taking the base
change via ι (3.6), we obtain a desingularization f̃ : X ′ → X̃ of X̃ and two
affine open subsets (U ′1, U ′2) of X ′ satisfying the following conditions:

(a) f̃ induces isomorphisms U ′1 ∩ U ′2 ∼= Ũ0 and E′f ∩ U ′i ∼= Ef ∩ Ũ i for
each i ∈ {1, 2}, where E′f is the strict transform of Ef via f̃ ;

(b) x′1|U ′1 (resp. x′2|U ′2) is a defining function of E′f ∩U ′1 (resp. E′f ∩U ′2);
(c) x′0|E′f∩U ′1 (resp. (x′0)−1|E′

f
∩U ′2) is a parameter of E′f ∩ U ′1 (∼= A1

k)
(resp. E′f ∩ U ′2 (∼= A1

k));
(d) x′0|U ′1 (resp. (x′0)−1|U ′2) is a defining function of D′1∩U ′1 (resp. D′2∩

U ′2), where D′1 (resp. D′2) is the preimage of D̃1 (resp. D̃2) under f̃
with reduced structure.

Thus, Statements (1) and (2) hold. Let us show Statement (3). We have
only to show the case x = xi for i ∈ {1, 2}. The equality τxi = ρi(τ)xi holds
in mi/m

2
i , where xi is the image of xi under the quotient homomorphism

mi → mi/m
2
i . Thus, the rational function τxi/xi on X is a nowhere-zero

regular function on X whose value at D1 ∩ D2 is equal to ρi(τ). Since
f(Ef ) = D1 ∩D2, Statement (3) holds. �

Although Lemma 4.3(1) gives two defining functions of Ef ∩ Ũ0, we use
only x′1 in the following. Choose c ∈ k ∪ {∞}. Put

x(c) :=
{
x′0 − c if c ∈ k,
(x′0)−1 otherwise.

We introduce the following notation:
P̃ (c): the closed point on Ef defined by x(c) = 0;
Q̃(c): the closed point q̃(P̃ (c)) on Ẽ;
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R̃(c): the completion of OX̃,P̃ (c)
with respect to the maximal ideal;

Ef,(c): the base change of Ef via the morphism Spec R̃(c) → X̃;
G(c): the stabilizer subgroup of the action of G at P̃ (c);
N(c): the order of G(c);
G′: the preimage of nZ/mZ under the quotient homomorphism G →

G/H ∼= Z/mZ (1.4).
Then the equality

(4.5) (G(c), N(c)) =
{

(G, pm) if c ∈ {0,∞},
(G′, pm′) otherwise (3.1)

holds. If c /∈ {0,∞}, then Ef,(c) is the spectrum of the complete discrete
valuation ring R̃(c)/(x′1) with uniformizer x(c)|Ef,(c) , and the action of G(c)
on Ef,(c) is trivial (Lemma 4.3). Put

C := {ζ ∈ k | ζd = 1}, S̃(c) := (R̃(c))H , and T̃ (c) := (R̃(c))G(c) .

Then OỸ ,Q̃(c)
⊂ T̃ (c) ⊂ S̃(c) ⊂ R̃(c) are extensions of normal integral do-

mains. In the following, we study T̃ (c), which is a completion of OỸ ,Q̃(c)

with respect to the maximal ideal. For an extension A′/A of integral do-
mains, we denote the degree of the extension of their fields of fractions by
[A′ : A]. Then the equalities

(4.6) [R̃(c) : S̃(c)] = p and [R̃(c) : T̃ (c)] = N(c)

hold. We define elements of k((x1, x2))H by

y(c) :=
∏
τ∈H

τx(c), y′1 :=
∏
τ∈H

τx′1, z := x−α1
1 − x−α2

2

(4.1), and
z′ := yb11 y

b2
2 z

e

((3.2), (3.3), and (3.11)). Then y(c) ∈ S̃(c), y′1/(x′1)p ∈ (R̃(c))×, and

(4.7) xαii z =
{

1− (x′0)d ∈ (R̃(c))× if i = 1 and c /∈ C ∪ {∞},
(x′0)−d − 1 ∈ (R̃(c))× if i = 2 and c /∈ C ∪ {0}.

If c ∈ C, then xα1
1 z/x(c) ∈ (R̃(c))×, which implies that y(c)/x

p
(c) ∈ (R̃(c))×.

If c ∈ C (resp. c /∈ C ∪ {∞}, resp. c /∈ C ∪ {0}), then z′/(xe(c)x′1) ∈ (R̃(c))×

(resp. z′/x′1 ∈ (R̃(c))×, resp. z′/((x′0)edx′1) ∈ (R̃(c))×). In each case of (4.7),
we may take x̃i(c) ∈ R̃(c) so that (x̃i(c))αi = z−1 since p 6 | αi (Lemma 3.2).
Then x̃i(c)/xi ∈ (R̃(c))× and x̃i(c) ∈ S̃(c) since (x̃i(c))αi ∈ S̃(c) and #H = p.
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Definition 4.4. — For each i ∈ {1, 2}, the character ρi : G → k× fac-
tors through the quotient homomorphism G → G/H and induces a char-
acter ρi : G/H → k× since Ker ρi = H. Put ρ := (ρ1)pb1−eda1(ρ2)pb2 .
Take x ∈ S̃(c) \ {0}. We consider one of the following cases:
(1) c ∈ {0,∞} and τx/x ∈ (S̃(c))× for any τ ∈ G/H;
(2) c /∈ {0,∞}.

Then we define the linearization of x by

Lx :=
∑

τ∈G(c)/H

ζ−1
τ τx,

where ζτ in Case (1) (resp. Case (2)) is the image of τx/x in the residue
field k of S̃(c) (resp. ρ(τ)l for the unique l ∈ Z>0 satisfying x/(x′1)l ∈ R̃(c)
and (x/(x′1)l)|Ef,(c) 6= 0).

Remark 4.5. — The equality ord ρ|G′/H = m′ holds ((1.4), (3.1), and
(4.2)). The map G(c)/H → k×, τ 7→ ζτ is a character, the equality
τ(Lx) = ζτLx holds for any τ ∈ G(c)/H, and the following statements
hold: in Case (1), (Lx)/x ∈ (S̃(c))×; in Case (2), (Lx)/(x′1)l ∈ R̃(c) and
((Lx)/(x′1)l)|Ef,(c) = m′(x/(x′1)l)|Ef,(c) (Lemma 4.3).

Proposition 4.6. — Assume that c /∈ C ∪ {0,∞}. Then the equality
T̃ (c) = k[[Ly(c), (Lz′)m

′ ]] holds. In particular, the ring T̃ (c) is regular, and
Ly(c) (resp. (Lz′)m′) is a parameter (resp. a defining function) of Ẽ at Q̃(c).

Proof. — Put y1(c) := Lz′ ∈ S̃(c). Since y1(c)/x
′
1 ∈ (R̃(c))×, the equalities

R̃(c) = k[[x(c), x
′
1]] = k[[x(c), y1(c)]]

hold (Lemma 4.3). Put

z0(c) := Ly(c) ∈ T̃ (c) and S(c) := k[[z0(c), y1(c)]] ⊂ S̃(c).

Then S(c) ⊂ S̃(c) ⊂ R̃(c) are finite extensions of normal integral domains
since the S(c)/(y1(c))-module R̃(c)/(y1(c)) is generated by {xi(c)}

p−1
i=0 . Thus,

since the equalities

[R̃(c) : S(c)] = p = [R̃(c) : S̃(c)]

hold (4.6), the equality S(c) = S̃(c) holds. Put

z1(c) := ym
′

1(c) ∈ T̃ (c) and T(c) := k[[z0(c), z1(c)]] ⊂ T̃ (c).

Then T(c) ⊂ T̃ (c) ⊂ S̃(c) are finite extensions of normal integral domains
since the T(c)-module S̃(c) is generated by {yi1(c)}

m′−1
i=0 . Thus, since the
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equalities
[S̃(c) : T(c)] = m′ = [S̃(c) : T̃ (c)]

hold (4.6), the equality T(c) = T̃ (c) holds. Since x(c) (resp. x′1) is a parameter
(resp. a defining function) of Ef at P̃ (c) (Lemma 4.3), the regular function
z0(c) (resp. z1(c)) is a parameter (resp. a defining function) of Ẽ at Q̃(c). �

Assume that c ∈ C ∪ {0,∞}. Put

j :=


1 if c = 0,
2 if c =∞,
3 otherwise,

(w1, w2) :=
{

(v1,
1
pv2) if c = 0,

( 1
pv1, v2) otherwise,

and
Λj := Zw1 + Zw2.

We denote the dual lattice of Λj by Λ∨j and the dual of the basis (v1, v2)
(resp. (w1, w2)) by (v∨1 , v∨2 ) (resp. (w∨1 , w∨2 )). We define v∨0 ∈ Γ∨0 and w∨0 ∈
Λ∨j in the following way:
(4.8)

v∨0 :=


a1v
∨
1 − a2v

∨
2 if c = 0,

−a1v
∨
1 + a2v

∨
2 if c =∞,

−ev∨1 + v∨2 otherwise;
w∨0 :=


pa1w

∨
1 − a2w

∨
2 if c = 0,

−a1w
∨
1 + pa2w

∨
2 if c =∞,

−ew∨1 + pw∨2 otherwise.

Then the equality

(4.9) (w∨0 , w∨1 , w∨2 ) =
{

(pv∨0 , v∨1 , pv∨2 ) if c = 0,
(pv∨0 , pv∨1 , v∨2 ) otherwise

holds. We define submonoids of Γ∨0 by

BR :=
2∑
i=0

Z>0v
∨
i and BS :=

2∑
i=0

Z>0w
∨
i .

Put

(x1(c), x2(c), y1(c), y2(c)) :=
{

(x1, x2, Lx̃1(0), Ly2) if c = 0,
(x1, x2, Ly1, Lx̃2(∞)) if c =∞.

If c ∈ C, then we put

z(c) := (y(c)y
′
1)ν(z′)−da1a2 , x̃(c) := (Lz(c))(x′1)da1a2−pν ,
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and

(x1(c), x2(c), y1(c), y2(c))

:= (x̃(c), (x̃(c))ex′1, (Lz(c))p(Ly′1)da1a2−pν , (Lz(c))e(Ly′1)(1−e)ν)

(3.10), where z(c)/(x(c)(x′1)pν−da1a2) ∈ (R̃(c))×, x̃(c) ∈ R̃(c), and x̃(c)|Ef,(c)
is a uniformizer of R̃(c)/(x′1). Put

(4.10) x0(c) := xl11(c)x
l2
2(c) (resp. y0(c) := yl11(c)y

l2
2(c)),

where v∨0 = l1v
∨
1 + l2v

∨
2 (resp. w∨0 = l1w

∨
1 + l2w

∨
2 ) (4.8). Note that the

equality

(4.11) (x0(c), x1(c), x2(c)) =
{

(x(c), x1, x2) if c ∈ {0,∞},
(x′1, x̃(c), (x̃(c))ex′1) otherwise

holds, and yi(c)/xlii(c) ∈ (R̃(c))× for any i ∈ {0, 1, 2}, where w∨i = liv
∨
i (4.9).

Thus, we conclude that xi(c) ∈ R̃(c) and yi(c) ∈ S̃(c) for any i ∈ {0, 1, 2}.
Put

R(c) := k[[x0(c), x1(c), x2(c)]] ⊂ R̃(c) and S(c) := k[[y0(c), y1(c), y2(c)]] ⊂ S̃(c).

For a commutative monoid B, by k[[B]] we denote the completion of the
monoid ring k[B] with respect to the ideal generated by B \ {0}.

Lemma 4.7. — Take the following k-algebra homomorphisms:

pR : k[[X0, X1, X2]] −→ k[[BR]], Xi 7−→ v∨i for i ∈ {0, 1, 2};
pS : k[[Y0, Y1, Y2]] −→ k[[BS ]], Yi 7−→ w∨i for i ∈ {0, 1, 2};
φR : k[[X0, X1, X2]] −→ R(c), Xi 7−→ xi(c) for i ∈ {0, 1, 2};
φS : k[[Y0, Y1, Y2]] −→ S(c), Yi 7−→ yi(c) for i ∈ {0, 1, 2}.

Then φR (resp. φS) factors through pR (resp. pS) and induces a k-algebra
homomorphism φR : k[[BR]] → R(c) (resp. φS : k[[BS ]] → S(c)). Moreover,
the homomorphisms φR and φS are bijective.

Proof. — The equalities φR(bR) = 0 and φS(bS) = 0 hold (4.10), where

(bR, bS) :=


(Xa1

1 −X0X
a2
2 , Y pa1

1 − Y0Y
a2
2 ) if c = 0,

(X0X
a1
1 −X

a2
2 , Y0Y

a1
1 − Y pa2

2 ) if c =∞,
(X0X

e
1 −X2, Y0Y

e
1 − Y

p
2 ) otherwise.

Thus, the equalities Ker pR = (bR) and Ker pS = (bS) (4.8) prove the
first statement. Since φR and φS are surjective homomorphisms between
Noetherian local integral domains of same dimension, they are bijective. �
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Take the normalization R(c) (resp. S(c)) of R(c) (resp. S(c)).

Lemma 4.8. — The following statements hold.
(1) The k-algebra R(c) (resp. S(c)) is isomorphic to k[[Σ∨j ∩ Γ∨0 ]] (resp.

k[[Σ∨j ∩ Λ∨j ]]), where xi(c) (resp. yi(c)) maps to v∨i (resp. w∨i ) for
i ∈ {0, 1, 2}.

(2) The equalities R(c) = R̃(c) and S(c) = S̃(c) hold.

Proof. — By Lemma 4.7, we identify R(c) (resp. S(c)) with k[[BR]] (resp.
k[[BS ]]), where xi(c) (resp. yi(c)) is identified with v∨i (resp. w∨i ) for i ∈
{0, 1, 2}. Put

BR := Σ∨j ∩ Γ∨0 and BS := Σ∨j ∩ Λ∨j .

Since BR (resp. BS) is the saturation of the commutative monoid BR
(resp. BS), the k-algebra k[BR] (resp. k[BS ]) is the normalization of k[BR]
(resp. k[BS ]) [3, 1.3.8], which implies that k[[BR]] (resp. k[[BS ]]) is the nor-
malization of k[[BR]] (resp. k[[BS ]]). Thus, the equalities R(c) = k[[BR]]
and S(c) = k[[BS ]] hold, which proves Statement (1). Therefore, since
k[[BR]] = R̃(c) (4.11), the equality R(c) = R̃(c) holds. Note that S(c) ⊂
S̃(c) ⊂ R̃(c) are finite extensions of normal integral domains since the equal-
ity BR =

⋃
(v∨ +BS) holds, where v∨ runs through the finite set{
l1v
∨
1 + l2v

∨
2 ∈ BR

∣∣ max{|l1|, |l2|} < pmax{a1, a2, e}
}
.

Thus, since the equalities

[R̃(c) : S(c)] = [Γ∨0 : Λ∨j ] = [Λj : Γ0] = p = [R̃(c) : S̃(c)]

hold (4.6), the equality S(c) = S̃(c) holds, which proves Statement (2). �

Lemma 4.9. — The equality

Γ∨j =


N−1

(c) {l1w
∨
1 + l2w

∨
2 ∈ Λ∨j | ρ

l1
1 ρ

pl2
2 = 1} if c = 0,

N−1
(c) {l1w

∨
1 + l2w

∨
2 ∈ Λ∨j | ρ

pl1
1 ρl22 = 1} if c =∞,

N−1
(c) {l1w

∨
1 + l2w

∨
2 ∈ Λ∨j | l2 ∈ m′Z} otherwise

holds (4.5). In particular, the equality R>0w
∨
i ∩ Γ∨j = Z>0N

−1
(c) lw

∨
i holds,

where

l :=


n if c ∈ {0,∞} and i = 0,
m if c ∈ {0,∞} and i ∈ {1, 2},
m′ if c ∈ C and i ∈ {0, 2},
1 if c ∈ C and i = 1.
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Proof. — Take e1 ∈ Z (resp. e2 ∈ Z) satisfying ρe11 = ρp2 (resp. ρp1 = ρe22 ).
Then the equality

Γj =


Zpmv1 + Zmv2 + Z(pv1 + e1v2) if c = 0,
Zmv1 + Zpmv2 + Z(e2v1 + pv2) if c =∞,
Zm′v1 + Zpv2 otherwise

holds, which gives the equality

N−1
(c) Γj =


Zw1 + Zw2 + Z 1

m (w1 + e1w2) if c = 0,
Zw1 + Zw2 + Z 1

m (e2w1 + w2) if c =∞,
Zw1 + Z 1

m′w2 otherwise.

Thus, the equalities

N(c)Γ∨j = (N−1
(c) Γj)∨ =


Zmw∨1 + Zmw∨2 + Z(e1w

∨
1 − w∨2 ) if c = 0,

Zmw∨1 + Zmw∨2 + Z(w∨1 − e2w
∨
2 ) if c =∞,

Zw∨1 + Zm′w∨2 otherwise

hold, which concludes the proof. �

Proposition 4.10. — The k-algebra T̃ (c) is isomorphic to k[[Σ∨j ∩Γ∨j ]],
where yl11(c)y

l2
2(c) maps to w∨ for any w∨ = N−1

(c) (l1w∨1 + l2w
∨
2 ) ∈ Σ∨j ∩

Γ∨j (4.5).

Proof. — By multiplying Γ∨j by N(c), we have only to show that the k-
algebra T̃ (c) is isomorphic to k[[Σ∨j ∩N(c)Γ∨j ]], where yl11(c)y

l2
2(c) maps to w∨

for any w∨ = l1w
∨
1 + l2w

∨
2 ∈ Σ∨j ∩N(c)Γ∨j . Put

BS := Σ∨j ∩ Λ∨j , BT := Σ∨j ∩N(c)Γ∨j , and T (c) := k[[BT ]].

By Lemma 4.8, we identify S̃(c) with k[[BS ]], where yi(c) is identified with
w∨i for i ∈ {0, 1, 2}. Since N(c)Λj ⊂ Γj , we conclude that BT ⊂ BS . Thus,
we may regard T (c) as a subring of S̃(c). Note that T (c) ⊂ T̃ (c) ⊂ S̃(c) are
finite extensions of normal integral domains (Lemma 4.9) since the equality
BS =

⋃
(w∨ +BT ) holds, where w∨ runs through the finite set{
l1w
∨
1 + l2w

∨
2 ∈ BS

∣∣ max{|l1|, |l2|} < N(c) max{a1, a2}
}
.

Thus, since the equalities

[S̃(c) : T (c)] = [Λ∨j : N(c)Γ∨j ] =
N2

(c)

[Γ∨j : Λ∨j ] =
N2

(c)

[Λj : Γ0][Γ0 : Γj ]

=
N(c)

p
= [S̃(c) : T̃ (c)]
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hold (4.6), the equality T (c) = T̃ (c) holds, which concludes the proof. �

Proof of Theorem 3.4. — Lemma 4.3 shows that the action of G on Ef
induces a faithful action of G/G′ (∼= Z/nZ) on Ef (∼= P1

k) with fixed locus
{P̃ (0), P̃ (∞)}. Moreover, the equalities Q1 = Q̃(0) and Q2 = Q̃(∞) hold.
Thus, Propositions 4.6 and 4.10 show the following. For any i ∈ {1, 2}, the
scheme Ỹ has a singularity at Qi whose completion is isomorphic to Zi. The
other singularities are contained in Ẽ, their number is equal to d′, and any
of their completions is isomorphic to Z3. Therefore, Statement (1) holds.
For c ∈ C ∪ {0,∞}, we denote the preimage of Q̃(c) under h̃ with reduced
structure by E(c). Since y0(c)/x

p
(c) ∈ (R̃(c))× for any c ∈ {0,∞} (resp.

y1(c)/(x̃(c))p ∈ (R̃(c))× for any c ∈ C), Proposition 4.10 and Lemma 4.9
show that yn0(c) (resp. y1(c)) is a parameter of E0 and a defining function
of E(c) at the closed point E0 ∩ E(c) for any c ∈ {0,∞} (resp. c ∈ C),
which proves Statement (2). In particular, the desingularization h of Y is
good. Moreover, since the desingularization h̃ of Ỹ is minimal good, and
E0 intersects with more than two irreducible components {Ei,1}d

′+2
i=1 of Eh,

the desingularization h of Y is minimal good, which proves Statement (3).
Since y1(∞)/x

p
1 ∈ (R̃(∞))× (resp. y2(0)/x

p
2 ∈ (R̃(0))×), Proposition 4.10 and

Lemma 4.9 show that ym1(∞) (resp. ym2(0)) is a parameter of D̂2 (resp. D̂1)
and a defining function of Eh at the closed point D̂2 ∩Eh (resp. D̂1 ∩Eh),
which proves Statement (4). �

5. Intersection Matrix

We use the notation introduced in Section 4. Recall that (vi,Γi,Σi)3
i=0

(resp. (mi, ki)i∈I) is introduced in (3.4) (resp. (3.18)). Put

v̂i :=


(pb̂2, b̂1) = pn1v0 +m′v′1 for i = 1 (3.16),
(ĉ2, pĉ1) = pn2v0 +m′v′2 for i = 2 (3.16),
(m′, pe′) for i = 3 ((3.1) and (3.17)).

Lemma 5.1. — The following holds:

(1) Zv̂1 + Zpnv0 = Γ1, Zv̂2 + Zpnv0 = Γ2, and Zv̂3 + Zpv2 = Γ3;
(2) v̂i ∈ Σi for any i ∈ I;
(3) miv̂i−kipnv0 = pmvi for any i ∈ {1, 2} and m3v̂3−k3pv2 = pm′v3;
(4) gcd(mi, ki) = 1 and 0 < ki < mi for any i ∈ I.
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Proof. — We denote the left hand side in (1) by Γ′i in each case i ∈ I.
Note that the following equalities hold ((4.2)–(4.3)):

det
(
v0
v̂1

)
= m′ det

(
v0
v′1

)
= −m′; det

(
v0
v̂2

)
= m′ det

(
v0
v′2

)
= m′;(5.1)

det
(
v2
v̂3

)
= det

(
0 1
m′ pe′

)
= −m′;(5.2)

det
(
v3
v̂3

)
= det

(
1 e

m′ pe′

)
= pe′ −m′e.(5.3)

Equalities (5.1)–(5.2) give the following equalities:

[Γ0 : Γ′1] = pnm′ = pm = [Γ0 : Γ1];
[Γ0 : Γ′2] = pnm′ = pm = [Γ0 : Γ2];
[Γ0 : Γ′3] = pm′ = [Γ0 : Γ3].

Thus, since Γ′i ⊂ Γi, the equality Γ′i = Γi holds for any i ∈ I, which
proves (1). Since m′ > 0, Equalities (5.1) show that v̂i ∈ Σi for any i ∈
{1, 2}. Since p 6 | m′e (3.3) and e′ = dm′e/pe (3.17), the inequalities

(5.4) 0 < pe′ −m′e < p

hold. In particular, Equalities (5.3) show that v̂3 ∈ Σ3, which concludes the
proof of (2). Equalities (5.1) show (3). Thus, Lemma 3.5, Inequalities (5.4),
and (1)–(3) show (4). �

For c ∈ k ∪ {∞}, by Q(c) we denote the closed point E0 ∩ (h̃)−1(Q̃(c))
on Ŷ . By Eh̃ we denote the exceptional locus of h̃ with reduced structure.
Put

(ŷ1(c), ŷ2(c)) :=


(yn0(0), y

−b̂1
1(0)y

b̂2
2(0)) for c = 0,

(yn0(∞), y
ĉ1
1(∞)y

−ĉ2
2(∞)) for c =∞,

(y1(c), y
−e′
1(c)y

m′

2(c)) for c ∈ C.

Proposition 4.10 and Lemmas 4.9 and 5.1(1)–(2) show the following:

Lemma 5.2. — For any c ∈ C∪{0,∞}, the rational function ŷ1(c) (resp.
ŷ2(c)) is regular and defines Eh̃ (resp. E0) at Q(c).

Lemma 5.3. — The equality E2
0 = −b0 holds (3.17).

Proof. — We define an element of k((x1, x2))G by

ẑ :=
∏

τ∈G/G′
τ

( ∑
τ ′∈G′/H

ρ(τ ′)−1τ ′z′

)m′
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(Definition 4.4). For any c ∈ k \ (C ∪ {0}), Proposition 4.6 implies that
ẑ is a defining function of nẼ at Q̃(c), which implies that ẑ is a defining
function of nE0 at Q(c) since the restriction Ŷ \ Eh̃ → Ỹ \ {Qi}i∈Iall of h̃
is an isomorphism (Theorem 3.4(2)). Note that the following holds:{

ŷ1(0)

(x′0)pn ,
ŷ2(0)

x−b̂11 xpb̂22

,
ẑ

(x′1)m

}
⊂ (R̃(0))×;{

ŷ1(∞)

(x′0)−pn ,
ŷ2(∞)

xpĉ11 x−ĉ22
,

ẑ

((x′0)edx′1)m

}
⊂ (R̃(∞))×;{

ŷ1(c)

(x̃(c))p
,

ŷ2(c)

(x̃(c))m′e−pe′(x′1)m′ ,
(ŷ1(c))ne

′(ŷ2(c))n

(x̃(c))me(x′1)m

}
⊂ (R̃(c))×,{ (ŷ1(c))ne

′(ŷ2(c))n

(x′1)m ,
ẑ

(x′1)m

}
⊂ R̃(c),

and{ ((ŷ1(c))ne
′(ŷ2(c))n(x′1)−m)|Ef,(c)
(x̃(c))me|Ef,(c)

,
(ẑ(x′1)−m)|Ef,(c)
(x̃(c))me|Ef,(c)

}
⊂ (R̃(c)/(x′1))×

for any c ∈ C. The equality nv̂i = pnniv0 + mv′i holds for any i ∈ {1, 2}.
Thus, since v′1 + v′2 = (ed+ pn0)v0 ((3.12) and (3.14)), the equality nv̂2 =
(pnn′2+med)v0−mv′1 holds, where n′2 := m′n0+n2. Therefore, we conclude
that

ẑ

(ŷ1(0))n1(ŷ2(0))n
∈ (R̃(0))×,

ẑ

(ŷ1(∞))n
′
2(ŷ2(∞))n

∈ (R̃(∞))×,

and
(ẑ(x′1)−m)|Ef,(c)

((ŷ1(c))ne′(ŷ2(c))n(x′1)−m)|Ef,(c)
∈ (R̃(c)/(x′1))×

for any c ∈ C. Thus, Lemma 5.2 implies that there exist an open neighbor-
hood U of E0 in Ŷ and a divisor DU on U such that the intersection
of the supports of DU and E0 is contained in {Q(c)}c∈C , DU |E0 = 0,
and ẑU ∈ H0(U,L), where ẑU := ẑ|U and L := OU (DU − nE0). Put
T := (L/ẑUOU )|E0 . Since #{Q(c)}c∈C = d′ (1.4), the equalities

h0(T ) = n1 + n′2 + ne′d′ = m′n0 + n1 + n2 + ne′d′

hold. Therefore, the equalities

−nE2
0 = (DU − nE0) · E0 = degL|E0 = h0(T )

conclude the proof. �
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Put

(5.5) (d1, d2, d3) := (1, 1, d′)

(1.4), where di is equal to the number of the singular points of Ỹ corre-
sponding to Zi in Theorem 3.4(1) for any i ∈ I.

Lemma 5.4. — The equality(
b0 −

∑
i∈I

diki
mi

)
pna1a2 = m′

holds ((1.3)–(1.4), (3.1), (3.17)–(3.18), and (5.5)).

Proof. — The following equalities hold:

b0pna1a2 = pm′a2(c1 − b1) + p(n1 + n2)a1a2 + pe′da1a2;(∑
i∈I

diki
mi

)
pna1a2 = b̂1a2 + ĉ2a1 + (pe′ −m′e)da1a2

= −pm′(a2b1 + a1c2) + p(n1 + n2)a1a2

+ (pe′ +m′e)da1a2.

By subtracting the second from the first, we obtain the equalities(
b0 −

∑
i∈I

diki
mi

)
pna1a2 = pm′(a1c2 + a2c1)−m′eda1a2 = m′,

which concludes the proof. �

Proof of Theorem 3.6. — Let us show the first statement. Theorem 3.4(2)
shows that h is a good desingularization, and the dual graph of Eh is a star-
shaped tree with central node (resp. d′ + 2 branches) corresponding to E0
(resp. the exceptional loci (El)l∈Iall of the Hirzebruch–Jung desingulariza-
tions). Take l ∈ Iall. Put i := min{l, 3}. Proposition 4.10 and Lemma 5.1
show that the intersection matrix of El with respect to the ordered basis
(El,j)slj=1 is equal to Ωi [3, 10.2.3 and 10.4.4], which is the ri × ri matrix
associated with mi/ki (Section 2). In particular, the equality sl = ri holds.
Moreover, Lemma 5.3 gives the equality E2

0 = −b0, which concludes the
proof of the first statement.
Let us show the last equality. By Ω′i we denote the submatrix of Ωi

formed by deleting the first row and the first column. By I ′ we denote the
multiset consisting of di copies of i for i ∈ I. Then the equality

det Ωh = −b0
∏
i∈I′

det Ωi −
∑
i′∈I′

det Ω′i′
∏

i∈I′\{i′}

det Ωi
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holds. Since the equalities

det Ωi = (−1)rimi and det Ω′i = (−1)ri−1ki

hold for any i ∈ I (Section 2), the equality

det Ωh = (−1)rtot

(
b0 −

∑
i∈I

diki
mi

)
m1m2m

d′

3

holds. Thus, since (m1,m2,m3) = (pna1, pna2, p) (3.18), Lemma 5.4 con-
cludes the proof. �

Proof of Theorem 1.2. — By taking the absolute values of both sides of
the equality

det Ωh = (−1)rtotpd
′+1m

(Theorem 3.6), we obtain the desired equality δ = pd
′+1m. �

Finally, we show that δ does not depend on the choice of a good desin-
gularization.

Proposition 5.5. — Let X0 be the spectrum of an excellent normal
local ring of dimension two with algebraically closed residue field. For
i ∈ {1, 2}, let fi : Xi → X0 be a good desingularization of X0. By Efi
we denote the exceptional locus of fi with reduced structure. Let Ωfi be
an intersection matrix of Efi (with respect to an ordered basis of the irre-
ducible components of Efi). Then the equality |det Ωf1 | = |det Ωf2 | holds.

Proof. — The good desingularizations f1 and f2 of X0 are dominated by
a good desingularization of X0 via proper birational morphisms, each of
which is a finite succession of blowing-ups at closed points. Thus, we may
assume that f2 = f1 ◦f3, and f3 is a blowing-up at a closed point P on X1.
Let A be an r× r intersection matrix of the irreducible components of Ef1

that do not contain P . By s we denote the number of the irreducible com-
ponents of Ef1 that contain P . Since the absolute value of the determinant
of an intersection matrix does not depend on the choice of an ordered basis
of the irreducible components, we may assume that the equalities

Ωf1 =
(
A B
tB C

)
and Ωf2 =

A B 0
tB C ′ D

0 tD −1


hold, where B is an r × s matrix, C and C ′ are s × s matrices, D is an
s × 1 matrix, and all entries of C − C ′ and D are equal to one. Thus, the
equality det Ωf2 = −det Ωf1 holds, which concludes the proof. �
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6. Fundamental Cycle

We use the notation introduced in Section 3. By Div+
h we denote the

set of positive divisors on Ŷ whose supports are contained in Eh. The
fundamental cycle Z of h is the minimum divisor in

{D ∈ Div+
h | ∀ D

′ ∈ Div+
h , D ·D

′ 6 0},

which always exists [1, p. 132]. We may write

Z = λ0E0 +
∑
i∈Iall

si∑
j=1

λi,jEi,j ,

where λ0 ∈ Z>0 and λi,j ∈ Z>0. Since Z is minimum, the equality

(λi1,j)
r3
j=1 = (λi2,j)

r3
j=1

holds for any (i1, i2) ∈ I2
3 (Theorem 3.6). Thus, in the following, we study

λ0 and (λi,j)rij=1 for i ∈ I. Recall that the actions of G on k[[x1]] and k[[x2]]
determine the integers a1, a2, m, n, b0, and (mi, ki, di)i∈I ((1.3)–(1.4),
(3.17)–(3.18), and (5.5)). For u ∈ Z, we put

κu := ub0 −
∑
i∈I

di

⌈
uki
mi

⌉
.

Then Lemma 5.4 gives the equality

(6.1) κu = um

pn2a1a2
−
∑
i∈I

di

〈
uki
mi

〉
,

where 〈x〉 := dxe − x for x ∈ R. Since E0 ∼= P1
k (Theorem 3.4(2)), we may

calculate Z and pf by means of the formulas for a desingularization with
star-shaped dual graph whose branches are induced by the Hirzebruch–
Jung desingularizations [12, §3]:

Corollary 6.1. — For i ∈ I, we denote the vector associated with
mi/ki by (vi,j)ri+1

j=0 (Section 2) and put λi,0 := λ0. Then the equalities

λ0 = min{u ∈ Z | u > 1 and κu > 0} and λi,j =
⌈
λi,j−1vi,j
vi,j−1

⌉
hold for any (i, j) ∈ I × Z satisfying 1 6 j 6 ri. Moreover, the equalities

pf = −(λ0 − 1)
(
λ0b0

2 + 1
)

+
∑
i∈I

di

λ0−1∑
u=1

⌈
uki
mi

⌉
= −(λ0 − 1)

(
λ0m

2pn2a1a2
+ 1
)

+
∑
i∈I

di

λ0−1∑
u=1

〈
uki
mi

〉
hold.
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Proof. — The first two equalities follow from Theorem 3.6 and [12, §3,
pp. 282–283]. Take a closed point P on E0. Since E0 ∼= P1

k (Theorem 3.4(2)),
Theorem 3.6 gives the equality pf =

∑λ0−1
u=1 h1(OE0(κuP )) [12, 3.1]. Since

h1(OE0(κP )) = −κ−1 for any κ ∈ Z<0, the equality pf = −
∑λ0−1
u=1 (κu+1)

holds, which concludes the proof. �

Example 6.2. — Assume that α1 = α2 = m = p − 1 and n = 1. Then
d′ = p − 1, (mi, ki) = (p, 1) for any i ∈ I, and b0 = 2 (Corollary 3.10),
which implies that κu = 2u − (p + 1)du/pe. If p = 2 (resp. p > 2), then
κ1 = −1 and κ2 = 1 (resp. κu = 2u− (p+ 1) 6 −2 for any u ∈ Z satisfying
1 6 u 6 (p− 1)/2 and κ(p+1)/2 = 0). Thus, the equalities

λ0 =
⌈
p+ 1

2

⌉
and pf = (λ0−1)(p−λ0) =

(⌈
p+ 1

2

⌉
−1
)(

p−
⌈
p+ 1

2

⌉)
hold. In particular, the singularity of Y is rational if and only if p = 2.

Put λi := λi,1 for i ∈ I. Let us estimate the quotient λi/λ0.

Lemma 6.3. — The following inequalities hold:

λi
λ0
>

ki
mi

for any i ∈ I;(6.2) ∑
i∈I

di

(
λi
λ0
− ki
mi

)
6

m

pn2a1a2
;(6.3)

− m

pn2a1a2
6
λ1

λ0
− b̂2
na2
6 0;(6.4)

− m

pn2a1a2
6
λ2

λ0
− ĉ1
na1
6 0.(6.5)

Moreover, the following statements hold:
(1) the inequality in (6.2) is an equality for i ∈ I if and only if mi

divides λ0;
(2) the last inequality in (6.4) (resp. (6.5)) is an equality if and only if

the inequality in (6.2) is an equality for any i ∈ {2, 3} (resp. {1, 3});
(3) if the equivalent statements in (2) hold, then the first inequality

in (6.5) (resp. (6.4)) is an equality.

Proof. — Since λ0 > 1 and λi = dλ0ki/mie for any i ∈ I (Corollary 6.1),
the equality

λi
λ0
− ki
mi

= 1
λ0

〈
λ0ki
mi

〉
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holds, which proves (6.2) and (1). Since κλ0 > 0 (Corollary 6.1), the in-
equality ∑

i∈I

di
λ0

〈
λ0ki
mi

〉
6

m

pn2a1a2

holds (6.1), which proves (6.3). In particular, the inequalities

0 6 λi
λ0
− ki
mi
6

m

pn2dia1a2

hold for any i ∈ I. Thus, the equalities

k1

m1
+ m

pn2a1a2
= b̂2
na2

and k2

m2
+ m

pn2a1a2
= ĉ1
na1

((3.11), (3.16), and (3.18)) show the other statements. �

Theorem 6.4. — Assume that G ∼= Z/pZ. Then the following equality
holds:

(λ0, λ1, λ2, λ3) =


(pa1, eda1 − pb1, pc1, (p− e)a1) if a1 < a2,

(pa2, pb2, eda2 − pc2, (p− e)a2) if a1 > a2,

(p, p− 1, p− 1, p− e) otherwise.

Remark that a1 = a2 = 1 if a1 = a2 (1.3).

Proof. — By (λ′0, λ′1, λ′2, λ′3) we denote the right hand side. We use Corol-
lary 3.8. The equality

κu = u

pa1a2
−
〈
u(eda1 − pb1)

pa1

〉
−
〈
u(eda2 − pc2)

pa2

〉
− d
〈
u(p− e)

p

〉
holds (6.1). If a1 = a2, then κλ′0 = 1. Since the equalities

u(eda1 − pb1)
pa1

= u(pa1b2 − 1)
pa1a2

and u(eda2 − pc2)
pa2

= u(pa2c1 − 1)
pa1a2

hold (3.11), the equality κλ′0 = 0 holds if a1 6= a2. Thus, since κλ′0 > 0,
the inequality λ0 6 λ′0 holds. Lemma 6.3(3) implies that either λ1/λ0 6=
b2/a2 or λ2/λ0 6= c1/a1 holds. In the former case (resp. the latter case),
the inequality λ0 > pa1 (resp. λ0 > pa2) holds (6.4) (resp. (6.5)). Since
λ′0 = pmin{a1, a2}, we obtain the inequality λ0 > λ′0. Thus, the equality
λ0 = λ′0 holds. Therefore, the equality λi = λ′i for any i ∈ I follows from
Lemma 6.3(1)–(2). �
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Lemma 6.5. — Take (a, b, c) ∈ Z>1×Z>1×Z. Assume that gcd(b, c) = 1.
Then the equalities

ab−1∑
u=0

〈
uc

b

〉
= a(b− 1)

2 and
ab−1∑
u=0

⌈
uc

b

⌉
= a(abc+ b− c− 1)

2

hold.

Proof. — Since (uc)u0+b−1
u=u0

is a complete system of representatives of
Z/bZ in Z for any u0 ∈ Z, the equalities

ab−1∑
u=0

〈
uc

b

〉
= a

b−1∑
u=0

u

b
= a(b− 1)

2

hold. Thus, the equalities
ab−1∑
u=0

⌈
uc

b

⌉
=
ab−1∑
u=0

(
uc

b
+
〈
uc

b

〉)
= a(abc+ b− c− 1)

2

hold. �

Proof of Theorem 1.3. — We may assume that a1 6 a2. Theorem 6.4
gives the equality λ0 = pa1. Since the equalities

k2

m2
= eda2 − pc2

pa2
= c1
a1
− 1
pa1a2

hold (3.20), the equality〈
uk2

m2

〉
=
〈
uc1
a1

〉
+ u

pa1a2

holds for any u ∈ Z satisfying 0 < u < pa1. Thus, Corollary 6.1 and
Lemma 6.5 give the equalities

pf = −(pa1 − 1)
(

1
2a2

+ 1
)

+
pa1−1∑
u=1

(〈
uk1

pa1

〉
+
〈
uc1
a1

〉
+ u

pa1a2
+ d

〈
uk3

p

〉)
= −pa1 − 1

2a2
− (pa1 − 1)

+ pa1 − 1
2 + p(a1 − 1)

2 + pa1 − 1
2a2

+ (p− 1)α1

2

= (p− 1)(α1 − 1)
2 ,

which concludes the proof. �
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7. Canonical Divisor

We use the notation introduced in Section 3. A canonical divisor Kh of
h is a Q-divisor on Ŷ satisfying the following conditions:

(1) the support of Kh is contained in Eh;
(2) for any integral exceptional divisor E of h, the adjunction formula

Kh · E + E2 = −2 holds.
Note that the right hand side −2 is equal to the degree of a canonical
divisor of E (∼= P1

k). By Condition (1), we may write

Kh = µ0E0 +
∑
i∈Iall

si∑
j=1

µi,jEi,j ,

where µ0 ∈ Q and µi,j ∈ Q. In this section, we show the unique existence
of Kh and calculate Kh and K2

h.

Lemma 7.1. — Let M and K be integers satisfying gcd(M,K) = 1
and 0 < K < M . Take the Hirzebruch–Jung continued fraction [Bj ]rj=1
of M/K (Section 2) and the unique K ′ ∈ Z satisfying M | KK ′ − 1 and
0 < K ′ < M . We denote the vector associated with M/K (resp. M/K ′)
by V (resp. V ′) (Section 2) and the vector whose entries are the reverse of
the entries of V ′ by W :

V = (M,K, . . . , 1, 0) and W = (0, 1, . . . ,K ′,M).

Then {V,W} is a basis of the kernel of the Q-homomorphism

L : Qr+2 −→ Qr, (Aj)r+1
j=0 7−→ (Aj−1 −AjBj +Aj+1)rj=1.

Take µ ∈ Q. Then there exists a unique U = (Uj)r+1
j=0 ∈ Qr+2 such that

L(U) = (Bj − 2)rj=1 and (U0, Ur+1) = (µ, 0). Moreover, the equalities

U = µ+ 1
M

V + 1
M
W + U ′

=
(
µ,

(µ+ 1)K + 1
M

− 1, . . . , µ+ 1 +K ′

M
− 1, 0

)
hold, where U ′ := (−1)r+1

j=0 ∈ Qr+2.

Proof. — By the definition of the entries of V and V ′ (2.1) and the equal-
ity M/K ′ = [Br+1−j ]rj=1 [3, 10.2.6], we conclude that {V,W} ⊂ KerL.
Thus, since V and W are linearly independent over Q, and the equal-
ity dimQ KerL = 2 holds, the set {V,W} is a basis of KerL. Take U =
(Uj)r+1

j=0 ∈ Qr+2. Since L(U ′) = (Bj − 2)rj=1, the following statements are
equivalent:
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(1) L(U) = (Bj − 2)rj=1;
(2) U − U ′ ∈ KerL;
(3) there exists a unique (a, b) ∈ Q2 such that U = aV + bW + U ′.

Assume that the above equivalent statements hold. Then (U0, Ur+1) =
(aM − 1, bM − 1). Thus, the equality (U0, Ur+1) = (µ, 0) holds if and only
if (a, b) = ((µ+ 1)/M, 1/M), which concludes the proof. �

Definition 7.2. — We use the notation introduced in Lemma 7.1. By
U(µ,M,K) we denote the vector (Uj)rj=1 ∈ Qr formed by deleting the
first and last entries of the unique U = (Uj)r+1

j=0 ∈ Qr+2 satisfying L(U) =
(Bj − 2)rj=1 and (U0, Ur+1) = (µ, 0).

Theorem 7.3. — There exists a unique canonical divisor of h. More-
over, the equalities

µ0 = a1 + a2 − (p− 1)da1a2

m′
− 1

((1.3) and (3.1)) and

(7.1) (µl,j)slj=1 = U(µ0,mi, ki)

(3.18) hold for any l ∈ Iall, where i := min{l, 3}.

Proof. — Take the Hirzebruch–Jung continued fraction [bi,j ]rij=1 ofmi/ki
for i ∈ I. Put µl,0 := µ0 and µl,sl+1 := 0 for l ∈ Iall. Condition (2) on Kh

for El,j is satisfied if and only if the equality

µl,j−1 − µl,jbi,j + µl,j+1 = bi,j − 2

holds, where i := min{l, 3} (Theorem 3.6). Thus, Condition (2) on Kh

for all El,j is satisfied if and only if Equality (7.1) holds for any l ∈ Iall
(Lemma 7.1). If these equivalent statements hold, then the equality

µl,1 = (µ0 + 1)ki + 1
mi

− 1

holds for any l ∈ Iall (Lemma 7.1), which gives the equalities∑
l∈Iall

µl,1 =
∑
i∈I

diµi,1 = −2− d′ +
∑
i∈I

(
(µ0 + 1)diki

mi
+ di
mi

)
(5.5). Condition (2) on Kh for E0 is satisfied if and only if the equality

−(µ0 + 1)b0 +
∑
l∈Iall

µl,1 = −2
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holds (Theorem 3.6). Thus, Condition (2) on Kh is satisfied if and only
if Equality (7.1) holds for any l ∈ Iall, and the rational number µ0 is a
solution of the equation

(µ0 + 1)
(
b0 −

∑
i∈I

diki
mi

)
= −d′ +

∑
i∈I

di
mi

.

Lemma 5.4 gives a unique solution of this equation

µ0 = pna1a2

m′

(
−d′ + 1

pna1
+ 1
pna2

+ d′

p

)
− 1

= a1 + a2 − (p− 1)da1a2

m′
− 1,

which concludes the proof. �

Lemma 7.4. — We use the notation introduced in Lemma 7.1. Then
the equality

r∑
j=1

Uj(Bj − 2) = U0 + 2− (U0 + 1)(K + 1) +K ′ + 1
M

+
r∑
j=1

(2−Bj)

holds.

Proof. — Lemma 7.1 gives the following equalities for any j ∈ Z satisfy-
ing 1 6 j 6 r:

−Uj−1 + UjBj − Uj+1 = 2−Bj ; Ur+1 = 0;
(U0 + 1)(K + 1) +K ′ + 1

M
− 2 = U1 + Ur.

By adding both sides, we obtain the desired equality. �

Theorem 7.5. — We use the notation introduced in Theorem 7.3. For
i ∈ I, we take the Hirzebruch–Jung continued fraction [bi,j ]rij=1 of mi/ki
and the unique k′i ∈ Z satisfying mi | kik′i − 1 and 0 < k′i < mi. Then the
equalities

K2
h = µ0(b0 − 2) +

∑
i∈I

di

ri∑
j=1

µi,j(bi,j − 2)

= µ0(b0 − 2) + (d′ + 2)(µ0 + 2)

+
∑
i∈I

di

(
− (µ0 + 1)(ki + 1) + k′i + 1

mi
+

ri∑
j=1

(2− bi,j)
)

hold ((3.17) and (5.5)).
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Proof. — Since Kh · E = −E2 − 2 for any integral exceptional divi-
sor E of h, the first equality follows from Theorem 3.6. Since (µi,j)rij=1 =
U(µ0,mi, ki) for any i ∈ I, the last equality follows from Lemma 7.4. �

8. Geometric Genus

We use the notation introduced in Section 3. The geometric genus pg
of the singularity of Y is most difficult to compute. The difficulty derives
from that of the calculation of the dimension of the differential forms on the
product of two curves invariant under the product action of G (Lemma 8.3).
In this section, we calculate pg in the case G ∼= Z/pZ by generalizing the
method in [6].

Lemma 8.1. — Let α be a positive integer coprime to p and z be a
rational function on P1

k. Assume that z is regular on P1
k \ {0}, and the

order of the pole of z at 0 is equal to α. We denote the normal model of
the equation T p−T = z by π : C → P1

k and the pull-back of the coordinate
function of A1

k = P1
k \ {∞} via π by y. Choose a rational function x on C

satisfying xp − x = z. For (i, j) ∈ Z2, we put

ωi,j := xi−1y−j−1dy.

Put O := π−1(0), where π is totally ramified. For a non-zero rational dif-
ferential form ω on C, by vO(ω) we denote the order of the zero of ω at O,
which is negative if ω has a pole at O. Then the equality

vO(ωi,j) = (p− i)α− jp− 1

holds. In particular, if vO(ωi,j) = vO(ωi′,j′) and |i − i′| 6 p − 1, then
(i, j) = (i′, j′).

Proof. — Since xp − x = z, the equality vO(dx) = vO(y−α−1dy) holds,
and the order of the zero of x−1 (resp. y) at O is equal to α (resp. p). Thus,
the equalities

vO(dx) = −α− 1 and vO(dy) = p(α+ 1) + vO(dx) = (p− 1)(α+ 1)

hold. Since ωi,j = (x−1)1−iy−j−1dy, the equality vO(ωi,j) = (p−i)α−jp−1
holds. Therefore, since p 6 | α, the last statement holds. �

We denote the genus of a proper smooth k-curve W by g(W ).
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Lemma 8.2. — We use the notation introduced in Lemma 8.1. By Gπ
we denote the Galois group of π, which is isomorphic to Z/pZ. By VC we
denote the k-vector space H0(C,Ω1

C) with Gπ-module structure. Put

Φα :=
{

(i, j) ∈ Z2
∣∣∣∣ 1 6 i 6 p− 1 and 1 6 j 6

⌈
(p− i)α

p

⌉
− 1
}
.

Then ωi,j ∈ VC for any (i, j) ∈ Φα. Put J := {j | (1, j) ∈ Φα}. For j ∈ J ,
by VC,j we denote the k-subspace of VC generated by {ωi,j | (i, j) ∈ Φα}.
Then the following statements hold.

(1) For any i ∈ Z satisfying 1 6 i 6 p− 1, the equality

#{j | dimk VC,j > i} =
⌈

(p− i)α
p

⌉
− 1

holds.
(2) The rational differential form ω1,1 (= y−2dy) on C is regular and

nowhere-zero on C \ {O}. In particular, the equality 2g(C) − 2 =
vO(ω1,1) holds.

(3) The equalities

g(C) = (p− 1)(α− 1)
2 = #Φα

hold.
(4) The family (ωi,j)(i,j)∈Φα is a basis of VC , and the inclusions VC,j →

VC for all j ∈ J induce an isomorphism

VC ∼=
⊕
j∈J

VC,j .

(5) For any j ∈ J , the Gπ-module VC,j is indecomposable, and the
Gπ-invariant k-subspace V GπC,j is generated by ω1,j .

Proof. — The inequalities
(p− i)α− 1

p
>

⌈
(p− i)α

p

⌉
− 1 > j

hold for any (i, j) ∈ Φα since p 6 | α and 1 6 i 6 p − 1. Thus, since the
equalities

vO(ωi,j) = (p− i)α− jp− 1 = p

(
(p− i)α− 1

p
− j
)

hold for any (i, j) ∈ Φα (Lemma 8.1), the integers (vO(ωi,j))(i,j)∈Φα are
non-negative and different from each other (Lemma 8.1). Thus, since x,
y−1, and y−2dy are regular on C \ {O}, we conclude that ωi,j ∈ VC for any
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(i, j) ∈ Φα, and the elements of (ωi,j)(i,j)∈Φα are linearly independent. In
particular, for any i ∈ Z satisfying 1 6 i 6 p− 1, the equalities

#{j | dimk VC,j > i} = #{j | (i, j) ∈ Φα} =
⌈

(p− i)α
p

⌉
− 1

hold, which proves Statement (1). Since the restriction C\{O} → P1
k\{0} of

π is étale, and ω1,1 is equal to the pull-back via π of a rational differential
form on P1

k that is regular and nowhere-zero on P1
k \ {0}, Statement (2)

holds. Thus, Lemma 8.1 gives the first equality of Statement (3). Lemma 6.5
gives the equalities

#Φα =
p−1∑
i=1

(⌈
(p− i)α

p

⌉
− 1
)

= (p− 1)(α+ 1)
2 − (p− 1) = (p− 1)(α− 1)

2 ,

which concludes the proof of Statement (3). Since dimk VC = g(C), State-
ment (4) follows from Statement (3). Take a generator σπ of Gπ so that
σπ(x) = x+ 1. For any (i, j) ∈ Φα, the equalities

σπ(ωi,j) = (x+ 1)i−1y−j−1dy =
i∑

i′=1

(
i− 1
i′ − 1

)
ωi′,j

hold, which proves Statement (5). �

Assume that G ∼= Z/pZ. Lemma 4.1 shows that, for each i ∈ {1, 2}, we
may take zi ∈ k[y−1

i ] so that the completion of the normal model πi : Ci →
P1
k of the equation T p−T = zi at 0 induces the extension k[[xi]]/k[[yi]]. Then

the action of G on Spec k[[xi]] extends to that on Ci with fixed locus {Oi},
where Oi := π−1

i (0). Moreover, the action of G on Spec k[[x1, x2]] extends
to the product action of G on C1 × C2 with fixed locus {O1 ×O2}.
In order to simplify the notation, we use the same notation in the global

case as in the local case. Put X := C1 × C2. Take the quotient q : X →
Y := X/G of X by G. Then Y is a normal surface, which implies that Y
is Cohen–Macaulay. By ωX (resp. ωY ) we denote the dualizing sheaf of X
(resp. Y ). Put X ′ := X \ {O1 ×O2} and Y ′ := q(X ′).

Lemma 8.3. — The equality

h0(ωY ) =
p−1∑
i=1

⌈
iα1

p

⌉⌈
iα2

p

⌉
− (p− 1)(α1 + α2)

2

holds.
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Proof. — The diagram

H0(Y, ωY ) //

��

H0(Y ′, ωY |Y ′)

��
H0(X,ωX)G // H0(X ′, ωX |X′)G

is commutative, where the horizontal arrows are induced by the restric-
tions, and the vertical arrows are induced by the pull-back via q. Since
both X and Y are normal surfaces, the dualizing sheaves ωX and ωY are
reflexive. Thus, the horizontal arrows in the above diagram are bijective.
Since the restriction X ′ → Y ′ of q is étale, the right vertical arrow is
bijective. Therefore, the equality h0(ωY ) = dimkH

0(X,ωX)G holds. For
i ∈ {1, 2}, we take the decomposition H0(Ci,Ω1

Ci
) =

⊕
j∈Ji VCi,j given by

Lemma 8.2(4). Then the equality

dimkH
0(X,ωX)G =

∑
(j1,j2)∈J1×J2

min{dimk VC1,j1 ,dimk VC2,j2}

holds (see the second paragraph of the proof of [6, 2.4]). Since the right
hand side is equal to

p−1∑
i=1

#{j1 | dimk VC1,j1 > i} ·#{j2 | dimk VC2,j2 > i},

Lemma 8.2(1) gives the equality

h0(ωY ) =
p−1∑
i=1

(⌈
iα1

p

⌉
− 1
)(⌈

iα2

p

⌉
− 1
)
.

Thus, Lemma 6.5 concludes the proof. �

Theorem 3.4 gives a desingularization of Y . We use the same notation
in the global case as in the local case (3.8).

Lemma 8.4. — The equality h1(OŶ ) = 0 holds.

Proof. — Since Ỹ has only rational singularities, the equality h1(OŶ ) =
h1(OỸ ) holds. Thus, we have only to show that h1(OỸ ) = 0. Put F ′X :=
(C1 × O2) ∪ (O1 × C2) ⊂ X. Take the normalization FX of F ′X and the
normalization FX̃ (resp. FỸ ) of the strict transform of F ′X (resp. q(F ′X))
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via f (resp. g). Then we obtain the diagram with commutative squares

Ỹ X̃
q̃oo f // X

FỸ

OO

FX̃
q̃Foo fF //

OO

FX

OO

where q̃F (resp. fF ) is induced by q̃ (resp. f), and the vertical arrows are
the projections. The above diagram induces a diagram with commutative
squares

H1(Ỹ ,OỸ ) //

��

H1(X̃,OX̃)

��

H1(X,OX)oo

��
H1(FỸ ,OFỸ ) // H1(FX̃ ,OFX̃ ) H1(FX ,OFX )oo

Since fF : FX̃ ∼= FX (∼= C1 t C2), the right lower arrow is bijective. Since
X is regular, the right upper arrow is bijective. Since X = C1 × C2, the
right vertical arrow is bijective. Thus, the middle arrow is bijective. Since
FỸ
∼= P1

k t P1
k. the equality H1(FỸ ,OFỸ ) = 0 holds. Therefore, the lemma

follows from the fact that the left upper arrow is injective [6, 4.2]. �

We denote the topological Euler characteristic of a proper curve or a
proper smooth surface W over a separably closed field by e(W ). Recall
that the number of the irreducible components of Eh is equal to rtot (The-
orem 3.6).

Lemma 8.5. — The equality

e(Ŷ ) = (p− 1)(α1 − 1)(α2 − 1) + rtot + 4

holds.

Proof. — The first projection X = C1 × C2 → C1 induces a morphism
Ŷ → P1

k. Take the generic point η (resp. θ) of P1
k (resp. C1) and a geometric

generic point η of C1, where the composite η → θ → η is induced by a
separable closure of the function field of P1

k with Galois group Gη. For
ξ ∈ {0, η, θ, η}, we put Ŷ ξ := Ŷ ×P1

k
ξ. Since Pic Ŷ is finitely generated

(Lemma 8.4), and the homomorphism Pic Ŷ → Pic Ŷ η induced by the
first projection Ŷ η = Ŷ ×P1

k
η → Ŷ is surjective, the group Pic Ŷ η is finitely

generated. Note that Pic Ŷ η ∼= PicŶ η/η(η) since the Leray spectral sequence
for the second projection Ŷ η = Ŷ ×P1

k
η → η and Gm,Ŷ η induces an exact
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sequence of commutative groups and homomorphisms

0 // Pic η // Pic Ŷ η // PicŶ η/η(η) // Br η,

Pic η = 0 by Hilbert’s theorem 90, and Br η = 0 by Tsen’s theorem. Thus,
we may take a prime number l different from p so that PicŶ η/η(η)[l] = 0,
where we denote the l-torsion subgroup of a commutative group P by P [l].
We define a Gη-module by M := H1(Ŷ η̄, µl,Ŷ η̄ ). Since Ŷ θ ∼= C2 ×Spec k θ

over θ, the equality dimFlM = 2g(C2) holds, and the action of Gη on M
induces that of G. The Kummer sequence

1 // µl,Ŷ η
// Gm,Ŷ η

l // Gm,Ŷ η // 1

induces a Gη-equivariant isomorphism M ∼= PicŶ η/η(η)[l], which implies
that MG ∼= PicŶ η/η(η)[l] = 0. Therefore, Serre’s measure of wild ramifica-
tion of M at 0 ∈ P1

k [11, §I, p. 3] is given by

δ0 :=
∑
i>1

1
[G : Gi]

dimFlM/MGi = 2g(C2)α1,

where the i-th ramification group of θ/η is given by

Gi := {τ ∈ G | v1(τx1 − x1) > i+ 1} =
{
G if i 6 α1,

1 otherwise.

The reduction of Ŷ 0 is a union of the rtot + 1 projective lines any of whose
singularities is a node and whose dual graph is a tree (Theorem 3.4(2)
and (4)), which implies that the equality e(Ŷ 0) = rtot + 2 holds. Since
Ŷ η̄ ∼= C2 ×Spec k η over η, the equalities e(Ŷ η̄) = e(C2) = 2− 2g(C2) hold.
Thus, Dolgachev’s formula [4, Theorem 1.1] gives the equalities

e(Ŷ ) = e(Ŷ η̄)e(P1
k) + e(Ŷ 0)− e(Ŷ η̄) + δ0 = 2(α1 − 1)g(C2) + rtot + 4.

Therefore, Lemma 8.2(3) concludes the proof. �

Take the canonical divisor

Kh = µ0E0 +
d+2∑
i=1

si∑
j=1

µi,jEi,j

of h (Theorem 7.3). For i ∈ {1, 2}, by yi (resp. Fi) we denote the pull-back
of the coordinate function of A1

k = P1
k \ {∞} (resp. the prime divisor on

P1
k with support 0 ∈ P1

k) via the morphism Ŷ → P1
k induced by the i-th

projection X = C1 × C2 → Ci. By KŶ we denote the canonical divisor of
Ŷ defined by the rational differential form y−2

1 dy1 ∧ y−2
2 dy2 on Ŷ .
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Proposition 8.6. — The following equalities hold:

KŶ = Kh + 2g(C1)− 2
p

F1 + 2g(C2)− 2
p

F2

= Kh +
(

(p− 1)(α1 + 1)
p

− 2
)
F1 +

(
(p− 1)(α2 + 1)

p
− 2
)
F2;

K2
Ŷ

= K2
h + 2(p− 1)2(α1 + 1)(α2 + 1)

p
− 4(p− 1)(α1 + α2) + 8.

Proof. — By F we denote the right hand side of the first equality minus
Kh. Since the restriction X ′ → Y ′ of q (resp. h−1(Y ′) → Y ′ of h) is étale
(resp. an isomorphism), Lemma 8.2(2) shows that the support of KŶ −F is
contained in the exceptional locus of h. For any integral exceptional divisor
E of h, the adjunction formula gives the equalities

(KŶ − F ) · E = KŶ · E = −E2 − 2 = Kh · E

since Fi · E = 0 for any i ∈ {1, 2}. Thus, the first equality follows from
the uniqueness of Kh (Theorem 7.3). The second equality follows from
Lemma 8.2(3). Therefore, the last equality follows from the equalities F1 ·
F2 = p and Kh · Fi = Fi · Fi = 0 for any i ∈ {1, 2}. �

Theorem 8.7. — Assume that G ∼= Z/pZ. Then the equality

pg =
p−1∑
i=1

⌈
iα1

p

⌉⌈
iα2

p

⌉
− (p− 1)(3p− 2)(α1 + 1)(α2 + 1)

12p − K2
h + rtot

12

holds.

Remark 8.8. — The last term of the above equality is determined by α1
and α2 (Theorems 7.5 and 3.6 and Corollary 3.8).

Proof. — Since h1(OŶ ) = 0 (Lemma 8.4), the Leray spectral sequence
for h : Ŷ → Y and OŶ and the Grothendieck duality give the equalities

pg = h2(OY )− h2(OŶ ) = h0(ωY )− χ(OŶ ) + 1,

respectively. Thus, since 12χ(OŶ ) = K2
Ŷ

+ e(Ŷ ) by Noether’s formula,
Lemmas 8.3 and 8.5 and Proposition 8.6 give the equalities

pg = h0(ωY )−
K2
Ŷ

+ e(Ŷ )
12 + 1 =

p−1∑
i=1

⌈
iα1

p

⌉⌈
iα2

p

⌉
− S

12p −
K2
h + rtot

12 ,
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where

S := 6p(p− 1)(α1 + α2)

+ 2(p− 1)2(α1 + 1)(α2 + 1)− 4p(p− 1)(α1 + α2) + 8p
+ p(p− 1)(α1 − 1)(α2 − 1) + 4p− 12p

= (p− 1)(3p− 2)(α1 + 1)(α2 + 1),

which concludes the proof. �

Proof of Theorem 1.4. — We use the notation introduced in Theo-
rems 7.3 and 7.5. Corollaries 3.8 and 3.10 give the equalities m = m′ =
1, d = d′, (d, e, a1, a2) = (α, (p − 1)/α, 1, 1), (m1,m2,m3, k1, k2, k3) =
(p, p, p, p−1, p−1, p−e), and b0 = α+1. Thus, the equalities (d1, d2, d3) =
(1, 1, α), (k′1, k′2, k′3) = (p − 1, p − 1, α), and µ0 = 1 − (p − 1)α hold. Since
p/(p − 1) = [2, . . . , 2] (p − 1 copies of 2) and p/(p − e) = [2, . . . , 2, e + 1]
(α− 1 copies of 2 followed by e+ 1), the equalities

rtot = 1 + 2(p− 1) + α2 and
∑
i∈I

di

ri∑
j=1

(2− bi,j) = α− p+ 1

hold. Thus, Theorem 7.5 gives the equalities

K2
h = µ0(b0 − 2) + (α+ 2)(µ0 + 2) + α− p+ 1

− 2 · (µ0 + 1)p+ p

p
− α · (µ0 + 1)(p− e+ 1) + α+ 1

p

= (p− 1)(−pα2 + α2 + 4α+ 2)− α2 − p2

p
,

which gives the equality

K2
h + rtot = (p− 1)(α+ 1)(−pα+ 2α+ p+ 2)

p
.

Therefore, Theorem 8.7 concludes the proof. �
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