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STABILITY OF THE TANGENT BUNDLES OF
COMPLETE INTERSECTIONS AND EFFECTIVE

RESTRICTION

by Jie LIU

Abstract. — For n > 3 and r > 1, let M be an (n+ r)-dimensional irreducible
Hermitian symmetric space of compact type and let OM (1) be the ample generator
of pic(M). Let Y = H1 ∩ · · · ∩Hr be a smooth complete intersection of dimension
n, where Hi ∈ |OM (di)| with di > 2. We prove a vanishing theorem for twisted
holomorphic forms on Y . As an application, we show that the tangent bundle TY

of Y is stable. Moreover, if X is a smooth hypersurface of degree d in Y such that
the restriction pic(Y )→ pic(X) is surjective, we establish some effective results for
d to guarantee the stability of the restriction TY |X . In particular, if Y is a general
hypersurface in Pn+1 and X is a general smooth divisor in Y , we show that TY |X
is stable except for some well-known examples. We also address the cases where
the Picard group increases by restriction.
Résumé. — SoientM un espace hermitien symétrique irréductible de type com-

pact et de dimension (n + r) avec n > 3 et r > 1, OM (1) le générateur ample de
pic(M). Soit Y = H1 ∩ · · · ∩Hr une intersection complète lisse de dimension n où
Hi ∈ |OM (di)| avec di > 2. Nous montrons un théorème d’annulation pour le fais-
ceau tordu des germes de p-formes holomorphes Ωp

Y (`). Comme application, nous
montrons que le fibré tangent TY de Y est stable. De plus, si X est une hypersur-
face lisse de degré d dans Y telle que la restriction pic(Y )→ pic(X) soit surjective,
nous obtenons des estimations effectives liées à la stabilité de la restriction TY |X .
En particulier, si Y est une hypersurface générale dans Pn+1 et X est un diviseur
général, nous montrons que TY |X est stable sauf certains exemples bien connus.
Nous considérons aussi le cas où le nombre de Picard augmente par restriction.

1. Introduction

It has been one of main problems in Kähler geometry to study which Fano
manifolds with b2 = 1 admit a Kähler–Einstein metric. The celebrated

Keywords: stability, tangent bundle, Lefschetz property, complete intersection, Hermit-
ian symmetric space.
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Yau–Tian–Donaldson conjecture asserts that a Fano manifold admits a
Kähler–Einstein metric if and only if it isK-polystable. This conjecture has
been solved recently (see [5, 6, 33] and the references therein). A weaker
and more algebraic question related to the existence of Kähler–Einstein
metrics asks whether the tangent bundle is (semi-)stable with respect to
the anti-canonical divisor. Let us recall the definition of stability. Let (Z,H)
be an n-dimensional polarized projective manifold, and let E be a non-zero
torsion-free coherent sheaf over Z. The slope of E with respect to H is
defined to be

µ(E) : = c1(E) ·Hn−1

rk(E) .

Definition 1.1. — Let (Z,H) be a polarized projective manifold, and
let E be a non-zero torsion-free coherent sheaf over Z. The sheaf E is called
H-stable (resp. H-semi-stable) if for any non-zero coherent subsheaf F ⊂ E
with 0 < rk(F) < rk(E), we have

µ(F) < µ(E) (resp. µ(F) 6 µ(E)).

By the works of Ramanan, Umemura, Azad–Biswas, Reid, Peternell–
Wiśniewski and Hwang, the stability of tangent bundles is known for ho-
mogeneous spaces [1, 27, 34], Fano manifolds with index one [29], Fano
manifolds of dimension at most six [13, 26], general complete intersections
in PN [26] and prime Fano manifolds with large index [14]. If X is a pro-
jective manifold with Pic(X) ∼= ZOX(1), then the stability of TX is very
much related to the cohomology vanishings of type

Hq(X,ΩpX(`)),

where ΩpX(`) = ΩpX ⊗ OX(`). If M is an irreducible Hermitian symmetric
space of compact type, thenM is a Fano manifold with Picard number one.
In particular, making use of the work of Kostant [18], Snow developed an
algorithm in [30] and [31] to determine whether a given cohomology group
Hq(M,ΩpM (`)) vanishes. Based on the algorithm of Snow, Biswas, Chaput
and Mourougane proved in [2] the following vanishing theorem.

Theorem 1.2 ([2, Theorem D]). — Let M be an n-dimensional irre-
ducible Hermitian symmetric space of compact type which is not isomor-
phic to a projective space. Let OM (1) be the ample generator of Pic(M),
and let ` and p be two positive integers such that Hq(M,ΩpM (`)) 6= 0 for
some q > 0. Then we have

`+ q > p
rM
n
,

where rM is the index of M , i.e., OM (−KM ) ∼= OM (rM ).
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As an application of this vanishing theorem, we prove the following sim-
ilar vanishing theorem for smooth complete intersections in M .

Theorem 1.3. — For n > 2 and r > 1, letM be an (n+r)-dimensional
irreducible Hermitian symmetric space of compact type, and let OM (1)
be the ample generator of Pic(M). Let Y = H1 ∩ · · · ∩ Hr be a smooth
complete intersection of dimension n where Hi ∈ |OM (di)| with di > 2.
Denote OM (1)|Y by OY (1). Then for any q > 0, p > 1, ` ∈ Z such that
q + p 6 n− 1, the following statements hold.

(1) If Hq(Y,ΩpY ) 6= 0, then p = q.
(2) If Hq(Y,ΩpY (`)) 6= 0 for some ` 6= 0, then

`+ q > p
rY
n
,

where rY = rM − d1 − · · · − dr.

In Theorem 1.3, if n > 3, the natural map Pic(M) → Pic(Y ) is an
isomorphism by Lefschetz hyperplane theorem [12, Corollary 3.3]. In par-
ticular, we have Pic(Y ) ∼= ZOY (1) = ZOM (1)|Y . As the first application
of our vanishing theorem, we generalize a result of Peternell–Wiśniewski
(see [26, Theorem 1.5]) in the following theorem.

Theorem 1.4. — For n > 3 and r > 1, letM be an (n+r)-dimensional
irreducible Hermitian symmetric space of compact type, and let OM (1) be
the ample generator of Pic(M). If Y = H1 ∩ · · · ∩Hr is a smooth complete
intersection of dimension n where Hi ∈ |OM (di)| with di > 2, then the
tangent bundle TY is stable.

Let (Z,H) be a polarized projective manifold, and let Y ∈ |dH| be a
general smooth hypersurface of degree d. Let E be a torsion-free coherent
sheaf over Z. Then it is easy to see that, if E is an H-unstable sheaf,
then E|Y is H|Y -unstable. Equivalently, E is semi-stable if E|Y is H|Y -
semi-stable. Nevertheless, the converse is false in general as shown by the
following easy counterexample.

Example 1.5. — The tangent bundle TPn of Pn is stable with µ(TPn) =
(n + 1)/n. However, if Y is a hyperplane, then the restriction TPn |Y is
unstable since TY is a subbundle of TPn |Y with µ(TY ) = n/(n− 1).

By a result of Mehta–Ramanathan, the restriction of a (semi-)stable sheaf
is (semi-)stable for sufficiently large d. In general, we have the following
important effective restriction theorem (cf. [10, 19, 22]).

TOME 71 (2021), FASCICULE 4
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Theorem 1.6 ([19, Theorem 5.2 and Corollary 5.4]). — Let (Z,H) be
a polarized projective manifold of dimension n. Let E be a torsion-free
H-(semi-)stable sheaf of rank p > 2. Let Y ∈ |dH| be a general smooth
hypersurface. If

d >
p− 1
p

∆(E)Hn−2 + 1
p(p− 1)Hn

,

then E|Y is H|Y -(semi-)stable. Here ∆(E) = 2pc2(E) − (p − 1)c2
1(E) is the

discriminant of E .

In [2], an optimal effective theorem is established for tangent bundles of
irreducible Hermitian symmetric spaces of compact type.

Theorem 1.7 ([2, Theorem A and B]). — For n > 3, let M be an n-
dimensional irreducible Hermitian symmetric space of compact type, and
let Y be a smooth hypersurface of M . Then the restriction TM |Y is stable
unless Y is a linear section and M is isomorphic to either Pn or a smooth
quadric hypersurface Qn.

In [2], this theorem was stated for the cotangent bundle Ω1
M ofM , which

is equivalent to Theorem 1.7, since a vector bundle E is H-stable over a
polarized projective manifold (Z,H) if and only if its dual bundle E∗ is
H-stable.

As the second application of Theorem 1.3, we reduce the effective restric-
tion problem of tangent bundles to the existence of certain twisted vector
fields (cf. Proposition 5.3), and then we can derive the following result.

Theorem 1.8. — For n > 3, let M be an (n + r)-dimensional irre-
ducible Hermitian symmetric space of compact type, and let OM (1) be the
ample generator of Pic(M). Let Y = H1 ∩ · · · ∩Hr be a smooth complete
intersection of dimension n where Hi ∈ |OM (di)| with 2 6 d1 6 · · · 6 dr.
Let X ∈ |OY (d)| be a smooth hypersurface of degree d. Assume moreover
that the composite of restrictions

Pic(M) −→ Pic(Y ) −→ Pic(X)

is surjective. Then the restriction TY |X is stable if one of the following
conditions holds.

(1) Y is a Fano manifold and M is neither isomorphic to the projective
space Pn+r nor any smooth quadric hypersurface Qn+r.

(2) Y is a Fano manifold, d > d1 and M is isomorphic to the projective
space Pn+r.

(3) Y is a Fano manifold, d > 2 and M is isomorphic to a smooth
quadric hypersurface Qn+r.

ANNALES DE L’INSTITUT FOURIER
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(4) X is general and d > dr − rY /n, where rY = rM − d1 − · · · − dr.
In the case where Y is a general smooth hypersurface in Pn+1, using

the strong Lefschetz property of the Milnor algebra of Y , we can prove an
extension theorem for twisted vector fields on X (see Theorem 4.4), and
an optimal answer to the effective restriction problem can be given in this
setting.
Theorem 1.9. — For n > 3, let Y be a general smooth hypersurface

in the projective space Pn+1. Let X ∈ |OY (d)| be a general smooth hyper-
surface of degree d in Y . Assume furthermore that the restriction homo-
morphism Pic(Y )→ Pic(X) is surjective, then TY |X is stable unless d = 1,
and Y is isomorphic to either Pn or Qn.
In each exceptional case, the tangent bundle of X will destabilize TY |X ,

so our result above is sharp. The stability of restrictions of tangent bundles
with an increase of Picard group was also considered in [2]. According to
Lefschetz’s hyperplane theorem, the map Pic(Y ) → Pic(X) is always sur-
jective if n > 4. In fact, Lefschetz proved an even more general version, the
so-called Noether–Lefschetz theorem, in [21]: a very general complete inter-
section surface X in PN contains only curves that are themselves complete
intersections unless X is an intersection of two quadric threefolds in P4, or
a quadric surface in P3, or a cubic surface in P3 (see also [11, 16]). In these
exceptional cases, the possibilities of the pair (Y,X) are as follows:

(1) The manifold Y is the projective space P3 andX is a quadric surface
or a cubic surface.

(2) The manifold Y ⊂ P4 is a quadric threefold andX is a linear section
or a quadric section.

(3) The manifold Y ⊂ P4 is a cubic threefold and X is a linear section
of Y .

When Y is a quadric threefold or the projective space P3, according to [2,
Theorem B], the restriction TY |X is semi-stable with respect to −KX unless
Y and X are both projective spaces; and TY |X is stable with respect to
−KX if X is not a linear section. In the following result, we address the
stability of the restriction TY |X in the case where Y is a cubic threefold
and X is a linear section.
Theorem 1.10. — Let Y ⊂ P4 be a general cubic threefold, and let

X ∈ |OY (1)| be a general smooth linear section. Then the restriction TY |X
is stable with respect to OX(1).

This paper is organized as follows. In Section 2, we introduce the basic no-
tions concerning Hermitian symmetric spaces and the Lefschetz properties

TOME 71 (2021), FASCICULE 4
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of Artinian algebras. In Section 3, we collect the results about the coho-
mologies of (n− 1)-forms of Hermitian symmetric spaces and we introduce
the notion of special cohomologies. In Section 4, we investigate the twisted
vector fields over complete intersections in Hermitian symmetric spaces and
we prove some extension results in various settings. In Section 5, we ad-
dress the stability of tangent bundles of complete intersections in Hermitian
symmetric spaces and study the effective restriction problem. In particu-
lar, we prove Theorem 1.3, Theorem 1.4, Theorem 1.8 and Theorem 1.9.
In Section 6, we consider the case where the Picard number increases by
restriction and prove Theorem 1.10.

Convention

For an n-dimensional projective variety Y , we denote by Ω1
Y the sheaf of

Kähler differentials and denote by ΩpY the sheaf ∧pΩ1
Y . For a line bundle

OY (1) and a coherent sheaf F on Y , we will denote F ⊗ OY (`) by F(`),
and the number hi(Y,F) is the dimension of Hi(Y,F) over C. Moreover,
the dual sheaf HomOX

(F ,OY ) of F is denoted by F∗. If Y is smooth, the
canonical divisor, denoted by KY , is a Weil divisor associated to ΩnY . For a
submanifold X of a polarized manifold (Y,OY (1)), we denote by OX(1) the
restriction OY (1)|X . If Y is a projective manifold with Picard number one,
we consider always the polarization given by the ample generator OY (1) of
Pic(Y ) unless otherwise stated.

2. Hermitian symmetric spaces and Lefschetz properties

In this section, we collect some basic materials about Hermitian sym-
metric spaces of compact type and the Lefschetz properties of Artinian
algebras. We refer to [3] and [24] for further details.

2.1. Hermitian symmetric spaces

Let (M, g) be a Riemannian manifold. A non-trivial isometry σ of (M, g)
is said to be an involution if σ2 = id. A Riemannian manifold (M, g) is
said to be Riemannian symmetric if at each point x ∈ M there exists an
involution σx such that x is an isolated fixed point of σx.

ANNALES DE L’INSTITUT FOURIER
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Definition 2.1. — Let (M, g) be a Riemannian symmetric manifold.
Then (M, g) is said to be a Hermitian symmetric manifold if (M, g) is a
Hermitian manifold and the involution σx at each point x ∈ M can be
chosen to be a holomorphic isometry.

A Hermitian symmetric space M is called irreducible if it cannot be
written as the non-trivial product of two Hermitian symmetric spaces. It
is well-known that the irreducible Hermitian symmetric spaces of compact
type are Fano manifolds of Picard number one. We will denote by OM (1)
the ample generator of Pic(M). In this case, the index of M is defined to
the unique positive integer rM such that OM (−KM ) ∼= OM (rM ).
The Hermitian symmetric spaces are homogeneous under their iso-

metry groups. According to Cartan, there are exactly six types of
irreducible Hermitian symmetric spaces of compact type: Grassmannians
(type An), quadric hypersurfaces (type Bn or Dn), Lagrangian Grassman-
nians (type Cn), spinor Grassmannians (type Dn) and two exceptional
cases (type E6 and E7).

2.2. Lefschetz properties of Artinian algebras

Let R = C[x1, . . . , xr] be the graded polynomial ring in r variables over
C. Let

A = R/I =
n⊕
i=0

Ai

be a graded Artinian algebra. Then, by definition, A is finite-dimensional
over C.

Definition 2.2. — Let A be a graded Artinian algebra.
(1) We say that A has the maximal rank property (MRP) if for any d,

the homomorphism induced by multiplication by f

×f : Ai −→ Ai+d

has maximal rank for all i (i.e., is injective or surjective), whenever
f is a general form of degree d.

(2) We say that A has the strong Lefschetz property (SLP) if for any
d, the homomorphism induced by multiplication by `d

×`d : Ai −→ Ai+d

has maximal rank for all i (i.e., is injective or surjective), whenever
` is a general linear form.

TOME 71 (2021), FASCICULE 4
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Remark 2.3. — The strong Lefschetz properties have been extensively
investigated in the literature (see [24] and the references therein), while
the maximal rank property has only been introduced in [23] by Migliore
and Miró-Roig. Moreover, it is easy to see that SLP implies MRP by semi-
continuity.

Both concepts are motivated by the following theorem which was proved
by Stanley in [32] using algebraic topology, by Watanabe in [37] using
representation theory, by Reid, Roberts and Roitman in [28] with algebraic
methods.

Theorem 2.4 ([24, Theorem 1.1]). — Let R = C[x1, . . . , xr], and let I
be the Artinian complete intersection 〈xd1

1 , . . . , x
dr
r 〉, where di’s are positive

integers. Then R/I has the SLP.

Let Pn+1 be the (n + 1)-dimensional complex projective space, and let
Y ⊂ Pn+1 be a hypersurface defined by a homogeneous polynomial h of
degree d. We denote by

J(Y ) = 〈∂h/∂x0, . . . , ∂h/∂xn+1〉

the Jacobian ideal of Y , where [x0 : . . . : xn+1] are the coordinates of Pn+1.
Then the Milnor algebra of Y is defined to be the graded C-algebra

M(Y ) : = C[x0, . . . , xn+1]/J(Y ).

Remark 2.5 ([7, p. 109]). — One observes that the Hilbert series of the
Milnor algebra M(Y ) of a general degree d hypersurface Y in Pn+1 is

H(M(Y ))(t) = (1 + t+ t2 + · · ·+ td−2)n+2,

and ρ = (d−2)(n+2) is the top degree ofM(Y ). The celebrated Macaulay’s
theorem (cf. [35, Théorème 18.19]) says that the multiplication map

µi,j : M(Y )i ×M(Y )j −→M(Y )i+j
is non-degenerated for i+ j 6 ρ. Using the perfect pairing

M(Y )i ×M(Y )ρ−i −→M(Y )ρ ∼= C,

we see that the dimension of M(Y )i is symmetric. Recall that an element
f ∈M(Y ) of degree j is called faithful if the multiplication ×f : M(Y )i →
M(Y )i+j has maximal rank for all i. Since the dimension of M(Y )i is
strictly increasing over the interval [0, ρ/2],an element f of degree j is
faithful if and only if it induces injections M(Y )i → M(Y )i+j for i 6
(ρ − j)/2, equivalently it induces surjections M(Y )i → M(Y )i+j for i >
(ρ− j)/2.

ANNALES DE L’INSTITUT FOURIER



STABILITY OF TANGENT BUNDLE AND ITS RESTRICTIONS 1609

The proof of Theorem 1.9 relies on the nonexistence of certain twisted
vector fields over X. To prove this, we reduce the problem to the nonexis-
tence of certain twisted vector fields over Y by proving an extension result
(cf. Theorem 4.4). The main ingredient of the proof of Theorem 4.4 is the
SLP of the Milnor algebra M(Y ) which is well-known to experts. Recall
that the Fermat hypersurface of degree d in Pn+1 is defined by the equation
xd0 + · · ·+ xdn+1 = 0.

Proposition 2.6. — Let Y ⊂ Pn+1 be a general hypersurface of degree
d. Then the Milnor algebra M(Y ) of Y has the SLP. In particular, M(Y )
has the MRP.

Proof. — Thanks to Theorem 2.4, the Milnor algebra of the Fermat hy-
persurface of degree d in Pn+1 has the SLP. Then we conclude by semi-
continuity. �

3. Twisted (n− 1)-forms and special cohomologies

In this section, we collect some vanishing results about the cohomologies
of twisted (n− 1)-forms of n-dimensional irreducible Hermitian symmetric
spaces of compact type. Moreover, we introduce the notion of special co-
homologies and we prove that all irreducible Hermitian symmetric spaces
of compact type have special cohomologies. This notion is very useful in
studying the twisted vector fields over complete intersections in Hermitian
symmetric spaces in the next section. We start with a result due to Snow.

Definition 3.1 ([2, Definition 2.4]). — Let `, n ∈ N be two fixed posi-
tive integers. An n-tuple of integers an = (ai)16i6n is called an `-admissible
Cn-sequence if |ai| = i and ai + aj 6= 2` for all i 6 j. Its weight is defined
to be p(an) =

∑
ai>0 ai and its `-cohomological degree is defined to be

q(an) = #{ (i, j) | i 6 j and ai + aj > 2` }.

Proposition 3.2 ([31, Section 2.1]). — Let M = Sp(2n)/U(n) be a
type Cn irreducible Hermitian symmetric space of compact type. If we
have

Hq(M,ΩpM (`)) 6= 0,
then there exists an `-admissible Cn-sequence such that its weight is p and
its `-cohomological degree is q.

Example 3.3. — Denote byM the 10-dimensional Lagrangian Grassman-
nian Sp(8)/U(4). Then M is a Fano manifold with index 5. Moreover, if

TOME 71 (2021), FASCICULE 4
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` is an integer such that 1 6 ` 6 4, then we have Hq(M,Ω9
M (`)) = 0 for

any q > 0. In fact, if Hq(M,Ω9
M (`)) 6= 0, by Proposition 3.2, there exists

an `-admissible C4-sequence a with `-cohomological degree q and weight 9.
This implies

a = (−1, 2, 3, 4).
As 1 6 ` 6 4, one can easily see that a cannot be `-admissible.

Before giving the statement in the general case, we recall the cohomolo-
gies of the twisted holomorphic p-forms of projective spaces and smooth
quadric hypersurfaces.

Theorem 3.4 ([4]). — Let n, p, q and ` be integers, with n positive and
p and q nonnegative. Then

hq(Pn,ΩpPn(`)) =



(
n+ `− p

`

)(
`− 1
p

)
, if q = 0, 0 6 p 6 n, ` > p;

1, if ` = 0, p = q;(
p− `
−`

)(
−`− 1
n− p

)
, if q = n, 0 6 p 6 n, ` < p− n;

0, otherwise.

As a consequence, Hq(Pn,Ωn−1
Pn (`)) 6= 0 for some ` ∈ Z if and only if

q = 0 and ` > n, or q = n− 1 and ` = 0, or q = n and ` 6 −2.

Theorem 3.5 ([30, Theorem 4.1]). — Let X be an n-dimensional
smooth quadric hypersurface.

(1) If −n+ p 6 ` 6 p and ` 6= 0, −n+ 2p, then Hq(X,ΩpX(`)) = 0 for
all q.

(2) Hq(X,ΩpX) 6= 0 if and only if q = p.
(3) Hq(X,ΩpX(−n+ 2p)) 6= 0 if and only if p+ q = n.
(4) If ` > p, then Hq(X,ΩpX(`)) 6= 0 if and only if q = 0.
(5) If ` < −n+ p, then Hq(X,ΩpX(`)) 6= 0 if and only if q = n.

In particular, if X is a smooth quadric hypersurface of dimension n, then
Hq(X,Ωn−1

X (`)) 6= 0 for some ` ∈ Z if and only if q = 0 and ` > n, or q = 1
and ` = n− 2, or q = n− 1 and ` = 0, or q = n and ` 6 −2. The following
general result is essentially proved in [30] and [31].

Proposition 3.6. — LetM be an n-dimensional irreducible Hermitian
symmetric space of compact type. Then Hq(M,Ωn−1

M (`)) 6= 0 if and only if
one of the following conditions is satisfied.

(1) q = 0 and ` > min{n, rM}.

ANNALES DE L’INSTITUT FOURIER
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(2) q = n− 1 and ` = 0.
(3) q = n and ` 6 −2.
(4) M ∼= Qn, q = 1 and ` = n− 2.

Proof. — If n 6 rM or n 6 3, then X is isomorphic to Pn or Qn and
we can conclude by Theorem 3.4 and Theorem 3.5. On the other hand, if
` > rM , by [31, Proposition 1.1], the cohomological degree of Ωn−1

M (`) is 0.
As a consequence, Hq(M,Ωn−1

M (`)) 6= 0 if and only if q = 0. Moreover, it is
well-known that Hq(M,ΩpM ) 6= 0 if and only if q = p. So we shall assume
that n− 1 > rM > `+ 1, n > 4 and ` 6= 0. In particular, M is not of type
Bn.
If ` 6 −2, by Serre duality, we obtain that Hq(M,Ωn−1

M (`)) 6= 0 if and
only if Hn−q(M,Ω1

M (−`)) 6= 0. Recall that the cohomological degree of the
sheaf Ω1

M (−`) is 0 if −` > 2 by [31, Proposition 1.1]. So Hq(M,Ωn−1
M (`)) 6=

0 if and only if q = n if ` 6 −2.
If ` = −1, by Serre duality again, we see that Hq(M,Ωn−1

M (−1)) 6= 0 if
and only if Hn−q(M,Ω1

M (1)) 6= 0. Thanks to [30, Theorem 2.3], we have
Hn−q(M,Ω1

M (1)) = 0 for all q > 0 if M is not of type Cn. On the other
hand, if M is of type Cn, the vanishing of Hq(M,Ω1

M (1)) follows from [31,
Theorem 2.3].
If 1 6 ` 6 rM − 1, we can prove the result case by case. If M is of type

E6 or E7, from [31, Table 4.4 and Table 4.5], we have Hq(M,Ωn−1
M (`)) = 0

for any q > 0. If M is of type An, as M is not isomorphic to Pn or Qn,
we get Hq(M,Ωn−1

M (`)) = 0 for all q > 0 by [30, Theorem 3.4(3)]. Here we
remark that Gr(2, 4) is isomorphic to Q4. If M is of type Cn and n 6= 4,
we have Hq(M,Ωn−1

M (`)) = 0 for all q > 0 by [31, Theorem 2.4(3)]. If M
is of type C4, then M is isomorphic to the 10-dimensional homogeneous
space Sp(8)/U(4), and we get Hq(M,Ω9

M (`)) = 0 for all q > 0 according
to Example 3.3. If M is of type Dn, it follows from [31, Theorem 3.4(3)]
that Hq(M,Ωn−1

M (`)) = 0 for all q > 0 if n > 5. If M is of type Dn and
n 6 4, then M is isomorphic to either Pn or Qn, which is impossible by
our assumption. �

As a direct application, we get the following result which is useful to
describe the twisted vector fields over complete intersections.

Corollary 3.7. — Let M be an n-dimensional irreducible Hermitian
symmetric space of compact type. If n > 3, then Hn−1(M,Ω1

M (`)) 6= 0 if
and only if ` = −n + 2 and M is isomorphic to a smooth quadric hyper-
surface Qn.
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Proof. — As Hn−1(M,Ω1
M (`)) 6= 0 if and only if H1(M,Ωn−1

M (−`)) 6= 0
by Serre duality, thus the result follows from Proposition 3.6 directly. �

Moreover, one can easily derive the following result for smooth hyper-
surfaces in projective spaces by Bott’s formula.

Lemma 3.8. — For n > 3, let Y ⊂ Pn+1 be a smooth hypersurface
of degree d. Then we have Hn−1(Y,Ω1

Y (−rY + t)) = 0 for t > d, where
rY = n+ 2− d.

Proof. — By Bott’s formula (cf. Theorem 3.4) and the following exact
sequence of sheaves

0 −→ Ω1
Pn+1(−rY + t−d) −→ Ω1

Pn+1(−rY + t) −→ Ω1
Pn+1(−rY + t)|Y −→ 0,

we see that Hn−1(Y,Ω1
Pn+1(−rY + t)|Y ) = 0 for any t ∈ Z.Thus, the fol-

lowing exact sequence of OY -sheaves

0 −→ OY (−rY + t− d) −→ Ω1
Pn+1(−rY + t)|Y −→ Ω1

Y (−rY + t) −→ 0

induces an injective map of groups

Hn−1(Y,Ω1
Y (−rY + t)) −→ Hn(Y,OY (−rY + t− d)).

Then we can conclude by Kodaira’s vanishing theorem. �

Definition 3.9. — Let (Z,OZ(1)) be a polarized projective manifold
of dimension n > 4. We say that (Z,OZ(1)) has special cohomologies if
Hq(Z,Ω1

Z(`)) = 0 for all ` ∈ Z and all 2 6 q 6 n− 2.

We remark that our definition of special cohomologies is much weaker
than that given in [26].

Example 3.10. — By [25, Corollary 2.3.1], an n-dimensional smooth com-
plete intersection Y in a projective space has special cohomologies if n > 4.
Moreover, if Ỹ is a cyclic covering of Y , then Y has special cohomologies
(see [26, Theorem 1.6]).

Example 3.11. — Let Y be a smooth weighted complete intersection of
dimension n in a weighted projective space, and let OY (1) be the restriction
to Y of the universal O(1)-sheaf from the weighted projective space. Then
(Y,OY (1)) has special cohomologies by [9, Satz 8.11].

Proposition 3.12. — Let (M,OM (1)) be an n-dimensional irreducible
Hermitian symmetric space of compact type. If n > 4, then (M,OM (1))
has special cohomologies.

Proof. — By Serre duality, it suffices to consider Hn−q(M,Ωn−1
M (−`)).

As 2 6 q 6 n − 2, we get 2 6 n − q 6 n − 2. Now it follows from
Proposition 3.6. �
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4. Extension of twisted vector fields

This section is devoted to study global twisted vector fields over smooth
complete intersections in an irreducible Hermitian symmetric space of com-
pact type. The main aim is to show that the global twisted vector fields
over complete intersections can be extended to be global twisted vector
fields over the ambient space (cf. Theorem 4.2).

4.1. Twisted vector fields over complete intersections

Let (Z,OZ(1)) be a polarized manifold, and let Y ⊂ Z be a subvariety.
Then we have a natural restriction map

ρt : H0(Z, TZ(t)) −→ H0(Y, TZ(t)|Y )

for any t ∈ Z. The following proposition concerns on the surjectivity of ρt
and its proof was communicated to me by the anonymous referee.

Proposition 4.1. — Let (Z,OZ(1)) be a polarized projective manifold.
Let Y be the complete intersection H1 ∩ · · · ∩ Hr where Hi ∈ |OZ(di)|.
Assume moreover that there exists an integer rZ ∈ Z such thatOZ(−KZ) ∼=
OZ(rZ). Given t ∈ Z, if (Z,OZ(1)) has special cohomologies, dim(Y ) > 2
and Hdim(Z)−1(Z,Ω1

Z(−rZ +di− t)) = 0 for all 1 6 i 6 r, then the natural
restriction

ρt : H0(Z, TZ(t)) −→ H0(Y, TZ(t)|Y )
is surjective.

Proof. — Denote by E the vector bundle OZ(−d1)⊕· · ·⊕OZ(−dr) over
Z. Consider the following Koszul resolution of OY

0 −→ ∧rE −→ ∧r−1E −→ · · · −→ E −→ OZ −→ OY −→ 0.

Tensoring it with TZ(t), we obtain the following exact sequence

(4.1) 0 −→ TZ(t)⊗ (∧rE) −→ TZ(t)⊗ (∧r−1E)
−→ · · · −→ TZ(t)⊗ E −→ TZ(t) −→ TZ(t)|Y −→ 0.

By definition, for any 1 6 j 6 r, the vector bundle ∧jE splits into a direct
sum of line bundles as

⊕
iOZ(−dij) with dij > j. Since (Z,OZ(1)) has

special cohomologies and r = codim(Y ) 6 n− 2, by Serre duality, we have

Hj(Z, TZ(t)⊗ (∧jE)) ∼=
⊕
i

Hj(Z, TZ(t− dij)) = 0
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for any j > 2. On the other hand, as Hdim(Z)−1(Z,Ω1
Z(−rZ + di − t)) = 0

by our assumption, by Serre duality again, we obtain

H1(Z, TZ(t)⊗ E) ∼=
r⊕
i=1

Hdim(Z)−1(Z,Ω1
Z(−rZ + di − t) = 0.

Then the second quadrant spectral sequence associated to the complex (4.1)
(see [20, Appendix B]) implies that the natural restriction

H0(Z, TZ(t)) −→ H0(Y, TZ(t)|Y )

is surjective. �

As an immediate application, we derive the following theorem which will
play a key role in the proof of Theorem 1.8.

Theorem 4.2. — Let M be an (n + r)-dimensional irreducible Her-
mitian symmetric space of compact type which is not isomorphic to any
smooth quadric hypersurface Qn+r. Let Y = H1 ∩ · · · ∩Hr be a complete
intersection of dimension n where Hi ∈ |OM (di)|. Assume moreover that
dim(Y ) = n > 2. Then the natural restriction

ρt : H0(M,TM (t)) −→ H0(Y, TM (t)|Y ).

is surjective for any t ∈ Z.

Proof. — If n + r > 4, this follows from Corollary 3.7, Proposition 3.12
and Proposition 4.1. If n + r = 3, then Y is a hypersurface of degree d in
M . Thanks to the following exact sequence

0 −→ TM (t− d) −→ TM (t) −→ TM (t)|Y −→ 0,

to prove the surjectivity of ρt, it is enough to show that

H1(M,TM (t− d)) = 0.

By Serre duality, it is equivalent to show that

H2(M,Ω1
M (−rM + d− t)) = 0.

SinceM is not isomorphic to any smooth quadric hypersurface, we conclude
by Corollary 3.7. �

If M is a smooth quadric hypersurface, then we can also regard Y as
a complete intersection of degree (2, d1, . . . , dr) in the projective space
Pn+r+1. In general, we have the following result.

Theorem 4.3. — Let Y=H1∩· · ·∩Hr be a complete intersection where
Hi ∈ |OPn+r (di)|. Assume moreover that H1 is smooth, dim(Y ) = n > 2
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and n + r > 4. If di > 2 for all 1 6 i 6 r and t is an integer such that
di − t > d1 for any 2 6 i 6 r, then the natural restriction

ρt : H0(H1, TH1(t)) −→ H0(Y, TH1(t)|Y )

is surjective.

Proof. — If r = 1, the statement is trivial. So we may assume that r > 2.
If n + r > 5, by definition and [25, Corollary 2.3.1], the hypersurface H1
has special cohomologies (cf. Example 3.10). Thanks to Proposition 4.1, it
suffices to verify that we have

Hdim(Y1)−1(Y1,Ω1
Y1

(−rY1 + di − t)) = 0

for all 2 6 i 6 r. Since t ∈ Z is an integer such that di − t > d1 for any
2 6 i 6 r, it follows from Lemma 3.8 immediately.
If n+ r = 4, then Y = H1∩H2. As d2− t > d1 by assumption, thanks to

Lemma 3.8, we have H2(H1,Ω1
H1

(−rH1 +d2− t)) = 0. By Serre duality, we
obtain H1(H1, TH1(t− d2)) = 0. Then, it follows from the following exact
sequence

0 −→ TH1(t− d2) −→ TH1(t) −→ TH1(t)|Y −→ 0

that the map H0(H1, TH1(t))→ H0(Y, TH1(t)|Y ) is surjective. �

4.2. Twisted vector fields over hypersurfaces in projective spaces

The global sections of TPn(t) can be expressed explicitly by homogeneous
polynomials of degree t + 1. To see this, we consider the twisted Euler
sequence

0 −→ OPn(t) −→ OPn(t+ 1)⊕(n+1) −→ TPn(t) −→ 0.

Using the fact H1(Pn,OPn(t)) = 0, we see that the restriction map

H0(Pn,OPn(t+ 1)⊕(n+1)) −→ H0(Pn, TPn(t))

is surjective, so a global section σ of TPn(t) is given by a vector field on the
affine complex vector space Cn+1

σ = f0
∂

∂x0
+ · · ·+ fn

∂

∂xn
,

where fi’s are homogeneous polynomials of degree t+ 1. Let Y ⊂ Pn be a
smooth hypersurface defined by a homogeneous polynomial h and let X be
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a submanifold of Y . Then the restriction σ|X is a global section of TY (t)|X
if and only if we have(

f0
∂h

∂x0
+ · · ·+ fn

∂h

∂xn

)∣∣∣∣
X

≡ 0.

Furthermore, we have σ|X ≡ 0 if and only if

(xifj − xjfi) |X ≡ 0, 0 6 i 6 j 6 n.

Let Y be a general complete intersection in an N -dimensional irre-
ducible Hermitian symmetric space M of compact type such that N > 3,
and let X ∈ |OY (d)| be a general hypersurface of Y . Thanks to [36],
H0(M,TM (t)) 6= 0 for some t < 0 if and only if M ∼= PN and t = −1.
According to Theorem 4.2 and Theorem 4.3, we get

H0(Y, TY (t)) = H0(X,TY (t)|X) = H0(M,TM (t)) = 0

for any t 6 −2. In the following theorem, we generalize this result to show
that if Y is a general hypersurface of Pn+1, then the natural restriction

αt : H0(Y, TY (t)) −→ H0(X,TY (t)|X)

is surjective for t 6 t0 large enough depending only on n and the degrees
of X and Y . This theorem is a key ingredient of the proof of Theorem 1.9.

Theorem 4.4. — Let Y ⊂ Pn+1 be a general smooth hypersurface de-
fined by the homogeneous polynomial h of degree dh > 2 and let X ∈
|OY (d)| be a general smooth divisor. If n > 3, then the restriction map

H0(Y, TY (t)) −→ H0(X,TY (t)|X)

is surjective for any t 6 (ρ + d)/2 − dh, where ρ = (dh − 2)(n + 2) is the
top degree of the Milnor algebra of Y .

Proof. — Since the restriction H0(Pn+1,OPn+1(d)) → H0(Y,OY (d)) is
surjective, there exists a general homogeneous polynomial f of degree d
such that X = {f = h = 0}. We denote by M(Y ) and J(Y ) the Milnor
algebra and Jacobian ideal of Y , respectively. Since H0(X,TY (t)|X) is a
subset of H0(X,TPn+1(t)|X) and H0(Pn+1, TPn+1(t)) = 0 for t 6 −2, by
Theorem 4.2, we may assume t > −1.
Let s ∈ H0(X,TY (t)|X) be a global section. By Theorem 4.2, the section

s is the restriction of some global section σ ∈ H0(Pn+1, TPn+1(t)). Therefore
there exist some polynomials fi of degree t+ 1 such that

s = σ|X =
(
f0

∂

∂x0
+ · · ·+ fn+1

∂

∂xn+1

)∣∣∣∣
X
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and (
f0
∂h

∂x0
+ · · ·+ fn+1

∂h

∂xn+1

)∣∣∣∣
X

= 0.

As a consequence, there exist two homogeneous polynomials g and p (maybe
zero) such that

f0
∂h

∂x0
+ · · ·+ fn+1

∂h

∂xn+1
= gf + ph.

We claim that g is contained in the Jacobian ideal J(Y ) of Y . In fact, by
Euler’s homogeneous function theorem, it follows(

f0 −
1
dh
px0

)
∂h

∂x0
+ · · ·+

(
fn+1 −

1
dh
pxn+1

)
∂h

∂xn+1
= gf.

Thanks to Proposition 2.6, the Milnor algebra M(Y ) has maximal rank
property, hence, by the genericity assumption of f , the multiplication map

(×f) : M(Y )t+dh−d −→M(Y )t+dh

has maximal rank. Moreover, by the assumption, we have

t+ dh − d 6
ρ− d

2 ,

so the multiplication map (×f) is injective (cf. Remark 2.5). It follows
that g = 0 in M(Y ), or equivalently, the polynomial g is contained in the
Jacobian ideal of Y . Therefore there exist some homogeneous polynomials
gi’s of degree t− d+ 1 such that

g = g0
∂h

∂x0
+ · · ·+ gn+1

∂h

∂xn+1
.

This yields(
f0
∂h

∂x0
+ · · ·+ fn+1

∂h

∂xn+1

)
−
(
g0f

∂h

∂x0
+ · · ·+ gn+1f

∂h

∂xn+1

)
= ph.

We denote by σ′ ∈ H0(Pn+1, TPn+1(t)) the global section defined by

g0f
∂

∂x0
+ · · ·+ gn+1f

∂

∂xn+1
.

Then (σ − σ′)|Y ∈ H0(Y, TY (t)). Moreover, as σ′|X ≡ 0, we have

(σ − σ′)|X = σ|X = s.

Hence the restriction map

H0(Y, TY (t)) −→ H0(X,TY (t)|X)

is surjective. �
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5. Stability and effective restriction with invariant Picard
group

This section is devoted to study the stability of the tangent bundles of
smooth complete intersections in Hermitian symmetric spaces. As men-
tioned in the introduction, this problem was studied by Peternell and
Wiśniewski in [26] in the projective spaces case. Moreover, we will also
consider the effective restriction problem for tangent bundles.

5.1. Vanishing theorem and stability of tangent bundles

We start with an observation whose statement was suggested by the ref-
eree. It is very useful when we consider the cohomologies of smooth com-
plete intersections in some projective manifolds with many cohomological
vanishings.

Lemma 5.1. — For n > 2, let (Z,OZ(1)) be a polarized projective man-
ifold of dimension n + r. Let Y = H1 ∩ · · · ∩ Hr be a smooth complete
intersection of dimension n where Hi ∈ |OZ(di)|. If there exist integers p, q
and ` such that p+ q 6 n and Hq(Y,ΩpY (`)) 6= 0, then there exist integers
j1, . . . , jr ∈ N such that 0 6 j1 + · · ·+ jr 6 p− 1 and such that one of the
following statements holds.

(1) There exists an integer 1 6 s 6 r such that

Hq+p(Y,OY (`− (p− k)ds − js+1ds+1 − · · · − jrdr) 6= 0,

where k := js+1 + · · ·+ jr.
(2) Hq+j1+···+jr (Y,Ωp−j1−···−jr

Z (`− j1d1 − · · · − jrdr)|Y ) 6= 0.

Proof. — Let us denote by Yi (1 6 i 6 r) the scheme-theoretic complete
intersection H1∩· · ·∩Hi. Then we have Y = Yr. Moreover, for convenience,
we will denote Z by Y0. Since Y is smooth, each Yi is smooth in a neigh-
borhood of Y . In particular, the cotangent sheaf Ω1

Yi
of Yi is locally free in

a neighborhood of Y . Let s be the minimal non-negative integer such that
there exist integers js+1, js+2, . . . , jr ∈ N satisfying 0 6 k 6 p− 1 and

Hq+k(Y,Ωp−kYs
(`− js+1ds+1 − · · · − jrdr)|Y ) 6= 0.

We note that the assumption H0(Y,ΩpY (`)) 6= 0 implies the existence of s
satisfying s 6 r. Moreover, we are in Case (2) if s = 0.
Now we assume that s > 1. Then, by the minimality of s, we see that

for any j ∈ N such that 0 6 j + k 6 p− 1, we have

(5.1) Hq+j+k(Y,Ωp−j−kYs−1
(`− jds − js+1ds+1 − · · · − jrdr)|Y ) = 0.
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The restriction over Y of the conormal sequence of Ys in Ys−1

0 −→ OY (−ds) −→ Ω1
Ys−1
|Y −→ Ω1

Ys
|Y −→ 0

induces an exact sequence of vector bundles

0 −→ Ωp−j−k−1
Ys

(−ds)|Y −→ Ωp−j−kYs−1
|Y −→ Ωp−j−kYs

|Y −→ 0.

Tensoring it with OY (`− jds − js+1ds+1 − · · · − jrdr), we obtain

0 −→ Ωp−j−k−1
Ys

(`− (j + 1)ds − js+1ds+1 − · · · − jrdr)|Y
−→ Ωp−j−kYs−1

(`− jds − js+1ds+1 − · · · − jrdr)|Y
−→ Ωp−j−kYs

(`− jds − js+1ds+1 − · · · − jrdr)|Y −→ 0.

Then (5.1) shows that for any j ∈ N such that 0 6 j + k 6 p − 1, the
induced map

Hq+j+k(Y,Ωp−j−kYs
(`− jds − jsds − · · · − jrdr)|Y )

−→ Hq+j+k+1(Y,Ωp−j−k−1
Ys

(`− (j + 1)ds − js+1ds+1 − · · · − jrdr)|Y )

is injective. Then by induction on j from 0 to p− k − 1, the assumption

Hq+k(Y,Ωp−kYs
(`− js+1ds+1 − · · · − jrdr)|Y ) 6= 0.

implies

Hq+p(Y,OY (`− (p− k)ds − js+1ds+1 − · · · − jrdr)|Y ) 6= 0.

Finally we conclude by setting j1 = · · · = js = 0. �

Now we are in the position to prove Theorem 1.3. The idea is to relate
the cohomologies of Y to the cohomologies of the ambient space M using
Lemma 5.1 and the Koszul resolution.
Proof of Theorem 1.3. — As M is a Fano manifold, by Kobayashi–

Ochiai’s theorem (see [17]), we have rM 6 n + r + 1 with equality if and
only if M ∼= Pn+r. On the other hand, if M ∼= Pn+r, thanks to [25, Corol-
lary 2.3.1], under our assumption, we have Hq(Y,ΩpY (`)) 6= 0 if and only if
q = p and ` = 0. Hence the result holds if rM = n+r+1. From now on, we
shall assume that rM 6 n+ r. As a consequence, we have rY 6 n− 1 since
di > 2. Let us denote by E the vector bundle OM (−d1)⊕ · · · ⊕ OM (−dr).
Then we have the Koszul resolution of OY

(5.2) 0 −→ ∧rE −→ ∧r−1E −→ · · · −→ E −→ OM −→ OY −→ 0.

Moreover, for any 1 6 j 6 r, the vector bundle ∧jE splits into a direct
sum of line bundles as

⊕
iOM (−dij) with dij > 2j.
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Proof of (1). — As Hq(Y,ΩpY ) 6= 0, thanks to Lemma 5.1, there exist
integers j1, . . . , jr ∈ N such that 0 6 k := j1 + · · · + jr 6 p − 1 and such
that we have either

(5.3) Hq+k(Y,Ωp−kM (−j1d1 − · · · − jrdr)|Y ) 6= 0

or

(5.4) Hq+p

(
Y,OY

(
−

(
p−

∑
l>s+1

jl

)
ds − js+1ds+1 + · · ·+ jrdr

))
6= 0

for some 1 6 s 6 r. Note that we have

−(p− js+1 − · · · − jr)ds − js+1ds+1 − · · · − jrdr < 0

as p > j1+· · ·+jr. Therefore, as 1 6 q+p 6 n−1, then Kodaira’s vanishing
theorem shows that (5.4) is impossible. Hence, (5.3) holds and the second
quadrant spectral sequence associated to the complex (5.2) twisting with

Ωp−kM (−j1d1 − · · · − jrdr)

implies that there exists an integer 0 6 j 6 r such that

Hq+k+j(M,Ωp−kM (−j1d1 − · · · − jrdr)⊗ ∧jE) 6= 0.

As q+j+p 6 n+r−1 by assumption, then the Akizuki–Nakano vanishing
theorem implies

−j1d1 − · · · − jrdr − dij > 0

for some dij . Since dij > 0 if j > 0, dl > 0 and jl > 0 (1 6 l 6 r), we
obtain

j = j1 = · · · = jr = 0.

Equivalently, we have Hq(M,ΩpM ) 6= 0, and it follows that p = q.
Proof of (2). — If Hq(Y,ΩpY (`)) 6= 0, by Lemma 5.1 again, there exist

integers j1, . . . , jr ∈ N with 0 6 k := j1 + · · · + jr 6 p − 1 such that we
have either

(5.5) Hq+k(Y,Ωp−kM (`− j1d1 − · · · − jrdr)|Y ) 6= 0

or

(5.6) Hq+p

(
Y,OY

(
`−

(
p−

∑
l>s+1

jl

)
ds − js+1ds+1 − · · · − jrdr

))
6= 0

for some 1 6 s 6 r.
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1st Case. (5.5) holds. — In this case, the second quadrant spectral se-
quence associated to the complex (5.2) twisting with Ωp−kM (`− j1d1− · · ·−
jrdr) implies that there exists an integer 0 6 j 6 r such that

Hq+k+j(M,Ωp−kM (`− j1d1 − · · · − jrdr)⊗ ∧jE) 6= 0.

In particular, there exists dij such that

Hq+k+j(M,Ωp−kM (`− j1d1 − · · · − jrdr − dij)) 6= 0.

As q + j + p 6 n + r − 1, Akizuki–Nakano vanishing theorem shows that
we have

(5.7) `− j1d1 − · · · − jrdr − dij > 0

If the equality in (5.7) holds, then Hq+k+j(M,Ωp−kM ) 6= 0 and it follows
that q + k + j = p− k. As a consequence,

n(`+ q) = n(j1d1 + · · ·+ jrdr + dij + p− 2k − j)
= n(p+ (d1 − 2)j1 + · · ·+ (dr − 2)jr + dij − j)

As di > 2, dij > 2j and rY 6 n− 1, we obtain n(`+ q) > np > rY p.
If the inequality (5.7) is strict, we can apply [2, Theorem D] to get

`− j1d1 − · · · − jrdr − dij + q + k + j

p− k
>

rM
n+ r

.

It follows that

`+ q > p
rM
n+ r

+
(
d1 − 1− rM

n+ r

)
j1

+ · · ·+
(
dr − 1− rM

n+ r

)
jr + dij − j.

As dij > 2j, di > 2 and rM 6 n+ r, we obtain

`+ q > p
rM
n+ r

.

Since rY 6 n − 2r, it is easy to see rM/(n + r) > rY /n, and we get the
desired inequality.
2nd Case. (5.6) holds. — As 1 6 q + p 6 n− 1, by Kodaira’s vanishing

theorem, we get

`−

p− ∑
l>s+1

jl

 ds − js+1ds+1 − · · · − jrdr > 0.
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As a consequence, we obtain

` > ds+1js+1 + · · ·+ drjr + (p− js+1 − · · · − jr)ds
> ds+1js+1 + · · ·+ drjr + 2(p− js+1 − · · · − jr)
> 2p+ (ds+1 − 2)js+1 + · · ·+ (dr − 2)jr

The second inequality follows from the assumptions p > k > js+1 + · · ·+ jr
and ds > 2. Then we can easily get

`+ q > ` > 2p

as di > 2 for all i. In particular, we have n(`+ q) > 2np > prY . �

Remark 5.2. — In view of our proof of Theorem 1.3(1), we see that
it holds even without the assumption di > 2. However, in the proof of
Theorem 1.3(2), the assumption di > 2 is necessary.

Theorem 1.4 is a direct consequence of Theorem 1.3.
Proof of Theorem 1.4. — To prove the stability of TY , it is equivalent to

prove the stability of Ω1
Y . Let F ⊂ Ω1

Y be a nonzero proper subsheaf of rank
p (1 6 p 6 n − 1). By Lefschetz hyperplane theorem and our assumption,
we have Pic(Y ) ∼= ZOY (1), where OY (1) = OM (1)|Y . Thus, we could
denote by ` the unique integer such that det(F) ∼= OY (−`). Then we have
H0(Y,ΩpY (`)) 6= 0 by assumption. Since p 6 n − 1, the Akizuki–Nakano
vanishing theorem implies ` > 0. As p > 1, Theorem 1.3(1) implies ` > 0,
and hence µ(F) < µ(Ω1

Y ) by Theorem 1.3(2). In particular, it follows that
Ω1
Y is stable. �

5.2. Effective restriction of tangent bundles

In this subsection, we proceed to prove various effective restriction theo-
rems for tangent bundles of complete intersections in irreducible Hermitian
symmetric spaces of compact type. We use the standard cohomological
arguments as in the proof of Theorem 1.4 to reduce the problem to the
existence of twisted vector fields.

Proposition 5.3. — For n > 3 and r > 1, let M be an (n + r)-
dimensional irreducible Hermitian symmetric space of compact type. Let
Y = H1 ∩ · · · ∩Hr be a smooth complete intersection of dimension n with
Hi ∈ |OM (di)| with di > 2. Let X ∈ |OY (d)| be a smooth divisor. Assume
that the composite of restrictions

Pic(M) −→ Pic(Y ) −→ Pic(X)
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is surjective. Moreover, if Y is isomorphic to some smooth quadric hyper-
surface Qn, we assume in addition that d > 2. Then the vector bundle
TY |X is stable if and only if

H0(X,TY (t)|X) = 0

for any integer t 6 −rY /n, where rY is the unique integer such that
OY (−KY ) ∼= OY (rY ).

Proof. — The “only if” implication follows from the definition of stabil-
ity. Now we assume H0(X,TY (t)|X) = 0 for any t 6 −rY /n. Note that
TY |X is stable if and only if Ω1

Y |X is stable. Let F be a proper subsheaf
of Ω1

Y |X of rank p. After replacing F by its saturation in Ω1
Y |X , we may

assume that F is saturated. We denote by ` the unique integer such that
det(F) = OX(−`). Then, by assumption, we get H0(X,ΩpY (`)|X) 6= 0. To
prove the stability of Ω1

Y |X , it suffices to show that the following inequality

µ(F) = −`
p
OX(1)n−1 < µ(Ω1

Y |X) = −rY
n
OX(1)n−1

holds for all pairs of integers (`, p) such that H0(X,ΩpY (`)|X) 6= 0 and
1 6 p 6 n− 1. We consider the following exact sequence

0 −→ ΩpY (`− d) −→ ΩpY (`) −→ ΩpY (`)|X −→ 0.

As 1 6 p 6 n − 1 and n > 3, by Theorem 1.3, H0(Y,ΩpY (`)) 6= 0 im-
plies n` > prY . Thus we may assume H0(Y,ΩpY (`)) = 0. Then the fact
H0(X,ΩpY (`)|X) 6= 0 implies H1(Y,ΩpY (`− d)) 6= 0.
1st Case. p 6 n− 2. — As p > 1, if ` 6= d, by Theorem 1.3(2), we have

n` > n(`− d+ 1) > prY .

If ` = d, then we have p = 1 by Theorem 1.3(1). As a consequence, we get

(5.8) n` = nd > prY = rY

unless d = 1 and rY > n. If rY > n, by Kobayashi–Ochiai theorem, Y is
isomorphic to either Pn or Qn. As di > 2, then Y is actually isomorphic to
Qn. However, by our assumption, if Y ∼= Qn, then we have d > 2. Hence
the inequality (5.8) still holds in this case.
2nd Case. p = n−1. — We denote by Q the quotient

(
Ω1
Y |X

)
/F . Since

F is saturated, the quotient Q is a torsion-free coherent sheaf of rank one
such that det(Q) = Q∗∗ ∼= OX(−rY + `). Since Q∗ is a subsheaf of TY |X ,
we get

H0(X,TY (`− rY )|X) 6= 0.
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By our assumption, we get `− rY > −rY /n. As a consequence, we get

`

p
= `

n− 1 >
rY
n
.

We have thus proved the proposition. �

As an application of Proposition 5.3, we can derive Theorem 1.8 by the
nonexistence of global twisted vector fields.

Proof of Theorem 1.8. — Let X be a projective manifold of dimension
N > 2, and let L be an ample line bundle. Recall thatH0(X,TX⊗L−1) 6= 0
if and only if X ∼= PN and L ∼= OPN (1) (cf. [36]). In particular, if M is not
isomorphic to a projective space, then we have H0(M,TM (t)) = 0 for any
integer t < 0.

Proof of (1). — Under our assumption, by Theorem 4.2, the natural
restriction map

ρt : H0(M,TM (t)) −→ H0(X,TM (t)|X)

is surjective for all t ∈ Z. In particular, we have H0(X,TM (t)|X) = 0 for all
t < 0. This implies H0(X,TY (t)|X) = 0 for all t < 0 since H0(X,TY (t)|X)
is a subgroup of H0(X,TM (t)|X). As Y is Fano, we have rY > 0 and we
conclude by Proposition 5.3.

Proof of (2). — If d > d1, by Theorem 4.3, the natural restriction map

ρt : H0(Y1, TY1(t)) −→ H0(X,TY1(t)|X)

is surjective for all t 6 −1. In particular, we have H0(X,TY1(t)|X) = 0 for
all t 6 −1 if d > d1. Again, since Y is Fano, we have rY > 0 and the result
is again a consequence of Proposition 5.3.

Proof of (3). — If M is isomorphic to any smooth quadric hypersurface
Qn+r and Y ⊂M is a complete intersection of degree (d1, . . . , dr) such that
di > 2 for all 1 6 i 6 r. Then Y is also a complete intersection in Pn+r+1

of degree (2, d1, . . . , dr) and the result follows immediately from (2).

Proof of (4). — Since every smooth complete intersection in a quadric
hypersurface is also a smooth complete intersection in some projective
space, we may assume that M is not isomorphic to any smooth quadric
hypersurface. Note that we have d > d1 − rY /n > 1 as d1 > 2 and rY 6 n.
Thus, by Proposition 5.3, it suffices to show that

H0(X,TY (t)|X) = 0 for t 6 −rY
n
.
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Since M is not isomorphic to any smooth quadric hypersurface, by Theo-
rem 4.2, the natural restriction map

H0(M,TM (t)) −→ H0(Y, TM (t)|Y ) −→ H0(X,TM (t)|X)

is surjective for all t ∈ Z. Let σ ∈ H0(X,TY (t)|X) be a global section.
Then σ is also a global section of TM (t)|X . Therefore there exists a global
twisted vector field σ̃ ∈ H0(M,TM (t)) such that σ̃|X = σ. Denote by Yj
(1 6 j 6 r) the scheme-theoretic complete intersection H1∩ · · ·∩Hj . Then
each Yj is smooth in a neighborhood of Y , and σ̃|X = σ is a global section
of TYj

(t)|X for all 1 6 j 6 r. Consider the following exact sequence

0 −→ TYj
(t)|Y −→ TYj−1(t)|Y

βj(t)−−−→ OY (dj + t) −→ 0.

Then σ ∈ H0(X,TY (t)|X) implies that the image β̂j(t)(σ̃|Y ) vanishes over
X, where β̂j(t) is the induced map

H0(Y, TYj−1(t)|Y ) −→ H0(Y,OY (dj + t)).

However, since X is general and d > dj + t for any 1 6 j 6 r by our
assumption, we get β̂j(t)(σ̃|Y ) = 0 for any 1 6 j 6 r. Therefore we have
σ̃|Y ∈ H0(Y, TYj

(t)|Y ) for any 1 6 j 6 r, i.e., σ̃|Y ∈ H0(Y, TY (t)). On the
other hand, since TY is stable (cf. Theorem 1.4), we have

H0(Y, TY (t)) = 0 for t 6 −rY
n
.

Hence, we obtain σ̃|Y = 0 and consequently σ = 0. �

Though the statements (2), (3) and (4) in the theorem may be not op-
timal in general, they have the advantage to give a lower bound which is
quite easy to compute. The next theorem deals with the case in which Y is
a general smooth hypersurface of Pn+1. The proof of this theorem can be
completed by combining Theorem 4.4 and the method analogous to that
used above.

Proof of Theorem 1.9. — If Y is isomorphic to either Pn or Qn, it
follows from [2, Theorem A]. So we shall assume that Y is a general smooth
hypersurface defined by a homogeneous polynomial h of degree dh > 3.
By Proposition 5.3, it is enough to prove that H0(X,TY (t)|X) = 0 for
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t 6 −rY /n. As n > 3, dh > 3 and rY = n+ 2− dh, we have(
ρ+ d

2 − dh
)
−
(
−rY
n

)
>

(dh − 2)(n+ 2) + d

2 − dh −
(
dh
n
− n+ 2

n

)
>

(
n

2 −
1
n

)
dh − n−

1
2 + 2

n

>
3n
2 −

3
n
− n− 1

2 + 2
n

> 0.

This implies −rY /n < (ρ+ d)/2− dh. According to Theorem 4.4, the map

H0(Y, TY (t)) −→ H0(X,TY (t)|X)

is surjective for t 6 −rY /n. The theorem is now a direct consequence of
the stability of TY . �

Remark 5.4. — In Theorem 1.9, if Y is an arbitrary smooth hypersurface,
then the argument above does not work, since the strong Lefschetz property
(SLP) of Milnor algebras of smooth hypersurfaces is still open.

6. Hyperplane of cubic threefolds

In this section, we consider the case where the map Pic(Y )→ Pic(X) is
not surjective. By Noether–Lefschetz theorem mentioned in the introduc-
tion, this happens if X is a quadric section of a quadric threefold Q3, or X
is a quadric surface in P3, or X is a cubic surface in P3. In these cases, X is
always a del Pezzo surface, i.e., the anti-canonical divisor −KX is ample.

6.1. Projective one forms

We denote by π : Sr → P2 the surface obtained by blowing-up P2 at
r(6 8) points p1, . . . , pr in general position and denote by Ej the excep-
tional divisor over pj . Then Sr is a del Pezzo surface with degreeK2

S = 9−r.
It is well-known that the cotangent bundle Ω1

Sr
is stable with respect to the

anti-canonical polarization −KSr
for r > 2 (cf. [8]). There is a one-to-one

correspondence between the saturated rank one subsheaves of Ω1
Sr

and the
global sections of Ω1

P2(a) which vanish only in codimension two. The global
sections of Ω1

P2(a) are usually called projective one forms. In the following
we give a brief description of this correspondence and we refer the reader
to [8] for further details.
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On one hand, let L be a saturated rank one subsheaf of the cotangent
bundle of Ω1

Sr
. Then we have

c1(L) = −aE0 −
9−r∑
j=1

bjEj

for some integers a, bj ∈ Z, where E0 is the pull-back of a line in P2. The
global section of Ω1

P2(a) associated to L is defined by the following map

H0(Sr,Ω1
Sr
⊗ L−1) ↪−→ H0 (Sr \ ∪Ei,Ω1

Sr
⊗ L−1|Sr\∪Ei

)
∼= H0 (P2 \ ∪{pi},Ω1

P2(a)|P2\∪{pi}
)

= H0(P2,Ω1
P2(a)).

On the other hand, let ω ∈ H0(P2,Ω1
P2(a)) be a global section vanishing

only in codimension two. Then ω can be identified with a rational global
section of Ω1

P2 with poles supported on a line T . Let E0 be the pull-back
of T by π. Then π∗ω is a global section of Ω1

Sr
⊗OSr (aE0). Let div(π∗ω)

be the divisor defined by the zeros of π∗ω. The saturated rank one sub-
sheaf associated to ω is defined to the image of the induced morphism
OSr

(−aE0 + div(π∗ω))→ Ω1
Sr
.

Example 6.1. — We recall several examples given in [8].
(1) The form ω = x0dx1 − x1dx0 ∈ H0(P2,Ω1

P2(2)) defines a saturated
subsheaf of Ω1

Sr
which is isomorphic to OSr

(−2E0 +2Ej), where Ej
is the exceptional divisor above [0 : 0 : 1]. Moreover, the only rank
one saturated subsheaves of Ω1

Sr
with a = 2 are OSr

(−2E0 + 2Ej)
and OSr

(−2E0).
(2) We choose four points p1 = [1 : 0 : 0], p2 = [0 : 1 : 0], p3 = [0 : 0 : 1]

and p4 = [1 : 1 : 1] in P2. Then the form defined by

ω = (x2
1x2 − x2

2x1)dx0 + (x2
2x0 − x2

0x2)dx1 + (x2
0x1 − x2

1x0)dx2

induces a saturated subsheaf L of Ω1
Sr

such that c1(L) = −4E0 +
2
∑4
j=1 Ej , and there does not exist a subsheaf L′ of Ω1

Sr
such that

c1(L′) = −4E0 + 2
4∑
j=1

Ej + Ei

for 5 6 i 6 r. In fact, let ω′ be the corresponding projective one
form of L′. Since L is a subsheaf of L′, π∗ω′/π∗ω can be identified
to be a global section of L′⊗L∗ whose zeros are supported on Ei. In
particular, ω is actually proportional to ω′. Nevertheless, the zeros
of ω are p1, . . . , p4 and the points [0 : 1 : 1], [1 : 0 : 1] and [1 : 1 : 0].

TOME 71 (2021), FASCICULE 4



1628 Jie LIU

Since there are at most four points of these points which are in
general position, the exceptional line Ei cannot be a zero of π∗ω′.

In order to prove Theorem 1.10, we need the following lemma due to
Fahlaoui.

Lemma 6.2 ([8, Lemme 1]). — Let L, L′ be two saturated subsheaves
of Ω1

Sr
. If L is not isomorphic to L′, then we have

h0(Sr,OSr
(KSr

)⊗ L∗ ⊗ L′∗) > 1.

6.2. Subsheaves of cotangent bundles of cubic surfaces

A cubic surface S ⊂ P3 is a blow-up π : S → P2 of six points pj on P2

in general position. The exceptional divisor π−1(pj) is denoted by Ej . Let
KS be the canonical divisor of S and E0 the pull-back of a line in P2. Then
we have

−KS = 3E0 −
6∑
j=1

Ej ∼ H|S ,

where H ∈ |OP3(1)| is a hyperplane in P3. Let us recall the following well-
known classical result of cubic surfaces.

• There are exactly 27 lines lying over a cubic surface: the exceptional
divisors Ej above the six blown up points pj , the proper transforms
of the fifteen lines in P2 which join two of the blown up points pj ,
and the proper transforms of the six conics in P2 which contain all
but one of the blown up points.

The following result gives an upper bound for the degree of the saturated
subsheaves of Ω1

S .

Proposition 6.3. — Let S be a cubic surface and let L ⊂ Ω1
S be a

saturated invertible subsheaf. Then we have

c1(L) · (−KS) 6 −3.

Proof. — Note that since µ(Ω1
S) = −3/2 and Ω1

S is stable, we get c1(L) ·
(−KS) 6 −2. Suppose that we have c1(L) ·KS = 2 for some L. Then we
have

c1(L) = −aE0 −
6∑
j=1

bjEj

for some a, bj ∈ Z with a > 2. If a = 2, then L is isomorphic to OS(−2E0)
or some OS(−2E0 +2Ei). In the former case we have c1(L) ·KS = 6 and in
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the latter case we have c1(L) ·KS = 4. So we only need to consider the case
a > 3. For fixed i, applying Lemma 6.2 to L and −2E0 + 2Ei, we obtain
an effective divisors Ci such that

Ci ∼ KS − L− (−2E0 + 2Ei) = (a− 1)E0 + (bi − 1)Ei +
∑
j 6=i

(bj + 1)Ej .

Denote by d = −KS · Ci = 3a +
∑6
j=1 bj + 1 the degree of Ci. By the

assumption c1(L) ·KS = 2, we obtain 3a+
∑6
j=1 bj = 2, and hence d = 3.

Moreover, as a > 3, we have
∑6
j=1 bj 6 −7, and consequently there is at

least one bj 6 −2. The proof will be divided into three steps.
Step 1. We will show bj > −2 for all 1 6 j 6 6. — There exist some

π-exceptional effective divisors
∑6
j=1 cijEj such that the effective divisors

C ′i defined as

C ′i = Ci −
6∑
j=1

cijEj ∼ (a− 1)E0 + (bi − cii − 1)Ei +
∑
j 6=i

(bj − cij + 1)Ej

do not contain π-exceptional components. We denote the integer bj − cij
by bij and denote the degree −KS · C ′i of C ′i by d′i, then we have

(6.1) bij 6 bj and d′i 6 d.

Since the exceptional divisor Ei is a line on S and −KS ∼ H|X for some
hyperplane H ⊂ P3, we have Bs |−KS−Ei| ⊂ Ei. Moreover, since C ′i does
not contain Ei, we obtain

(6.2) (−KS − Ei) · C ′i > 0 and − bii + 1 = C ′i · Ei 6 −KS · C ′i = d′i.

Combining (6.1) and (6.2) gives

(6.3) − bi 6 −bii 6 d′i − 1 6 d− 1 = 2.

Since i is arbitrary, we deduce that bi > −2 for i = 1, . . . , 6.
Step 2. We show bj 6 −1 for all 1 6 j 6 6 and

∑6
j=1 bj 6 −8. — Since

there is at least one bj 6 −2 and bi > −2 for all i, without loss of generality
we may assume b1 = −2. As a consequence of inequality (6.3), we have

b11 = −2 and d′1 = d = 3.

It follows that −KS · (Ci − C ′i) = d− d′1 = 0. As Ci − C ′i > 0 and −KS is
ample, we obtain C ′1 = C1 and

(6.4) −KS · C1 = E1 · C1 = 3.
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Since C1 does not contain Ej , we must have −bj − 1 = C1 · Ej > 0 for
j > 2, which yields bj 6 −1 for j > 2. As a consequence, we get

−12 6
6∑
j=1

bj 6 −7 and 3 6 a 6 4.

Let C1` be a component of C1. Since Bs | −KS −E1| ⊂ E1 and C1 does
not contain E1, we have (−KS − E1) · C1` > 0. Then the equality (6.4)
implies (−KS −E1) ·C1` = 0. Therefore, C1` is actually a plane curve and
there exists a plane H` ⊂ P3 such that C1` + E1 6 H`|S . In particular, we
have

−KS · C1` = H`|S · C1` 6 2.
On the other hand, as −KS · C1 = 3, it follows easily that there exists at
least one component of C1, denoted by C11, such that −KS · C11 = 1. In
particular, C11 is a line on S. However, C11 is not π-exceptional, so the
line C11 passes at least two π-exceptional divisors, and it follows that there
exists some j (> 2) such that

−2 6 bj = −1− C1 · Ej 6 −1− C11 · Ej 6 −2.

Hence we obtain
∑6
j=1 bj 6 −8.

Step 3. We exclude the case c1(L) ·KS = 2. — By our argument above,
if c1(L) ·KS = 2, then we have

a > 3, −2 6 bj 6 −1 and − 12 6
6∑
j=1

bj 6 −8.

Then the equality 3a+
∑6
j=1 bj = 2 shows a = 4 and

∑6
j=1 bj = −10, and

consequently L is a line bundle of the form

−4E0 + 2E1 + 2E2 + 2E3 + 2E4 + E5 + E6.

Nevertheless, we have seen that such a line bundle cannot be a saturated
subsheaf of Ω1

S (cf. Example 6.1), a contradiction. �

6.3. Stability of restrictions of tangent bundles of general cubic
threefolds

In this subsection, we will prove Theorem 1.10. First we consider the
saturated subsheaves of Ω1

Y |X of rank two and we give an upper bound for
the degree of c1(F) with respect to −KX .
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Lemma 6.4. — Let Y be a general smooth cubic threefold and let X ∈
|OY (1)| be a general smooth divisor. If F ⊂ Ω1

Y |X is a saturated subsheaf
of rank two, then we have

c1(F) · (−KX) 6 −5.

Proof. — The natural inclusion F ⊂ Ω1
Y |X implies

h0(X,Ω2
Y |X ⊗ det(F)∗) > 1.

Using the short exact sequence

0 −→ Ω1
X(−1)⊗ det(F)∗ −→ Ω2

Y |X ⊗ det(F)∗

−→ OX(KX)⊗ det(F)∗ −→ 0,

we obtain either

h0(X,Ω1
X(−1)⊗ det(F)∗) > 1

or h0(X,OX(KX)⊗ det(F)∗) > 1.

In the former case, the stability of Ω1
X implies

(c1(F) + c1(OX(1))) · (−KX) < KX · (−KX)
2 = −3

2 .

This yields

c1(F) · (−KX) < −c1(OX(1)) · (−KX)− 3
2 = −9

2 < −4.

In the latter case, we have c1(F) · (−KX) 6 KX · (−KX) = −3 with
equality if and only if c1(F) = −KX , and the quotient G : =

(
Ω1
Y

∣∣
X

)
/F

is a torsion-free sheaf of rank one.
If c1(F) · (−KX) = −3, then det(F) ∼= OX(KX) ∼= OX(−1) and conse-

quently det(G) = OX(−1). Since G∗ is a subsheaf of TY |X , we obtain

h0(X,TY |X ⊗ det(G)) = h0(X,TY (−1)|X) > 1.

Since TY (−1)|X is a subsheaf of TY |X , we get H0(X,TY |X) 6= 0. Then, by
Theorem 4.4, we obtain H0(Y, TY ) 6= 0. Nevertheless, it is well-known that
there are no global holomorphic vector fields over a cubic threefold (cf. [15,
Theorem 11.5.2]). This leads to a contradiction.
If c1(F) · (−KX) = −4, then det(F) ∼= OX(−1)⊗OX(−T ) for some line

T ⊂ X. As a consequence, we have det(G) = OX(−1) ⊗ OX(T ). Since G∗
is a subsheaf of TY |X , we get

h0(X,TY (−C)|X) > 0,
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where C is a conic such that OX(C) ∼= OX(1) ⊗ OX(−T ). Note that the
sheaf TY (−C)|X is a subsheaf of TY |X , it follows that H0(X,TY |X) 6= 0.
Similarly, Theorem 4.4 implies H0(Y, TY ) 6= 0, which is impossible. �

Now we are in the position to prove the main theorem in this section.
Proof of Theorem 1.10. — It is enough to prove that Ω1

Y |X is stable
with respect to OX(1). Since µ(Ω1

Y |X) = −2, it suffices to prove that the
following inequality holds for any proper saturated subsheaf F of Ω1

Y |X .

µ(F) = c1(F) · −KX

rk(F) < −2

1st Case. F ⊂ Ω1
Y |X is a saturated subsheaf of rank one. — Since F is

a reflexive sheaf of rank one and X is smooth, F is actually an invertible
sheaf. Then the exact sequence

0 −→ OX(−1)⊗F∗ −→ Ω1
Y |X ⊗F∗ −→ Ω1

X ⊗F∗ −→ 0

implies that we have either h0(X,OX(−1)⊗F∗) > 1 or h0(X,Ω1
X⊗F∗) > 1.

In the former case, we have

µ(F) = c1(F) · (−KX) 6 c1(OX(−1)) · (−KX) = −3 < −2.

In the latter case, let F be the saturation of F in Ω1
X , then Proposition 6.3

implies
µ(F) 6 µ(F) = c1(F) · (−KX) 6 −3.

2nd Case. F ⊂ Ω1
Y |X is a saturated subsheaf of rank two. — In this

case, by Lemma 6.4, we have

µ(F) = c1(F) · (−KX)
2 6

−5
2 < −2.

This finishes the proof. �
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