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THE CR AHLFORS DERIVATIVE AND A NEW
INVARIANT FOR SPHERICALLY EQUIVALENT CR

MAPS

by Bernhard LAMEL & Duong Ngoc SON (*)

Abstract. — We study a CR analogue of the Ahlfors derivative for conformal
immersions of Stowe that generalizes the CR Schwarzian derivative studied earlier
by the second-named author. This notion possesses several important properties
similar to those of the conformal counterpart and provides a new invariant for
spherically equivalent CR maps from strictly pseudoconvex CR manifolds into a
sphere. The invariant is computable and distinguishes many well-known sphere
maps. In particular, it vanishes precisely when the map is spherically equivalent to
the linear embedding of spheres.
Résumé. — Nous étudions un analogue CR de la dérivée au sens d’Ahlfors pour

les immersions conformes de Stowe, qui généralise la dérivée schwarzienne CR étu-
diée antérieurement par le second auteur. Cette notion possède plusieurs propriétés
importantes similaires à celles de son homologue conforme et fournit un nouvel
invariant pour les applications CR, sphériquement équivalentes, de variétés CR
strictement pseudoconvexes à valeurs dans la sphère. Cet invariant est calculable
et permet de distinguer beaucoup d’applications CR sphériques entre elles. En par-
ticulier, il s’annule précisément quand l’application est sphériquement équivalente
au plongement linéaire entre sphères.

1. Introduction

The main purpose of this paper is to extend the notion of the CR
Schwarzian derivative for CR diffeomorphisms [21] to the case of CR im-
mersions. For conformal immersions of Riemannian manifolds, the Ahlfors
derivative of Stowe [23] generalizes the Schwarzian derivative of Osgood–
Stowe [19] in a similar way and goes back to Ahlfors [1]. Precisely, we
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shall define, for each CR immersion f : (M, θ) → (N, η) between pseudo-
hermitian manifolds, a tensor denoted by Aθ(f). This tensor reduces to
the Schwarzian tensor introduced in [21] for CR diffeomorphisms in the
equidimensional case. We shall call this tensor the CR Ahlfors derivative
(or tensor). We refer the reader to Stowe’s paper for further discussions
regarding the history and motivations in the conformal case; however, it
turns out that the CR setting has some special properties not present in
the conformal setting, which we shall point out as we go.
The tensor which we are going to construct satisfies a “chain rule” de-

scribed as follows: For a chain of CR immersions (M, θ) F−−→ (N, η) G−−→
(P, ζ), it holds that

(1.1) A(G ◦ F ) = A(F ) + F ∗A(G).

It was shown in [21] that if (M, θ) = (N, η) is the sphere with its stan-
dard pseudohermitian structure, then A(F ) (which reduces to the CR
Schwarzian derivative as already noted) vanishes identically if F is a CR
automorphism of the sphere. Therefore, the chain rule (1.1) implies that A
is an invariant for spherically equivalent CR maps into spheres of higher di-
mensions. This invariant property is a main motivation for us to extend the
notion of the CR Schwarzian derivative to the case of higher dimensional
targets. We shall in fact apply the Ahlfors derivative to study equivalence
of sphere maps, a problem which has been studied extensively; we can
mention only several papers [3, 4, 6] and refer the readers to numerous
references therein.
To construct the CR Ahlfors derivative, we shall follow Stowe’s con-

struction for the conformal case. First, we define a notion of CR sec-
ond fundamental form for the “isopseudohermitian” immersions and the
(1, 0)-mean curvature vector (this step was not needed in the equidimen-
sional case). Precisely, let (N, η) be a pseudohermitian manifold and let
ι : (M, θ) ↪→ (N, η) be a pseudohermitian submanifold of N . This means
the standard inclusion ι is CR and θ = ι∗η. We denote by ∇ and ∇̃ the
Tanaka–Webster connections on (M, θ) and (N, η), respectively, introduced
by Tanaka and Webster [24]. For any two vector fields X,Y ∈ Γ(CTM)
extended to smooth sections X̃, Ỹ of CTN , we define the pseudohermitian
second fundamental form by the Gauß formula, namely,

(1.2) II(X,Y ) = IINM (X,Y ) := ∇̃
X̃
Ỹ −∇XY,

This notion was previously studied by many authors, see, e.g., [26] for the
codimension one case and [8, 9] for the case of pseudohermitian immersions
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(i.e., when the Reeb field of η is tangent to ι(M).) For our applications, we
shall make no assumption on the Reeb field of the target.
Due to the presence of the torsion, II is not necessarily symmetric and

thus we also consider the symmetrized second fundamental form, i.e.,

(1.3) Sym II(X,Y ) = 1
2
(
II(X,Y ) + II(Y,X)

)
.

In most situations, we shall consider the second fundamental form II as a
tensor on the “horizontal” space T 0, 1M ⊕ T 1, 0M (the “good directions”)
where it behaves quite well. In particular, we define the (1, 0)-mean curva-
ture vector to be the trace of II on the horizontal subspace:

(1.4) H :=
n∑
α=1

II (Zᾱ, Zα)

where {Zα : α = 1, 2, . . . , n} is an orthonormal frame of T 1, 0M . The trace
of Sym II is denoted by µ, so that µ = <H. Let us point out that the
consideration here is similar to [22] in which we consider the case of CR
immersions into a Kähler manifold. Moreover, when the target is the stan-
dard sphere, the second fundamental form (1.2) is closely related to the
one for CR immersions into complex euclidean space.
Similarly to [23], we define the tensor ν = νNM as a symmetric real tensor

on T 1, 0M ⊕ T 0, 1M via the formula

(1.5) ν(X,Y ) = 2 〈Sym II(X,Y ), µ〉 − 〈X,Y 〉|µ|2.

Moreover, we define, for each smooth function u on M ,

Hθ(u) = Sym∇∇u− ∂bu⊗ ∂bu− ∂̄bu⊗ ∂̄bu+ 1
2
∣∣∂̄bu∣∣2 Lθ.(1.6)

Here, Lθ(Z,W ) := −id θ(Z,W )(Z,W ∈ T 1, 0M) is the Levi form. We refer
the reader to Section 2.2, in particular (2.17), for the (standard) notation
used here. We can now introduce the CR analogue of the Ahlfors derivative
as follows.

Definition 1.1 (cf. [23]). — Let (M2n+1, θ) and (N2d+1, η) be strictly
pseudoconvex pseudohermitian manifolds and let F : M → N be a CR
immersion. Let u be the smooth function on M such that F ∗η = euθ. We
define the CR Ahlfors derivative (or CR Ahlfors tensor) of F to be

(1.7) A(F ) := Hθ(u) + F ∗
(
νNF (M)

)
+ 1

2F
∗(JηLη)− 1

2JθLθ.

where Jθ = Rθ/(n(n + 1)) and Jη = Rη/(d(d + 1)) are the normalized
Webster scalar curvatures on M and N , respectively, and Lη and Lθ are
the corresponding Levi forms.
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2140 Bernhard LAMEL & Duong Ngoc SON

As mentioned above, the Ahlfors tensor A generalizes the CR Schwarzian
tensor for CR diffeomorphisms in [21] in the same spirit the conformal
Ahlfors generalizes the Schwarzian of Osgood–Stowe. We shall explain this
in the next section.
As briefly discussed, our first result of the paper is the following chain

rule.

Theorem 1.2. — For CR immersions F : (M, θ)→ (N, η) andG : (N, η)
→ (P, ζ), we have

(1.8) A(G ◦ F ) = A(F ) + F ∗A(G).

We point out that although this theorem is analogous to [23, Theorem 1],
the chain rule in CR case is in fact simpler than its conformal counterpart:
the excess term ε does not appear in the CR case.

Specializing this chain rule to the case of CR maps into the sphere,
we obtain a new tensorial invariant for spherically equivalent classes of
such maps. This invariant property is a consequence of the fact that the
Schwarzian tensor of a CR automorphism of the sphere with its standard
pseudohermitian structure vanishes identically [21]. Recall that two CR
maps F and G from M into S2N ′+1 are said to be (left) spherically equiv-
alent if there exists a CR automorphism φ of S2N ′+1 such that G = φ ◦ F .
When M = S2N+1 is also a sphere, we can use the CR automorphisms
of M to define a weaker version of spherical equivalence. Namely, we say
that F and G are spherically equivalent if there exist CR automorphisms γ
(of S2N+1) and φ (of S2N ′+1) such that G ◦ γ = φ ◦ F .
In the following, the unit spheres are always equipped with their standard

pseudohermitian structures.

Corollary 1.3. — Let (M, θ) be a strictly pseudoconvex pseudoher-
mitian manifold.

(i) Suppose that F : M → S2N+1 is a CR immersion and φ : S2N+1 →
S2N ′+1 (N ′ > N) is a totally geodesic embedding, then

(1.9) A(F ) = A(φ ◦ F ).

In particular, if F and G are left spherically equivalent CR maps
from M into S2N+1, then

(1.10) A(F ) = A(G).

(ii) Suppose that G : (S2n+1,Θ)→ (M, θ) is a CR immersion and γ : N
→ S2n+1 is a totally geodesic embedding, then

(1.11) γ∗A(G) = A(G ◦ γ).

ANNALES DE L’INSTITUT FOURIER
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Remark 1.4. — In Corollary 1.3(ii), if N admits a totally geodesic em-
bedding into a sphere, then it is necessarily CR spherical. This follows
from [9] for the case dimRN > 5 and [22] for the case dimRN = 3.

In view of Corollary 1.3, an interesting question that arises is whether
the Ahlfors derivative distinguishes the spherically equivalent classes of
sphere maps. Although we can check that this is the case for maps between
spheres of “low” codimension, we do not know the answer to this question
in the full generality. However, we prove that the CR Ahlfors distinguishes
the totally geodesic CR map: an arbitrary CR map into the sphere with
vanishing CR Ahlfors derivative must be a totally geodesic embedding.

Theorem 1.5. — Let F : (M, θ) → (S2d+1,Θ) be a CR immersion. If
A(F ) = 0, then M is CR spherical and F is spherically equivalent to the
linear mapping.

It is also natural to ask under which conditions the Ahlfors derivative is
a nonzero functional multiple of the Levi metric. We shall discuss this ques-
tion after analyzing several examples in the last section; see Question 7.6.

The paper is organized as follows. In Section 2, we study the geometry
of the CR second fundamental form for CR immersions. In Section 3, we
prove Theorem 1.2. In Section 4, we study the maps with vanishing CR
Ahlfors derivatives. We study the case when the source is of dimension
three in Section 5. In Section 6, we provide an explicit formula for the
Ahlfors derivative which is used to analyze various examples in Section 7.

Acknowledgment

The authors would like to thank an anonymous referee for very careful
reading of the manuscript and pointing out many, many typographical
errors that we were not aware of.

2. Immersions of CR manifolds and the second
fundamental form

2.1. The second fundamental form

Let ι : (M, θ) ↪→ (N, η) be a pseudohermitian submanifold, i.e., ι is CR
and θ = ι∗η, where ι is the inclusion. In this case, ι is “isopseudohermitian”
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2142 Bernhard LAMEL & Duong Ngoc SON

in the sense of [8]. This notion is more general than that of “pseudohermi-
tian immersions,” as the latter requires that the Reeb field of η is tangent
to M along M . In the latter case, the pair (θ, η) is admissible in the sense
of [9].
For any two vector fields X,Y ∈ Γ(CTM) extended to smooth sections

X̃, Ỹ of CTN , we recall that the second fundamental form is defined by
II(X,Y ) = ∇̃

X̃
Ỹ − ∇XY (see (1.2)) where ∇̃ and ∇ are the Tanaka–

Webster connection on (N, η) and (M, θ), respectively. We summarize the
basic properties of II as follows (cf. [22] which treats a similar situation),
where T and T̃ denotes the Reeb field of (M, θ) and (N, η), respectively.

Proposition 2.1. — The second fundamental form II is well-defined,
tensorial, and satisfies the following properties for all (1, 0)-vectors Z and
W :

II(Z,W ) = II(Z,W ),(2.1)

II(Z,W ) = II(Z,W ),(2.2)
II(Z,W ) = II(W,Z),(2.3)

II(Z,W ) = II(W,Z)− i〈Z,W 〉θ(T − T̃ ),(2.4)

II(Z, T ) = ∇̃Z(T − T̃ ),(2.5)

II(T,Z) = ∇̃
T−T̃Z + [Z, T − T̃ ] + τ̃Z − τZ.(2.6)

Here τ̃Z := T∇̃(T̃ , Z) is the pseudohermitian torsion of ∇̃ and similarly
for τ . Moreover, II is symmetric if and only if ι is pseudohermitian (i.e.
T̃ = ι∗T ).

Proof. — That II is well-defined and tensorial follows from standard ar-
guments. Equations (2.1) and (2.2) follow from the reality of the Tanaka–
Webster connection. Equation (2.3) follows from the equation T∇(Z,W )
= 0 for (1, 0)-vectors Z and W on M and similarly for N . Proof of (2.4)
uses the fact that T∇(Z,W ) = i〈Z,W 〉T . Precisely, by [24]

(2.7) ∇ZW −∇WZ − [Z,W ] = T(Z,W ) = i〈Z,W 〉T,

and similarly for ∇̃ and thus (2.4) follows.
To prove (2.5), observe that ∇T = 0 and ∇̃T̃ = 0 [24], and hence

II(Z, T ) = ∇̃ZT − ∇ZT = ∇̃Z(T − T̃ ), as desired. The proof of (2.6) also
follows from direct calculations. We omit the details.
Assume that T̃ = ι∗T , then ι is called a pseudohermitian immersion [8]

and the pair (θ, η) is said to be an admissible pair [9]. In this case, it follows
from (2.5) that II(Z, T ) = 0. On the other hand, from (2.6), II(T,Z) =
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τ̃Z − τZ and hence both sides vanish by type consideration. Similarly,
from (2.4), II(Z,W ) = II(W,Z) and thus both sides vanish. Thus, II is
symmetric.
Conversely, if II is symmetric, then it follows from (2.4) that T̃ = ι∗T .

The proof is complete. �

Definition 2.2. — Let ι : (M, θ) ↪→ (N, η) be a pseudohermitian sub-
manifold, ι∗η = θ. The (1, 0)-mean curvature vector of M in N is the
(1, 0)-vector defined by

(2.8) H := 1
n

n∑
α=1

II (Zᾱ, Zα) ,

where {Zα : α = 1, 2, . . . , n} is an orthonormal frame of T 1, 0M and Zᾱ
= Zα. We also define µ = µNM to be the trace of Sym II, i.e. µ = <H.

Let ι : (M, θ) ↪→ (N, η) be a pseudohermitian submanifold, ι∗η = θ. Then
ι∗ sends T 1, 0M into T 1,0N . We can define the normal bundle N1,0M as a
subundle of T 1, 0N as usual. Here the orthogonality only depends on the
CR structure, but not on the pseudohermitian structure. We also define
N0, 1M similarly.

Proposition 2.3. — Let ι : (M, θ) ↪→ (N, η) be a pseudohermitian sub-
manifold, ι∗η = θ. If T and T̃ are the Reeb fields corresponding to θ and
η, respectively, then for all tangent vectors Z, W in T 1, 0M ,

H −H = i(T − T̃ ),(2.9)

II(Z,W ) = 〈Z,W 〉H,(2.10)

τ̃Z − τZ = II(T,Z)− II(Z, T ) = −i∇̃ZH,(2.11)

II(T,Z) = −i∇̃ZH.(2.12)

Moreover, H ∈ N1, 0M and II(Z,W ) ∈ N1, 0M .

Proof. — By direct calculation using (2.4), one has

(2.13)

H = 1
n

n∑
α=1

II (Zᾱ, Zα)

= 1
n

n∑
α=1

(
II (Zα, Zᾱ) + i 〈Zα, Zᾱ〉θ (T − T̃ )

)
= H + i(T − T̃ ).

Combining with (2.4), we have II(Z,W ) − II(W,Z) = −i〈Z,W 〉(T − T̃ )
= 〈Z,W 〉

(
H −H

)
. Taking the (1,0) and (0,1) parts, we obtain (2.10).

TOME 71 (2021), FASCICULE 5



2144 Bernhard LAMEL & Duong Ngoc SON

To show that H ∈ N1, 0M , observe that dθ = d(ι∗η) = ι∗(dη). Thus, for
every X ∈ T 1, 0M ,

(2.14) 0 = dθ(T,X) = dη(T,X).

Therefore, if X is tangent to M ,

(2.15) 〈H,X〉 = 〈H −H,X〉 = −i〈T − T̃ ,X〉 = 0.

This implies thatH ∈ N0, 1M andH ∈ N1, 0M . Finally, for Z,W ∈ T 0, 1M

and X ∈ T 1, 0M , it holds that

(2.16)
〈
II(Z,W ), X

〉
= −

〈
W, II(Z,X)

〉
= −〈Z,X〉〈W,H〉 = 0.

This implies that II(Z,W ) ∈ N0,1M and II(Z,W ) ∈ N1,0M . The proof of
Proposition 2.3 is complete. �

2.2. Change of contact forms

Let ι : (M, θ) ↪→ (N, η) be a pseudohermitian submanifold, ι∗η = θ. The
total differential du of a smooth function u can be decomposed into (1, 0),
(0, 1), and the transverse parts as follows:

(2.17) du = ∂bu+ ∂̄bu+ (T ηu) η.

This decomposition depends on the choice of pseudohermitian structure η.
We then define

(2.18) grad1, 0u = uγZγ , grad0, 1u = grad1, 0ū.

If ι : M ↪→ (N, η) and θ = ι∗η, then we have

(2.19) grad1, 0
N u = grad1, 0

N,Mu+
(

grad1, 0
N,Mu

)⊥
,

and similarly for grad0, 1u. Here the orthogonal complements in T 1, 0N and
T 0, 1N are defined using the Levi metric corresponding to any pseudoher-
mitian structure on N .

Proposition 2.4. — Let ι : (M, θ) ↪→ (N, η) be a pseudohermitian sub-
manifold, ι∗η = θ. Suppose that P is the manifold N with η̃ = euη.
Put θ̃ := eu◦ιθ. Let ĨI be the second fundamental form of the inclusion
ι : (M, θ̃) ↪→ (P, η̃). Then

(2.20) ĨI(Z,W ) = II(Z,W ), Z,W ∈ T 1, 0M,

ANNALES DE L’INSTITUT FOURIER
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(2.21) ĨI(Z,W )

= II(Z,W )− 〈Z,W 〉η
(

grad1, 0
N,Mu

)⊥
, Z ∈ T 0, 1M, W ∈ T 1, 0M,

and

(2.22) euµPM = µNM −<
(

grad1, 0
N,Mu

)⊥
.

Proof. — The first two identities follow from Lee’s formulas for the pseu-
doconformal change of the metrics [14]. Precisely, on M , we have

∇̃ZW = ∇ZW + Z(u)W +W (u)Z,(2.23)

and

∇̃ZW = ∇ZW − 〈W,Z〉θ grad1, 0
N u.(2.24)

Similar formulas hold onM and hence (2.20) and (2.21) follow immediately.
The last identity (2.22) also follows by taking the trace of (2.21) and its
conjugate. �

Remark 2.5. — In view of (2.20), II(Z,W ), where Z,W are (1, 0)-vectors,
is called the CR second fundamental form of the CR immersion. It can be
computed by any pair of pseudohermitian structures θ = ι∗η, not necessary
admissible. This notion has been extensively used in the study of the CR
immersions [8, 9, 10].

2.3. The Gauß and Weingarten equations

Proposition 2.6 (Pseudohermitian Weingarten Equation). — If N is
a section of N1, 0M ⊕N0, 1M , then

(2.25)
〈
∇̃XN,Y

〉
= −

〈
N, II(X,Y )

〉
for all sections X,Y of T 1, 0M ⊕ T 0, 1M .

In the following, we shall use the following convention for the curvature
operator:

(2.26) R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z.

Then for X,Y, Z tangent to M ,

(2.27) R̃(X,Y )Z = R(X,Y )Z + II(X,∇Y Z)− II (Y,∇XZ)

+ ∇̃X (II(Y, Z))− ∇̃Y (II(X,Z))− II ([X,Y ], Z) .

Here, R and R̃ are the curvature on (M, θ) and (N, η) respectively.

TOME 71 (2021), FASCICULE 5
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Proposition 2.7 (Pseudohermitian Gauß equation). — Let ι : (M, θ)
↪→ (N, η) be a pseudohermitian submanifold, ι∗η = θ. Then the Gauß
equation holds, i.e.,

(2.28)
〈
R̃(X,Y )Z,W

〉
=
〈
R(X,Y )Z,W

〉
+
〈
II(X,Z), II(Y ,W )

〉
− |H|2

(
〈Y , Z〉〈X,W 〉+ 〈X,Y 〉〈Z,W 〉

)
.

Moreover,

(2.29) 〈τ̃Z,W 〉 = 〈τZ,W 〉+ i
〈
II(Z,W ), H

〉
.

Remark 2.8. — For the special case of pseudohermitian immersions, this
is in [9, Eq. (5.3) or Proposition 5.1] as in this case, H = 0 ; see also [22]
for similar equations.
It is sometimes helpful to write the Gauß equations using index notations,

that is

R̃αβ̄γσ̄ = Rαβ̄γσ̄ + ωaαγ ω
b̄
β̄σ̄
gab̄ − |H|

2 (gγβ̄gασ̄ + gαβ̄gγσ̄
)
,(2.30)

and

Ãαβ = Aαβ + iωaαβH
b̄gab̄.(2.31)

Here ωaαβ is the components of the second fundamental form in a local
frame, i.e. II(Zα, Zβ) = ωaαβZa, H = H b̄Zb̄, Aαβ = 〈τZα, Zβ〉, and so on.
These hold for all isopseudohermitian immersions.

Proof of Proposition 2.7. — The proof is analogous to the case of CR
immersions into Kähler manifolds considered in [22]. Namely, for X,Z ∈
T 1,0M and Y ,W ∈ T 0,1M ,

(2.32)

〈
R̃(X,Y )Z,W

〉
=
〈
R(X,Y )Z,W

〉
−
〈
II
(
[X,Y ], Z

)
,W
〉

+
〈
∇̃X

(
II(Y , Z)

)
,W
〉
−
〈
∇̃Y (II(X,Z)) ,W

〉
=
〈
R(X,Y )Z,W

〉
−
〈
II
(
[X,Y ], Z

)
,W
〉

−
〈
II(Y , Z), II(X,W )

〉
+
〈
II(X,Z), II(Y ,W )

〉
=
〈
R(X,Y )Z,W

〉
+
〈
II(X,Z), II(Y ,W )

〉
− 〈Y , Z〉〈X,W 〉|H|2 −

〈
II
(
[X,Y ], Z

)
,W
〉
.

On the other hand, by the defining properties of the Tanaka–Webster
connection [24, Proposition 3.1], we have

(2.33) [X,Y ] = ∇XY −∇YX − i〈X,Y 〉T.
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Therefore, using (2.11),

(2.34)
〈
II
(
[X,Y ], Z

)
,W
〉

= −i〈X,Y 〉
〈
II(T,Z),W

〉
= 〈X,Y 〉〈Z,W 〉|H|2.

Putting this into (2.32) we obtain (2.28). Equation (2.29) follows easily
from (2.11) and we omit the detail. �

3. The chain rule: Proof of Theorem 1.2

Let ι : (M, θ) ↪→ (N, η) be a pseudohermitian submanifold, ι∗η = θ. Re-
call that the tensor ν = νNM introduced in the introduction is the symmetric
real tensor on T 1, 0M ⊕ T 0, 1M defined by

(3.1) ν(X,Y ) = 2 〈Sym II(X,Y ), µ〉 − 〈X,Y 〉|µ|2,

where µ is the trace of Sym II, i.e., µ = <H. The components of ν in the
“horizontal” directions are given in a local frame by

(3.2) ναβ = νᾱβ̄ = ωaαβH
b̄gab̄, ναβ̄ = νβ̄α = 1

2 |H|
2gαβ̄ .

Here the Greek indices α and β run from 1 to n := dimCRM , the lowercase
indices a and b run from n+ 1 to dimCRN , and g is the Levi metric.

Proposition 3.1. — Let ι : (M, θ) ↪→ (N, η) be a pseudohermitian sub-
manifold, ι∗η = θ. Suppose P is the manifold N with the pseudohermi-
tian structure η̃ = euη and put θ̃ = eu◦ιθ. Then for any sections X,Y of
T 1, 0M ⊕ T 0, 1M ,

(3.3) νPM (X,Y ) = νNM (X,Y )− 2 〈Sym II(X,Y ), ξ〉θ + 〈X,Y 〉θ|ξ|2θ

where ξ = <(grad1, 0
N u)⊥.

Proof. — Observe that

(3.4) ĨI
P

M (X,Y ) = IIPM (X,Y )− 〈X,Y 〉θ
(

grad1, 0
N u

)⊥
,

and thus, with ξ = <(grad1, 0
N u)⊥,

(3.5) Sym ĨI(X,Y ) = Sym II(X,Y )− 〈X,Y 〉θξ.

Taking the trace, we obtain

(3.6) euµPM = µNM − ξ.
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Therefore,

(3.7) νPM (X,Y )

= 2
〈

Sym ĨI(X,Y ), µPM
〉
θ̃
− 〈X,Y 〉

θ̃

∣∣µPM ∣∣2θ̃
= 2

〈
Sym II(X,Y )− 〈X,Y 〉θ ξ, µNM − ξ

〉
θ
− 〈X,Y 〉θ

∣∣µNM − ξ∣∣2θ
= νNM (X,Y )− 2 〈Sym II(X,Y ), ξ〉θ + 〈X,Y 〉θ|ξ|2θ.

The proof of Proposition 3.1 is complete. �

Recall that the operator H(u) on a pseudohermitian manifold (M, θ) is
defined, for horizontal vectors, by

Hθ(u) = Sym∇∇u− ∂bu⊗ ∂bu− ∂̄bu⊗ ∂̄bu+ 1
2
∣∣∂̄bu∣∣2 Lθ.(3.8)

The tensor Hθ(u) is closely related to the CR Schwarzian tensor [21]. In
the notations of [21],

(3.9) Bθ

(
1
2u
)

= Hθ(u) + 1
2n

(
∆bu− n

∣∣∂̄bu∣∣2)Lθ
is the traceless part of H. Here Lθ(X,Y ) = 〈X,Y 〉 is the Levi metric and
we use the convention that ∆b is a nonnegative operator. We can sometimes
write u for u ◦ ι as a function on M .

Proposition 3.2 (cf. [21]). — Let u, v : M → R be smooth functions
on M . Then

Hθ(u+ v) = Hθ(u) +Hθ̂(v)(3.10)

where θ̂ = euθ.

We point out that the equality of the traceless parts of both sides was
proved in [21].

Proof. — We need to verify (3.10) for each pair of (1, 0)-vectors and for
each pair of one (1, 0)- and one (0, 1)-vector. First, for any vector Z,W of
type (1, 0), we have from (2.22)

(3.11) Hθ̂(v)(Z,W )

= Sym ∇̂v(Z,W ) + 1
2
∣∣∂̄bv∣∣2θ̂ 〈Z,W 〉θ̂

= Sym∇v(Z,W ) +
(
<
〈
∂̄bu, ∂bv

〉
+ 1

2
∣∣∂̄bv∣∣2θ) 〈Z,W 〉θ.
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Thus,

(3.12) Hθ(v)(Z,W ) +Hθ̂(v)(Z,W )

= Sym∇u(Z,W ) + 1
2
∣∣∂̄bu∣∣2 〈Z,W 〉θ

+ Sym∇v(Z,W ) +
(
<
〈
∂̄bu, ∂bv

〉
+ 1

2
∣∣∂̄bv∣∣2θ) 〈Z,W 〉θ

= Sym∇(u+ v)(Z,W ) + 1
2 |∂bu+ ∂bv|2θ 〈Z,W 〉θ

= Hθ(u+ v).

This verifies (3.10) for any pair of vectors of mixed type. The identity for
vectors of pure type is exactly the same as [21]. We omit the details. �

Proposition 3.3. — If (M, θ) ⊂ (N, η) is a pseudohermitian submani-
fold, X,Y ∈ Γ(T 1, 0 ⊕ T 0, 1M), and u ∈ C2(N), then

(3.13) Hθ(u|M )(X,Y )−Hη(u)(X,Y )

= (du) (Sym II(X,Y ))− 1
2

∣∣∣∣(grad1, 0
N,Mu

)⊥∣∣∣∣2 〈X,Y 〉θ.
Proof. — On M , we have

(3.14) ∇2(u|M )(X,Y ) = X(Y (u))− d(u|M )(∇XY ),

and similarly for ∇̃2u(X,Y ) on N . Thus,

(3.15) ∇2u(X,Y )− ∇̃2u(X,Y ) = (du)(II(X,Y )).

Consequently,

(3.16) Hθ(u|M )(X,Y )−Hη(u)(X,Y )

= 1
2(du) (II(X,Y ) + II(Y,X)) + 1

2

(
|∂b(u|M )|2 − |∂bu|2

)
〈X,Y 〉θ

= (du) (Sym II(X,Y ))− 1
2

∣∣∣∣(grad1, 0
N,Mu

)⊥∣∣∣∣2 〈X,Y 〉θ. �
Proposition 3.4. — For any tower of pseudohermitian submanifolds

M ⊂ N ⊂ (P, η), it holds that

µPM = µNM + µPN ,(3.17)

νPM − νNM =
(
ιNM
)∗
νPN .(3.18)
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Proof. — For Z ∈ T 1,0M and W ∈ T 0,1M , we have that

(3.19)

〈Z,W 〉HP
M = IIPM (Z,W )

= IIPN (Z,W ) + IINM (Z,W )

= 〈Z,W 〉
(
HP
N +HN

M

)
.

Taking Z = W 6= 0, we immediately obtain HP
M = HN

M + HP
N and

hence (3.17) follows. Plugging this into the definition of ν, we obtain (3.18).
The proof is complete. �

Proof of Theorem 1.2. — The idea of the proof is essentially the same
as in [23] and based on the calculations above. The formula in the CR case
turns out to be simpler than its conformal counterpart because of Proposi-
tion 3.4 above. Indeed, assume that F : (M, θ) → (N, η) and G : (N, η) →
(P, ζ). The chain rule for A is equivalent to the analogous assertions for
A′ where

(3.20) A′ : F 7→ Hθ(u) + F ∗
(
νNF (M)

)
.

In the equidimensional case, this and (1.8) reduce to an analogous state-
ment for the CR Schwarzian that was proved in [21].
Next, we assume that P and N have the same dimension. In this case,

we can suppose that P is the manifold N with a pseudohermitian structure
ζ = evη and G is the identity map. Since euθ = F ∗η, by Proposition 3.2,

Hθ(u+ v ◦ F ) = Hθ(u) +Heuθ(v ◦ F )
= Hθ(u) + F ∗H(F (M), ι∗η)(v).

Therefore,

(3.21) A′(G ◦ F )−A′(F )− F ∗A′(G)

= Hθ (u+ v ◦ F ) + F ∗
(
ν

(N, evη)
F (M)

)
−
(
Hθ(u) + F ∗

(
ν

(N, η)
F (M)

))
− F ∗ (Hη(v))

= F ∗
(
H(F (M), ι∗η)(v)−Hη(v) + ν

(N, evη)
F (M) − ν(N, η)

F (M)

)
= 0 .
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To conclude the proof, we consider the general case when G is a CR
immersion, G∗ζ = evη. We have

(3.22) A′ (G ◦ F )−A′(F )− F ∗ (A′(G))

= Hθ (u+ v ◦ F ) + (G ◦ F )∗
(
νPF (G(M))

)
−
(
Hθ(u) + F ∗

(
νNF (M)

))
− F ∗

(
Hη(v) +G∗

(
νPG(N)

))
= (G ◦ F )∗

(
νPG(F (M)) − ν

P
G(N)

)
− F ∗

(
νNF (M)

)
= 0.

At the last step, we have used Proposition 3.4. The proof of Theorem 1.2
is complete. �

4. CR maps with vanishing Ahlfors derivative

It is well-known that the Schwarzian derivative of a conformal diffeomor-
phism measures the change of the traceless component of the Ricci tensor,
see [19]. The same is true for the CR analogue of the Schwarzian [21].
The case of immersions is a bit different due to the presence of the sec-
ond fundamental form. We point out that in the CR case a certain part of
the Ahlfors derivative actually measures how the pseudohermitian torsion
changes when going from the original structure to the pull-back.

We denote Aαβ(F ) = A(F )(Zα, Zβ) the “holomorphic” components and
Aαβ̄(F ) = A(F )(Zα, Zβ̄) the “mixed type” components of the Ahlfors de-
rivative. As usual, hαβ̄ denotes the Levi metric on (M, θ), i.e. hαβ̄
= 〈Zα, Zβ̄〉 = −idθ(Zα, Zβ), and similarly, gAB̄ denotes the one for (N, η).

Proposition 4.1. — Let F : (M, θ) → (N, η) be a CR immersion. Let
Aαβ be the pseudohermitian torsion of (M, θ) and ÃAB the pseudohermi-
tian torsion of (N, η). Also let Rαβ̄ be the Ricci tensor of the Tanaka–
Webster connection associated to θ. In an adapted coframe the following
hold:

(i) The “holomorphic” components of the Ahlfors tensor are

(4.1) Aαβ(F ) = −i
(
Ãαβ −Aαβ

)
.

(ii) The tracefree components of mixed type are

(4.2) tf Aαβ̄(F ) = tf Rαβ̄ − tf R̂αβ̄ ,

where R̂αβ̄ is the Ricci tensor associated to θ̂ = F ∗η.
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(iii) If (N, η) is the sphere with its standard pseudohermitian structure,
then

(4.3) traceθA(F ) := hαβ̄Aαβ̄(F ) = 1
2(n+ 1)e

u
∣∣II2, 0∣∣2 ,

where |II2, 0|2 is the squared norm of the CR second fundamental
form.

Remark 4.2. — This proposition exhibits some new features of the CR
analogue of the Ahlfors tensor derivative compared to its conformal coun-
terpart. Observe that (i) and (ii) generalize similar formulas for the CR
Schwarzian in [21] while (iii) says that the Ahlfors tensor is traceless if and
only if F has vanishing CR second fundamental form. Moreover, part (iii)
also holds when (N, η) has the Tanaka–Webster curvature tensor of the
form

RAB̄CD̄ = c (gAB̄gCD̄ + gAD̄gCB̄) , c ∈ R.
In particular, it holds when (N, θ) is the Heisenberg hypersurface with a
pseudohermitian structure of vanishing curvature and torsion.

Proof. — We identify M with F (M) and consider ι : (M, θ̂)→ (N, η) as
the inclusion of a submanifold and thus θ̂ := ι∗η = euθ for some smooth
function u. Let Âαβ be the pseudohermitian torsion of θ̂ on M . By the
Gauß equation, we have

(4.4) Ãαβ = Âαβ + i ωaαβH
b̄gab̄.

On the other hand, Aαβ = Âαβ − i(uα, β − uαuβ), by [14]. Here the indices
preceded by a comma indicate covariant derivatives. Therefore,

(4.5)

Aαβ(F ) = uα, β − uαuβ + ωaαβH
b̄gab̄

= uα, β − uαuβ − i(Ãαβ − Âαβ)

= −i(Ãαβ −Aαβ).

Thus, Proposition 4.1(i) is proved.
From the definition, the mixed type components are given by

(4.6) Aαβ̄(F ) = 1
2
(
uα, β̄ + uβ̄, α

)
+ 1

2

(∣∣∂̄bu∣∣2 + eu
∣∣HF (M)

∣∣2 ◦ F + euJη ◦ F − Jθ
)
hαβ̄ .

Therefore, using [14], we obtain

(4.7) tf Aαβ̄(F ) = 1
2
(
uα, β̄ + uβ̄, α

)
+ 1

2n∆buhαβ̄ = tf Rαβ̄ − tf R̂αβ̄ ,
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where R̂αβ̄ is the Ricci curvature of θ̂ = euθ = F ∗η.
Suppose that (N, η) is a sphere with the standard pseudohermitian struc-

ture, then the Gauß equation implies that

(4.8) Jη ◦ F = Jθ̂ −
∣∣HF (M)

∣∣2 ◦ F + 1
n(n+ 1)

∣∣∣II0, 2
F (M)

∣∣∣2 ◦ F.
On the other hand,

(4.9) euJθ̂ = Jθ + 1
n

∆bu−
∣∣∂̄bu∣∣2 .

Putting them together, we obtain that

(4.10) euJη ◦ F − Jθ +
∣∣∂̄bu∣∣2 + eu

∣∣HF (M)
∣∣2 ◦ F − 1

n
∆bu

= 1
n(n+ 1)e

u
∣∣∣II2, 0
F (M)

∣∣∣2 ◦ F.
It thus holds that

(4.11) traceθA(F ) = hαβ̄Aαβ̄(F ) = 1
2(n+ 1)e

u
∣∣II2, 0∣∣2 ,

and the proof of Proposition 4.1 is complete. �

Definition 4.3. — Let ι : (M, θ) ↪→ (N, η) be a pseudohermitian sub-
manifold, ι∗η = θ. We say that ι (or M if the embedding is understood) is
umbilic at p if IINM (p) is a multiple of the Levi metric, i.e., II(Z,W ) = 0 for
all (1, 0) vectors Z and W at p.

We remark that the pseudohermitian total umbilicity does not depend
on the choice of pseudohermitian structures. In fact, if ι is pseudoher-
mitian umbilic, then it is CR totally geodesic for any admissible pair of
contact forms. This holds because the CR second fundamental form (as
defined in [9]) associated to any admissible pair of pseudohermitian struc-
tures coincides with the “holomorphic” components of the pseudohermitian
second fundamental form.

Corollary 4.4. — Let (M, θ) be a pseudohermitian manifold and as-
sume that F : (M, θ) → (S2N+1,Θ) a CR immersion into a sphere. Then
traceA(F ) > 0, and equality holds at a point p ∈ M iff (M, θ) is um-
bilic at p. If traceA(F ) = 0 identically, then M is CR spherical and F is
spherically equivalent to the linear embedding.

Proof. — That traceA(F ) > 0 follows directly from (4.11). The equal-
ity occurs precisely when the CR second fundamental form vanishes. This
implies that M must be CR spherical by [9] for n > 2 and [22] for the case
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n = 1. Moreover, F is equivalent to the linear embedding by [13] for the
case dimM > 5 and [22] for the three-dimensional case. �

5. Maps from three-dimensional CR manifolds into
spheres

Suppose that (N, η) = (S,Θ) where Θ is the standard pseudohermitian
structure on the sphere S := S2N+1. If F = φ ◦ G for some CR automor-
phism φ of the target sphere, then A(F ) = A(G) by Theorem 1.2 and, in
particular, Aθ

αβ̄
(F ) = Aθ

αβ̄
(G). This last equality implies that uα, β̄ = vhαβ̄

for some function v. When n > 2, using Lee’s characterization of CR-
pluriharmonicity [15], we can infer from the last condition that u must be
CR-pluriharmonic. This argument does not work in the case n = 1. We
shall deduce the CR-pluriharmonicity from a simpler argument which also
works in the case n = 1 as follows.

Proposition 5.1. — Let M be a strictly pseudoconvex CR manifold
and assume that F and G are CR immersions from M into the sphere S.
Let θ = F ∗Θ and θ′ = G∗Θ, where Θ is the standard pseudohermitian
structure on S. Put θ′ = euθ. If F = φ ◦G, for some CR automorphism φ

of S, then u is CR-pluriharmonic.

Proof. — If G = φ ◦ F for some CR automorphism φ of S, then this
automorphism extends to a biholomorphic automorphism of the ball B
which we will also denote by φ. Let φ(0) = a and let ρ = ‖z‖2 − 1 be the
defining function for S. Then by [20, Theorem 2.2.2],

(5.1) (ρ ◦ φ)(z) = |φ(z)|2 − 1 =
(

1− |a|2

|1− z · ā|2

)
· ρ(z).

Observe that Θ = −ι∗(i∂ρ) and hence φ∗Θ = −ι∗(i∂(ρ ◦ φ)) = eϕΘ, where

(5.2) ϕ(z) = log
(
1− |a|2

)
− log |1− z · ā |2 , z ∈ S.

In particular, ϕ is CR-pluriharmonic and so is u = ϕ ◦ F . �

In view of this proposition, we can construct another invariant which
plays the role of the traceless part of A(F ) as follows. By [15, Proposi-
tion 3.4], u is CR-pluriharmonic if and only if

(5.3) Pu :=
(
u1̄,

1̄
1 + iA11u

1
)
θ1 = 0.
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Here A11 is the component of the pseudohermitian torsion. This suggests
the following notion: For each CR immersion F from the 3-sphere into a
sphere, define the (1, 0)-form A1(F ) by

(5.4) A1(F ) = P (u),

where as before u is determined by the relation F ∗Θ = euθ.
We formulate the discussion above as follows.

Proposition 5.2. — Let (M, θ) be a three-dimensional strictly pseu-
doconvex pseudohermitian manifold and assume that F and G are CR
immersions of M into the sphere S. Then A1 is invariant with respect to
spherical equivalences in the following sense:

(1) If φ is a CR automorphism of the target, then

(5.5) A1(φ ◦ F ) = A1(F ).

(2) If M is the 3-sphere and γ is a CR automorphism of M , then

(5.6) A1(F ◦ γ) = γ ∗
(
eψA1(F )

)
where ψ is determined by the relation γ∗θ = eψθ.

Proof. — We write F ∗Θ = euθ and G∗Θ = evθ. Suppose that G = φ◦F ,
then Proposition 5.1 implies that u− v is CR pluriharmonic and hence

(5.7) A1(φ ◦ F ) = P (v) = P (u) = A1(F ),

as desired.
Suppose that M is a 3-sphere, γ is a CR automorphism of M , and θ is

the standard pseudohermitian structure on M . Suppose that G = F ◦ γ,
then

(5.8) v = u ◦ γ + ψ.

Under the change of contact form θ̃ = eψθ, the operator P changes as
follows: We write P θ for the operator P associated to θ and similarly for
θ̃. Then

(5.9) eψP θ̃(u) = P θ(u) + 2i
〈
P θ(u), ∂̄bψ

〉
θ.

Since P (ψ) = 0, we have that

(5.10) P θ(v) = P θ(u ◦ γ) = γ∗
(
P (γ−1)∗θ(u)

)
= eψγ∗

(
P θ(u)

)
mod θ.

This completes the proof of Proposition 5.2. �
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6. Explicit calculations in local coordinates

6.1. The Ahlfors tensor A in general dimensions

The purpose of this section is to give an explicit formula for the her-
mitian part of the Ahlfors tensor. The formula will be explicit in terms
of the defining functions of the source and target and will be simplified
when the target is the sphere. Let M ⊂ Cn+1 be a strictly pseudoconvex
real hypersurface defined by ρ = 0. It is well-known that there exists a
unique (1, 0) vector field ξ satisfying the following two conditions (see, e.g.
[12, 18]):

(6.1) ξ c i∂∂̄ρ = ir∂̄ρ, ∂ρ(ξ) = 1.

The function r = r[ρ] := ρjk̄ξ
jξk̄ is called the transverse curvature of M

and ρ [12]. When ρ is strictly plurisubharmonic, then r−1 = |∂ρ|2 in the
Kähler metric with potential ρ.

Proposition 6.1. — Let M be a strictly pseudoconvex real hypersur-
face in Cn+1 and F : M → N ⊂ Cd+1 a CR immersion. Suppose that
F extends holomorphically to a neighborhood of M . Let ρ̃ be a strictly
plurisubharmonic defining function for N and let η = i∂̄ρ, ρ = ρ̃ ◦ F ,
θ = i∂̄ρ, so that F ∗η = θ. Then

(6.2)
∣∣HF (M)

∣∣2 ◦ F = r[ρ]− r[ρ̃] ◦ F.

In particular, r[ρ̃] ◦ F 6 r[ρ] on M . The equality holds if and only if (θ, η)
is an admissible pair for the CR immersion F .

Proof. — As already noted, F ∗η = θ. Also note that the Reeb vector
field is T = i(ξ − ξ̄). We shall compute F∗ξ as follows. In local coordinates
(z1, . . . , zn+1) we write ξ = ξj∂j (using summation convention). By direct
calculations (see, e.g., [16, 18]) we obtain

(6.3) ξj = rρj = rρjk̄ρk̄,

where ρj = ∂ρ/∂zj , ρjk̄ = ∂2ρ/∂z̄k∂zj , and ρjk̄ is the inverse transpose
matrix of ρjk̄. Thus, for p ∈ M and q = F (p) ∈ M ⊂ N , and in local
coordinates z′A,

(6.4) F∗(ξp) = FAj (p) ξjp ∂A.

On the other hand, the Reeb vector field on N is given by T̃ = i(ξ′ − ξ′),
with ξ′ = ξ′A∂A. Thus, by Proposition 2.3,

(6.5) HF (M)
∣∣
F (p) =

(
FAj (p)ξjp − ξ′A

)
∂A.
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By direct calculations,

(6.6) ρj = ρ̃AF
A
j , ρjk̄ = FAj F

B̄
k̄
ρ̃AB̄ .

Therefore,

(6.7) FAj ξ
′B̄ ρ̃AB̄ = r̃FAj ρ̃A = r̃ρj .

Consequently,

(6.8)
∣∣HF (M)

∣∣2 ◦ F
=
(
ξ′A − FAj ξj

) (
ξ′B̄ − F B̄

k̄
ξk̄
)
ρ̃AB̄

= ξ′Aξ′B̄ ρ̃AB̄ − 2<
(
FAj ξ

jξ′B̄ ρ̃AB̄

)
+ FAj F

B̄
k̄
ξjξk̄ρ̃AB̄

= r̃ − 2<
(
r̃ξjρj

)
+ ξjξk̄ρjk̄

= r̃ − 2r̃ + r

= r − r̃.

The proof of Proposition 6.1 is complete. �

We also need the following computational result.

Proposition 6.2 ([22]). — Let M be a strictly pseudoconvex real hy-
persurface defined by ρ = 0, with dρ 6= 0 along M . Let σ be a smooth
function in a neighborhood of M and ρ̂ = eσρ. Then

(6.9) eσ r̂ = r + 2<(ξ)σ −
∣∣∂̄bσ∣∣2 .

Here, ∂̄b is the Cauchy–Riemann operator associated to θ := −i∂ρ and ξ is
the transverse vector field of ρ.

Suppose that ρ and ρ̃ are defining functions for (M, θ) and (N, η) such
that θ = i∂̄ρ and η = i∂̄ρ̃. Let F : M → N be a CR immersion, extended
as a holomorphic immersion in a neighborhood of a point p ∈ M , and let
Q be such that

(6.10) ρ̃ ◦ F = Qρ.

By a transversality argument, Q 6= 0 on M . Thus, we may assume that
Q > 0 on M . Then F ∗η = euθ with u = logQ|M .
If r[ρ] and J [ρ] are the transverse curvature of ρ and the Levi–Fefferman

determinant (see [18]), i.e.

(6.11) J [ρ] = −det
[
ρ ρk̄
ρj ρjk̄

]
, r[ρ] =

det
[
ρjk̄
]

J(ρ) ,

TOME 71 (2021), FASCICULE 5



2158 Bernhard LAMEL & Duong Ngoc SON

then by the Li–Luk formula for the Webster scalar curvature [17] (see
also [18, Proposition 4.1]),

Jθ = r[ρ] + Pρ log J [ρ],(6.12)

where

Pρ := 1
2n(n+ 1)

(
ξjξk̄ − ψjk̄

)
∂j∂k̄.(6.13)

Here, ψjk̄ is the inverse transpose of ψjk̄ := ρjk̄ + (1− r[ρ])ρjρk̄.
Then by using Propositions 6.1 and 6.2 and the formulas above, we obtain

that, in terms of the local frame Zα := ∂α − (ρα/ρw)∂w, the mixed type
components of A are given by

(6.14) Aαβ̄(F ) = 1
2
(
uα, β̄ + uβ̄, α

)
+ 1

2 (Nρu)hαβ̄

+ 1
2

(
eu
(
P
ρ̃

log J [ρ̃]
)
◦ F − Pρ log J [ρ]

)
hαβ̄ ,

where u = logQ and Nρ := ξ + ξ̄.
Following [17], we define the second order operator

(6.15) Dρ

αβ̄
= ∂β̄∂α−(ρα/ρw) ∂w∂β̄−

(
ρβ̄/ρw̄

)
∂w̄∂α+

(
ραρβ̄/|ρw|

2) ∂w∂w̄,
which satisfies

(6.16) Dρ

αβ̄
ϕ = ϕZZ

(
Zα, Zβ̄

)
.

We can now give a completely explicit formula for the mixed type compo-
nents of the Ahlfors tensor.

Proposition 6.3. — With the notations introduced above, it holds
that

(6.17) Aαβ̄(F ) = Dρ

αβ̄
logQ− 1

2

(
eu
(
P
ρ̃

log J [ρ̃]
)
◦ F − Pρ log J [ρ]

)
hαβ̄ ,

Proof. — This follows from (6.14) and a well-known formula for the
Christoffel symbols of the Tanaka–Webster connection [17]. �

We point out that this formula involves both tangential and normal
derivatives of the quotient Q and the Fefferman determinants on the source
and the target. The interesting case is when ρ and ρ̃ are approximate
Fefferman defining functions for the source and target of order 3, i.e., when
J(ρ) = 1+o(ρ2) and J(ρ̃) = 1+o(ρ̃2), because then the formula simplifies to

(6.18) Aαβ̄(F ) = Dρ

αβ̄
logQ.

In particular, we have a simple formula when both source and target are
spheres.
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Corollary 6.4. — Let (M, θ) be a strictly pseudoconvex pseudoher-
mitian manifold, F and G nonconstant holomorphic maps sending M into
S2N+1, and

(6.19) ‖F‖2 − 1 = QF · ρ, ‖G‖2 − 1 = QG · ρ.

where ρ is a defining function for M , θ := i∂̄ρ. If F = γ ◦ G for some
γ ∈ Aut(S2N+1), then

(6.20) ι∗∂∂̄ log (QF /QG) = 0.

Here ι : M → Cn+1 is the inclusion.

Proof. — As explained above, in the frame Zα = ∂α − (ρα/ρw)∂w, we
have that

(6.21) Aαβ̄(F ) = Dρ

αβ̄
logQF + 1

2Pρ log J(ρ)hαβ̄ ,

and similar for Aαβ̄(G). Thus, if there exists such a γ, then by Theorem 1.2,
we have that

(6.22) Dρ

αβ̄
log (QF /QG) = 0.

The last equality is clearly equivalent to (6.20), and the proof of Corol-
lary 6.4 is complete. �

Note that if F and G are nonconstant then QF and QG are nonvanishing
on M by a Hopf Lemma (a transversality result). The quotient QF defined
as above has been used extensively in the study of proper holomorphic maps
between balls or sphere maps; see, e.g., [5, 7] and the references therein.
The explicit formula can be used to deduce a necessary condition, which

is simple to check, for a map to be equivalent to a monomial map as follows.

Corollary 6.5. — Let F be a monomial map between spheres in the
standard coordinates, then traceA(F ) only depends on the moduli of the
|zj |, j = 1, 2, . . . , n + 1. Moreover, for each j, Aαβ̄(F ) is tracefree on the
set |zj | = 1. Consequently, if F is equivalent to a monomial map, then the
umbilical locus of F (S2n+1), if not empty, is invariant under a torus action.

We mention a similar result characterizing the monomial maps F in
terms of the invariant group ΓF in a recent paper by D’Angelo and Xiao [7].
Precisely, they proved that F is spherically equivalent to a monomial map
iff the group ΓF contains an n-torus.
Proof. — Suppose that F is a monomial map, then ‖F‖2 − 1 is a mul-

tivariate polynomial in |zj |2, j = 1, 2, . . . , n + 1: There is a polynomial
f(t1, . . . , tn+1) such that

(6.23) ‖F‖2 − 1 = f
(
|z1|2, . . . , |zn+1|2

)
.
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Since F sends sphere into sphere, f(t) is divisible by t1+t2+ . . .+tn+1−1 in
the polynomial ring R[t]. Thus, the quotient g(t1, . . . , tn+1) is a polynomial
in tj with real coefficients. As logQF (z) = log g(|z1|2, . . . , |zn+1|2), we can
write at point for which w = zn+1 6= 0, that

(6.24) Aαβ̄(F ) = D
‖z‖2−1
αβ̄

logQF = φαδαβ + z̄αzβ φαβ ,

where

φα = ∂ log g
∂tα

∣∣∣∣
tj=|zj |2

,

and

φαβ =
(

∂2

∂tαtβ
− ∂2

∂tβ∂tn+1
− ∂2

∂tα∂tn+1
+ ∂2

∂t2n+1

)
log g(t)

∣∣∣
tj=|zj |2

,

are real-valued. Since the inverse of the Levi matrix is hαβ̄ = δαβ − zα z̄β ,
we obtain that Aαβ̄(F ) is tracefree on |w| = 1. Moreover,

(6.25) traceA(F ) =
∑
α

φα +
∑
α

(φαα − φα) |zα|2 −
∑
α, β

φαβ |zα|2 |zβ |2 .

These prove the Corollary 6.5. �

6.2. The (1, 0)-form A1 in dimension three

As discussed in the last section, in dimension three, the (1, 0)-form A1
can be thought of as a replacement for the tracefree part of the Ahfors
derivative, which is trivial in in this case. It is possible to give an explicit
formula for A1 in general, but we shall focus on the case where M =
S3 is the 3-sphere with the standard pseudohermitian structure Θ. Since
the pseudohermitian torsion vanishes, we have P (u) = u1̄,

1̄
1 (covariant

derivatives). Put

(6.26) L = w̄∂z − z̄∂w, θ1 = wdz − zdw.

Then clearly,

(6.27) P (u) = (LLLu) θ1.

In the case of the 3-sphere, the conjugate of P reduces to the operator
characterizing the CR pluriharmonic functions introduced by Bedford [2].
Let F,G : S3 → SN be CR maps with

‖F‖2 − 1 = QF · ρ, ‖G‖2 − 1 = QG · ρ.(6.28)
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Then

A1(F ) =
(
LLL logQF

)
θ1,(6.29)

and similarly for G. Therefore, if F = φ ◦G, then(
LLL logQF

)
=
(
LLL logQG

)
(6.30)

Moreover, if F ◦ γ = φ ◦G, then(
LLL logQF

)
◦ γ = e−2ψ (LLL logQG

)
(6.31)

where ψ is determined by γ∗θ = eψθ.
Similar to Corollary 6.5, we have the following characteristic of the A1

of monomial maps. For a monomial map F from a 3-sphere into another
sphere, A1(F ) expressed in the standard coframe (6.26), must have the
following form:

(6.32) A1(F ) = z̄w̄p
(
|z|2, |w|2

)
/Q3

F ,

where p is a polynomial of |z|2 and |w|2 with real coefficients. In particular,
the vanishing locus of A1(F ), which is an invariant for equivalent sphere
maps, must contain at least two circles. The proof of this fact is similar to
that of the aforementioned corollary. We omit the details.

7. Examples and a question

We calculate the Ahlfors tensor A and the (1, 0)-form A1 for various
sphere maps that have previously appeared in the literature. For the sphere
case, the calculations are simple by Proposition 6.3. All calculations can
be done by hand, but some tedious calculations can also be done by a
computer algebra system.

Example 7.1. — In [3], D’Angelo provided a list of 13 discrete and two
1-parameter analytic families of monomial maps from S3 to S7 which in-
cludes 4 trivial extensions of maps from S3 → S5 of Faran’s list. Later,
Watanabe [25] found another map (numbered 16 in the Table 7.1). We
compute the trace of the Ahlfors derivative of each map. We then locate
the umbilical points of the images of S3 in S7 via the maps. There are four
types of umbilical loci that occur: the empty set, the whole sphere, one
circle, and the union of two circles; this is predicted in Corollary 6.5. To
simplify the notations, we put S1 = {(eit, 0) : t ∈ R} and S2 = {(0, eit) : t
∈ R}. In Table 7.1, the expressions in the Ahlfors column are the traces of
the Ahlfors derivatives which only depend on |z|2, and thus we put s = |z|2.
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This trace determines the “hermitian part” (or mixed-part) of the Ahlfors
derivative as n = 1. The “holomorphic” parts vanish in all cases since the
standard spheres have vanishing pseudohermitian torsions. Moreover, the
norms of the CR second fundamental forms |IICR| can be computed easily
from these results.
Observe that the Ahlfors derivatives of these 16 maps are all different.

Thus, two different maps are not left equivalent. Moreover, the umbilical
loci can be used to distinguish equivalent classes. For example, the maps
in the Faran’s list are pairwise nonequivalent, since their umbilical loci are
not congruent under the CR automorphisms of S3.

We point out that in Table 7.1, the maps numbered 1, 3, and 5, are special
cases of the homogeneous maps. The trace of the Ahlfors derivatives are
constant while the A1’s vanish identically. More generally, for homogeneous
maps of degree d from S2n+1 with n > 1, the Ahlfors derivatives are nonzero
multiples of the Levi metric.
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The formula for the A1 tensor of the 13rd map is too big to fit in the
table. Precisely,

A1(F13) =

2z̄w̄2s9 − 6s8 + 18s7 − 64s6 + 117s5 − 114s4 + 42s3 + 24s2 − 27s+ 6
(s4 − 3s3 + 4s2 − 2s+ 1)3 .

Example 7.2. — Consider the following cubic map (appeared earlier
in [4])

(7.1)
(
z2 − z2w√

2
,
zw − zw2
√

2
,
z + zw√

2
, w2

)
.

Then the trace of the CR Ahlfors derivative is

(7.2) traceA(F ) =
|w|6 + 4|w|4 + 2<(w)

(
1− 3|w|2

)
− 5|w|2 + 4

Q

∣∣∣∣
S3

for some polynomial Q positive on S3. Observe that this trace vanishes if
and only if w = 1, i.e., the umbilical locus is a singleton. This immediately
implies that F is not equivalent to any map in Table 7.1 whose umbilical
locus is either empty or of positive dimension. In fact, by Corllary 6.5, it is
not equivalent to any monomial map regardless of the target dimension, a
fact that was first observed by D’Angelo in [4] for the target dimension 4.

Example 7.3. — Consider the following map which was discussed in [11,
Proposition 3.3],

(7.3) F (z, w) =
(√

3
9
(
z2 + 4z − 2

)
,

√
6

9
(
z2 + z + 1

)
,

√
3

12 w(3z + 5),
√

6
6 w2,

√
13

12 w(z − 1)
)
.

Observe that this map is not monomial and does not send 0 to 0.
Then the trace of its CR Ahlfors derviative is

(7.4) traceA(F ) = 30|z|2 + 24<z + 18
|z|4 − 16|z|2<z + 32<(z2) + 272<z + 289 .

Since this trace does not vanish on S3, F (S3) is a submanifold of S9 without
umbilical point. Moreover,

(7.5) A1(F ) =
264 w̄

(
1 + 4z̄ + z̄2)

(17 + 8<z − |z|2)3 .

Thus, F is not left equivalent to any monomial map from S3 into SN ,
N > 3.
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Example 7.4 (D’Angelo’s maps [3]). — For each t, put c = cos(t) and
s = sin(t) and consider the maps

(7.6) Ft(z, w) =
(
z1, . . . , zn, cw, sz1w, . . . , sznw, sw

2) .
Then Ft maps S2n+1 into S4n+3. It is clear that F0 = L is the linear
embedding and Fπ/2 ∼= (W, 0) where W is the complex Whitney map from
S2n+1 into S4n+1. We compute that

(7.7) Qt = 1 + s2|w|2, F ∗t Θ = i∂̄ρ = eutθ, ut = log
(
1 + s2|w|2

)
.

In the local frame Z̃α = w̄∂α − z̄α∂w, we have that

(7.8) Aαβ̄(Ft) = s2z̄αzβ

(1 + s2|w|2)2

is non-negative and of rank one except at the umbilical points. Taking the
trace, we have

(7.9) traceA(Ft) =
s2 (1− |w|2)
(1 + s2|w|2)2

∣∣∣∣
S3
.

Thus, Ft and Ft′ are not left equivalent for t 6= t′. Moreover, if Ψ ∈
Aut(S2n+1, Ft) for t 6= 0, then Ψ(0, w) = (0, ψn+1(0, w)). The inclusion
F (S2n+1) ⊂ S4n+3 is umbilical along the locus {F (0, eiy)}.

The following example appeared originally in Webster [26].

Example 7.5. — Let M ⊂ Cn be the strictly pseudoconvex real hyper-
surface defined by ρ = 0, with

(7.10) ρ = |z|2 + b(z) + b(z)− 1.

Put θ := i∂̄ρ and let

(7.11) F (z) = 1
1− b(z) (z1, . . . , zn, b(z)) .

Then F maps M into the unit sphere in Cn+1, actually, one can compute
‖F‖2 − 1 = |1− b(z)|−2ρ. Since Dρ

αβ̄
log |1− b(z)|−2 = 0, we see that

(7.12) tf Aαβ̄(F ) = 0.

Let L and W be the linear embedding and Whitney map from Sn+1 into
S2d+1 with d > 2n − 1. Then L ◦ F and W ◦ F are inequivalent CR im-
mersions fromM into S2d+1. (In general, post composing with inequivalent
maps may still yield equivalent maps. For example, take g to be the linear
embedding of S2n−1 into S2n+1, then L◦g =W◦g is the linear embedding.)
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To compute the trace part, we need to compute the Fefferman deter-
minant J [ρ]. In a special case b(z) = 1

2
∑n
k=1 z

2
k, we can easily compute

J [ρ] = ρ+ 2 and thus,

(7.13) Aαβ̄(F ) = (n+ 1)−1hαβ̄ .

In particular, the imbedding image has no umbilical point.

Question 7.6. — Among the examples discussed above, we have en-
countered three families of CR maps with the property that their Ahlfors
derivatives are constant multiples of the Levi metric: linear embeddings
between spheres, the homogeneous maps, and the ones considered in Ex-
ample 7.5. Motivated by these examples, we pose the following question:
Suppose that F is a nonconstant CR map between spheres and that A(F )
is a nonzero constant (resp. functional) multiple of the Levi metric (i.e.,
Aαβ(F ) = 0 or Aαβ̄(F ) = ghαβ̄ , g 6= 0, respectively). Does it follow that
F is spherically equivalent to a homogeneous monomial map?
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