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SOBOLEV SPACES

by Tadahiro OH,
Oana POCOVNICU & Nikolay TZVETKOV (*)

Dedicated to the memory of Professor Ioan I. Vrabie (1951–2017)

Abstract. — We study the three-dimensional cubic nonlinear wave equation
(NLW) with random initial data below L2(T3). By considering the second order
expansion in terms of the random linear solution, we prove almost sure local well-
posedness of the renormalized NLW in negative Sobolev spaces. We also prove a
new instability result for the defocusing cubic NLW without renormalization in
negative Sobolev spaces, which is in the spirit of the so-called triviality in the
study of stochastic partial differential equations. More precisely, by studying (un-
renormalized) NLW with given smooth deterministic initial data plus a certain
truncated random initial data, we show that, as the truncation is removed, the
solutions converge to 0 in the distributional sense for any deterministic initial
data.
Résumé. — On étudie l’équation des ondes non linéaire cubique (NLW) en di-

mension 3 avec une donnée initiale aléatoire en-dessous de L2(T3). En considérant
le développement d’ordre 2 en termes de la solution aléatoire linéaire, on prouve
le caractère presque sûrement localement bien posé de NLW renormalisée dans les
espaces de Sobolev d’indices négatifs. On montre aussi un nouveau résultat d’in-
stabilité pour l’équation NLW cubique défocalisante sans renormalisation dans les
espaces de Sobolev d’indices négatifs, dans l’esprit du caractère non trivial dans
l’étude des équations aux dérivées partielles stochastiques. Plus précisément, en
étudiant NLW non renormalisée avec des données initiales régulières déterministes
plus une donnée initiale aléatoire tronquée, on montre que, dès que la troncature
est supprimée, les solutions tendent vers 0 au sens des distributions pour toute
donnée initiale déterministe.
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1. Introduction

1.1. Main result

We consider the Cauchy problem for the defocusing cubic nonlinear wave
equation (NLW) on the three-dimensional torus T3 = (R/2πZ)3:

(1.1)
{
∂2
t u−∆u+ u3 = 0

(u, ∂tu) |t=0 = (u0, u1) ∈ Hs
(
T3) ,

where u : R × T3 → R and Hs(T3) = Hs(T3) × Hs−1(T3). Here, Hs(T3)
denotes the standard Sobolev space on T3 endowed with the norm:

‖f‖Hs(T3) =
∥∥∥〈n〉sf̂(n)

∥∥∥
`2(Z3)

,

where û(n) is the Fourier coefficient of u and 〈 · 〉 = (1+| · |2) 1
2 . The classical

well-posedness result (see for example [53]) for (1.1) reads as follows.
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Theorem 1. — Let s > 1. Then, for every (u0, u1) ∈ Hs(T3), there ex-
ists a unique global-in-time solution u to (1.1) in C(R;Hs(T3)). Moreover,
the dependence of the solution map: (u0, u1) 7→ u(t) on initial data and
time t ∈ R is continuous.

The proof of Theorem 1 follows from Sobolev’s inequality: H1(T3) ⊂
L6(T3) and the conservation of the energy for (1.1). Recall that the scaling
symmetry: u(t, x) 7→ λu(λt, λx) for (1.1) posed on R3 induces the scaling-
critical Sobolev regularity scrit = 1

2 . By using the Strichartz estimates (see
Lemma 2.4 below), one may indeed show that the Cauchy problem (1.1)
remains locally well-posed in Hs(T3) for s > 1

2 [36]. On the other hand, it
is known that the Cauchy problem (1.1) is ill-posed for s < 1

2 [13, 18, 23,
45, 54]. We refer to [23, 45, 53] for the proofs of these facts.
One may then ask whether a sort of well-posedness of (1.1) survives

below the scaling-critical regularity, i.e. for s < 1
2 . As it was shown in the

work [13, 14] by Burq and the third author, the answer to this question is
positive if one considers random initial data. In this paper, we will primarily
consider the following random initial data:

(1.2) uω0 =
∑
n∈Z3

gn(ω)
〈n〉α

ein · x and uω1 =
∑
n∈Z3

hn(ω)
〈n〉α−1 e

in · x,

where the series {gn}n∈Z3 and {hn}n∈Z3 are two families of independent
standard complex-valued Gaussian random variables on a probability space
(Ω,F , P ) conditioned that(1) gn = g−n, hn = h−n, n ∈ Z3. More precisely,
with the notation N = {1, 2, 3, · · · }, we first define the index set Λ by

(1.3) Λ =
(
Z2 × N

)
∪ (Z× N× {0}) ∪ (N× {(0, 0)}) ∪ {(0, 0, 0)}.

We then define {gn, hn}n∈Λ to be a family of independent standard Gauss-
ian random variables which are complex-valued for n 6= 0 and are real-
valued for n = 0. We finally set gn = g−n, hn = h−n for n ∈ Z3 \ Λ.

The partial sums for the series (uω0 , uω1 ) in (1.2) form a Cauchy sequence
in L2(Ω;Hs(T3)) for every s < α− 3

2 and therefore the random initial data
(uω0 , uω1 ) in (1.2) belongs almost surely toHs(T3) for the same range of s. On
the other hand, one may show that the probability of the event (uω0 , uω1 ) ∈
Hα− 3

2 (T3) is zero. See [13, Lemma B.1]. As a result, when α > 5
2 , one

may apply the classical global well-posedness result in Theorem 1 for the
random initial data (uω0 , uω1 ) given by (1.2) since (uω0 , uω1 ) ∈ H1(T3) almost
surely. For α > 2, one may still apply the more refined (deterministic) local
well-posedness result in H 1

2 (T3) mentioned above. For α 6 2, however, the

(1) In particular, g0 and h0 are real-valued.
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774 Tadahiro OH, Oana POCOVNICU & Nikolay TZVETKOV

Cauchy problem (1.1) becomes ill-posed. Despite this ill-posedness result,
the analysis in [14, 53] implies the following statement.

Theorem 2. — Let α > 3
2 and s < α− 3

2 . Let {uN}N ∈N be a sequence
of the smooth global solutions(2) to (1.1) with the following random C∞-
initial data:
(1.4)

uω0, N (x) =
∑
|n|6N

gn(ω)
〈n〉α

ein · x and uω1, N (x) =
∑
|n|6N

hn(ω)
〈n〉α−1 e

in · x,

where {gn}n∈Z3 and {hn}n∈Z3 are as in (1.2). Then, as N → ∞, uN
converges almost surely to a (unique) limit u in C(R;Hs(T3)), satisfying
NLW (1.1) in the distributional sense.

Here, by uniqueness, we firstly mean that the entire sequence {uN}N ∈N
converges to u, not up to some subsequence. Compare this with the case
of weak solution techniques (see for example [11, 12]), which usually only
give convergence up to subsequences. Furthermore, when we regularize the
random initial data (uω0 , uω1 ) in (1.2) by mollification, it can be shown that
the limit u is independent of the choice of mollification kernels. See Re-
mark 1.1. Lastly, as we see in Subsection 1.3, the limit u admits a decom-
position u = z1 + v, where z1 is the random linear solution, emanating
from the random initial data (uω0 , uω1 ), and v is the unique solution to the
perturbed NLW: {

Lv + (v + z1)3 = 0
(v, ∂tv) |t= 0 = (0, 0),

Similar comments apply to the limiting distribution u in Theorem 3 below.
For α 6 3

2 , u
ω
0 in (1.2) is almost surely no longer a classical function and it

should be interpreted as a random Schwartz distribution lying in a Sobolev
space of negative index. Therefore for α 6 3

2 , the study of (1.1) with the
random initial data (1.2) is no longer within the scope of applicability
of [14, 53]. The goal of this paper is to extend the results in [14, 53] to
the random initial data when they are no longer classical functions. More
precisely, we prove the following statement.

Theorem 3. — Let 5
4 < α 6 3

2 and s < α − 3
2 . There exists a diver-

gent sequence {αN}N ∈N of positive numbers such that the following holds
true; there exist small T0 > 0 and positive constants C, c, κ such that for
every T ∈ (0, T0], there exists a set ΩT of complemental probability smaller

(2)Theorem 1 guarantees existence of smooth global solutions {uN}N ∈N to (1.1).

ANNALES DE L’INSTITUT FOURIER
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than C exp(−c/Tκ) such that if we denote by {uN}N ∈N the smooth global
solutions to

(1.5)
{
∂2
t uN −∆uN + u3

N − αNuN = 0
(uN , ∂tuN ) |t=0 =

(
uω0, N , u

ω
1, N
)
,

where the random initial data (uω0, N , uω1, N ) is given by the truncated
Fourier series in (1.4), then for every ω ∈ ΩT , the sequence {uN}N ∈N
converges to some (unique) limiting distribution u in C([−T, T ];Hs(T3))
as N →∞.

We prove Theorem 3 by writing uN in the second order expansion:
uN = z1, N + z2, N + wN , where z1, N is the linear solution,(3) emanat-
ing from the random initial data (uω0 , uω1 ), and z2, N denotes the additional
term appearing in the Picard second iterate; see (1.17) below. We first use
stochastic analysis to show convergence of zj,N , j = 1, 2, and then show
convergence of the residual term wN by deterministic analysis.

In view of the asymptotic behavior αN → ∞, one may be tempted to
say that the limiting distribution u obtained in Theorem 3 is a solution to
the following limit “equation”:{

∂2
t u−∆u+ u3 −∞ · u = 0

(u, ∂tu) |t=0 = (uω0 , uω1 ) ,

where the random initial data (uω0 , uω1 ) is as in (1.2). The expression ∞ · u
is merely formal and thus a natural question is to understand in which
sense u satisfies the cubic NLW on T3. As we see in the next subsection,
the limit u has the decomposition u = z1 + z2 + w (see (1.22)), where zj ,
j = 1, 2, denotes the limit of zj,N in a suitable sense and the residual term
w satisfies the perturbed NLW equation; see (1.23) below. The uniqueness
statement in Theorem 3 refers to the uniqueness of w as a solution to this
perturbed NLW equation (along with the uniqueness of various stochastic
terms appearing in (1.23) as the limits of their regularized versions); see
Remark 1.6. See also Remark 1.1 below. We will describe our strategy in the
next two subsections. We also refer readers to [47] for a related discussion
in the two-dimensional case.
Given fixed N ∈ N, by adapting the classical argument, it is easy to see

that the truncated equation (1.5) is globally well-posed inHs(T3) for s > 1.
In particular, one needs to apply a Gronwall-type argument to exclude a
possible finite-time blowup of the H1-norm of a solution. The main issue

(3)For a technical reason, we take z1, N to satisfy the linear Klein–Gordon equation.
See (1.8) below.
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here is that there is no good uniform (in N) bound for the solutions to (1.5).
One may try to extend the local-in-time solutions constructed in Theorem 3
globally in time by using truncated energies in the spirit of the I-method,
introduced in [19]. See [29] for such a globalization argument in the context
of the two-dimensional stochastic NLW.
Our ultimate goal is to push the analysis in the proof of Theorem 3 to

cover the case α = 1, corresponding to the regularity of the natural Gibbs
measure associated with the cubic NLW. In the field of singular stochastic
parabolic PDEs, there has been a significant progress in recent years. In
particular, a substantial effort [3, 15, 26, 31, 32, 39] was made to give
a proper meaning to the stochastic quantization equation (SQE) on T3,
formally written as

(1.6) ∂tu−∆u = −u3 +∞ · u+ ξ.

Here, ξ denotes the so-called space-time white noise. On the one hand,
the randomization effects in the present paper are close in spirit to the
works cited above. On the other hand, the deterministic part of the analysis
in the context of the heat and the wave equations represent significant
differences because, as it is well known, the deterministic regularity theories
for these two types of equations are quite different. In fact, in order to
extend Theorem 3 to lower values of α, it is crucial to exploit dispersion
at a multilinear level, a consideration specific to dispersive equations, and
combine it with randomization effects. See, for example, a recent work [28]
by Gubinelli, Koch, and the first author on the three-dimensional stochastic
NLW with a quadratic nonlinearity. Furthermore, in order to treat lower
values of α, it will be crucial to impose a structure on the residual part w.
See Remark 1.4 for a further discussion.

Remark 1.1. — We say that η ∈ C(R3; [0, 1]) is a mollification kernel
if
∫
ηdx = 1 and supp η ⊂ (−π, π]3 ' T3. Given a mollification kernel

η, define ηε by setting ηε(x) = ε−3η(ε−1x). Then, {ηε}0<ε6 1 forms an
approximate identity on T3. By slightly modifying the proof of Theorem 2,
we can show that if we denote by uε, the solution to (1.1) with the initial
data (ηε ∗uω0 , ηε ∗uω1 ), where (uω0 , uω1 ) is as in (1.2), then, for α > 3

2 and s <
α− 3

2 , uε converges in probability to some (unique) limit u in C(R;Hs(T3))
as ε → 0. Here, the limit u is independent of the choice of mollification
kernels η. Similarly, when 5

4 < α 6 3
2 , a slight modification of the proof of

Theorem 3 shows that there exists a divergent sequence αε (as ε→ 0) such
that the solution uε to

ANNALES DE L’INSTITUT FOURIER
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{
∂2
t uε −∆uε + u3

ε − αεuε = 0
(uε, ∂tuε) |t=0 = (ηε ∗ uω0 , ηε ∗ uω1 )

converges in probability to some (unique) limit u in C([−Tω, Tω];Hs(T3)),
where Tω > 0 almost surely. Once again, the limit uε is independent of the
choice of mollification kernels η.

Remark 1.2. — As in [13, 14], it is possible to consider a more general
class of random initial data. Let a deterministic pair (u0, u1) ∈ Hs(T3) be
given by the following Fourier series:

u0 =
∑
n∈Z3

ane
in · x and u1 =

∑
n∈Z3

bne
in · x

with the constraint a−n = an and b−n = bn, n ∈ Z3. We consider the
randomized initial data (uω0 , uω1 ) given by

uω0 =
∑
n∈Z3

gn(ω)anein · x and uω1 =
∑
n∈Z3

hn(ω)bnein · x,

Then, by slightly modifying the proof of Theorem 3, it is easy to see that, for
s > − 1

6 (corresponding to α > 4
3 in (1.2)), we can introduce a time depen-

dent divergent sequence {αN}N ∈N with αN = αN (t) such that the solution
uN to (1.5) converges to some (unique) limit u in C([−Tω, Tω];Hs(T3)),
where Tω > 0 almost surely. For this range of s, we need only the first
order expansion. See the next subsection. For lower values of s, one may
need to impose some additional summability assumptions on {an}n∈Z3 and
{bn}n∈Z3 (in particular to replicate the proof of Proposition 4.2 to obtain
an analogue of Theorem 3).

1.2. Outline of the proof of Theorem 3.

In the following, we present the main idea of the proof of Theorem 3.
Fix α 6 3

2 . With the short-hand notation:(4)

(1.7) L := ∂2
t −∆ + 1,

we denote by z1, N = z1, N (t, x, ω) the solution to the following linear Klein–
Gordon equation:

(1.8) Lz1, N (t, x, ω) = 0

(4)For our subsequent analysis, it will be more convenient to study the linear Klein–
Gordon equation rather than the linear wave equation.

TOME 72 (2022), FASCICULE 2
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with the random initial data (uω0, N , uω1, N ) given by the truncated Fourier
series in (1.4). In the following, we discuss spatial regularities of various
stochastic terms for fixed t ∈ R. For simplicity of notation, we suppress the
t-dependence and discuss spatial regularities. It is easy to see from (1.4)
that z1,N converges almost surely to some limit z1 in Hs1(T3) as N →∞,
provided that

(1.9) s1 < α− 3
2 .

In particular, when α 6 3
2 , z1, N has negative Sobolev regularity (in the

limiting sense) and thus (z1, N )2 and (z1, N )3 do not have well-defined limits
(in any topology) as N →∞ since it involves products of two distributions
of negative regularities.
Let uN be the solution to the renormalized NLW (1.5) with the same

truncated random initial data (uω0, N , uω1, N ) in (1.4). By writing u as

(1.10) uN = z1, N + vN ,

we see that the residual term vN = uN − z1,N satisfies the following equa-
tion:

(1.11)


LvN + v3

N + 3z1, Nv
2
N

+3
{

(z1, N )2 − σN
}
vN +

{
(z1, N )3 − 3σNz1, N

}
= 0,

(vN , ∂tvN ) |t=0 = (0, 0),

where the parameter σN is defined by

σN := αN + 1
3 .

As it is well known, the key point in the equation (1.11) is that the terms

(1.12) Z2, N := (z1, N )2 − σN and Z3, N := (z1, N )3 − 3σNz1, N

are “renormalizations” of (z1, N )2 and (z1, N )3. Here, by “renormalizations”,
we mean that by choosing a suitable renormalization constant σN , the
terms Z2, N and Z3, N converge almost surely in suitable negative Sobolev
spaces as N →∞.
The regularity s1 < α− 3

2 of z1, N (in the limit) and a simple paraproduct
computation show that if the expressions Z2, N = (z1, N )2−σN and Z3, N =
(z1, N )3 − 3σNz1, N have any well-defined limits as N → ∞, then their
regularities in the limit are expected to be

(1.13) s2 < 2
(
α− 3

2

)
and s3 < 3

(
α− 3

2

)
,

ANNALES DE L’INSTITUT FOURIER
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respectively. In fact, by choosing the renormalization constant σN as

(1.14) σN := E
[
(z1, N (t, x, ω))2

]
,

we show that Zj,N converges in Hsj (T3) almost surely. See Proposition 3.2.
Note that the renormalization constant σN a priori depends on t, x but it
turns out to be independent of t and x.(5) We will also see that, for N � 1,
σN behaves like (i) ∼ N3−2α when α < 3

2 and (ii) ∼ logN when α = 3
2 .

See (3.2) below.
Thanks to the Strichartz estimates (see Lemma 2.4 below), the deter-

ministic Cauchy problem for

Lv + v3 = 0

is locally well-posed in Hs(T3) for s > 1
2 . We may therefore hope to solve

the equation (1.11) uniformly in N ∈ N by the method of [9, 13, 14], if we
can ensure that the solution vN to the following linear problem:

(1.15) LvN +
{

(z1, N )3 − 3σNz1, N

}
= 0

with the zero initial data (vN , ∂tvN )|t=0 = (0, 0) remains bounded in
H

1
2 (T3) as N → ∞. Using one degree of smoothing under the wave

Duhamel operator (see (2.6) below), we see that the solution to (1.15)
is almost surely bounded in H 1

2 (T3) uniformly in N ∈ N, provided

3
(
α− 3

2

)
+ 1 > 1

2 =⇒ α >
4
3 .

Therefore, α = 4
3 seems to be the limit of the approach of [9, 13, 14].(6)

In order to go below the α = 4
3 threshold, a new argument is needed.

The introduction of such an argument is the main idea of this paper. More
precisely, we further decompose vN in (1.10) as

(1.16) vN = z2, N + wN

for some residual term wN , where z2, N is the solution to the following
equation:

(1.17)

Lz2, N +
{

(z1, N )3 − 3σNz1, N

}
= 0

(z2, N , ∂tz2, N ) |t=0 = (0, 0).

(5)While we show this fact by a direct computation in (3.2), it can be seen from the
stationarity (in both t and x) of the stochastic process {z1, N (t, x)}(t, x)∈R× T3 . See
Remark 3.1.
(6)Here, we are not taking into account a possible multilinear smoothing for the solution
v to (1.15).

TOME 72 (2022), FASCICULE 2
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Thanks to the one degree of smoothing, we see that z2, N converges to some
limit in Hs(T3), provided that

s = s3 + 1 < 3
(
α− 3

2

)
+ 1

In terms of the original solution uN to (1.5), we have from (1.10) and (1.16)
that

(1.18) uN = z1, N + z2, N + wN .

Note that z1, N + z2, N corresponds to the Picard second iterate for the
truncated renormalized equation (1.5).
The equation for wN can now be written as

(1.19)
LwN + (wN + z2, N )3

+3z1, N (wN + z2, N )2 + 3
{

(z1, N )2 − σN
}

(wN + z2, N ) = 0,

(wN , ∂twN ) |t=0 = (0, 0).

By using the second order expansion (1.18), we have eliminated the most
singular term Z3, N = (z1, N )3 − 3σNz1, N in (1.11). In the equation (1.19),
there are several source terms(7) and they are precisely the quintic, septic,
and nonic (i.e. degree nine) terms added in considering the Picard third
iterate for (1.5). As we see below, the most singular term in (1.19) is the
following quintic term:

(1.20) Z5, N := 3
{

(z1, N )2 − σN
}
z2, N ,

where z2, N is the solution to (1.17). As we already mentioned, the term
Z2, N = (z1, N )2 − σN and the second order term z2, N pass to the limits
in Hs(T3) for s < 2(α − 3

2 ) and s < 3(α − 3
2 ) + 1, respectively. In order

to make sense of the product of Z2, N and z2, N in (1.20) by deterministic
paradifferential calculus (see Lemma 2.1 below), we need the sum of the
two regularities to be positive, namely

2
(
α− 3

2

)
+ 3

(
α− 3

2

)
+ 1 > 0 =⇒ α >

13
10 .

Otherwise, i.e. for α 6 13
10 , we will need to make sense of the product (1.20),

using stochastic analysis. See Proposition 4.2. In either case, when the
second factor in (1.20) has positive regularity 3(α− 3

2 ) + 1 > 0, i.e. α > 7
6 ,

(7)Namely, purely stochastic terms independent of the unknown wN .
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we show that the product (1.20) (in the limit) inherits the regularity from
Z2, N = (z1, N )2 − σN , allowing us to pass to a limit in Hs(T3) for

s < 2
(
α− 3

2

)
.

Once we are able to pass the term Z5, N in (1.20) in the limit N → ∞,
the main issue in solving the equation (1.19) for wN by the deterministic
Strichartz theory is to ensure that the solution of

(1.21)

Lw + 3
{

(z1, N )2 − σN
}
z2, N = 0

(w, ∂tw) |t=0 = (0, 0)

remains bounded in H 1
2 (T3) as N →∞ (recall that s = 1

2 is the threshold
regularity for the deterministic local well-posedness theory for the cubic
wave equation on T3). Using again one degree of smoothing under the
wave Duhamel operator, we see that the solution to (1.21) is almost surely
bounded in H 1

2 (T3), provided

2
(
α− 3

2

)
+ 1 > 1

2 =⇒ α >
5
4 .

This explains the restriction α > 5
4 in Theorem 3. See also Remark 1.4.

We point out that under the restriction α > 5
4 , we can use deterministic

paradifferential calculus to make sense of the product of z1, N and z2
2, N

appearing in (1.19), uniformly in N ∈ N.
In proving Theorem 3, we apply the deterministic Strichartz theory and

show that wN converges almost surely to some limit w. Along with the
almost sure convergence of z1, N and z2, N to some limits z1 and z2, re-
spectively, we conclude from the decomposition (1.18) that uN converges
almost surely to

(1.22) u := z1 + z2 + w.

By taking a limit of (1.19) as N →∞, we see that w is almost surely the
solution to

(1.23)
{
Lw + (w + z2)3 + 3z1 (w + z2)2 + 3Z2w + 3Z5 = 0
(w, ∂tw) |t=0 = (0, 0),

where Z2 and Z5 are the limits of Z2, N in (1.12) and Z5, N in (1.20),
respectively. This essentially explains the proof of Theorem 3.

Remark 1.3. — The expansion (1.22) provides finer descriptions of u at
different scales; the roughest term z1 is essentially responsible for the small
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scale behavior of u, while z2 describes its mesoscopic behavior and the
smoother remainder part w describes its large-scale behavior.

Remark 1.4. — The argument based on the first order expansion (1.10)
goes back to the work of McKean [38] and Bourgain [9] in the study of
invariant Gibbs measures for the nonlinear Schrödinger equations on Td,
d = 1, 2. See also [13]. In the field of stochastic parabolic PDEs, this argu-
ment is usually referred to as the Da Prato–Debussche trick [20].
As we explained above, the novelty in this paper with respect to the

previous work [9, 13, 14] is that the proof of Theorem 3 crucially relies
on the second order expansion (1.18). We also mention two other recent
works [7, 48], where such higher order expansions were used in the context
of dispersive PDEs with random initial data. The higher order expansions
used in [48] are at negative Sobolev regularity but they are related to a
gauge transform, which is very different from the situation in the present
paper. The difference between the present paper and [7] is that, in this
paper, we work in Sobolev spaces of negative indices, while solutions in [7]
have positive Sobolev regularities.(8) We point out that while the higher
order expansions helped lowering the regularity of random initial data in [7],
the third order expansion would not help us improve Theorem 3 for our
problem.(9) This can be seen from the product Z2w in (1.23). From the
regularity s2 of Z2 in (1.13) and the regularity 1

2 of w, we see that the sum
of their regularity is positive (which is needed to make sense of the product
Z2w) only for α > 5

4 . This is exactly the range covered in Theorem 3.
Note that a higher order expansion is used to eliminate certain explicit
stochastic terms. Namely, even if we go into a higher order expansion, we
can not eliminate this problematic term Z2w since this term depends on
the unknown w. In order to lower values of α, we need to impose a structure
of the residual term w.
For conciseness of the presentation, we decided to present only the sim-

plest argument based on the second order expansion. There are, however,
several ways for a possible improvement on the regularity restriction in
Theorem 3. (i) In studying the regularity and convergence properties of
the second order stochastic term z2, N in (1.17), we simply use a “parabolic
thinking”, namely, we only count the regularity s1 < α− 3

2 of each of three
factors z1, N for Z3, N (modulo the renormalization) and put them together

(8) In particular, all the products make sense as functions in [7]. In negative Sobolev
spaces, the main problem is to make sense of a product as a distribution.
(9)That is, unless we combine it with multilinear smoothing and imposing a further
structure (such as a paracontrolled structure) on w.
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with one degree of smoothing coming from the wave Duhamel integral op-
erator without taking into account the explicit product structure and the
oscillatory nature of the linear wave propagator. See Proposition 4.1 below.
In the field of dispersive PDEs, however, it is crucial to exploit an explicit
product structure and study interaction of waves at a multilinear level to
show a further smoothing property. See, for example, [10, 28, 43]. In this
sense, the argument presented in this paper leaves a room for an obvious
improvement. (ii) In recent study of singular stochastic parabolic PDEs
such as SQE (1.6) on T3, higher order expansions (in terms of the sto-
chastic forcing in the mild formulation) were combined with the theory of
regularity structures [31] or the paracontrolled calculus [3, 15, 39]. In fact, it
is possible to employ the ideas from the paracontrolled calculus in studying
nonlinear wave equations. See a recent work [28] on the three-dimensional
stochastic NLW with a quadratic nonlinearity.
In a very recent preprint [10] (which appeared more than one year after

the appearance of the current paper), Bringmann studied the defocusing
cubic NLW with a Hartree-type nonlinearity on T3:

(1.24) ∂2
t u−∆u+

(
V ∗ u2)u = 0,

where V = 〈∇〉−β is the Bessel potential of order β > 0. By adapting
the paracontrolled approach of [28] to the Hartree cubic nonlinearity and
exploiting multilinear smoothing,(10) Bringmann proved almost sure local
(and global) well-posedness of (1.24) with the Gibbs measure initial data
(essentially corresponding to the random initial data (uω0 , uω1 ) in (1.2) with
α = 1), provided that β > 0. In the context of the renormalized cubic NLW
on T3, it seems possible to adapt the methodology developed in [10] and
extend Theorem 3 to α > 1. When α = 1 (i.e. (1.24) with β = 0), the argu-
ment in [10] breaks down in various places and thus further novels ideas are
needed to treat the case α = 1. We also mention a recent work [21] by Deng,
Nahmod, and Yue, where they introduced the theory of random tensors in
studying the random data Cauchy theory for the nonlinear Schrödinger
equations. While this theory is fairly general, as it is pointed out in [10,
Remark 1.6 and Subsection 4.4], there are some technical challenges in
extending the theory in [21] to the wave case.

(10)Also, combining other tools such as the random matrix estimates from [21].
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1.3. Factorization of the ill-posed solution map

In the following, let us consider initial data of the form:

(1.25) (u, ∂tu) |t=0 = (w0, w1) + (uω0 , uω1 ) ,

where (w0, w1) is a given pair of deterministic functions in H 1
2 (T3) and

(uω0 , uω1 ) is the random initial data given in (1.2). Recall that the random
initial data in (1.25) belongs almost surely to Hmin( 1

2 , s)(T3) for s < α− 3
2 .

When α > 2, the deterministic local well-posedness in H 1
2 (T3) yields a

continuous solution map(11)

Φ : (w0, w1) + (uω0 , uω1 ) ∈ H 1
2
(
T3) 7−→ (u, ∂tu) ∈ C

(
[−T, T ];H 1

2
(
T3)) .

On the other hand, when α 6 2, the random initial data in (1.25) does
not belong to H 1

2 (T3). In particular, the ill-posedness results in [23, 45, 54]
show that, given any (w0, w1) ∈ H 1

2 (T3), the solution map Φ is almost
surely discontinuous.
For 3

2 < α 6 2, the proof of Theorem 2, presented in [14], based on the
first order expansion (1.10) yields the following factorization of the ill-posed
solution map Φ:

(w0, w1) + (uω0 , uω1 ) 7−→ (w0, w1, z1)
Ψ17−→ (v, ∂tv) ∈ C

(
[−T, T ];H 1

2
(
T3))

7−→ u = z1 + v ∈ C
(
[−T, T ];Hs1

(
T3)) ,

(1.26)

where z1 is the solution to the linear equation (1.8) with the random initial
data (uω0 , uω1 ) in (1.2) and s1 < α− 3

2 . Here, we view the first map in (1.26)
as a lift map, where we use stochastic analysis to construct an enhanced
data set (w0, w1, z1), and the second map Ψ1 is the deterministic solution
map to the following perturbed NLW:{

Lv + (v + z1)3 = 0
(v, ∂tv) |t=0 = (w0, w1),

where we view (w0, w1, z1) as an enhanced data set.(12) Furthermore, the
deterministic map Ψ1 : (w0, w1, z1) 7→ (v, ∂tv) is continuous from

X s1
1 (T ) := H 1

2
(
T3)× C ([−T, T ];W s1,∞

(
T3))

to C([−T, T ];H 1
2
(
T3)).

(11)Here, the local well-posedness time is indeed random but we simply write it as T .
The same comment applies in the following.
(12) In particular, we view z1 as a given deterministic space-time distribution of some
specified regularity.
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Remark 1.5. — In [14], using a conditional probability, Burq and the
third author introduced the notion of probabilistic continuity and showed
that the map: (w0, w1) + (uω0 , uω1 ) 7→ u in (1.26) is indeed probabilistically
continuous when 3

2 < α 6 2. It would be of interest to investigate if such
probabilistic continuity also holds for lower values of α.

For 4
3 < α 6 3

2 , the first order expansion (1.10) along with renormaliza-
tion yields the following factorization of the ill-posed solution map Φ:

(w0, w1) + (uω0 , uω1 ) 7−→ (w0, w1, z1, Z2, Z3)
Ψ27−→ (v, ∂tv) ∈ C

(
[−T, T ];H 1

2
(
T3))

7−→ u = z1 + v ∈ C
(
[−T, T ];Hs1

(
T3)) ,

(1.27)

where Z2 and Z3 are the limits of Z2, N and Z3, N in (1.12). With sj ,
j = 1, 2, 3, as in (1.9) and (1.13), the second map Ψ2 is the deterministic
continuous map, sending an enhanced data set (w0, w1, z1, Z2, Z3) in

X s1, s2, s3
2 (T ) := H 1

2
(
T3)× 3∏

j=1
C
(
[−T, T ];W sj ,∞

(
T3))

to a solution (v, ∂tv) ∈ C([−T, T ];H 1
2 (T3)) to the following perturbed

NLW: {
Lv + v3 + 3z1v

2 + 3Z2v + Z3 = 0
(v, ∂tv) |t=0 = (w0, w1).

For 13
10 < α 6 4

3 , the proof of Theorem 3 based on the second order
expansion (1.18) yields the following factorization of the ill-posed solution
map Φ:

(w0, w1) + (uω0 , uω1 ) 7−→ (w0, w1, z1, Z2, z2)
Ψ37−→ (w, ∂tw) ∈ C

(
[−T, T ];H 1

2
(
T3))

7−→ u = z1 + z2 + w ∈ C
(
[−T, T ];Hs1

(
T3)) ,

(1.28)

where z2 is the limit of z2, N defined in (1.17). Here, with s4 = s3 + 1 <
3(α − 3

2 ) + 1, the second map Ψ3 is the deterministic continuous map,
sending an enhanced data set (w0, w1, z1, Z2, z2) in

X s1, s2, s4
3 (T ) := H 1

2
(
T3)× ∏

j ∈{1, 2, 4}

C
(
[−T, T ];W sj ,∞

(
T3))
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to a solution (w, ∂tw) ∈ C([−T, T ];H 1
2 (T3)) to the following perturbed

NLW:

(1.29)
{
Lw + (w + z2)3 + 3z1(w + z2)2 + 3Z2w + 3Z2z2 = 0
(w, ∂tw) |t=0 = (w0, w1).

Lastly, let us discuss the case 5
4 < α 6 13

10 . In this case, the product Z2z2
in (1.29) can not be defined by deterministic paradifferential calculus and
thus we need to define Z5 as a limit of Z5, N in (1.20). Then, the proof of
Theorem 3 based on the second order expansion (1.18) yields the following
factorization of the ill-posed solution map Φ:

(w0, w1) + (uω0 , uω1 ) 7−→ (w0, w1, z1, Z2, z2, Z5)
Ψ47−→ (w, ∂tw) ∈ C

(
[−T, T ];H 1

2
(
T3))

7−→ u = z1 + z2 + w ∈ C
(
[−T, T ];Hs1

(
T3)) .

(1.30)

With s5 < 2(α − 3
2 ), the second map Ψ4 is the deterministic continuous

map, sending an enhanced data set (w0, w1, z1, Z2, z2, Z5) in

X s1, s2, s4, s5
4 (T ) := H 1

2
(
T3)× ∏

j ∈{1, 2, 4, 5}

C
(
[−T, T ];W sj ,∞

(
T3))

to a solution (w, ∂tw) ∈ C([−T, T ];H 1
2 (T3)) to the following perturbed

NLW:

(1.31)
{
Lw + (w + z2)3 + 3z1(w + z2)2 + 3Z2w + Z5 = 0
(w, ∂tw) |t=0 = (w0, w1).

We point out that the last decomposition (1.30) with (1.31) can also be
used to study the cases 4

3 < α 6 3
2 and 13

10 < α 6 4
3 . For simplicity of

the presentation, we only discuss the last decomposition (1.30) with (1.31)
in this paper, while the previous decompositions (1.27) and (1.28) provide
simpler arguments when 13

10 < α 6 3
2 .

In all the cases mentioned above, we decompose the ill-posed solution
map Φ into

(i) the first step, constructing enhanced data sets by stochastic analysis
and

(ii) the second step, where purely deterministic analysis is performed in
constructing a continuous map Ψj on enhanced data sets, solving
perturbed NLW equations.

Such decompositions of ill-posed solution maps also appear in studying
rough differential equations via the rough path theory [24, 37] and singular
stochastic parabolic PDEs [26, 31].
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Remark 1.6. — By the use of stochastic analysis, the terms z1, z2, Z2,
and Z5 are defined as the unique limits of their truncated versions. Fur-
thermore, by deterministic analysis, we prove that a solution w to (1.31) is
pathwise unique in an appropriate class (see the space XT defined in (2.8)).
Therefore, under the decomposition u = z1 + z2 + w, the uniqueness of u
claimed in Theorem 3 refers to (i) the uniqueness of z1 and z2 as the limits
of z1, N and z2, N and (ii) the uniqueness of w as a solution to (1.31).

Remark 1.7. — Given j ∈ N0 := N ∪ {0}, let Pj be the (non-
homogeneous) Littlewood–Paley projector onto the (spatial) frequencies
{n ∈ Z3 : |n| ∼ 2j} such that

f =
∞∑
j=0

Pjf.

Given two functions f and g on T3 of regularities s1 and s2, we have the
following paraproduct decomposition of the product fg due to Bony [8]:

(1.32)
fg =f < g + f = g + f > g

:=
∑

j < k−2
Pjf Pkg +

∑
|j−k|6 2

Pjf Pkg +
∑

k< j−2
Pjf Pkg.

The first term f < g (and the third term f > g) is called the paraproduct
of g by f (the paraproduct of f by g, respectively) and it is always well
defined as a distribution of regularity min(s2, s1 + s2). On the other hand,
the resonant product f = g is well defined in general only if s1 + s2 > 0. See
Lemma 2.1 below.
Let 5

4 < α 6 13
10 . In this case, the sum of the regularities s2 < 2(α − 3

2 )
and s4 < 3(α − 3

2 ) + 1 of Z2 and z2 is non-positive and thus we can not
make sense of the product Z2z2 by deterministic paradifferential calculus.
As we pointed out above, however, the paraproducts Z2 < z2 and Z2 > z2
are well-defined distributions. Hence, it suffices to define Z =

5 as a suitable
limit of the resonant products Z2, N = z2, N in order to pass 3Z2, Nz2, N to
the limit

Z5 = 3Z2 < z2 + 3Z =

5 + 3Z2 > z2.

This shows that we can in fact replace the enhanced data set (w0, w1,

z1, Z2, z2, Z5) in (1.30) and Z5 in (1.31) by (w0, w1, z1, Z2, z2, Z
=
5 ) and 3Z2 <

z2 + 3Z =
5 + 3Z2 > z2, respectively. See also the proof of Proposition 4.2 and

Remark 4.4 below.
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1.4. NLW without renormalization in negative Sobolev spaces

We conclude this introduction by discussing a new instability phenome-
non for NLW (1.1) (that is, without renormalization) in negative Sobolev
spaces. This phenomenon is closely related to the so-called triviality in the
study of stochastic PDEs [1, 33]. See Remark 1.8.
Fix a deterministic pair (w0, w1) ∈ H 3

4 (T3). In the following, we study
the (un-renormalized) NLW (1.1) with initial data of the form:

(u, ∂tu) |t=0 = (w0, w1) + (0, uω1 ) ,

where uω1 is the random distribution given by (1.2). We consider this prob-
lem by studying the following truncated problem. Given N ∈ N, let uN be
the solution to the (un-renormalized) NLW (1.1) with the following initial
data:

(uN , ∂tuN ) |t=0 = (w0, w1) +
(
ũω0, N , ũ

ω
1, N
)
.

Here, (ũω0, N , ũω1, N ) denotes the truncated random initial data given by

(1.33)

ũω0, N (x) =
∑
|n|6N

gn(ω)
〈n〉

N
〈n〉α−1 e

in · x

and ũω1, N (x) =
∑
|n|6N

hn(ω)
〈n〉α−1 e

in · x,

where {gn}n∈Z3 and {hn}n∈Z3 are as in (1.2) and

(1.34) 〈n〉
N

=
√
CN + |n|2

for some suitable choice of a divergent constant CN > 0. Our goal is to
study the asymptotic behavior of uN as N →∞.
Given N ∈ N, define the linear Klein–Gordon operator LN by setting

(1.35) LN := ∂2
t −∆ + CN .

Then, uN satisfies the following equation:

(1.36)
{
LNuN + u3

N − CNuN = 0
(uN , ∂tuN ) |t=0 = (w0, w1) +

(
ũω0, N , ũ

ω
1, N
)
.

We denote by z̃1, N the solution to the following linear Klein–Gordon equa-
tion:

(1.37) LN z̃1, N = 0
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with the truncated random initial data (ũω0, N , ṽω0, N ) in (1.33). Then, we
have

z̃1,N (t, x, ω) =
∑
|n|6N

cos (t〈n〉
N

)
〈n〉

N
〈n〉α−1 gn(ω)ein · x

+
∑
|n|6N

sin (t〈n〉
N

)
〈n〉

N
〈n〉α−1hn(ω)ein · x.

(1.38)

In particular, for each fixed (t, x) ∈ R × T3, z̃1, N (t, x) is a mean-zero
Gaussian random variable with variance:

σ̃N :=E
[
(z̃1, N (t, x))2

]
=
∑
|n|6N

(cos (t〈n〉
N

))2

〈n〉2
N
〈n〉2(α−1) +

∑
|n|6N

(sin (t〈n〉
N

))2

〈n〉2
N
〈n〉2(α−1)

=
∑
|n|6N

1
〈n〉2

N
〈n〉2(α−1) .

(1.39)

In view of (1.36), we implicitly define CN > 0 by

CN = 3σ̃N = 3
∑
|n|6N

1
〈n〉2

N
〈n〉2(α−1)

= 3
∑
|n|6N

1
(CN + |n|2) 〈n〉2(α−1)

(1.40)

such that the subtraction of CNuN in (1.36) corresponds to (artificial)
renormalization of the cubic nonlinearity u3

N . In Lemma 6.1 below, we
show that for each N ∈ N, there exists unique CN > 1 whose asymptotic
behavior of CN as N →∞ is given by

CN ∼

{
logN, for α = 3

2 ,

N3−2α, for 1 6 α < 3
2 ,

for all sufficiently large N � 1. In particular, CN → ∞ as N → ∞ and
thus we see that (ũω0, N , ũω1, N ) in (1.33) almost surely converges to (0, uω1 )
in a suitable topology.
We are now ready to state an instability result for the (un-renormalized)

NLW (1.1) in negative Sobolev spaces.

Theorem 4. — Let 5
4 < α < 3

2 and (w0, w1) ∈ H 3
4 (T3). By setting

CN by (1.40), there exist small T1 > 0 and positive constants C, c, κ such
that for every T ∈ (0, T1], there exists a set ΩT of complemental probability
smaller than C exp(−c/Tκ) such that if we denote by {uN}N ∈N the smooth
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global solutions to the defocusing cubic NLW (1.1) with the random initial
data

(1.41) (uN , ∂tuN ) |t=0 = (w0, w1) +
(
ũω0, N , ũ

ω
1, N
)
,

where (ũω0, N , ũω1, N ) is given by (1.33), then for every ω ∈ ΩT , the sequence
{uN}N ∈N converges to 0 as space-time distributions on [−T, T ] × T3 as
N →∞.

When α = 3
2 , the same result holds but only along a subsequence

{Nk}k∈N. Namely, there exists an almost surely positive random time
Tω > 0 such that the sequence {uNk}k∈N converges to 0 as space-time
distributions on [−Tω, Tω]× T3 as k →∞ (in the sense described above).

The proof of Theorem 4 is based on the reformulation (1.36) and an
adaptation of the argument employed in proving Theorem 3.

We point out that the instability stated in Theorem 4 is due to the lack
of renormalization (in negative regularity). Indeed, let us briefly discuss the
situation when a proper renormalization is applied. Consider the following
renormalized NLW:

(1.42) ∂2
t uN −∆uN + u3

N − 3σ̃NuN = 0

with the random initial data in (1.41). First, note that the initial data
in (1.41) gives rise to an enhanced data set

ΞN =
(
w0, w1, z̃1, N , Z̃2, N , z̃2, N , Z̃5, N

)
,

where Z̃2, N and Z̃5, N are defined by

Z̃2, N := (z̃1, N )2 − σ̃N and Z̃5, N :=
{

(z̃1, N )2 − σ̃N
}
z̃2, N

and z̃2, N is the solution toLN z̃2, N +
{

(z̃1, N )3 − 3σ̃N z̃1, N

}
= 0

(z2, N , ∂tz2, N ) |t=0 = (0, 0).

In Section 6, we show that ΞN converges almost surely(13) to the limiting
enhanced data set

Ξ =
(
w0, w1, z̃1, Z̃2, z̃2, Z̃5

)
,

emanating from the initial data (w0, w1) + (0, uω1 ). Then, by slightly modi-
fying the proof of Theorem 3, we can show that the solutions uN to (1.42)

(13)Only along a subsequence {Nk}k∈N when α = 3
2 .
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converges to some non-trivial limiting distribution u = z̃1 + z̃2 + w, where
w is the solution to{

Lw + (w + z̃2)3 + 3z̃1 (w + z̃2)2 + 3Z̃2w + Z̃5 = 0
(w, ∂tw)|t=0 = (w0, w1).

Here, we see that u 6≡ 0 since the non-zero linear solution z̃1 with initial
data (0, uω1 ) does not belong to Hα− 3

2 (T3) (for a fixed time) while z2 +
w ∈ Hα− 3

2 (T3) almost surely. This shows the instability result stated in
Theorem 4 is peculiar to the case without renormalization when we work
in negative regularities.

Remark 1.8. — The instability result in Theorem 4 essentially corre-
sponds to triviality results in the study of stochastic PDEs, where the dy-
namics without renormalization trivializes (either to the linear dynamics
or the trivial dynamics, i.e. u ≡ 0) as regularization on a singular random
forcing is removed. See, for example, [1, 2, 33, 44, 46]. In particular, our
proof of Theorem 4 is inspired by the argument in [33] due to Hairer, Ryser,
and Weber for the two-dimensional stochastic nonlinear heat equation. In
the context of the random data Cauchy theory, Theorem 4 is the first result
on triviality without renormalization.
In the context of stochastic nonlinear wave equations, Albeverio, Haba,

and Russo [1] studied a triviality issue for the two-dimensional stochastic
NLW:

(1.43) ∂2
t u−∆u+ f(u) = ξ,

where ξ is the space-time white noise and f is a bounded smooth function.
Roughly speaking, they showed that solutions to (1.43) with regularized
noises tend to that to the stochastic linear wave equation:

∂2
t u−∆u = ξ.

Note that a power-type nonlinearity (such as the cubic nonlinearity u3)
does not belong to the class of nonlinearities considered in [1]. Further-
more, the analysis in [1] was carried out in the framework of Colombeau
generalized functions, and as such, their solution does not a priori belong
to C([0, T ];H−ε(T2)). In fact, it is not clear if their generalized function
represents an actual distribution. We refer the interested readers to [34,
Remark 1.5] by Hairer and Shen, commenting on the work [2] by Albeve-
rio, Haba, and Russo on stochastic nonlinear heat equations. We emphasize
that our proof of Theorem 4 is based on an adaptation of the solution theory
for Theorem 3. In particular, for each N ∈ N, we construct the solution uN
to the defocusing cubic renormalized NLW (1.42) with the random initial
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data in (1.41) in the natural space: C([0, T ];Hs(T3)), s < α − 3
2 , with a

uniform bound in N ∈ N. We also point out that a small adaptation of
the proof of Theorem 4 (as in [44]) yield a triviality result for the following
stochastic damped NLW with the defocusing cubic nonlinearity on T3:

∂2
t u+ ∂tu−∆u+ u3 = 〈∇〉−αξ for 5

4 < α 6
3
2 .

After the appearance of the current paper, following the idea of our trivi-
ality result (Theorem 4), Okamoto, Robert, and the first author [44] proved
triviality for the two-dimensional stochastic damped NLW with the defo-
cusing cubic nonlinearity. The argument in [44] is based on an adaptation
of the recent solution theory of the two-dimensional stochastic (damped)
nonlinear wave equations in [27, 29]. We also mention a recent work [46]
by Robert, Sosoe, Y. Wang, and the first author on a triviality result for
the two-dimensional stochastic wave equation with the sine nonlinearity:
f(u) = sin(βu), β ∈ R\{0}. While the sine nonlinearity belongs to the class
of nonlinearities considered in [1], the triviality result in [46] is established
in the natural class C([0, T ];H−ε(T2)).
In the context of nonlinear Schrödinger type equations, such instability

results without renormalization in negative Sobolev spaces are known even
deterministically; see [30, 49]. See also [16, 17] for a similar instability result
on the complex-valued mKdV equation in the deterministic setting.

Remark 1.9. — When α = 3
2 , Theorem 4 yields the almost sure conver-

gence of a subsequence {uNk}k∈N to 0 (on a random time interval). By
changing the mode of convergence and the related topology, it is possible
to obtain convergence of the full sequence {uN}N ∈N, even when α = 3

2 .
More precisely, by slightly modifying the proof of Theorem 4, we can show
that, when α = 3

2 , {uN}N ∈N converges in probability to the trivial solution
0 in H−ε([−Tω, Tω];H−ε(T3)) as N →∞. See [44] for details of the proof
in the two-dimensional stochastic setting.

Remark 1.10. — In the discussion above, we needed to consider the ran-
dom data (ũω0, N , ũω1, N ) in (1.33) in place of (uω0,N , uω1, N ) in (1.4) such that
CN can be chosen to be time independent. Note that the distribution of
(ũω0, N , ũω1, N ) in (1.33) is precisely an invariant measure for the linear dy-
namics: LNu = 0.

Remark 1.11. — While the local-in-time results in Theorems 2 and 3 also
holds in the focusing case, the proof of Theorem 4 only holds for the defo-
cusing case. In the focusing case, we expect some undesirable behavior for
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solutions to the (un-renormalized) cubic NLW in negative Sobolev spaces
but with a different mechanism.

1.5. Organization of the paper

The remaining part of this manuscript is organized as follows. In the next
section, we state deterministic and stochastic tools needed for our analysis.
In Sections 3 and 4, we study regularity and convergence properties of
the stochastic terms from Subsection 1.2. In Section 5, we then use the
deterministic Strichartz theory to study the equation (1.19) for wN and
present the proof of Theorem 3. In Section 6, by modifying the analysis
from the previous sections, we prove Theorem 4.

Acknowledgements

O.P. would like to express her sincere gratitude to Professor Ioan Vrabie
for his support and for his teaching, especially for getting her interested
in mathematical analysis. The authors would like to thank the anonymous
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2. Tools from deterministic and stochastic analysis

2.1. Basic function spaces and paraproducts

We define the Lp-based Sobolev space W s,p(T3) by the norm:

‖f‖W s, p =
∥∥∥F−1

(
〈n〉sf̂(n)

)∥∥∥
Lp
.

When p = 2, we have Hs(T3) = W s, 2(T3).
Next, we recall the regularity properties of paraproducts and resonant

products, viewed as bilinear maps. For this purpose, it is convenient to use
the Besov spaces Bsp,q(T3) defined by the norm:

‖u‖Bsp, q =
∥∥∥2sj ‖Pju‖Lpx

∥∥∥
`q
j
(N0)

.

Note that Hs(T3) = Bs2, 2(T3).
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Lemma 2.1.
(i) (paraproduct and resonant product estimates) Let s1, s2 ∈ R and

1 6 p, p1, p2, q 6∞ such that 1
p = 1

p1
+ 1

p2
. Then, we have

(2.1) ‖f < g‖Bs2
p, q
. ‖f‖Lp1 ‖g‖Bs2

p2, q
.

When s1 < 0, we have

(2.2) ‖f < g‖
B
s1+s2
p, q

. ‖f‖Bs1
p1, q
‖g‖Bs2

p2, q
.

When s1 + s2 > 0, we have

(2.3) ‖f = g‖
B
s1+s2
p, q

. ‖f‖Bs1
p1, q
‖g‖Bs2

p2, q
.

(ii) Let s1 < s2 < s3 and 1 6 p, q 6∞. Then, we have

(2.4) ‖u‖W s1, p . ‖u‖Bs2
p, q
. ‖u‖W s3, p .

The product estimates (2.1), (2.2), and (2.3) follow easily from the def-
inition (1.32) of the paraproduct and the resonant product. See [4, 40] for
details of the proofs in the non-periodic case (which can be easily extended
to the current periodic setting). The embeddings (2.4) follow from the `q-
summability of {2(sk−sk+1)j}j ∈N0 for sk < sk+1, k = 1, 2, and the uniform
boundedness of the Littlewood-Paley projector Pj . Thanks to (2.4), we can
apply the product estimates (2.1), (2.2), and (2.3) in the Sobolev space set-
ting (with a slight loss of regularity).

2.2. Product estimates, an interpolation inequality, and
Strichartz estimates

For s ∈ R, we set 〈∇〉s := (1−∆) s2 . Then, we have the following standard
product estimates. See [27] for their proofs.

Lemma 2.2. — Let 0 6 s 6 1.
(i) Let 1 < pj , qj , r < ∞, j = 1, 2 such that 1

r = 1
pj

+ 1
qj
. Then, we

have

‖〈∇〉s(fg)‖Lr(T3)

. ‖〈∇〉sf‖Lp1 (T3) ‖g‖Lq1 (T3) + ‖f‖Lp2 (T3)‖〈∇〉sg‖Lq2 (T3).

(ii) Let 1 < p, q, r <∞ such that s > 3( 1
p + 1

q −
1
r ). Then, we have∥∥〈∇〉−s(fg)

∥∥
Lr(T3) .

∥∥〈∇〉−sf∥∥
Lp(T3) ‖〈∇〉

sg‖Lq(T3) .
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Note that while Lemma 2.2(ii) was shown only for s = 3( 1
p + 1

q −
1
r )

in [27], the general case s > 3( 1
p + 1

q −
1
r ) follows from a straightforward

modification.
Next, we state an interpolation inequality. This lemma allows us to re-

duce an estimate on the L∞-norm in time to that with the Lq-norm in time
for some finite q.

Lemma 2.3. — Let T > 0 and 1 6 q, r 6∞. Suppose that s1, s2, s3 ∈ R
satisfy s2 6 s1 and

q(s1 − s3) > s1 − s2.

Then, we have

‖u‖L∞([−T, T ];W s3, r(T3))

. ‖u‖1−
1
q

Lq([−T, T ];W s1, r(T3))‖u‖
1
q

W 1, q([−T, T ];W s2, r(T3)).

Here, the W 1, q([−T, T ];W s, r(T3))-norm is defined by

‖f‖W 1, q([−T,T ];W s, r(T3))

= ‖f‖Lq([−T, T ];W s, r(T3)) + ‖∂tf‖Lq([−T, T ];W s, r(T3)).

The proof of Lemma 2.3 follows from duality in x and Gagliardo–
Nirenberg’s inequality in t along with standard analysis based on (spa-
tial) Littlewood–Paley decompositions. See [12, the proofs of Lemmas 3.2
and 3.3] for the r = 2 case. The proof for the general case follows from a
straightforward modification.
We now recall the Strichartz estimates. Let L be the Klein–Gordon op-

erator in (1.7). We use L−1 = (∂2
t − ∆ + 1)−1 to denote the Duhamel

integral operator, corresponding to the forward fundamental solution to
the Klein-Gordon equation:

(2.5) L−1F (t) :=
∫ t

0

sin ((t− t′) 〈∇〉)
〈∇〉

F (t′)dt′.

Namely, u := L−1(F ) is the solution to the following nonhomogeneous
linear equation: {

Lu = F

(u, ∂tu)|t=0 = (0, 0).
The most basic regularity property of L−1 is the energy estimate:

(2.6)
∥∥L−1(F )

∥∥
L∞([−T, T ];Hs(T3)) . ‖F‖L1([−T, T ];Hs−1(T3)).

The Strichartz estimates are important extensions of (2.6) and have been
studied extensively by many mathematicians. See [25, 35, 36] in the context
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of the wave equation on Rd. Thanks to the finite speed of propagation, the
Strichartz estimates on T3 follow from the corresponding estimates on R3,
locally in time. We now state the Strichartz estimates which are relevant
for the analysis in this paper. We refer to [53] for a detailed proof.

Lemma 2.4. — Let 0 < T 6 1. Then, the following estimate holds:

(2.7)
∥∥L−1(F )

∥∥
L4([−T, T ]×T3) +

∥∥L−1(F )
∥∥
L∞
(

[−T,T ];H
1
2 (T3)

)
. min

‖F‖
L1
(

[−T,T ];H−
1
2 (T3)

), ‖F‖
L

4
3 ([−T,T ]×T3)

 .

For T > 0, we denote by XT the closed subspace of C([−T, T ];H 1
2 (T3))

endowed with the norm:

(2.8) ‖u‖XT = ‖u‖
L∞
(

[−T, T ];H
1
2 (T3)

) + ‖u‖L4([−T, T ]×T3) .

In the following, we use shorthand notations such as LqTLrx := Lq([−T, T ];
Lr(T3)).

2.3. On discrete convolutions

Next, we recall the following basic lemma on a discrete convolution.

Lemma 2.5. —
(i) Let d > 1 and α, β ∈ R satisfy

α+ β > d and α, β < d.

Then, we have ∑
n=n1+n2

1
〈n1〉α〈n2〉β

. 〈n〉d−α−β

for any n ∈ Zd.
(ii) Let d > 1 and α, β ∈ R satisfy α+ β > d.

Then, we have∑
n=n1+n2
|n1| ∼ |n2|

1
〈n1〉α〈n2〉β

. 〈n〉d−α−β

for any n ∈ Zd.
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Namely, in the resonant case (ii), we do not have the restriction α, β < d.
Lemma 2.5 follows from elementary computations. See, for example, [41,
Lemmas 4.1 and 4.2] for the proof.

2.4. Wiener chaos estimate

Lastly, we recall the following Wiener chaos estimate [50, Theorem I.22].
See also [51, Proposition 2.4].

Lemma 2.6. — Let {gn}n∈N be a sequence of independent standard
real-valued Gaussian random variables. Given k ∈ N, let {Pj}j ∈N be a
sequence of monomials in ḡ = {gn}n∈N of degree at most k, namely, Pj =
Pj(ḡ) is of the form Pj = cj

∏kj
i= 1 gni with kj 6 k and n1, . . . , nkj ∈ N.

Then, for p > 2, we have∥∥∥∥∥∥
∑
j ∈N

Pj(ḡ)

∥∥∥∥∥∥
Lp(Ω)

6 (p− 1) k2

∥∥∥∥∥∥
∑
j ∈N

Pj(ḡ)

∥∥∥∥∥∥
L2(Ω)

.

This lemma is a direct corollary to the hypercontractivity of the Ornstein-
Uhlenbeck semigroup due to Nelson [42]. Note that in the definition of
Pj above, we may have ni = n` for i 6= `. Namely, we do not impose
independence of the factors gni of Pj in Lemma 2.6. In the following, we
apply Lemma 2.6 to multilinear terms involving {gn}n∈Z3 and {hn}n∈Z3

in (1.2) by first expanding gn and hn into their real and imaginary parts.

3. On the random free evolution and its renormalized
powers

Recall from (1.4) and (1.8) that z1, N (t, x, ω) denotes the solution to the
linear Klein–Gordon equation:(

∂2
t −∆ + 1

)
z1, N (t, x, ω) = 0

with the truncated random initial data:

z1, N (0, x, ω) =
∑
|n|6N

gn(ω)
〈n〉α

ein · x

and

∂tz1,N (0, x, ω) =
∑
|n|6N

hn(ω)
〈n〉α−1 e

in · x,
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where {gn}n∈Z3 and {hn}n∈Z3 are as in (1.2). Given t ∈ R, define gtn(ω)
by

(3.1) gtn(ω) := cos(t〈n〉) gn(ω) + sin(t〈n〉)hn(ω).

Then, we have

z1, N (t, x, ω) = cos(t〈∇〉) (z1, N (0, x, ω)) + sin (t〈∇〉)
〈∇〉

(∂tz1, N (0, x, ω))

=
∑
|n|6N

gtn(ω)
〈n〉α

ein · x.

Using the definitions of the Gaussian random variables {gn}n∈Z3 and
{hn}n∈Z3 , we see that {gtn}n∈Z3 defined in (3.1) forms a family of inde-
pendent standard complex-valued Gaussian random variables conditioned
that(14) gtn = gt−n. Then, the renormalization constant σN defined in (1.14)
is computed as

σN = E
[
(z1, N (t, x, ω))2

]
=

∑
|n|6N

E
[
|gtn(ω)|2

]
〈n〉2α

=
∑
|n|6N

1
〈n〉2α

∼

logN, for α = 3
2 ,

N3−2α, for α < 3
2 ,

(3.2)

which tends to ∞ as N →∞.

Remark 3.1. — From the definitions of the Gaussian random variables
gn and hn and their rotational invariance, we see that

Law(z1, N (t, x)) = Law(z1, N (0, 0))

for any (t, x) ∈ R × T3. This also explains the independence of σN from t

and x.

We now define the sequences {Zj,N}N ∈N, j = 1, 2, 3, by

(3.3)
Z1, N :=z1, N , Z2, N := (z1, N )2 − σN ,

and Z3, N :=(z1, N )3 − 3σNz1, N .

The main goal of this section is to prove the following proposition on the
regularity and convergence properties of the stochastic terms Z1, N , Z2, N ,
and Z3, N .

(14) In particular, gt
0 is real-valued.
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Proposition 3.2. — Let 1 < α 6 3
2 and set

(3.4) s1 < α− 3
2 , s2 < 2

(
α− 3

2

)
, and s3 < 3

(
α− 3

2

)
.

Fix j = 1, 2, or 3. Then, given any T > 0, Zj,N converges almost surely
to some limit Zj in C([−T, T ];W sj ,∞(T3)) as N → ∞. Moreover, given
2 6 q < ∞, there exist positive constants C, c, κ, θ such that for every
T > 0, there exists a set ΩT of complemental probability smaller than
C exp(−c/Tκ) with the following properties; given ε > 0, there exists N0 =
N0(T, ε) ∈ N such that ∥∥Zj,N∥∥Lq([−T, T ];W sj,∞(T3)) 6 T

θ(3.5)

and ∥∥Zj,M − Zj,N∥∥C([−T, T ];W sj,∞(T3)) < ε(3.6)

for any ω ∈ ΩT and any M > N > N0, where we allow N = ∞ with the
understanding that Zj,∞ = Zj .

We split the proof of this proposition into several parts. We first present
preliminary lemmas and then prove Proposition 3.2 at the end of this sec-
tion.

Lemma 3.3. — Let 1 < α 6 3
2 and sj , j = 1, 2, 3, satisfy (3.4). Then,

given 2 6 q <∞ and 2 6 r 6∞, there exists δ > 0 such that the following
estimates hold for j = 1, 2, 3:∥∥〈∇〉sjZj,N∥∥

Lp
(

Ω;Lq([−T, T ];Lr(T3))
) 6 CT 1

q p
j
2 ,(3.7) ∥∥∥〈∇〉sj(Zj,M − Zj,N)∥∥∥

Lp
(

Ω;Lq([−T, T ];Lr(T3))
) 6 CN−δT 1

q p
j
2 ,(3.8)

for any M > N > 1, T > 0, and any finite p > 1, where the constant C is
independent of M,N, T, p.

Proof. — In the following, we only prove the difference estimate (3.8)
since the first estimate (3.7) follows in a similar manner.

When r =∞, we can apply the Sobolev embedding theorem and reduce
the r = ∞ case to the case of large but finite r at the expense of a slight
loss of spatial derivative. This, however, does not cause an issue since the
conditions on sj are open. Hence, we assume r <∞ in the following.
Let p > max(q, r). Since

〈∇〉s1Z1, N =
∑
|n|6N

gtn(ω)
〈n〉α−s1

ein · x,
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we see that 〈∇〉s1(Z1, N − Z1,M )(t, x) is a mean-zero Gaussian random
variable for fixed t and x. In particular, there exists a universal constant
C > 0 such that

(3.9)
∥∥∥〈∇〉s1

(
Z1,M − Z1, N

)
(t, x)

∥∥∥
Lp(Ω)

6 Cp
1
2

∥∥∥〈∇〉s1
(
Z1,M − Z1,N

)
(t, x)

∥∥∥
L2(Ω)

.

Then, it follows from Minkowski’s integral inequality and (3.9) that

(3.10)
∥∥∥∥∥∥∥〈∇〉s1

(
Z1,M − Z1, N

)∥∥∥
Lq
T
Lrx

∥∥∥∥
Lp(Ω)

6

∥∥∥∥∥∥∥〈∇〉s1
(
Z1,M − Z1, N

)
(t, x)

∥∥∥
Lp(Ω)

∥∥∥∥
Lq
T
Lrx

6 CT
1
q p

1
2

 ∑
N < |n|6M

1
〈n〉2(α−s1)

 1
2

6 CN−δT
1
q p

1
2

for some δ > 0 under the regularity assumption (3.4). This proves (3.8) for
j = 1.

Next, we turn to the j = 2 case. Let us write

(3.11) 〈∇〉s2Z2, N = IN + IIN ,

where

IN (t, x) :=
∑

|n1|6N, |n2|6N
n1 6=−n2

gtn1
(ω)gtn2

(ω)
〈n1 + n2〉−s2〈n1〉α〈n2〉α

ei(n1+n2) · x

and

IIN (t, x) :=
∑
|n|6N

〈n〉−2α
(∣∣gtn(ω)

∣∣2 − E
[∣∣gtn∣∣2])

=
∑
|n|6N

〈n〉−2α
(∣∣gtn(ω)

∣∣2 − 1
)
.
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Fix (t, x) ∈ R × T3. By using the independence of {gtn}n∈Λ with Λ as
in (1.3) and Lemma 2.5, we have(15)

(3.12) ‖ IM (t, x)− IN (t, x)‖2L2(Ω)

.
∑

|n1|6M, |n2|6M
max(|n1|, |n2|)>N

1
〈n1 + n2〉−2s2〈n1〉2α〈n2〉2α

6 CN−δ,

for some δ > 0, with C independent of M > N > 1 and (t, x) ∈ R × T3,
provided that 4α− 2s2 > 6. Namely, s2 < 2(α− 3

2 ). Similarly, by using the
independence of {|gtn(ω)|2 − 1}n∈Λ, we have

(3.13)
∥∥IIM (t, x)− IIN (t, x)

∥∥2
L2(Ω) .

∑
N < |n|6M

1
〈n〉4α

6 CN−δ

for some δ > 0, with C independent of M > N > 1 and (t, x) ∈ R × T3,
provided 4α > 3, which is guaranteed by the assumption α > 1. Therefore,
from (3.11), (3.12), and (3.13), we obtain∥∥∥〈∇〉s2

(
Z2,M − Z2, N

)
(t, x)

∥∥∥
L2(Ω)

6 CN−δ

for some δ > 0, with a constant C independent of M > N > 1 and
(t, x) ∈ R × T3. By the Wiener chaos estimate (Lemma 2.6), we then
obtain

(3.14)
∥∥∥〈∇〉s2

(
Z2,M − Z2, N

)
(t, x)

∥∥∥
Lp(Ω)

6 CN−δp

for any finite p > 2. Then, arguing as in (3.10) with Minkowski’s integral
inequality, the estimate (3.8) for j = 2 follows from (3.14).

Let us finally turn to (3.8) for j = 3. Write

〈∇〉s3Z3, N = IIIN + IVN ,

where

IIIN (t, x) :=∑
|nj |6N, j= 1, 2, 3

(n1+n2)(n1+n3)(n2+n3) 6= 0

gtn1
(ω)gtn2

(ω)gtn3
(ω)

〈n1 + n2 + n3〉−s3〈n1〉α〈n2〉α〈n3〉α
ei(n1+n2+n3) · x

(15)Strictly speaking, in applying Lemma 2.5 when α = 3
2 , we need to replace 2α in the

exponent by 2α − ε for some small ε > 0. This, however, does not affect the outcome
since the condition on s2 is open. The same comment applies to (3.15) below.
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and by the inclusion-exclusion principle

IVN (t, x) := 3
∑
|n|6N

|gtn(ω)|2 − E
[
|gtn|

2
]

〈n〉2α
∑
|m|6N

gtm(ω)
〈m〉α−s3

eim · x

− 3
∑
|n|6N

|gtn(ω)|2 gtn(ω)
〈n〉3α−s3

ein · x +
∣∣gt0(ω)

∣∣2 gt0(ω).

Proceeding as above with Lemma 2.5, we have

(3.15)
∥∥IIIM (t, x)− IIIN (t, x)

∥∥2
L2(Ω)

.
∑

|nj |6M, j= 1, 2, 3
max(|n1|, |n2|, |n3|)>N

1
〈n1 + n2 + n3〉−2s3〈n1〉2α〈n2〉2α〈n3〉2α

6 CN−δ

for some δ > 0, with C independent of M > N > 1 and (t, x) ∈ R × T3,
provided 6α− 2s3 > 9 and α > 1. See Remark 3.6. Namely, s3 < 3(α− 3

2 )
and α > 1. Then, by the Wiener chaos estimate (Lemma 2.6), we obtain

(3.16)
∥∥IIIM (t, x)− IIIN (t, x)

∥∥
Lp(Ω) 6 CN

−δp
3
2

for any finite p > 2.
Let us now estimate IVN . By Lemma 2.6 and Hölder’s inequality, we

have∥∥IVN (t, x)
∥∥
Lp(Ω) . p

3
2
∑
|n|6N

1
〈n〉3α−s3

+

∥∥∥∥∥∥
∑
|n|6N

|gtn(ω)|2 − E
[
|gtn|

2
]

〈n〉2α

∥∥∥∥∥∥
L2p(Ω)

∥∥∥∥∥∥
∑
|m|6N

gtm(ω)
〈m〉α−s3

eim · x

∥∥∥∥∥∥
L2p(Ω)

.

The first sum on the right-hand side is convergent if 3α−s3 > 3. Note that
this condition is guaranteed under (3.4). Both factors in the second term
on the right hand-side can be treated by the arguments presented above.
We therefore have the bounds:∥∥∥∥∥∥

∑
|n|6N

|gtn(ω)|2 − E
[
|gtn|

2
]

〈n〉2α

∥∥∥∥∥∥
L2p(Ω)

6 Cp(3.17)
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and ∥∥∥∥∥∥
∑
|m|6N

gtm(ω)
〈m〉α−s3

eim · x

∥∥∥∥∥∥
L2p(Ω)

6 Cp
1
2(3.18)

for any finite p > 2, provided that 4α > 3 for (3.17) and 2α − 2s3 > 3
for (3.18). Note that the second condition is guaranteed under (3.4) with
α 6 3

2 . Then, by applying the Wiener chaos estimate (Lemma 2.6), this
leads to ∥∥IVN (t, x)

∥∥
Lp(Ω) 6 Cp

3
2 .

A similar argument yields

(3.19)
∥∥IVM (t, x)− IVN (t, x)

∥∥
Lp(Ω) 6 CN

−δp
3
2

for some δ > 0. Then, arguing as in (3.10) with Minkowski’s integral in-
equality, the estimate (3.8) for j = 3 follows from (3.16) and (3.19). This
completes the proof of Lemma 3.3. �

Thanks to Lemma 3.3, we already know that the sequences {Zj,N}N ∈N,
j = 1, 2, 3, converge in Lp(Ω;Lq([−T, T ];W sj , r(T3))) to some limits Zj .
It turns out that the quantitative properties (3.8) of the convergence al-
low us to upgrade these convergences to almost sure convergences. See
the proof of Proposition 3.2 below. In order to obtain convergence in
C([−T, T ];W sj , r(T3)), however, we need to establish a difference estimate
at two different times. The following lemma will be useful in this context.

Lemma 3.4. — Let k > 1 be an integer. Then, we can write

(3.20)
k∏
j=1

gtnj −
k∏
j=1

gτnj =
∑
`

c`(t, τ, n1, · · · , nk)
k∏
j=1

g∗nj ,

where g∗nj is either gnj or hnj and the sum in ` runs over all such possibil-
ities. Furthermore, given any δ > 0, there exists Cδ > 0 such that

(3.21) |c`(t, τ, n1, · · · , nk)| 6 Cδ|t− τ |δ
k∑
j=1
〈nj〉δ .

Proof. — From the definition (3.1) of gtn, a typical term in the sum defin-
ing the right-hand side of (3.20) is given by

(3.22)

 k∏
j=1

Hj

(
t 〈nj〉

)
−

k∏
j=1

Hj

(
τ 〈nj〉

) k∏
j=1

g∗nj ,
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where Hj(t〈nj〉) = cos(t〈nj〉) (with g∗nj = gnj ) or sin(t〈nj〉) (with g∗nj =
hnj ). By the mean value theorem and the boundedness of Hj , we have

(3.23)

∣∣∣∣∣∣
k∏
j=1

Hj

(
t〈nj〉

)
−

k∏
j=1

Hj

(
τ〈nj〉

)∣∣∣∣∣∣ . |t− τ |
k∑
j=1
〈nj〉.

We also have the trivial bound

(3.24)

∣∣∣∣∣∣
k∏
j=1

Hj(t〈nj〉)−
k∏
j=1

Hj

(
τ〈nj〉

)∣∣∣∣∣∣ 6 2.

By interpolating (3.23) and (3.24), we conclude that (3.22) satisfies the
claimed bound (3.21). This completes the proof of Lemma 3.4. �

In view of Lemma 3.4, a slight modification of the proof of Lemma 3.3
yields the following statement.

Lemma 3.5. — Let 1 < α 6 3
2 and sj satisfies (3.4), j = 1, 2, 3. Then,

given 2 6 r 6∞, there exists δ > 0 such that the following estimates hold
for j = 1, 2, 3: ∥∥〈∇〉sjδhZj,N (t)

∥∥
Lp(Ω;Lr(T3)) 6 Cp

j
2 |h|δ,(3.25) ∥∥∥〈∇〉sj(δhZj,M (t)− δhZj,N (t)

)∥∥∥
Lp(Ω;Lr(T3))

6 CN−δp
j
2 |h|δ,(3.26)

for anyM > N > 1, t ∈ [−T, T ], and h ∈ R such that t+h ∈ [−T, T ], where
the constant C is independent of M,N, T, p, t, and h. Here, δh denotes the
difference operator defined by

δhZj,N (t) = Zj,N (t+ h)− Zj,N (t).

In handling the renormalized pieces, we also need the following identity,
which follows directly from (3.1):(∣∣gtn∣∣2 − E

[∣∣gtn∣∣2])− (|gτn|2 − E
[
|gτn|

2
])

=
(
cos2 (t〈n〉)− cos2(τ〈n〉)

) (
|gn|2 − 1

)
+
(
sin2 (t〈n〉)− sin2(τ〈n〉)

) (
|hn|2 − 1

)
+ 2
(

cos (t〈n〉) sin (t〈n〉)− cos (τ〈n〉) sin (τ〈n〉)
)
· Re(gnhn).

The first two terms on the right-hand side can be treated exactly as in the
renormalized pieces in the proof of Lemma 3.3, while the last term can be
handled without any difficulty.
We conclude this section by presenting the proof of Proposition 3.2.
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Proof of Proposition 3.2. — Fix 2 6 q < ∞ and j = 1, 2, or 3. Passing
to the limit N →∞ in (3.7) of Lemma 3.3, we obtain that the limit Zj of
Zj,N satisfies ∥∥∥∥∥Zj∥∥Lq

T
W
sj,∞
x

∥∥∥
Lp(Ω)

6 CT
1
q p

j
2

for any finite p > 1. Then, it follows from Chebyshev’s inequality(16)

that there exists a set Ω(1)
T,∞ of complemental probability smaller than

C exp(−c/T
2
jq ) such that

(3.27)
∥∥Zj∥∥Lq

T
W
sj,∞
x

6
1
2T

1
2q

for any ω ∈ Ω(1)
T,∞. Similarly, given any N ∈ N, it follows from (3.8) (with

M →∞) that there exists a set Ω(1)
T,N of complemental probability smaller

than C exp(−cN
2δ
j /T

2
jq ) such that

(3.28)
∥∥Zj − Zj,N∥∥Lq

T
W
sj,∞
x

6
1
2T

1
2q

for any ω ∈ Ω(1)
T,N . Combining (3.27) and (3.28), we see that (3.5) holds for

any ω ∈ Ω(1)
T defined by

(3.29) Ω(1)
T :=

⋂
N ∈N∪{∞}

Ω(1)
T,N

whose complemental probability is smaller than C exp(−c/T
2
jq ).

Lemma 3.3 shows that the sequence {Zj,N}N ∈N converges in

Lp
(

Ω;Lq
(
[−T, T ];W sj ,∞

(
T3)) )

to the limit Zj . A slight modification of the proof of Lemma 3.3 shows that,
given t ∈ R, the sequence {Zj,N (t)}N ∈N converges to the limit Zj(t) in
Lp(Ω;W sj ,∞(T3)) with the uniform bound:∥∥Zj,N (t)

∥∥
Lp(Ω;W sj,∞) 6 Cp

j
2 .

We first upgrade this convergence to almost sure convergence. From (3.8)
in Lemma 3.3 and Chebyshev’s inequality, we obtain that

P

(
ω ∈ Ω :

∥∥Zj(t)− Zj,N (t)
∥∥
W sj,∞ >

1
k

)
6 e−cN

2δ
j k
− 2
j

for k ∈ N, where the positive constant c is independent of k and N . Noting
that the right-hand side is summable in N ∈ N, we can invoke the Borel–
Cantelli lemma to conclude that there exists Ωk of full probability such that

(16)See for example [52, Lemma 4.5] and [6, the proof of Lemma 3/2.2].
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for each ω ∈ Ωk, there exists M = M(ω) > 1 such that for any N > M ,
we have ∥∥Zj(t;ω)− Zj,N (t;ω)

∥∥
W sj,∞ <

1
k
.

Now, by setting Σ =
⋂∞
k=1 Ωk, we see that P (Σ) = 1 and that, for each

ω ∈ Σ, Zj,N (t) converges to Zj(t) in W sj ,∞(T3). Note that the set Σ is
dependent on the choice of t ∈ R.

We now prove that {Zj,N}N ∈N converges to Zj almost surely in
C([−T, T ];W sj ,∞(T3)). Fix t ∈ [−T, T ] and h ∈ R (such that t + h ∈
[−T, T ]). From (3.25), (3.26), the almost sure convergence of Zj,N (t) to
Zj(t), and the dominated convergence theorem, we obtain

∥∥δhZj(t)∥∥Lp(Ω;W sj,∞) 6 Cp
j
2 |h|δ,(3.30) ∥∥δhZj(t)− δhZj,N (t)

∥∥
Lp(Ω;W sj,∞) 6 CN

−δp
j
2 |h|δ(3.31)

for any N > 1. By choosing p� 1 sufficiently large such that pδ > 1, it fol-
lows from Kolmogorov’s continuity criterion [5] applied to (3.25) and (3.30)
that Zj,N , N ∈ N, and Zj are almost surely continuous with values in
W sj ,∞(T3).
In the following, we only consider [0, T ]. Let YN = Zj −Zj,N and choose

p � 1 sufficiently large such that pδ > 2. Then, with θ ∈ (0, δ − 1
p ), it

follows from Chebyshev’s inequality and (3.31) that

P

(
sup
N ∈N

max
j= 1, ..., 2`

N
δ
2

∥∥∥∥YN ( j

2`T
)
− YN

(
j − 1

2` T

)∥∥∥∥
W sj,∞

> 2−θ`
)

= P

 ⋃
N ∈N

2`⋃
j=1

{∥∥∥∥YN ( j

2`T
)
− YN

(
j − 1

2` T

)∥∥∥∥
W sj,∞

> N−
δ
2 2−θ`

}
6
∞∑
N=1

2`∑
j=1

P

(∥∥∥∥YN ( j

2`T
)
− YN

(
j − 1

2` T

)∥∥∥∥
W sj,∞

> N−
δ
2 2−θ`

)

6
∞∑
N=1

2`∑
j=1

N
pδ
2 2pθ` E

[∥∥∥∥YN ( j

2`T
)
− YN

(
j − 1

2` T

)∥∥∥∥p
W sj,∞

]

6 C(p) · 2(p(θ−δ)+1)`
∞∑
N=1

N−
pδ
2

6 C(p) · 2(p(θ−δ)+1)`,
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where we used the fact that pδ > 2 in the second to the last step. Note
that p(θ − δ) + 1 < 0. Then, summing over ` ∈ N, we obtain
∞∑
`=0

P

(
sup
N ∈N

max
j= 1, ..., 2`

N
δ
2

∥∥∥∥YN ( j

2`T
)
− YN

(
j − 1

2` T

)∥∥∥∥
W sj,∞

> 2−θ`
)

<∞.

Hence, by the Borel–Cantelli lemma, there exists a set Σ̃ ⊂ Ω with P (Σ̃)
= 1 such that, for each ω ∈ Σ̃, we have

sup
N ∈N

max
j= 1, ..., 2`

N
δ
2

∥∥∥∥YN ( j

2`T ;ω
)
− YN

(
j − 1

2` T ;ω
)∥∥∥∥

W sj,∞
6 2−θ`

for all ` > L = L(ω). This in particular implies that there exists C = C(ω)
> 0 such that

max
j= 1, ..., 2`

∥∥∥∥YN ( j

2`T ;ω
)
− YN

(
j − 1

2` T ;ω
)∥∥∥∥

W sj,∞
(3.32)

6 C(ω)N− δ2 2−θ`

for any ` > 0, uniformly in N ∈ N.
Fix t ∈ [0, T ]. By expressing t in the following binary expansion (dilated

by T ):

t = T

∞∑
j=1

bj
2j ,

where bj ∈ {0, 1}, we set t` = T
∑`
j= 1

bj
2j and t0 = 0. Then, from (3.32)

along with the continuity of YN with values in W sj ,∞(T3), we have

(3.33)
∥∥YN (t;ω)

∥∥
W sj,∞

6
∞∑
`=1

∥∥YN (t`;ω)− YN (t`−1;ω)
∥∥
W sj,∞ +

∥∥YN (0;ω)
∥∥
W sj,∞

6 C(ω)N− δ2
∞∑
`=1

2−θ` +
∥∥YN (0;ω)

∥∥
W sj,∞

6 C ′(ω)N− δ2 +
∥∥YN (0;ω)

∥∥
W sj,∞

for each ω ∈ Σ̃. Note that the right-hand side of (3.33) is independent of
t ∈ [0, T ]. Hence, by taking a supremum in t ∈ [0, T ], we obtain∥∥Zj(ω)− Zj,N (ω)

∥∥
C([0, T ];W sj,∞)

6 C ′(ω)N− δ2 + ‖YN (0;ω)‖W sj,∞ −→ 0
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as N →∞. Here, we used the almost sure convergence of {Zj,N (0)}N ∈N to
Zj(0) in W sj ,∞(T3). This proves almost sure convergence of {Zj,N}N ∈N
in C([−T, T ];W sj ,∞(T3)).

Lastly, it follows from Egoroff’s theorem that, given T > 0, there exists
Ω(2)
T of complemental probability smaller than C exp(−c/Tκ) such that the

estimate (3.6) holds. Finally, by setting ΩT = Ω(1)
T ∩Ω(2)

T , where Ω(1)
T is as

in (3.29), we see that both (3.5) and (3.6) hold on ΩT . This completes the
proof of Proposition 3.2. �

Remark 3.6. — The restriction α > 1 in Proposition 3.2 appears in mak-
ing sense of the renormalized cubic power Z3 and it reflects the well-known
fact that Wick powers of degree > 3 for the three-dimensional Gaussian
free field do not exist. See for example [22, Section 2.7].

4. On the second order stochastic term z2,N

We first study the regularity and convergence properties of z2,N defined
in (1.17). For notational convenience, we set

Z4, N := z2, N = −L−1 ((z1, N )3 − 3σNz1, N
)

= −L−1Z3, N .
(4.1)

As a consequence of Proposition 3.2, we have the following statement.

Proposition 4.1. — Let 1 < α 6 3
2 and set

(4.2) s4 < 3
(
α− 3

2

)
+ 1.

Then, given any T > 0, Z4, N converges almost surely to some limit Z4
in C([−T, T ];W s4,∞(T3)) as N → ∞. Moreover, there exist positive con-
stants C, c, κ, θ such that for every T > 0, there exists a set ΩT of com-
plemental probability smaller than C exp(−c/Tκ) such that given ε > 0,
there exists N0 = N0(T, ε) ∈ N such that∥∥Z4, N

∥∥
C([−T, T ];W s4,∞(T3)) 6 T

θ

and ∥∥Z4,M − Z4, N
∥∥
C([−T, T ];W s4,∞(T3)) < ε

for any ω ∈ ΩT and any M > N > 1, where we allow N = ∞ with the
understanding that Z4,∞ = Z4.
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Proof. — Given s4 satisfying (4.2), choose ε > 0 sufficiently small such
that

(4.3) s4 + 2ε < 3
(
α− 3

2

)
+ 1.

By Sobolev’s inequality, there exists finite r � 1 such that

(4.4)
∥∥Z4, N

∥∥
CTW

s4,∞
x

.
∥∥Z4, N

∥∥
CTW

s4+ε, r
x

.

Furthermore, by Lemma 2.3, there exists finite q � 1 such that∥∥Z4, N
∥∥
CTW

s4+ε, r
x

6
∥∥Z4, N

∥∥1− 1
q

Lq
T
W
s4+2ε, r
x

∥∥Z4, N
∥∥ 1
q

W 1, q
T

W
s4−1, r
x

.
∥∥Z4, N

∥∥
Lq
T
W
s4+2ε, r
x

+
∥∥∂tZ4, N

∥∥
Lq
T
W
s4−1, r
x

,
(4.5)

where we applied Young’s inequality in the second step. From (4.1)
with (2.5), we have

(4.6) ∂tZ4, N = −
∫ t

0
cos
(
(t− t′)〈∇〉

)
Z3, N (t′)dt′.

Hence, from (4.4), (4.5), and (4.6) with (4.1), we obtain
(4.7)∥∥Z4, N

∥∥
CTW

s4,∞
x

. T 1− 1
q

∑
β ∈{−1, 1}

∥∥∥F βN (t, t′)
∥∥∥
Lq
t, t′([−T, T ]2;W s4−1+2ε, r

x )
,

where F βN is given by

F βN (t, t′) = eiβ(t−t′)〈∇〉Z3, N (t′).

Fix (t, t′, x) ∈ R2 ×T. Since the propagator eiβ(t−t′)〈∇〉 does not affect the
computation done for Z3, N in the proof of Lemma 3.3, we obtain

(4.8)
∥∥∥F βN (t, t′, x)

∥∥∥
Lp(Ω)

6 Cp
3
2 ,

uniformly in (t, t′, x) ∈ R2 × T. Therefore, given finite p > max(q, r),
from (4.7), Minkowski’s integral inequality, and (4.8), we have∥∥∥∥∥Z4, N

∥∥
CTW

s4,∞
x

∥∥∥
Lp(Ω)

. T 1− 1
q

∑
β ∈{−1, 1}

∥∥∥∥∥∥∥F βN (t, t′, x)
∥∥∥
Lp(Ω)

∥∥∥∥
Lq
t, t′([−T, T ]2;W s4−1+2ε, r

x )

. p
3
2T 1− 1

q

thanks to the regularity restriction (4.3). Then, the rest follows from pro-
ceeding as in the proof of Proposition 3.2 (in addition to Lemma 3.4, one
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should take into account the trivial continuity property in t of the time
integration in the definition of Z4,N ). �

We also need to study the following quintic stochastic term:
Z5,N :=

{
(z1, N )2 − σN

}
z2, N

= −
{

(z1, N )2 − σN
}
· L−1 ((z1, N )3 − 3σNz1, N

)
.

(4.9)

We have the following statement.

Proposition 4.2. — Let 1 < α 6 3
2 and set

(4.10) s5 < min
(

5α− 13
2 , 2

(
α− 3

2

))
.

Then, given any T > 0, Z5, N converges almost surely to some limit Z5
in C([−T, T ];W s5,∞(T3)) as N → ∞. Moreover, there exist positive con-
stants C, c, κ, θ such that for every T > 0, there exists a set ΩT of com-
plemental probability smaller than C exp(−c/Tκ) such that given ε > 0,
there exists N0 = N0(T, ε) ∈ N such that∥∥Z5, N

∥∥
C([−T, T ];W s5,∞(T3)) 6 T

θ

and ∥∥Z5,M − Z5, N
∥∥
C([−T, T ];W s5,∞(T3)) < ε

for any ω ∈ ΩT and any M > N > 1, where we allow N = ∞ with the
understanding that Z5,∞ = Z5.

Remark 4.3. — When α > 7
6 (which in particular includes the case α >

5
4 ), the regularity condition (4.10) reduces to s5 < 2(α− 3

2 ).

Proof. — By the paraproduct decomposition (1.32), we have

Z5, N = Z2, Nz2, N

= Z2, N < z2,N + Z2, N = z2, N + Z2, N > z2, N .

Note that 2(α − 3
2 ) 6 min(0, 3(α − 3

2 ) + 1) for α ∈ (1, 3
2 ]. Then, from

Lemma 2.1, we have∥∥Z2, N < z2, N (t)
∥∥
W s5,∞ .

∥∥Z2, N (t)
∥∥
W

2(α− 3
2 )−ε,∞

∥∥z2, N (t)
∥∥
W

3(α− 3
2 )+1−ε,∞

for small ε > 0, provided that s5 satisfies

(4.11) s5 < 2
(
α− 3

2

)
+ 3

(
α− 3

2

)
+ 1 = 5α− 13

2 .

Similarly, for s5 satisfying (4.11), Lemma 2.1 yields∥∥Z2, N > z2, N (t)
∥∥
W s5,∞ .

∥∥Z2, N (t)
∥∥
W

2(α− 3
2 )−ε,∞

∥∥z2, N (t)
∥∥
W

3(α− 3
2 )+1−ε,∞
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for small ε > 0, provided that 3(α − 3
2 ) + 1 − ε < 0 namely, α 6 7

6 . On
the other hand, when α > 7

6 , we see from Proposition 4.1 that z2,N has a
spatial positive regularity (for each fixed t). In this case, we have∥∥Z2, N > z2, N (t)

∥∥
W s5,∞ .

∥∥Z2, N (t)
∥∥
W

2(α− 3
2 )−ε,∞

∥∥z2, N (t)
∥∥
L∞

as long as

(4.12) s5 < 2
(
α− 3

2

)
.

Note that the condition (4.12) is stronger than (4.11) when α > 7
6 .

It remains to study the resonant product z2, N = Z2, N . When α > 13
10 ,

we have

2
(
α− 3

2

)
+ 3

(
α− 3

2

)
+ 1 = 5α− 13

2 > 0

and thus Lemma 2.1 yields∥∥Z2, N = z2, N (t)
∥∥
W s5,∞ .

∥∥Z2, N (t)
∥∥
W

2(α− 3
2 )−ε,∞

∥∥z2, N (t)
∥∥
W

3(α− 3
2 )+1−ε,∞

for s5 satisfying (4.11). Next, we consider the case 1 < α 6 13
10 . Using the

independence of {gtn}n∈Λ, we have

sup
N ∈N

sup
(t, x)∈R×T3

E
[
|〈∇〉s5 (Z2, N = z2, N ) (t, x)|2

]
.
∑
n∈Z3

〈n〉2s5
∑

n=m1+m2
|m1| ∼ |m2|

A(m1)B(m2),

where A(m1) and B(m2) are given by

A(m1) =
∑
m∈Z3

1
〈m〉2α〈m1 −m〉2α

and

B(m2) = 1
〈m2〉2

∑
(n1, n2)∈Z6

1
〈n1〉2α〈n2〉2α〈m2 − n1 − n2〉2α

In the following, we only consider the case α < 3
2 . We clearly have the

bound
A(m1) . 1

〈m1〉4α−3 ,

provided that α > 4
3 . Similarly, by Lemma 2.5, we have

B(m2) . 1
〈m2〉6α−4 ,
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provided that α > 1. Hence, we obtain∑
n=m1+m2
|m1| ∼ |m2|

A(m1)B(m2)

.
∑

m1 ∈Z3

|m1| ∼ |n−m1|

1
〈m1〉4α−3〈n−m1〉6α−4 .

1
〈n〉10α−10 ,

where we crucially used the resonant restriction |m1| ∼ |n−m1|. Therefore,
we obtain

sup
N ∈N

sup
(t, x)∈ [0, T ]×T3

E
[
|〈∇〉s5 (Z2, N = z2, N ) (t, x)|2

]
.
∑
n∈Z3

1
〈n〉−2s5+10α−10 ,

where the last sum is convergent, provided that s5 satisfies (4.11). With
this bound in hand, we can proceed as in the proof of Proposition 3.2 (with
Lemmas 3.3 and 3.5). This completes the proof of Proposition 4.2. �

Remark 4.4. —
(i) When α > 13

10 , we made sense of the resonant product Z2, N = z2, N
in a deterministic manner. Namely, we only used the almost sure
regularity properties of Z2, N and z2, N but did not use the random
structure of these terms in making sense of their resonant product.
On the other hand, when 1 < α 6 13

10 , the sum of the regulari-
ties of Z2, N and z2, N is negative and thus their resonant product
does not make sense in a deterministic manner. This requires us to
make sense of the resonant product Z2, N = z2, N via a probabilistic
argument. Hence, when 1 < α 6 13

10 , we need to view the limit
Z

=
5 = Z2,∞ = z2,∞ as part of a predefined enhanced data set, lead-

ing to a different interpretation of the equation for w = u− z1− z2.
See Subsection 1.3 for a further discussion. Lastly, we point out
that the resulting regularity restriction (4.11) holds for both cases
α > 13

10 and 1 < α 6 13
10 .

(ii) When α = 1, there is a logarithmically divergent contribution in
taking a limit of Z5, N as N →∞. In this case, we need to introduce
another renormalization, eliminating a quartic singularity. For a
related argument in the parabolic setting, see [41].

5. Proof of Theorem 3
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5.1. Setup

Recall that uN = z1, N +z2, N +wN , where wN solves the equation (1.19).
In Sections 3 and 4, we already established the necessary regularity and
convergence properties of the sequences {zj,N}N ∈N, j = 1, 2. It remains
to establish the convergence of the sequence {wN}N ∈N. This will be done
by (i) first establishing multilinear estimates via a purely deterministic
method and then (ii) applying the regularity and convergence properties of
the relevant stochastic terms from Sections 3 and 4.
With (3.3) and (4.9), we can write the equation (1.19) as{

LwN + F0 + F1(wN ) + F2(wN ) + F3(wN ) = 0
(wN , ∂twN ) |t=0 = (0, 0),

where the source term(17) is given by

F0 = 3Z5, N + 3z1, N (z2, N )2 + (z2, N )3,

the linear term in wN is given by

F1(wN ) = 3Z2, NwN + 6z1, Nz2, NwN + 3(z2, N )2wN ,

and the nonlinear terms in wN are as follows:

F2(wN ) = 3z1, N (wN )2 + 3z2, Nw
2
N and F3(wN ) = w3

N .

In the following, we study the Duhamel formulation for wN :

(5.1) wN = L−1(F0) + L−1(F1(wN )) + L−1(F2(wN )) + L−1(F3(wN )).

In the next three subsections, we first establish estimates for each indi-
vidual term in the XT -norm defined in (2.8). In Subsection 5.5, we then
combine these estimates with the regularity and convergence properties of
the relevant stochastic terms from Sections 3 and 4 and prove almost sure
convergence of the sequence {wN}N ∈N. In the following, we fix 0 < T 6 1.

5.2. On the nonlinear terms in wN

By the Strichartz estimate (2.7), we have

(5.2)
∥∥L−1 (F3(wN ))

∥∥
XT
.
∥∥w3

N

∥∥
L

4
3
T, x

6 ‖wN‖3XT .

(17)Namely, the purely stochastic terms independent of the unknown wN .
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We now turn to the analysis of L−1(F2(wN )). By (2.7), we have

(5.3)
∥∥L−1 (F2(wN ))

∥∥
XT
.
∥∥∥〈∇〉− 1

2
(
z1, Nw

2
N + z2, Nw

2
N

)∥∥∥
L1
T
L2
x

.

In the following, we first establish an estimate for fixed t ∈ [−T, T ]. Let
σ1 > 0. By Sobolev’s inequality,∥∥∥〈∇〉− 1

2
(
z1, Nw

2
N

)
(t)
∥∥∥
L2
.
∥∥〈∇〉−σ1

(
z1, Nw

2
N

)
(t)
∥∥
Lr
,

provided that

(5.4) 1
2 − σ1 >

3
r
− 3

2 .

By Lemma 2.2(ii), we have∥∥〈∇〉−σ1
(
z1, Nw

2
N

)
(t)
∥∥
Lr
.
∥∥〈∇〉−σ1z1, N (t)

∥∥
Lp

∥∥〈∇〉σ1
(
w2
N

)
(t)
∥∥
Lq
,

provided that 0 6 σ1 6 1 and

(5.5) σ1 >
3
p

+ 3
q
− 3
r
.

In the following, we will choose p� 1 such that σ1 >
3
q−

3
r guarantees (5.5).

By Lemma 2.2(i) and Sobolev’s inequality, we have∥∥〈∇〉σ1
(
w2
N

)
(t)
∥∥
Lq
. ‖〈∇〉σ1wN (t)‖Lq1 ‖wN (t)‖L4

.
∥∥∥〈∇〉 1

2wN

∥∥∥
L2
‖wN (t)‖L4 ,

provided that

(5.6) 1
q

= 1
4 + 1

q1
and 1

2 − σ1 >
3
2 −

3
q1
.

In summary, if the conditions (5.4), (5.5), and (5.6) are satisfied, then we
obtain the estimate

(5.7)
∥∥∥〈∇〉− 1

2
(
z1, Nw

2
N

)
(t)
∥∥∥
L2

.
∥∥〈∇〉−σ1z1, N (t)

∥∥
Lp

∥∥∥〈∇〉 1
2 (wN )(t)

∥∥∥
L2
‖wN (t)‖L4 .

Let us now show that we may ensure (5.4), (5.5), and (5.6). Since p � 1,
it suffices to ensure that

σ1 >
3
q
− 3
r

= 3
4 + 3

q1
− 3
r
>

3
4 + 3

2 −
(

1
2 − σ1

)
− 3
r
> 2σ1 −

1
4 .
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This shows that we can ensure (5.5) and (5.6) if σ1 < 1
4 . In this case,

by (5.7), we arrive at the bound:

(5.8)
∥∥∥〈∇〉− 1

2
(
z1, Nw

2
N

)∥∥∥
L1
T
L2
x

.
∥∥〈∇〉−σ1z1, N

∥∥
L

4
3
T
Lpx

∥∥∥〈∇〉 1
2wN

∥∥∥
L∞
T
L2
x

‖wN‖L4
T
L4
x
.

Therefore, from (5.3) and (5.8) with the definition (2.8) of the XT -norm,
we obtain

(5.9)
∥∥L−1 (F2(wN ))

∥∥
XT

. T
1
4

(
‖z1, N‖L2

T
W
s1,∞
x

+ ‖z2, N‖L2
T
W
s1,∞
x

)
‖wN‖2XT ,

provided that

(5.10) s1 = −σ1 > −
1
4 .

5.3. On the linear terms in wN

Let us next turn to the analysis of the terms linear in wN . By the
Strichartz estimate (2.7), we have

(5.11)
∥∥L−1 (F1(wN ))

∥∥
XT
.
∥∥∥〈∇〉− 1

2 (Z2, NwN )
∥∥∥
L1
T
L2
x

+
∥∥∥〈∇〉− 1

2 (z1, Nz2, NwN )
∥∥∥
L1
T
L2
x

+
∥∥∥(z2, N )2

wN

∥∥∥
L

4
3
T, x

.

We now evaluate each contribution on the right-hand side of (5.11). By
Hölder’s inequality, we have

(5.12)

∥∥∥(z2, N )2
wN

∥∥∥
L

4
3
, x

6 T
1
4
∥∥z2,,N

∥∥2
L8
T
L4
x
‖wN‖L4

T, x

6 T
1
4 ‖z2, N‖2L8

T
W
s4,,∞
x

‖wN‖XT ,

provided that

(5.13) s4 > 0.
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By Lemma 2.2(ii), we have

(5.14)
∥∥∥〈∇〉− 1

2 (Z2, NwN )
∥∥∥
L1
T
L2
x

. T
1
2

∥∥∥〈∇〉− 1
2Z2, N

∥∥∥
L2
T
L6
x

∥∥∥〈∇〉 1
2wN

∥∥∥
L∞
T
L2
x

. T
1
2 ‖Z2, N‖L2

T
W
s2,∞
x

‖wN‖XT ,

provided that

(5.15) s2 > −
1
2 .

Finally, by applying Lemma 2.2(ii) twice, we obtain

(5.16)
∥∥∥〈∇〉− 1

2 (z1, Nz2, NwN )
∥∥∥
L1
T
L2
x

. ‖〈∇〉s1 (z1, Nz2, N )‖L1
T
L6
x

∥∥∥〈∇〉 1
2wN

∥∥∥
L∞
T
L2
x

. T
1
2 ‖z1, N‖L4

T
W
s1,∞
x

‖z2, N‖L4
T
W
s4,∞
x

‖wN‖XT ,

provided that

(5.17) max
(
−1

2 ,−s4

)
6 s1 6 0.

Therefore, putting (5.11), (5.12), (5.14), and (5.16), we obtain

(5.18)
∥∥L−1(F1(wN ))

∥∥
XT

. T θ
{∥∥Z2, N

∥∥
L2
T
W
s2,∞
x

+ ‖z1, N‖L4
T
W
s1,∞
x

‖z2, N‖L4
T
W
s4,∞
x

+ ‖z2, N‖2L8
T
W
s4,∞
x

}
‖wN‖XT

for some θ > 0 and s1, s2, and s4 satisfying (5.13), (5.15), and (5.17).

5.4. On the source terms

We now estimate the contributions from the source terms. Let s1 and s4
satisfy (5.17). Then, by Lemma 2.2(ii) with Hölder’s inequality followed by
Lemma 2.2(i), we have
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(5.19)
∥∥∥〈∇〉− 1

2

(
z1, N (z2, N )2

)∥∥∥
L1
T
L2
x

6
∥∥∥〈∇〉s1

(
z1, N (z2, N )2

)∥∥∥
L1
T
L2
x

. ‖〈∇〉s1z1, N‖L2
T
L4
x

∥∥∥〈∇〉s4
(

(z2, N )2
)∥∥∥

L2
T
L4
x

. T
1
4 ‖〈∇〉s1z1, N‖L4

T, x
‖〈∇〉s4z2, N‖2L4

T
L8
x
.

Hence, from the Strichartz estimate (2.7) and (5.19), we obtain

(5.20)
∥∥L−1(F0)

∥∥
XT

.
∥∥∥〈∇〉− 1

2Z5, N

∥∥∥
L1
T
L2
x

+
∥∥∥〈∇〉− 1

2

(
z1, N (z2, N )2

)∥∥∥
L1
T
L2
x

+ ‖z2, N‖3L4
T
L4
x

. T θ
{
‖Z5, N‖L2

T
W
s5,∞
x

+ ‖z1, N‖L4
T
W
s1,∞
x

‖z2, N‖2L4
T
W
s4,∞
x

+ ‖z2, N‖3L8
T
W
s4,∞
x

}
for some θ > 0, provided that s1 and s4 satisfy (5.17) and that s5 satisfies

(5.21) s5 > −
1
2 .

5.5. End of the proof

Let s1, s2, s4, and s5 satisfy (5.10), (5.13), (5.15), (5.17), and (5.21).
Then, from (5.1), (5.2), (5.9), (5.18), and (5.20), we have

‖wN‖XT 6 CT θA
(1)
N + CT θA

(2)
N ‖wN‖XT

+ CT θ

 2∑
j=1
‖zj,N‖L2

T
W
sj,∞
x

 ‖wN‖2XT + C‖wN‖3XT ,

where A(1)
N and A(2)

N are defined by

(5.22)

A
(1)
N = ‖Z5, N‖L2

T
W
s5,,∞
x

+ ‖z1, N‖L4
T
W
s1,∞
x

‖z2, N‖2L4
T
W
s4,∞
x

+ ‖z2, N‖3L8
T
W
s4,∞
x

,

A
(2)
N = ‖Z2, N‖L2

T
W
s2,∞
x

+ ‖z1, N‖L4
T
W
s1,∞
x

‖z2, N‖L4
T
W
s4,∞
x

+ ‖z2, N‖2L8
T
W
s4,∞
x

.
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Suppose that

(5.23) R(T ) := sup
N ∈N

max
(
‖z1, N‖L4

T
W
s1,∞
x

, ‖z2, N‖L8
T
W
s4,∞
x

,

‖Z2, N‖L2
T
W
s2,∞
x

, ‖Z5, N‖L2
T
W
s5,∞
x

)
6 T θ0

for some θ0 > 0. Then, it follows from a standard continuity argument that
there exists T0 > 0 such that

‖wN‖XT 6 C(R)T θ

for any 0 < T 6 T0, uniformly in N ∈ N. Here, we used the fact that
(w, ∂tw)|t= 0 = (0, 0).
Let M > N > 1. Note that Fj , j = 0, 1, 2, 3, are multilinear in wN

and the stochastic terms z1, N , z2, N , Z2, N , and Z5, N . Then, by proceeding
as in Subsections 5.2, 5.3, and 5.4, we also obtain the following difference
estimate:

‖wM − wN‖XT 6 CT
θB

(1)
M,N + CT θB

(2)
M,N‖wN‖XT

+ CT θA
(2)
N ‖wM − wN‖XT

+ CT θ

 2∑
j=1
‖zj,M − zj,N‖L2

T
W
sj,∞
x

 ‖wM‖2XT
+ CT θ

 2∑
j=1
‖zj,N‖L2

T
W
sj,∞
x


× (‖wM‖XT + ‖wN‖XT ) ‖wM − wN‖XT

+ C
(
‖wM‖2XT + ‖wN‖2XT

)
‖wM − wN‖XT ,

(5.24)

where B(1)
M,N and B(2)

M,N are defined by

B
(1)
M,N = ‖Z5,M − Z5, N‖L2

T
W
s5,∞
x

+ ‖z1,M − z1, N‖L4
T
W
s1,∞
x

‖z2,M‖2L4
T
W
s4,∞
x

+ ‖z1, N‖L4
T
W
s1,∞
x

‖z2,M − z2,N‖L4
T
W
s4,∞
x

×
(
‖z2,M‖L4

T
W
s4,∞
x

+ ‖z2, N‖L4
T
W
s4,∞
x

)
+
(
‖z2,M‖2L8

T
W
s4,∞
x

+ ‖z2, N‖2L8
T
W
s4,∞
x

)
‖z2,M − z2, N‖L8

T
W
s4,∞
x

,

B
(2)
M,N = ‖Z2,M − Z2, N‖L2

T
W
s2,∞
x

+ ‖z1,M − z1, N‖L4
T
W
s1,∞
x

‖z2,M‖L4
T
W
s4,∞
x

+ ‖z1, N‖L4
T
W
s1,∞
x

‖z2,M − z2, N‖L4
T
W
s4,∞
x

+
(
‖z2,M‖L8

T
W
s4,∞
x

+ ‖z2, N‖L8
T
W
s4,∞
x

)
‖z2,M − z2, N‖L8

T
W
s4,∞
x

.
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In addition to the assumption (5.23), we now suppose that as N →
∞, z1, N , z2, N , Z2, N , and Z5, N converge to the limits z1, z2, Z2, and
Z4 in C([−T, T ];W s,∞(T3)) for s = s1, s4, s2, and s5, respectively. Then,
from (5.24), we obtain

‖wM − wN‖XT 6 C(R)T θ ‖wM − wN‖XT + oM,N→∞(1)

Then, by possibly making T0 > 0 smaller, we conclude that

‖wN − wM‖XT −→ 0

for any 0 < T 6 T0 asM,N →∞. This implies that wN converges to some
w in XT as N →∞. Recalling the decomposition uN = z1, N + z2, N +wN ,
we conclude that uN converges to u = z1 + z2 + w in C([−T, T ];Hs1(T3))
as N →∞.

It remains to check that the assumption (5.23) and the assumption on the
convergence of z1, N , z2, N , Z2, N , and Z5,N hold true with large probability.
By choosing s1 = α− 3

2−ε, s2 = 2(α− 3
2 )−ε, s4 = 3(α− 3

2 )+1−ε, and s5 =
2(α− 3

2 )−ε for some small ε > 0, it is easy to see that the conditions (5.10),
(5.13), (5.15), (5.17), and (5.21) are satisfied for 5

4 < α 6 3
2 . (Note that

the restriction α > 5
4 appears in (5.10), (5.15), (5.17), and (5.21).) There-

fore, it follows from Proposition 3.2, 4.1, and 4.2 that there exists a set
ΩT of complemental probability smaller than C exp(−c/Tκ) such that the
assumption (5.23) and the assumption on the convergence of z1,N , z2, N ,
Z2, N , and Z5, N hold true on ΩT , allowing us to prove the convergence
of uN to u in C([−T, T ];Hs1(T3)) as above. This completes the proof of
Theorem 3.

6. On the triviality of the limiting dynamics without
renormalization

6.1. Reformulation of the problem

Fix 1 6 α 6 3
2 and a pair (w0, w1) ∈ H 3

4 (T3). Let uN be the solution to
the (un-renormalized) NLW (1.1) with the following initial data:

(6.1) (uN , ∂tuN ) |t=0 = (w0, w1) +
(
ũω0, N , ũ

ω
1, N
)
,

where the random initial data (ũω0,N , ũω1,N ) is given by (1.33) with CN > 0
implicitly defined as in (1.40). In this section, we present the proof of
Theorem 4 by reformulating the Cauchy problem for uN as

(6.2)
{
LNuN + u3

N − CNuN = 0
(uN , ∂tuN ) |t=0 = (w0, w1) + (ũω0, N , ũω1,,N ),
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where LN = ∂2
t −∆ + CN as in (1.35).

Since CN in (1.40) is implicitly defined, we first need to study the as-
ymptotic behavior of CN as N →∞.

Lemma 6.1. — Let 1 6 α 6 3
2 . Then, for each N ∈ N, there exists a

unique number CN > 1 satisfying the equation (1.40). Moreover, we have

(6.3) CN = 3σN +RN

for all sufficiently large N � 1, where σN =
∑
|n|6N 〈n〉−2α is as in (3.2)

and the error term RN satisfies

|RN | ∼

log logN, for α = 3
2 ,

N
1
2 (3−2α)2

, for 1 6 α < 3
2 .

In particular, we have RN = o(σN ) as N →∞.

Proof. — Let CN be as in (1.40). As CN increases from 0 to ∞, the
right-hand side of (1.40) decreases from ∞ to 0. Hence, for each N ∈ N,
there exists a unique solution CN > 0 to (1.40).

Suppose that CN < 1 for some N ∈ N. Then, considering the contribu-
tion from n = 0 on the right-hand side of (1.40), we obtain CN > 3, leading
to a contradiction. Hence, we must have CN > 1 for any N ∈ N.
We first consider the case 1 6 α < 3

2 . Since CN > 1, it follows from (1.40)
that CN . N3−2α. Using this upper bound on CN , we estimate the contri-
bution from |n| ∼ N :

CN &
∑
|n|6N

1
(N3−2α + |n|2)〈n〉2(α−1) &

∑
|n| ∼N

1
〈n〉2α

∼ N3−2α,

where we used the assumption α > 1 in the second step. This shows that
CN ∼ N3−2α. Using this asymptotic behavior with (3.2), we then ob-
tain (6.3) with the error term RN given by

(6.4) RN = 3
∑
|n|6N

1
〈n〉2(α−1)

(
1

(CN + |n|2) −
1
〈n〉2

)
.

By separately estimating the contributions from {|n| � N
3
2−α} and

{N 3
2−α 6 |n| 6 N}, we have

|RN | = 3
∑
|n|6N

1
〈n〉2α

CN − 1
(CN + |n|2) ∼ N

( 3
2−α)(3−2α).

Next, we consider the case α = 3
2 . Proceeding as above, we immediately

see that CN ∼ logN . The contribution to RN in (6.4) from {|n| &
√

logN}
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is O(1), while the contribution to RN in (6.3) from {|n| �
√

logN} is
O(log logN). This completes the proof of Lemma 6.1. �

6.2. On the Strichartz estimates with a parameter

In order to study the equation (6.2), we review the relevant Strichartz
estimates for the Klein–Gordon operator with a general mass. Given a > 1,
with a slight abuse of notation, define La by

La := ∂2
t −∆ + a.

Let L−1
a be the Duhamel integral operator given by

L−1
a F (t) =

∫ t

0

sin
(
(t− t′)

√
a−∆

)
√
a−∆

F (t′)dt′.

Namely, u := L−1
a (F ) is the solution to the following nonhomogeneous

linear equation: {
Lau = F

(u, ∂tu) |t=0 = (0, 0).

Then, by making systematic modifications of the proof of Lemma 2.4 on R3

(see [53]) and applying the finite speed of propagation, we see that the same
non-homogeneous Strichartz estimate as (2.7) holds, uniformly in a > 1:

(6.5)
∥∥L−1

a (F )
∥∥
XT

. min
(
‖F‖

L1
(

[−T, T ];H−
1
2 (T3)

), ‖F‖
L

4
3 ([−T, T ]×T3)

)
for any 0 < T 6 1, where the XT -norm is defined in (2.8).
We also record the following lemma on the linear solution associated with

La, a > 1.

Lemma 6.2. — Given a > 1, define Sa(t) by

Sa(t)(w0, w1) = cos
(
t
√
a−∆

)
w0 +

sin
(
t
√
a−∆

)
√
a−∆

w1.

Then, there exists C > 0 such that

(6.6) ‖Sa(t)(w0, w1)‖XT 6 C ‖(w0, w1)‖
H

3
4

for any (w0, w1) ∈ H 3
4 (T3) and 0 < T 6 1, uniformly in a > 1. Moreover,

Sa(t)(w0, w1) tends to 0 in the space-time distributional sense as a→∞.
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Proof. — The estimate (6.6) follows easily from Hölder’s inequality in
t and Sobolev’s inequality in x along with the boundedness of Sa(t) in
H 3

4 (T3). As for the second claim, we only consider eit
√
a−∆f for f ∈ L2(T3).

Note that, for each fixed n ∈ Z3,
√
a+ |n|2−

√
a tends to 0 as a→∞. Then,

by the dominated convergence theorem (for the summation in n ∈ Z3) and
the Riemann–Lebesgue lemma (for the integration in t), we have

lim
a→∞

∫∫ (
eit
√
a−∆f

)
(x)φ(t, x) dxdt

= lim
a→∞

∫
eit
√
a

( ∑
n∈Z3

e
it
(√

a+ |n|2−
√
a
)
f̂(n)φ̂(t, n)

)
dt

= lim
a→∞

∫
eit
√
a〈f, φ(t)〉L2

x
dt

= 0

for any test function φ ∈ C∞(R× T3) with a compact support in t. �

Remark 6.3. — Let a > 1. Then, we have the following homogeneous
Strichartz estimate:

(6.7) ‖Sa(t)(w0, w1)‖Lq([0, 1];Lr(T3)) 6 C ‖(w0, w1)‖
H

2
q
a ×H

2
q
−1

a (T3)

for 2 < q 6∞ and 1
q + 1

r = 1
2 , where the Hs

a-norm is defined by

‖f‖Hsa =
( ∑
n∈Z3

(
a+ |n|2

)s ∣∣∣f̂(n)
∣∣∣2) 1

2

.

The proof of (6.7) follows from a straightforward modification of the stan-
dard homogeneous Strichartz estimate (i.e. a = 1). For s > 0, the Hs

a-norm
diverges as a→∞ and hence the homogeneous Strichartz estimate (6.7) is
not useful for our application.

6.3. Proof of Theorem 4

Let z̃1, N and σ̃N be as in (1.37) and (1.39). As in (3.3), (4.1), and (4.9),
we define

Z̃1, N :=z̃1, N , Z̃2, N := (z̃1, N )2 − σ̃N ,

Z̃3, N := (z̃1, N )3 − 3σ̃N z̃1, N ,

Z̃4, N :=z̃2, N := −L−1
N

(
(z̃1, N )3 − 3σ̃N z̃1, N

)
,

Z̃5, N :=
{

(z̃1, N )2 − σ̃N
}
z̃2, N ,

(6.8)
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where LN is as in (1.35). Then, by repeating the arguments in Sections 3
and 4, we see that the analogues of Propositions 3.2, 4.1, and 4.2 hold for
Z̃j,N , j = 1, . . . , 5. In the following lemma, we summarize the regularity
and convergence properties of these stochastic terms.

Lemma 6.4. — Let 1 < α < 3
2 and sj , j = 1, . . . , 5, satisfy the regu-

larity assumptions (3.4), (4.2), and (4.10). Fix j = 1, . . . , 5. Then, given
any T > 0, Z̃j,N converges almost surely to 0 in C([−T, T ];W sj ,∞(T3)) as
N → ∞. Moreover, given 2 6 q < ∞, there exist positive constants C, c,
κ, θ and small δ > 0 such that for every T > 0, there exists a set ΩT of
complemental probability smaller than C exp(−c/Tκ) such that

(6.9)
∥∥∥Z̃j,N∥∥∥

Lq([−T, T ];W sj,∞(T3))
6 C−δN T θ

for any ω ∈ ΩT and any N > 1. In particular, for any ω ∈ ΩT , Z̃j,N tends
to 0 in Lq([−T, T ];W sj ,∞(T3)) as N →∞.
When α = 3

2 , the same result holds but only along a subsequence
{Nk}k∈N.

Proof. — We only consider the case j = 1 since the other cases follow in
a similar manner. Fix N ∈ N. With 〈n〉

N
as in (1.34), let

gt, Nn (ω) := cos(t〈n〉
N

) gn(ω) + sin(t〈n〉
N

)hn(ω).

Then, from (1.38), we have

〈∇〉s1Z̃1, N =
∑
|n|6N

gt, Nn (ω)
〈n〉

N
〈n〉α−1−s1

ein · x.

Let q, r <∞. Then, proceeding as in (3.10) with 〈n〉
N
> max(C

1
2
N , 〈n〉), we

have ∥∥∥‖〈∇〉s1Z1, N‖Lq
T
Lrx

∥∥∥
Lp(Ω)

6
∥∥∥‖〈∇〉s1Z1, N (t, x)‖Lp(Ω)

∥∥∥
Lq
T
Lrx

. T
1
q p

1
2

 ∑
|n|6N

1
〈n〉2

N
〈n〉2(α−1−s1)

 1
2

. C−δ0
N T

1
q p

1
2
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for any p > max(q, r) and sufficiently small δ0 > 0 such that 2(α − s1 −
2δ0) > 3. By Chebyshev’s inequality, we then have

(6.10) P

(∥∥∥Z̃j,N∥∥∥
Lq([−T, T ];W sj,∞(T3))

> C−δN T θ
)
6 C exp

(
−c

C
2(δ0−δ)
N

T 2( 1
q−θ)

)
.

In view of Lemma 6.1 with (3.2), by choosing δ, θ > 0 sufficiently small, the
right-hand side of (6.10) is summable over N ∈ N, as long as 1 < α < 3

2 .
Define ΩT by

(6.11) ΩT =
⋂
N ∈N

{
ω ∈ Ω :

∥∥∥Z̃j,N∥∥∥
Lq([−T, T ];W sj,∞(T3))

6 C−δN T θ
}
.

Then, we have P (ΩcT ) 6 C exp(−c/Tκ) and (6.9) holds for any ω ∈ ΩT
and any N ∈ N, when 1 < α < 3

2 . When α = 3
2 , we need to choose a

subsequence {Nk}k∈N growing sufficiently fast such that the right-hand
side of (6.10) is summable along this subsequence {Nk}k∈N. Then, we
define ΩT as in (6.11) but by taking an intersection over {Nk}k∈N. This
yields (6.9) for any ω ∈ ΩT and any N = Nk, k ∈ N, when α = 3

2 .
The rest follows exactly as in the proofs of Lemma 3.5 and Proposi-

tions 3.2, 4.1, and 4.2. Lastly, in view of Fatou’s lemma and the asymptotic
behavior CN →∞, we conclude from (6.9) that Z̃1, N tends to 0 (along the
subsequence {Nk}k∈N when α = 3

2 ). �

With Lemma 6.4 in hand, we can proceed as in Section 5.(18) Namely,
given (w0, w1) ∈ H 3

4 (T3), let uN be the solution to the (un-renormalized)
NLW (1.1) with the initial data in (6.1):

(uN , ∂tuN ) |t=0 = (w0, w1) +
(
ũω0, N , ũ

ω
1, N
)
,

where (ũω0, N , ũω1, N ) is the truncated random initial data defined in (1.33).
Now, we write

(6.12) ũN = z̃1, N + z̃2, N + w̃N ,

where z̃1, N and z̃2, N are as in (1.37) and (6.8), respectively. Recalling that
uN also satisfies (6.2), we see that w̃N is the solution to

(6.13)
{
LN w̃N + F̃0 + F̃1(w̃N ) + F̃2(w̃N ) + F̃3(w̃N ) = 0
(w̃N , ∂tw̃N ) |t=0 = (w0, w1),

s

(18) In the following, it is understood that when α = 3
2 , we work on the subsequence

{Nk}k∈N from Lemma 6.4 instead of the whole natural numbers N ∈ N.
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where LN is as in (1.35) and F̃j , j = 0, . . . , 3, are given by

F̃0 = 3Z̃5, N + 3z̃1, N (z̃2, N )2 + (z̃2, N )3
,

F̃1 (w̃N ) = 3Z̃2, N w̃N + 6z̃1, N z̃2, N w̃N + 3 (z̃2, N )2
w̃N ,

F̃2 (w̃N ) = 3z̃1, N (w̃N )2 + 3z̃2, N w̃
2
N ,

F̃3 (w̃N ) = w̃3
N .

Given N ∈ N, define SN (t) by

SN (t)(w0, w1) = cos
(
t
√
CN −∆

)
w0 +

sin
(
t
√
CN −∆

)
√
CN −∆

w1.

Then, the Duhamel formulation of (6.13) is given by

w̃N = SN (t)(w0, w1) + L−1
N

(
F̃0 + F̃1(w̃N ) + F̃2(w̃N ) + F̃3(w̃N )

)
,

Define Ã(1)
N , Ã(2)

N , and R̃(T ) by replacing zj,N and Zj,N in (5.22) and (5.23)
with z̃j,N and Z̃j,N . Then, by repeating the analysis in Section 5 with (6.5),
we obtain

(6.14) ‖w̃N‖
L∞
T
H

1
2
x

6 ‖(w0, w1)‖
H

1
2

+ CT θÃ
(1)
N + CT θÃ

(2)
N ‖w̃N‖XT

+ CT θ

 2∑
j=1
‖z̃j,N‖L2

T
W
sj,∞
x

 ‖w̃N‖2XT + C ‖w̃N‖3L4
T, x

and

(6.15) ‖w̃N‖L4
T,vx
6 ‖SN (t)(w0, w1)‖L4

T, x

+ CT θÃ
(1)
N + CT θÃ

(2)
N ‖w̃N‖XT

+ CT θ

 2∑
j=1
‖z̃j,N‖L2

T
W
sj,∞
x

 ‖w̃N‖2XT + C ‖w̃N‖3L4
T, x

,

where the constants are independent of N ∈ N, thanks to the uniform
Strichartz estimate (6.5). By Hölder’s inequality in t and Sobolev’s in-
equality in x (as in the proof of Lemma 6.2), we have

(6.16) ‖SN (t)(w0, w1)‖L4
T, x
. T

1
4 ‖(w0, w1)‖

H
3
4
,
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uniformly in N ∈ N. Then, it follows from (6.14), (6.15), and (6.16) that
there exists small T1 > 0 depending on R̃(T ) such that

‖w̃N‖
L∞
T
H

1
2
x

6 2 ‖(w0, w1)‖
H

1
2
x

,

‖w̃N‖L4
T, x
6
(

1 + C
(
R̃(T )

))
T θ

(6.17)

for any 0 < T 6 T1, uniformly in N ∈ N. It follows from Lemma 6.4 that for
each small 0 < T 6 T1, there exists a set ΩT of complemental probability
smaller than C exp(−c/Tκ) such that

(6.18) R̃(T ) 6 C−δN T θ.

In the following, we fix ω ∈ ΩT and show that w̃N tends to 0 as a space-
time distribution as N →∞. From Lemma 6.4 with (6.17) and (6.18), we
see that

(6.19) L−1
N

(
F̃0 + F̃1 (w̃N ) + F̃2(w̃N )

)
−→ 0

in XT as N →∞. On the other hand, by Sobolev’s inequality (with δ > 0
sufficiently small) and Lemma 6.1, we have

(6.20)
∥∥∥L−1

N

(
F̃3(w̃N )

)∥∥∥
L∞
T
L2
x

6 C−δN
∥∥w̃3

N

∥∥
L1
T
H−1+2δ
x

. C−δN ‖w̃N‖
3
L4
T, x
−→ 0

as N →∞. Therefore from Lemmas 6.1 and 6.2 with (6.19) and (6.20), we
conclude that w̃N tends to 0 in the space-time distributional sense.
Finally, from the decomposition (6.12), Lemma 6.4, and the convergence

property of w̃N discussed above, we conclude that, for each ω ∈ ΩT , ũN
converges to 0 as space-time distributions on [−T, T ]×T3 as N →∞. This
completes the proof of Theorem 4.
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