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Abstract. — We study monodromies of plane curve singularities and pseudo-
periodic homeomorphisms of oriented surfaces with boundary using tête-à-tête
graphs and twists. A tête-à-tête twist is a generalisation of the classical Dehn
twist. We introduce the class of mixed tête-à-tête graphs and twists, and prove
that mixed tête-à-tête twists contain the monodromies of irreducible plane curve
singularities. In a sequel paper, the fourth author and B. Sigurdsson have extended
this to the reducible case.
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Résumé. — Nous étudions la monodromie des singularités de courbes planes et
les homéomorphisms pseudo-périodiques de surfaces orientées à bord en utilisant
graphes et cisaillements tête-à-tête. Un cisaillement tête-à-tête est une générali-
sation du twist de Dehn classique. Nous introduisons la classes des graphes et
cisaillements tête-à-tête mélangé, et démontrons que les monodromies locales de
courbes planes irréductibles appartiennent à cette classe. Dans un travail ultérieur
le quatrième auteur et B. Sigurdsson ont étendu ce résultat au cas des singularités
réductibles.
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1. Introduction

Max Dehn has introduced the so called Dehn twist. More precisely, given
an embedded copy α of the circle in the interior an oriented surface S, he
has defined a mapping class Dα of the surface S. The mapping class Dα has
for every open subset U that contains α a representative δU with support
in U , that leaves α invariant and whose restriction to α has order 2.
The first author has observed that the geometric monodromy of a Pham

singularity xa + yb in two complex variables is a “twist” attached in rather
similar manner to the Pham graph Pha, b in the Milnor fiber Fa, b. More
precisely, the graph Γ = Pha, b is the complete bi-coloured graph with a

vertices of one colour and b vertices of the other colour and is embedded
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into the oriented surface Fa, b such that the tête-à-tête property holds with
respect to a metric. This property (see Definition 3.5), allows to define a
mapping class DΓ of Fa, b with a representative that is the identity away
from Γ and whose restriction to Γ has finite order (Definition 5.4). This
class is called a tête-à-tête twist and is a generalization of Dehn twists.
A first optimism suggests that all geometric monodromies of plane curve

singularities are tête-à-tête twists attached to a graph in the Milnor fiber.
This is particularly nice since the tête-à-tête graph is a vanishing spine of
the Milnor fibre: is the part of the Milnor fibre that collapses approaching
the singular fibre. Then the vanishing spine, together with an additional
metric structure codifies the geometric monodromy. However, this is only
true for finite order monodromies.

In fact it is natural to explore which mapping classes are tête-à-tête
twists. This task is completed in the present paper, where the following re-
sult is proved (Corollary 5.11): given any oriented surface Σ with boundary,
any mapping class φ ∈ MCG(Σ, ∂Σ) is a tête-à-tête twist if and only if φ
is boundary-free isotopic to a periodic homeomorphism, and the fractional
Dehn twist coefficients (see Definition 4.16) at each of the components of
the boundary are positive. In fact a more general result is proven (see
Theorem 5.10 and Theorem 5.14): by extending the definitions to that of
signed relative tête-à-tête graphs and twists, if ∂1Σ is a non-empty union
of boundary components, any mapping class φ ∈MCG(Σ, ∂1Σ) is a signed
relative tête-à-tête twist if and only if φ is boundary-free isotopic to a
periodic homeomorphism. This results improve results of Graf [4, 5], who
proved the analogous realization, but using a class of graphs and twists that
strictly contains ours. We also care of representing all periodic boundary-
free mapping classes by tête-à-tête twists (Theorem 5.18).
The above optimism on geometric monodromies becomes a Theorem, if

one works with graphs that satisfy the mixed tête-à-tête property (Defini-
tion 7.8), and with the mapping classes defined by them, which are called
mixed tête-à-tête twists and are also introduced in this paper. The proof
of this theorem is the conjunction of the results of the second part of this
paper and a subsequent paper by the fourth author and B. Sigurdsson [9].
Here we prove that the monodromy of any irreducible plane branch is a
mixed tête-à-tête twist (this is a consequence of the more general Theo-
rem 7.20):

We introduce a filtered vanishing spine on a surface, together with a
metric structure (which is called a mixed tête-à-tête graph), associate to it
a mixed tête-à-tête twist. In the case of irreducible plane curve singularities
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we find a mixed tête-à-tête graph on the Milnor fibre, whose associated
mixed tête-à-tête twist is the geometric monodromy. In [9], mixed tête-
à-tête twists has been characterized as the geometric monodromy for an
isolated curve singularity f : X → C on a normal surface germ, covering in
particular the reducible plane curve case.
The plane curve case suggested the following higher dimensional gener-

alization to the first author. The Pham spine Pha0, ··· , an , n > 1, in the
Milnor fiber of za0

0 + · · ·+ zann has also a tête-à-tête property if one realizes
the simplices of the spine as orthogonal spherical simplices. In this case
π-walks are broken spherical geodesics . Again the monodromy is the cor-
responding twist. Taking into account the natural symplectic structure on
the Milnor fibre one finds that the Pham spine is a Lagrangian vanishing
spine, in the sense explained above. Such a symplectic interpretation allows
an optimism about the geometric monodromy of complex hypersurface sin-
gularities. This topic needs however further investigation in future.

The gist for the ideas in this paper is contained in the first author
preprint [2]. The present paper fully develop the ideas contained there
for the surface case and systematically studies mapping classes in terms of
tête-à-tête graphs.

We have tried to make the paper as self-contained as possible. The struc-
ture is as follows. In Section 2 we introduce the basic definitions on ribbon
graphs and thickening surfaces, and set up the notation and terminology
for the rest. In Section 3 we define tête-à-tête graphs and prove their basic
properties. In Section 4 we recall basic facts on periodic mapping classes,
and introduce the fractional Dehn twist coefficients. In Section 5 tête-à-
tête twists are introduced, and the characterization of tête-à-tête twists
explained above is proved. In Section 6 we recall the facts we need on
pseudo-periodic homeomorphisms and set up the notation for the rest of
the paper. In Section 7.2 mixed tête-à-tête graphs and twists are intro-
duced, and the realization theorem explained above, which implies that
monodromies of irreducible branches are tête-à-tête twists, is proved. In
this last section, for pedagogical reasons, we start by analyzing a class of
pseudo-periodic homeomorphisms, and constructing a spine on the under-
lying surface with special properties. This motivates the definition of mixed
tête-à-tête graphs and twists. After this previous analysis the proof of main
Theorem 7.20 follows.

ANNALES DE L’INSTITUT FOURIER
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2. Graphs, spines and regular thickenings

A graph Γ is a 1-dimensional finite CW-complex. We denote by v(Γ)
the set of vertices and by e(Γ) the set of edges. We allow loops (edges
starting and ending in the same vertex) and also several edges connecting
two vertices. For a vertex v we denote by e(v) the set of edges adjacent to
v, where an edge e appears twice in case it is a loop joining v with v. The
valency of a vertex is the cardinality of e(v). Unless we state the contrary
we assume that there are no vertices of valency 1.

A ribbon graph is a graph Γ such that for every vertex we fix a cyclic
order in the set of edges e(v).
A regular thickening of a ribbon graph Γ is a piecewise smooth embed-

ding Γ ↪→ Σ of the graph, as a deformation retract of an oriented surface
with boundary, such that the cyclic ordering of the incoming edges at each
vertex is induced counterclockwise by the orientation of the surface. The
thickening surface (Σ,Γ) is unique only up to orientation preserving home-
omorphism of the surface.
Reciprocally, every oriented surface with finite topology and non-empty

boundary has a spine Γ (i.e. an embedded graph in Σ\∂Σ that is a regular
retract of Σ) with a ribbon graph structure whose regular thickening is
(Σ,Γ).

Example 2.1. — LetKp, q be the bipartite graph (p, q). The set of vertices
is the union of two sets A and B of p and q vertices respectively. The edges
are exactly all the possible non-ordered pairs of points one in A and one
in B.
Now we fix cyclic orderings in A and B. These give cyclic orderings in

the sets of edges adjacent to vertices in B and A respectively.
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One can check that the thickening surface has as many boundary com-
ponents as gcd(p, q) and genus equal to 1

2 [(p− 1)(q − 1)− gcd(p, q) + 1].
In Figure 2.1 we have the example of K2, 3.
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Figure 2.1. Thickening of the graph K2, 3 in three steps. First we have
a planar projection of K2, 3 where the two subsets of 2 and 3 vertices
are vertically ordered in different parallel lines. Then we thicken a
neighbourhood of every vertex and finally we glue the pieces. The
resulting surface is homeomorphic to the once-punctured torus.

We introduce a generalization of the notion of spine of a surface with
boundary Σ, which treats in a special way a certain union of boundary
components. Let us start by the corresponding graph theoretic notion.

Definition 2.2. — Let (Γ, A) be a pair formed by a graph Γ and an
oriented subgraph A such that each of its connected components Ai is
homeomorphic to the oriented circle S1. The pair (Γ, A) is a relative ribbon
graph if for any vertex v ∈ A the set of incident edges e(v) is endowed with
a cyclic ordering e(v) = {e1, . . . , ek} compatible with the orientation of A,
which means that

• ei < ei+1 and ek < e1,
• the edges belonging to A (that necessarily belong to a single com-

ponent Ai) are e1 and ek,
• if we consider a small interval in Ai around v and we parametrize
it in the direction induced by the orientation of Ai, then we pass
first by e1 and after by ek.

A regular thickening of a relative ribbon graph (Γ, A) is a piecewise
smooth embedding of pairs (Γ, A) ↪→ (Σ, ∂Σ) into a surface Σ with bound-
ary such that each Ai is sent homeomorphically (orientation reversing) to
a component of ∂Σ, the subgraph Γ \ A is sent to the interior of Σ, and
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the image of Γ is a deformation retract of Σ. The cyclic ordering of the
incoming edges at each vertex is induced counterclockwise by the orienta-
tion of the surface. The thickening surface (Σ,Γ, A) is unique only up to
orientation preserving homeomorphism of the surface.

1

2

3

1

2

3

Figure 2.2. Thickening of a relative ribbon graph with two relative
components. The arrows in the picture indicate the direction that safe
walk takes in the relative components. The numbers indicate the cyclic
ordering of the edges adjacent to two different vertices. The surface is
a sphere with 7 holes.

Reciprocally: for any pair (Σ, A), given by an oriented surface Σ and a
union of some boundary components A, if there is a graph Γ embedded
in Σ with A ⊂ Γ such that Γ is a regular retract of Σ, then (Σ,Γ, A) is a
thickening of (Γ, A).

Notation 2.3. — From now on the letter I denotes an interval, unless
otherwise specified, it denotes the unit interval. Let (Γ, A) be a relative
ribbon graph and (Σ,Γ, A) a thickening. There is a connected component
of Σ \ Γ for each boundary component Ci of Σ not contained in A, this
component is homeomorphic to Ci × (0, 1]. We denote by Σ̃i the compact-
ification of Ci × (0, 1] to Ci × I. We denote by ΣΓ the surface obtained by
cutting Σ along Γ, that is taking the disjoint union of the Σ̃i. Let

gΓ : ΣΓ → Σ

be the gluing map. We denote by Γ̃i the boundary component of the cylin-
der Σ̃i that comes from the graph (that is gΓ(Γ̃i) ⊂ Γ) and by Ci the one

TOME 71 (2021), FASCICULE 6
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coming from a boundary component of Σ (that is gΓ(Ci) ⊂ ∂Σ). From
now on, we take the convention that Ci is identified with Ci × {1} and
that Γ̃i is identified with Ci × {0}. We set Σi := gΓ(Σ̃i) and Γi := gΓ(Γ̃i).
Finally we denote gΓ(Ci) also by Ci since gΓ|Ci is bijective. The orienta-
tion of Σ induces an orientation on every cylinder Σ̃i and on its boundary
components.

3. Tête-à-tête graphs

We now consider metric relative ribbon graphs (Γ, A, d). A metric graph
is a graph Γ together with lengths l(e) ∈ R for every edge e ∈ e(Γ). In an
edge e, we take a homogeneous metric that gives e total length l(e). We
consider the distance d(x, y) on Γ given by the minimum of the lengths of
the paths joining x and y.

Definition 3.1. — A walk in a graph Γ is a continuous mapping

γ : I → Γ,

from an interval I, possibly infinite, and such that for any t ∈ I there exists
a neighbourhood around t where γ is injective.

The notion of safe walk is central in this paper. We start by a purely
graph theoretical definition.

Definition 3.2 (Safe walk). — Let (Γ, A) be a metric relative ribbon
graph. A safe walk for a point p in the interior of some edge is a walk
γp : R> 0 → Γ with γp(0) = p and such that:

(1) The absolute value of the speed |γ′p| measured with the metric
of Γ is constant and equal to 1. Equivalently, the safe walk is
parametrized by arc length, i.e. for any t and any s small enough
we have d(γp(t), γp(t+ s)) = s.

(2) when γp gets to a vertex, it continues along the next edge in the
given cyclic order.

(3) If p is in an edge of A, the walk γp starts running in the direction
prescribed by the orientation of A.

In this paper, we always work with restrictions of safe walks to intervals.
An `-safe walk is the restriction of a safe walk to the interval [0, `]. If a
length is not specified when referring to a safe walk, we will understand
that its length is π.

ANNALES DE L’INSTITUT FOURIER
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The notion in (2) of continuing along the next edge in the order of e(v)
is equivalent to the notion of turning to the right in every vertex for paths
parallel to Γ in any thickening surface (Σ,Γ, A) as it is explained in [2].

Following the first author choice in [2], in the first part of the paper, we
adopt the convention of working mainly with π-safe walks. In Section 5.1
we will need safe walks of different lengths, that is why we introduce it in
such a generality.

Remark 3.3 (Safe walk via cylinder decomposition.). — Taking a thick-
ening (Σ,Γ, A), the previous definition extends to safe walks γp starting
also at p ∈ v(Γ) by replacing condition (2) by

(2’) the path γp admits a lifting γ̃p : R→ ΣΓ in the cylinder decompo-
sition of ΣΓ (see Notation 2.3), which runs in the opposite direction
to the one indicated by the orientation induced at the boundary of
the cylinder.

Remark 3.4 (Definition of γp and ωp.). — Given a relative ribbon graph
(Γ, A) and a thickening (Σ,Γ, A), we make some observations in order to
help fixing ideas:

(a) every vertex v ∈ v(Γ) has as many preimages by gΓ as its valency
e(v). These preimages belong to certain Γ̃i ⊆ Σ̃i for certain cylinders
Σ̃i which could occasionally be the same. An interior point of an
edge not included in A has always two preimages. An interior point
of an edge included in A has always one preimage.

(b) for every point p ∈ Γ and every oriented direction from p along Γ
compatible with the orientation of A there is a safe walk starting
on p following that direction. This safe walk admits a lifting to one
of the cylinders Σ̃i.
In particular:

(b1) For p an interior point of an edge not belonging to A, that is for
p ∈ Γ \ (v(Γ) ∪ A), only 2 starting directions for a safe walk are
possible, corresponding to the two different preimages of p by gΓ.
We will denote the corresponding safe walks by γp and ωp. If p is
at the interior of an edge contained in A only one starting direction
for a safe walk at p is possible.

(b2) For a vertex v, not belonging to A there are as many starting direc-
tions as edges in e(v), and for any vertex v belonging to A, there
are as many starting directions as edges in e(v) minus 1 (the edge
in A whose orientation arrives to v does not count).

TOME 71 (2021), FASCICULE 6
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Definition 3.5 (Tête-à-tête property and tête-à-tête graph). — Let
(Γ, A, d) be a metric relative ribbon graph without univalent vertices. We
say that Γ satisfies the `-tête-à-tête property, or that Γ is an `-tête-à-tête
graph if

• For any point p ∈ Γ \ (A ∪ v(Γ)) the two different `-safe walks
starting at p (see Remark 3.4), that we denote by γp and ωp, satisfy
γp(`) = ωp(`).

• for a point p in A \ v(Γ), the end point of the unique `-safe walk
starting at p belongs to A.

If (Σ,Γ, A) is the regular thickening of the graph (Γ, A) where A denotes
the corresponding union of boundary components, we say that (Γ, A) gives
a relative `-tête-à-tête structure to (Σ,Γ, A) or that (Γ, A) is a relative
`-tête-à-tête graph or spine for (Σ,Γ, A).
If A = ∅, we call it a pure `-tête-à-tête structure or graph.

Lemma 3.6 (Lemma and Definition). — For an `-tête-à-tête graph
(Γ, A, d), the mapping σΓ : Γ → Γ defined by σΓ(p) = γp(`) is a well
defined homeomorphism.

Proof. — Let
σ :
∐
i

Γ̃i →
∐
i

Γ̃i

be the homeomorphism which restricts to the metric circle Γ̃i to the nega-
tive rotation of amplitude ` (move each point to a point which is at distance
l in the negative sense with respect to the orientation induced as boundary
of the cylinder). The tête-à-tête property implies that σ is compatible with
the gluing gΓ at any point which is not the preimage of a vertex. By conti-
nuity the compatibility extends to all the points. The mapping σ descends
to the mapping σΓ. This proves the assertion. �

Remark 3.7. — There is a special and easy case for π-tête-à-tête graphs:
when Γ is homeomorphic to S1. The thickening surface is in this case the
cylinder.
If Γ is S1, then the only possibilities for σΓ are the identity or the π

rotation (for the homogenous metric). Then Γ has total length of 2π/n for
some n ∈ N.

Corollary 3.8. — The homeomorphism σΓ has the following proper-
ties:

(1) it is an isometry,
(2) it preserves the cyclic orders of e(v) for every v ∈ v(Γ),
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(3) it takes vertices of valency k > 2 to vertices of the same valency,
(4) it has finite order.

Proof. — Point (1) follows from Lemma 3.6 because σΓ is a homeomor-
phism that is an isometry restricted to the edges. Point (2) follows from
the fact that γp(t+ t′) = γγp(t)(t′). More precisely, take e′ appearing after
e in the cyclic order of e(v). Take p ∈ e and γp(t) ∈ e′ for t small. Then,
it is clear that the next edge of σΓ(e) in the cyclic order of v(σΓ(v)) is the
edge of γp(l + t).

Point (3) is immediate since σΓ is a homeomorphism.
To see that σΓ has finite order when it is not S1, we observe that σΓ

induces a permutation between edges and vertices of Γ′ and is an isometry.
Then, it has finite order. When the graph is homeomorphic to S1 it is not
clear, a priori, that σΓ permutes vertices but the result follows from the
observation in Remark 3.7. �

Note that condition (2) implies that σΓ can be extended to a homeomor-
phism of a thickening surface. The induced tête-à-tête homeomorphisms
that we will define (see Definition 5.4 or 5.16) are certain extensions of it.

Corollary 3.9. — The following assertions hold:
(1) If σΓ|e = id for some edge e, then σΓ is the identity.
(2) for every m ∈ N the homeomorphism σmΓ is also induced by a tête-

à-tête graph,
(3) If σmΓ |e = id for some edge e, then σmΓ is the identity.

Proof. — Given σΓ as in (1), since it preserves the cyclic order at every
v, then it fixes all the edges adjacent to the vertices of e. Since the graph
is connected, this argument extends to the whole graph and the statement
follows.
To see (2) and find a tête-à-tête graph for σmΓ one can take the same

combinatorial graph Γ with edge lengths equal to the ones of Γ divided
by m.
Assertion (3) follows from (1) and (2). �

Example 3.10. — Given a ribbon graph Kp, q as in Example 2.1, we en-
dow it with a metric that gives length π/2 to any edge. Then we have a
tête-à-tête graph. Moreover, the homeomorphism σΓ has order lcm(p, q).
There are two special orbits, one of p vertices and another one of q vertices.

When dealing with tête-à-tête graphs and σΓ, we can assume that we
have particularly simple combinatorics as the following lemma shows:

TOME 71 (2021), FASCICULE 6
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Lemma 3.11. — If (Γ, A, d) is a tête-à-tête graph, only modifying the
underlying combinatorics (without changing the topological type of Γ), we
can ensure we are in one of the following cases:

(1) unless Γ is either homeomorphic to S1 or contractible, all the ver-
tices have valency > 3,

(2) there are no edges joining a vertex with itself and there is at most
one edge joining two vertices. In this case the restriction σΓ|v(Γ)
determines σΓ.

(3) all the edges have the same length,
(4) the graph satisfies properties in (2) and (3) simultaneously.

Proof. — If Γ is either homeomorphic to S1 or contractible, after Re-
mark 3.7, the proof is trivial.
Let’s see the case where Γ is neither homeomorphic to S1 nor contractible.

To get a graph as in (1) we can consider the graph Γ′ forgetting the valency-
2-vertices of Γ but keeping distances. It is clearly a tête-à-tête graph.

To get a graph as in (2) we consider the graph Γ as in (2). We add as
vertices some mid-point-edges q1, . . . , qm to Γ′ in order the new graph has
no loops and no more than one edge between any pair of vertices. Now, we
have to add as vertices any other point p for which γp(π), the end of the
safe walk for Γ, is one of these new vertices qi. Since σΓ takes isometrically
edges to edges, it will take midpoint edges to midpoint edges of Γ. Then
we have to add at the most all the mid point edges of Γ as vertices to reach
the desired graph.
Moreover, we note that in a graph as in (2), the image σΓ(e) of an edge e

joining vi and vj , has to be the only edge joining σΓ(vi) and σΓ(vj). Then,
σΓ|v(Γ) determines σΓ.
To find a tête-à-tête graph as in (3), we start with a graph Γ as in (1). The

homeomorphism σΓ permutes edges. Moreover the tête-à-tête condition
says that certain summations of the lengths {l(e)}e∈ se(Γ) are equal to π.
We consider only the summations that come from measuring the lengths
of the safe walks that start in vertices of Γ, which are a finite number. We
collect all these linear equations in the variables l(e) in a system S. We
consider the system of equations S′ by replacing the independent term π in
the equations of S by 1. It is clear that there exist positive rational solutions
l(e) of the system S′. Let N be a common denominator. We consider the
graph Γ′ by subdividing every edge e of Γ into N · l(e) edges of length π/N
obtaining the desired graph.
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If Γ′ does not satisfy properties in (2), replacing N by 2N it does. You
can also add the middle points of all the edges as vertices and finish as in
the proof of (2). �

Remark 3.12. — The Lemma 3.11 shows that, without loss of generality,
we can assume that a tête-à-tête graph has all the edges of the same length
1 and safe walks of integer length `. Anyway, we keep the original definition
by historical reasons.

A way to obtain relative tête-à-tête graphs from pure ones is the notion
of ε-blow up.

Definition 3.13 (ε-Blow up of (Σ,Γ) at a vertex of Γ). — Let Γ be
a pure `-tête-à-tête graph and (Σ,Γ) be a thickening surface. Let v be a
vertex of valency p. We consider the oriented real blow up of Σ at v. We
denote by Σ′ and Γ′ the transformations of Σ and Γ. Note that Σ has one
more boundary component and Γ′ has changed the vertex v by a circle
A ∼= S1 with p edges attached. Away from v, we consider the metric in Γ′
as in Γ. We assign the length 2ε to the new edges in Γ′ along S1 and redefine
the length of the edges corresponding to each e ∈ e(v) by length(e) − ε.
(See Figure 3.1 below). We do this at every vertex on the orbit of v by the
σΓ and denote the resulting space by Blv(Γ, ε). We say that it is the result
of performing the ε-blowing up of Γ at v.

It is immediate to check that (Γ′, A) is a relative tête-à-tête graph and
that (Σ′,Γ′, A) is a thickening.

L

L− ǫ

2ǫ

Figure 3.1. Blow-up some vertex v of valency 4.
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4. Periodic homeomorphisms up to isotopy

In this section, for the reader convenience, we recall some elementary
known facts about periodic homeomorphisms both in MCG(Σ) and in
MCG(Σ, ∂Σ). We fix notation and conventions for the rest of the work.

Notation 4.1. — Let Σ be a fixed surface with non-empty boundary.
We denote by [φ] the class of homeomorphisms of φ up to isotopy. The

group, with the composition, of these equivalence classes is called the Map-
ping Class Group MCG(Σ). Two homeomorphisms of the same class are
said to be boundary-free isotopic or simply isotopic.

A homeomorphism of a surface is periodic in MCG(Σ) or periodic up to
boundary-free isotopy if there exists n ∈ N such that [φn] = [id].

Let B be a subset of ∂Σ. We denote by [φ]B, φ|B the class of homeo-
morphisms that are isotopic to φ by an isotopy that coincides with φ|B
at B all along the family. We denote by MCG(Σ, B, φ|B) the set of these
classes. If φ and ψ are in the same class we say they are isotopic relative
to the action φ|B . If the action is the identity on B, we omit the action in
the notation and recover the classical notion of isotopy relative to B, that
means that all the homeomorphisms in the isotopy fix B pointwise. We
write these classes simply by [φ]B . We always consider the case in which
B is a union of connected components of ∂Σ and denote it by B = ∂1Σ.
In the case B = ∂Σ we will simply write [φ]∂, φ|∂ or [φ]∂ . Note that in this
last case we recover the classical notion of mapping classes fixing pointwise
the boundary.
We denote by MCG+(Σ), MCG+(Σ, B, φ|B) or MCG+(Σ, B) the cor-

responding restrictions to homeomorphisms preserving orientation.

Remark 4.2. — Observe that MCG(Σ, ∂, φ|∂) is not a group. However,
the group MCG(Σ, ∂) acts transitive and freely on it.

4.1. Periodic mapping classes in MCG(Σ)

In this subsection we assume all isotopies are boundary-free. We focus
on periodic elements of MCG+(Σ).

A key result, only true in dimension 2 (see [10]), is the following classical
theorem:

Theorem 4.3 (Nielsen’s Realization Theorem [7], also see [3, Theo-
rem 7.1]). — If φn is isotopic to the identity, then there exists φ̂ ∈ [φ]
such that φ̂n = Id. Moreover, there exists a metric on Σ such that φ̂ is an
isometry.
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We will use the following well-known fact:

Lemma 4.4. — Let φ : Σ → Σ be an orientation-preserving isometry
of Σ. Then either the fixed points are isolated and disjoint from the bound-
ary or φ is the identity. Moreover, if φ is a periodic homeomorphism, then
the points with non trivial isotropy for the action generated by φ are also
isolated and disjoint from the boundary. As a consequence, given a periodic
homeomorphism φ of a surface that leaves all the boundary components
invariant, the restriction to any boundary component has the same order
than φ.

Proof. — The second paragraph of the proof of [3, Theorem 6.8 (pa-
ge 202)], proves that fixed-points of isometries are isolated. That points
with non trivial isotropy for the action generated by φ are isolated follows
from the fact that they are fixed points for some power φm 6= id.
The last part of the statement follows by observing that removing points

with non-trivial isotropy does not disconnect the surface. �

Notation 4.5. — Let φ be a periodic orientation preserving homeomor-
phism of Σ. We denote by Σφ the orbit space (which is a surface) and by

p : Σ→ Σφ

the quotient mapping. The mapping p is a Galois ramified covering map.
The set of points in Σ whose orbit has cardinality strictly smaller than
the order of φ are called ramification points. Its images by p are called
branching points.

Remark 4.6. — Since the covering map p is Galois, any point at the
preimage by p of a branching point is a ramification point.

Definition 4.7. — Let φ be a periodic homeomorphism of Σ that
leaves a boundary component Ci ⊆ ∂Σ invariant. We cap this bound-
ary component Ci with a disk D2 obtaining a new surface Σ′. We extend
φ to a periodic orientation-preserving homeomorphism of Σ′ as follows:
if θ is the angular and r the radial coordinates for D2 then we define
Φ : D2 → D2, (θ, r) 7→ (r, φ(θ)). The homeomorphisms Φ and φ glue along
Ci. We call this extension procedure the Alexander trick.

Remark 4.8. — Recall that given φ and ψ two homeomorphisms of Σ
that both leave a spine Γ invariant, if φ|Γ and ψ|Γ are isotopic, then φ

and ψ are isotopic. In other words, the isotopy type of the restriction of a
homeomorphisms to an invariant spine determines the isotopy type of the
homeomorphism of Σ.
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Lemma 4.9. — Let Σ be a surface with ∂Σ 6= ∅ which is not a disk or
a cylinder. Let φ : Σ → Σ be an orientation preserving homeomorphism.
Then φ is periodic up to isotopy if and only if there exists φ̂ ∈ [φ] such that
there exists a spine Γ of Σ which is invariant by φ̂.

Proof. — Assume φ is periodic up to isotopy. By Nielsen’s realization
Theorem we can assume that φ is periodic. Let Σφ be the orbit space of φ.

The quotient map p : Σ → Σφ is a branched covering map whose ram-
ification points are isolated and are contained in the interior of Σ by
Lemma 4.4. Pick any spine Γφ for Σφ containing all the branch points.
The set Γ := p−1(Γφ) is invariant and it is a spine for being the pre-image
of a spine containing the branching locus.
Conversely, assume that an invariant spine Γ exists for some φ̂ ∈ [φ].

We consider the spine only with vertices of valency greater than 2. Since
φ̂ leaves the spine invariant, then φ̂ acts as a permutation on edges and
vertices. Then, there is a power of φ̂, say φ̂m that leaves all the edges
and vertices invariant. Thus, φ̂m|Γ is isotopic to the identity, and hence
φ̂m too. �

Remark 4.10. — In the theorem above we excluded the cases when Σ is
a cylinder or a disk for being trivial. In these cases every homeomorphism
is isotopic to a periodic homeomorphism.

Not every spine obtained in the proof of the previous lemma accepts a
tête-à-tête structure such that σΓ = φ|Γ (see Example 5.9). In Theorem 5.10
we will see show how to find one that accepts it.

Notation 4.11. — If a homeomorphism φ of Σ leaves a spine Γ invariant,
then the homeomorphism lifts to a homeomorphism of ΣΓ that we denote
by φ̃.

If φ is a periodic homeomorphism of Σ that leaves a boundary compo-
nent Ci invariant, then φ|Ci is a periodic homeomorphism of S1. Then, we
can consider the usual Poincare’s rotation number rot(φ|Ci) with values
in (0, 1].

It is well known that rotation numbers classify periodic homeomorphisms
of the circle up to conjugation. As an easy consequence we have the follow-
ing:

Remark 4.12. — Any orientation preserving periodic homeomorphism of
the cylinder which leaves invariant each boundary component is conjugate
to a rotation.
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4.2. Elements of MCG(Σ, ∂1Σ) which are periodic in MCG(Σ)

Now we take a look at the Mapping Class Group where homeomorphisms
and isotopies fix pointwise the union of some boundary components, that
we denote by ∂1Σ ⊂ ∂Σ (recall Notation 4.1).
Consider a non-empty union ∂1Σ of the boundary components. We study

the elements of [φ]∂1 ∈MCG+(Σ, ∂1Σ) that are boundary-free isotopic to
a periodic one.
If Σ is the disk, it is clear that MCG+(Σ, ∂Σ) ' 0. If Σ is the cylinder,

then MCG+(Σ, ∂Σ) ' Z and it is generated by the right (or left) Dehn
twist along a curve that is parallel to the boundary components. All its
elements are boundary-free isotopic to the identity.

Remark 4.13. — In this work we take the convention that negative Dehn
twists are right-handed Dehn twists. See Figure 4.1.

Figure 4.1. We see an oriented annulus with inner radius equal to 1
and outer radius equal to 2 embedded on the plane on the left and
the image of the red curve by a right-handed Dehn twist on the right.
The little curve on the top of each picture represents the orientation
on the annulus. In polar coordinates the transformation is (r, θ) 7→
(r, θ + 2π(r − 1)).

Let φ be an orientation preserving homeomorphism of Σ, fixing pointwise
∂1Σ and boundary-free isotopic to a periodic one φ̂.
We need the notion of fractional Dehn twist coefficients. The fractional

Dehn twist coefficient at a boundary component can be understood as the
difference between φ and a truly periodic representative at that boundary
component. We define fractional rotation number in a slightly different way
than the usual one, since it is more convenient for our applications, and
allows a self contained exposition for the case that we need.
We start recalling some facts about Dehn twists. If we do not say the

contrary, the letter D with a subindex, denotes a negative (right-handed)
Dehn twist along some curve that will be clear from the context.
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Lemma 4.14. — Let Σ be a surface with r > 0 boundary components
that is not a disk or an cylinder. Then the subgroup of the mapping class
group generated by the Dehn twists D1, . . . Dr along curves parallel to
each boundary component is free abelian of rank r.

Proof. — [3, Lemma 3.17]. �

As a consequence, we find the following result.

Lemma 4.15. — Let Σ be a surface that is neither a disk nor a cylinder.
Let ∂1Σ be non-empty union of r boundary components of Σ. Let φ be
an orientation preserving homeomorphism of Σ fixing ∂1Σ pointwise. If φ
is boundary-free isotopic to the identity then there exist unique integers
n1, . . . , nr such that we have the equality [φ]∂1 = [Dn1

1 ]∂1 · . . . · [Dnr
r ]∂1 .

Definition 4.16 (fractional Dehn twist coefficient). — Let Σ be a sur-
face that is neither a disk nor a cylinder. Let ∂1Σ be non-empty union
of r boundary components of Σ. Let φ : Σ → Σ be a homeomorphism
fixing pointwise ∂1Σ and boundary-free isotopic to a periodic one. Let
m ∈ N such that [φm] = [id]. Let t1, . . . , tr be integers such that [φm]∂1 =
[Dt1

1 ]∂1 ·. . .·[Dtr
r ]∂1 . We define the fractional Dehn twist coefficient at Ci by

rot∂1(φ,Ci) := ti/m.

Note that the fractional Dehn twist coefficients do not depend on the
number m we choose to compute them or the representative φ ∈ [φ]∂1 .

Now we describe how to compute the fractional Dehn twist coefficient
in terms of an invariant spine. First of all, we observe that in the isotopy
class fixing ∂1Σ pointwise there is always a representative fixing a spine.
Indeed, the following lemma is elementary:

Lemma 4.17. — Let φ be an orientation preserving homeomorphism
of a surface Σ which fixes pointwise a non-empty union ∂1Σ of boundary
components, and which is boundary-free isotopic to a periodic homeomor-
phism φ̂. Then there there exists a collar U of ∂1Σ, a homeomorphism
f : Σ → Σ \ U , and a homeomorphism ψ of Σ such that: ψ is isotopic
relative to ∂1Σ to φ and the restriction ψ|Σ\U is periodic and equal to
f ◦ φ̂ ◦ f−1.
In particular ψ leaves a spine Γ invariant and ψ|Γ is periodic.

Let Σ be an oriented surface with non-empty boundary that is neither a
disk nor a cylinder. Let φ be an orientation preserving homeomorphism of
Σ that fixes a non-empty union ∂1Σ of components of the boundary and
which is boundary-free isotopic to a periodic one. Let A be the union of
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the remaining components of the boundary. Suppose that there exists a
relative spine (Γ, A) in (Σ, (Γ, A)) which is invariant by φ.
We cut Σ along Γ into a disjoint union of cylinders, one for each com-

ponent Ci of ∂1Σ. We use Notations 2.3 and 4.11. We lift the retraction
Σ → Γ to a retraction ΣΓ → Γ̃ and the homeomorphisms φ to a homeo-
morphism φ̃ of ΣΓ. Let pi

n be the rotation number of φ̃|Γ̃i . Choose in the
cylinder Σ̃i a retraction line Li from Ci to Γ̃i. Consider the orientation in
Σ̃i inherited from the orientation in Σ. We take the classes [Li] and [φ(Li)]
in H1(Σ̃i, ∂Σ̃i). The class

φ̃|n
Σ̃i

([Li])− [Li]

belongs to H1(Σ̃i) since φ̃|n
Σ̃i

is the identity at the boundary. Let

ki :=
(
φ̃|n

Σ̃i
([Li])− [Li]

)
· [Li],

that is the oriented intersection number of the two homology classes.

Lemma 4.18. — We have the equality rot∂1(φ,Ci) = ki/n. In particular
ki does not depend on the chosen spine Γ or even on the representative
of [φ]∂1 .

Proof. — Note that φn fixes Γ and that the lifting φ̃n|Σ̃i is isotopic rel-
ative to the boundary to the composition of ki right boundary Dehn twist
if ki is positive (and −ki left Dehn twists if ki is negative) around the
boundary component Ci. Then [φn]∂1 = [D1]k1 · · · · · [Dr]kr and the result
follows. �

Corollary 4.19. — Let g, h : Σ→ Σ be two homeomorphisms that fix
pointwise a non empty union ∂1Σ of components of the boundary ∂Σ. Let
A be the union of the remaining boundary components. Assume that both
preserve a common relative spine (Γ, A) and that they coincide and are
periodic at it. Then the equality rot∂(g, Ci) = rot∂(h,Ci) holds for every i
if and only if h and g are isotopic relative to ∂1Σ.

Corollary 4.20. — Let φ : Σ → Σ be a homeomorphism that fixes
pointwise a non-empty union ∂1Σ of components of the boundary, and
that is isotopic to a periodic homeomorphism φ̂. Let Ci be a component in
∂1Σ. Then, a representative between 0 and 1 of the usual rotation number
rot(φ̂|Ci) equals |rot∂1(φ,Ci) − brot∂1(φ,Ci)c | where bxc is the biggest
integer less that x.
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Remark 4.21. — We observe that by our convention on Remark 4.13,
negative (or equivalently right-handed Dehn twists) produce positive frac-
tional Dehn twist coefficients. This is in accordance with the previous no-
tions of fractional Dehn twist coefficient in the literature.

5. Tête-à-tête twists and periodic classes of MCG(Σ).

In this section we introduce tête-à-tête twists, which are mapping classes
associated with tête-à-tête graphs, and provide a wide generalization of
Dehn twits. In fact we show that all periodic classes ofMCG(Σ) that leave
invariant at least one boundary component is a tête-à-tête twist in two
different ways:

• to a tête-à-tête graph we associate an element of MCG(Σ, ∂1Σ),
that we call the tête-à-tête twist associated with the tête-à-tête
graph (see Definition 5.4) in Section 5.1, and prove that all elements
ofMCG(Σ, ∂Σ) periodic inMCG(Σ), with positive fractional Dehn
twits coefficient are tête-à-tête twists. In fact enlarging the defini-
tion of tête-à-tête graph to that of the signed tête-à-tête graphs (see
Definition 5.2), we can represent all elements of MCG(Σ, ∂Σ) peri-
odic in MCG(Σ), both with positive and negative fractional Dehn
twist coefficient. The signed tête-à-tête graphs and twists were also
introduced by C. Graf in [4].

• to a tête-à-tête graph we associate a (really) periodic homeomor-
phisms that we call periodic tête-à-tête twist associeted with the
graph (see Definition 5.16) in Section 5.2, and show that any peri-
odic homeomorphism is boundary free isotopic to a periodic tête-
à-tête twist.

5.1. Signed tête-à-tête graphs and representatives in
MCG(Σ, ∂1Σ).

Our objective in this section is to represent homeomorphisms which
fix pointwise a union ∂1Σ of components of the boundary, and that are
boundary-free isotopic to a periodic one.
We start with the definition of signed tête-à-tête graph that generalizes

Definition 3.5.
We will work directly for the class of relative graphs in order to avoid

repetitions. The main results are the Theorems 5.10 and 5.18.

ANNALES DE L’INSTITUT FOURIER



TÊTE-À-TÊTE TWISTS, MONODROMIES AND MAPPING CLASSES 2669

Let (Γ, A) be a metric relative ribbon graph. Let (Σ,Γ, A) be a thicken-
ing, let

gΓ : ΣΓ → Σ

be the gluing mapping as in Notation 2.3.
We start making an extension of Remark 3.4 adding point (b’):

Remark 5.1 (Definition of γ−p , ω−p , γ0
p , γ+

p and ω+
p ). —

(b’) for every point p ∈ Γ \ v(G) and every of the two possible oriented
direction from p along Γ, there is a walk starting on p following each
of this directions, such that in every vertex v, the walk continues
along the previous edge in the cyclic order of e(v). We denote by γ−p
and ω−p these walks of length π and speed 1. Each of the oriented
directions at p corresponds to a point in q ∈ g−1

Γ (p), which lives
in a cylinder Σ̃i. These walks are the image of the negative sense
parametrization of the boundary of Σ̃i starting at q.

We denote by γ+
p and ω+

p the usual safe walks of Definition 3.2 or Re-
mark 3.4 of length π and speed 1. We call γ+

p and ω+
p the positive safe

walks and γ−p and ω−p the negative safe walks.
In the case of points in A, since A is oriented, we have also a positive

and negative sense for a parametrization. Then, for p ∈ A, we define γ+
p

(respectively γ−p ) as the parametrization from p that starts along A in the
positive (respectively negative) sense and that when reaching a vertex v

takes the next (respectively previous) edge in the order of e(v)).
We also define a safe constant walk γ0

p := p.

Before stating the next definition, recall that there is a bijection between
the set C of boundary components of Σ not in A and the cylinders Σ̃i’s.
Given a “sign” mapping ι : C → {0,+,−}, we denote by ι(i) the image by
ι of the component that corresponds to Σ̃i under the bijection.

Definition 5.2 (Signed tête-à-tête property and graph). — Let (Γ, A)
be a metric relative ribbon graph and let (Σ,Γ, A) be a thickening. Let C
denote the set of boundary components of Σ which do not belong to A. Fix
a mapping

ι : C → {0,+,−}.

We say that (Γ, A) satisfies the signed tête-à-tête property for ι or that
(Γ, A, ι) is a signed relative tête-à-tête graph if given any point p contained
at the interior of an edge the following properties are satisfied:
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(1) if p does not belong to A and p ∈ gΓ(Σ̃i) ∩ gΓ(Σ̃j) for some i, j,
then we have the equality

γι(i)p (π) = ωι(j)p (π).

(2) if p belongs to A and p belongs to gΓ(Σ̃i), then the end point γι(i)p (π)
of the unique signed safe walk starting at p belongs to A.

Notation 5.3 (Remark and Notation). — Observe that the mapping Γ \
v(Γ) → Γ that sends p ∈ Γ \ v(Γ) to γι(i)p (π) extends to v(Γ) and define a
homeomorphism of Γ that we denote by σ(Γ, ι). The proof is as the one of
Lemma 3.6.

Definition 5.4 (Definition of (signed) tête-à-tête twist φ(Γ,A, ι)).
Let (Γ, A, ι) be a signed relative tête-à-tête graph. For every thickening

(Σ,Γ, A) and for every choice of product structure Σ̃i ≈ Γ̃i× I we consider
the homeomorphism

(5.1) ψi : Γ̃i × I −→ Γ̃i × I

(p, s) 7→
(
γ̃ι(i)p (s · π), s

)
where γ̃ι(i)p is the lifting of the safe walk to Γ̃i. The homeomorphism ψi of
the cylinder can be visualized very easily using the universal covering of
the cylinder as in Figure 5.1.
These homeomorphisms glue well due to the properties of the signed

relative tête-à-tête graph (Γ, ι) and define a homeomorphism of (Σ,Γ, A)
that leaves ∂1Σ fixed pointwise and A invariant. We denote by φ(Σ,Γ, A, ι)
the resulting homeomorphism of (Σ, A). We call it the induced (signed)
tête-à-tête twist.

Remark 5.5. — Given two different product structures of the cylinders,
the induced tête-à-tête twists are conjugate by a homeomorphism that
fixes Γ.
For two different embeddings in Σ, the tête-à-tête twists are conjugate

by the same homeomorphism of Σ that relates the two embeddings.

The homeomorphism φ(Σ,Γ, A, ι) leaves Γ invariant and by Lemma 4.18
has obviously the following fractional Dehn twist coefficients (see Fig-
ure 5.1):

(5.2) rot∂1
(
φ(Σ,Γ, A, ι), Ci

)
= ι(i) · π

length(Γ̃i)
.
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Ci

R× I Σ̃i ≈ Γ̃i × I

Li

φ̃(Li)

Γ̃i

ψ̃i

Figure 5.1. Visualization of the lifting ψ̃i of ψi to the universal covering
of Σ̃i. You can easily read (5.2) from it.

Remark 5.6. — Observe that if ι(i) = 0 for some i, then the homeo-
morphism ψi is the identity and rot∂1(φ(Γ, A, ι), Ci) = 0. In particular, by
Corollary 3.9 we have that the signed tête-à-tête twist must be the identity
restricted to Γ and hence rot∂1(φ(Σ,Γ, A, ι), Cj) ∈ Z for all boundary com-
ponents. So φΣ,Γ, A, i equals a composition of Dehn twists around curves
parallel to the boundary.

Remark 5.7. — If all the signs are positive this notion coincides with the
first author’s original notion of tête-à-tête twists.

Example 5.8. — The homeomorphisms induced by the tête-à-tête struc-
tures on theKp, q ribbon graphs given in Example 3.10 are the monodromies
fixing the boundary of the Milnor fibrations associated to the singularities
xp − yq = 0. This is an original construction from [2].

Before going on with the section we note that not every invariant spine
admits a metric modeling the corresponding homeomorphism. Indeed, we
have the following example.

Example 5.9. — In Figure 5.2 you can find a spine Γ for the genus 1
surface with one boundary components that is invariant by the π-rotation
along the vertical axes isotoped to be the identity on both boundary com-
ponents. In particular, it has fractional Dehn twist coefficient equal to 1/2
on both boundary components.
This ribbon graph does not admit a tête-à-tête structure that models the

given homeomorphism. Let L1 and L2 be the lengths of the edges of the
graph that meet both cylinders of ΣΓ. And let L3 be the other one.

By (5.2), since fractional Dehn twist coefficients are the same on both
boundary components, we have that 1/2(L1 + L2) = π and that 1/2(L1 +

TOME 71 (2021), FASCICULE 6



2672 N. A’Campo, J. F. Bobadilla, M. Pe Pereira & P. Portilla

L2 + 2L3) = π. This is turn would imply the equality L3 = 0 which is not
possible since all lengths of edges must be strictly positive.

π

Figure 5.2. A spine for the genus 1 surface with one boundary com-
ponents that is invariant by the π-rotation along the vertical axes.

In the next theorem we see that every homeomorphism that fixes the
boundary pointwise that is boundary-free isotopic to a periodic one, is a
signed tête-à-tête homeomorphism up to isotopy fixing the boundary. We
state first the non-relative case, which improves [4, Theorem 3.1.1] as we
comment on Remark 5.12.

Theorem 5.10. — Let Σ be an oriented surface with non-empty bound-
ary. Let φ be an orientation preserving homeomorphism fixing pointwise
the boundary, and boundary-free isotopic to a periodic one φ̂. Then,

(i) there exists a signed tête-à-tête spine (Γ, ι) embedded in Σ that is
invariant by φ such that the restriction of φ to Γ coincides with
φ(Σ,Γ, ι).

(ii) The isotopy classes relative to the boundary [φ]∂ and [φ(Σ,Γ, ι)]∂
coincide.

(iii) the homeomorphisms φ and φΓ, ι are conjugate by a homeomor-
phism that fixes the boundary pointwise, fixes Γ and is isotopic to
the identity in MCG(Σ, ∂Σ).

Corollary 5.11. — This theorem characterizes the originally defined
by the first author tête-à-tête twists as (i.e. non-signed tête-à-tête twists):
orientation preserving homeomorphism fixing pointwise ∂1Σ and boundary-
free isotopic to a periodic one φ̂ with strictly positive fractional Dehn twist
coefficients.
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Remark 5.12. — We compare the above corollary with [4, Theorem 3.1.1].
In the cited reference, the author proves a similar result but he enlarges the
set of permitted tête-à-tête graphs, either by allowing vertices of valency 1
or by allowing safe walks of different lengths for each boundary component.
A homeomorphism leaving a spine invariant leaves the cylindrical decom-
position invariant. Our notion imposes that the homeomorphism consists
in rotating all the cylinders at the same speed with respect to the metric,
while Graf’s notion needs to allow them them rotating at different speeds
in the case of no vertices of valency one (or needs vertices of valency 1,
(which is equivalent to allow different speeds). Note that Graf’s proof can
not be adapted to prove our result.

Proof of Theorem 5.10. — We use Notation 2.3, Notation 4.5 and No-
tation 4.11.
By Lemma 4.17 we can assume that there exist a collar for ∂Σ such that

φ′ = φ|Σ\U is periodic. Let n be the order of φ′. Let Σφ′ be the quotient
surface. By abuse the notation we are writing Σφ′ instead of (Σ\U)φ′ since
they are naturally homeomorphic.
We will construct the invariant graph Γ as in the proof of Lemma 4.9,

as the preimage by the quotient map p : Σ → Σφ′ of an appropriate spine
Γφ′ for Σφ′ . The proof consists in giving a metric for the spine in Σφ′ such
that the pullback metric in the corresponding invariant graph in Σ solves
the problem.
Let us see what conditions on the lengths of the edges of Γφ′ have to

be imposed such that the pullback-metric in Γ defines a tête-à-tête metric
adapted to φ, that is, so that we have the equality γp(π) = φ(p) for the
safe walks along Γ and such that the given signed tête-à-tête twist φΓ, ι has
the same fractional Dehn twist coefficients as φ.
We define

Ri := |rot∂1(φ,Ci)| .
The tête-à-tête structure of Γ has to satisfy the equality γp(π) = φ(p) and
moreover, the rotation number of φΓ, ι at Ci has to be Ri. So, by (5.2), we
want that for every i with Ri 6= 0 we have

(5.3) rot∂1(φ,Ci) · length(Γ̃i) · ι(i) = π,

If rot∂(φ,Ci) equals 0, by the definition of constant safe walk (see the
end of Remark 5.1), we obtain no condition.
By the definition of Ri and the fact that both rot∂1(φ,Ci) and ι(i) have

the same sign, this equation becomes:

(5.4) Ri · length(Γ̃i) = π,
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Moreover, we want the metric on Γ to be invariant by φ′ so it has to be
the pullback of a metric on Γφ′ . We denote by Σφ

′

Γφ′ the surface obtained
by cutting Σφ′ along Γφ′ and consider the gluing map gΓφ′ : Σφ

′

Γφ′ → Σφ′

analogously to Notation 2.3. We consider the lifting of p : Σ→ Σφ′ to the
cut surfaces and we denote it by p̃ : ΣΓ → Σφ

′

Γφ′ . We denote by p̃(Γi) the
preimage of p(Γi) by gΓφ′ . Since p̃|Γ̃i : Γ̃i → p̃(Γi) is a n : 1 covering map,
we have the equality

(5.5) length(Γ̃i) = n · length
(
p̃(Γi)

)
.

Note that one can easily read length(p̃(Γi)) looking at the lengths of the
edges of p(Γi) ⊆ Γφ′ .
Putting (5.4)-(5.5) together, we have that what we need is that the equal-

ity

(5.6) length
(
p̃(Γi)

)
= π

n ·Ri
holds for all i with Ri 6= 0.

Next, we see that finding a metric spine Γφ′ ↪→ Σφ′ containing all branch-
ing points, and whose lengths satisfy (5.6) for every i with Ri 6= 0 we prove
the theorem by taking Γ = p−1(Γφ′) with the pullback metric.
Since Γφ′ contains the branching points, the retraction of Σφ′ to Γφ′ lifts

to a retraction of Σ to the preimage Γ := p−1(Γφ′). Hence Γ is a spine of Σ.
Then it is clear that the graph Γ := p−1(Γφ̂) is a signed tête-à-tête graph

for ι defined as ι(i) = sign(rot∂1(φ,Ci)). Let φ(Σ,Γ, ι) be the induced signed
tête-à-tête twist. This tête-à-tête structure on Γ induces by construction a
rotation φ̃(Σ,Γ, ι)|Γ̃i of rotation number∣∣rot∂1(φ,Ci)− brot∂1(φ,Ci)c

∣∣ in each Γ̃i.

It is conjugate to φ̃|Γ̃i since they have the same rotation number (recall
Corollary 4.20). The orbits of φ̃|Γ̃i are the fibres of p̃|Γ̃i . By the choice
of lengths, the orbits of the tête-à-tête rotation in Γ̃i are also the fibres
of p̃|Γ̃i . Conjugation between homeomorphisms of S1 preserves the cyclic
order in S1 of a point p and its iterations. Then, since φ̃|Γ̃i and φ̃(Σ,Γ, ι)|Γ̃i
are conjugate with the same orbits, they coincide. Then φ|Γ and φ(Σ,Γ, ι)|Γ
coincide.
By Remark 4.8 we have that φ and φ(Σ,Γ, ι) are isotopic since they coin-

cide on Γ.
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We also see that, by the imposed metric, rot∂1(φ(Σ,Γ, ι), Ci) = rot∂1(φ,Ci)
(just observe that the signed safe walk corresponding to the cylinder Γ̃i ×
[0, 1] winds up Ri times around Γ̃i). So, since φ and φ(Σ,Γ, ι) coincide on a
spine with a periodic homeomorphism and have the same fractional Dehn
twist coefficients we can conclude by Corollary 4.19 that they are isotopic
relative to the boundary.
The restrictions of φ̃ and φ̃(Σ,Γ, ι) to each invariant cylinder Σ̃i are conju-

gate by a homeomorphism that leaves its boundary fixed pointwise. Then,
these conjugation homeomorphisms glue together to a conjugation home-
omorphism for φ and φ(Σ,Γ, ι) that leaves Γ and ∂Σ fixed pointwise. Then,
φ and φ(Σ,Γ, ι) are also conjugate as required in the statement.

Now we finish the proof finding such an invariant spine Γ.
First we prove the case g := genus(Σφ′) > 1. To choose a spine in

Σφ′ , we use a planar representation of Σφ′ as a convex 4g-gon in R2 with r
disjoint open disks removed from its convex hull. The sides of the 4g-gon are
labelled clockwise like a1b1a

−1
1 b−1

1 a2b2a
−1
2 b−1

2 . . . agbga
−1
g b−1

g , where edges
labelled with the same letter (but different exponent) are identified by
an orientation reversing homeomorphism. The number r is the number of
boundary components. We number the boundary components Ci ⊆ ∂Σ,
1 6 i 6 r. We denote by d the arc a2b2a

−1
2 b−1

2 . . . agbga
−1
g b−1

g . We consider
l1, . . . , lr−1 arcs as in Figure 5.3. We denote by c1, . . . , cr the edges in
which a−1

1 (and a1) is subdivided, numbered according to the component
p(Ci) they enclose. We consider the spine Γφ′ of Σφ′ given by the union of
d, a1b1a

−1
1 b−1

1 and the li’s. We construct Γφ′ so that it passes by all the
branching points of p.
We denote by D, B1 and Ci the lengths of d, b1 and ci respectively. We

will assume all the li and b1 of the same length L. Then the system (5.6)
for this case can be expressed as follows:

(5.7)

2L+ 2C1 = π

n ·R1

2L+ 2Ci = π

n ·Ri
for i = 2, . . . , r − 1

2L+ 2Cr +D = π

n ·Rr
,

which has obviously positive solutions Ci, D after choosing for example
L = min{ π

4 ·n ·Ri }. We assign length(ai) = length(bi) = D/4(g − 1) for
i > 1 to get a metric on Γφ. We consider the pullback-metric in Γ. This
finishes the case genus(Σφ′) > 1.
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d

c1
c2

cr

a1

b1

a−1
1 b−1

1

. . .

p(C1) p(C2)

p(Cr)

lr−1

l2

l1

Figure 5.3. Planar representation of the surfaceΣφ of genus> 1
and r boundary components p(C1), . . . , p(Cr). Drawing of l1, . . . , lr
and c1, .., cr.

c

c

c

p(C1) p(C2) p(Cr−1)

p(Cr)

p(C1)
p(Cr)

. . .

p(C2)

. . . q1

q2

a1

a2

a′2

ar

l1 l2 lr−1

Figure 5.4. In the first two pictures we have the disk with r−1 smaller
disks removed. In the third one we forget the identification along the
exterior and we draw a spine.
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For the case genus(Σφ′) = 0 we proceed a bit differently to choose the
spine Γφ′ . The surface Σφ′ is a disk with r − 1 smaller disjoint disks re-
moved. We cut the surface along an embedded segment that we call c as
we can see in the first image of Figure 5.4. Cutting along c we get another
planar representation of Σφ′ as in the second image. The exterior bound-
ary corresponds to cc−1; we call the exterior boundary P and denote by q1
and q2 the points in P that come from the two extremes of c. We look at
the graph of the third picture in Figure 5.4. We have drawn r − 1 vertical
segments l1, . . . , lr−1 so that P union with them contains all branch points
and is a regular retract of the disk enclosed by P minus the r disks.
The rest of the proof follows by cases on the number of boundary com-

ponents r and the number of branch points.
If r = 1 and there are no branch points or 1 branch point, then Σ is a

disk (this follows from the Hurwitz formula) which is not covered by the
statement of the theorem. If there are at least 2 branch points, we can get
that two branch points lie in q1 and q2 so that Γ has no univalent vertices.
In this case we set length(c) = π

2nR1
.

Suppose now r = 2. If there are no branch points, then Σ is a cylinder
which is not included in the statement of this theorem.
If there is at least 1 branch point we consider two cases, namely R1 = R2

and R1 < R2.
In the case R1 = R2, we choose the graph depicted on the right hand

side of Figure 5.5. That is, q1 and q2 are exactly a1 ∩ a2. In this case we do
not care about the location of the branch point as long as it is contained
in the graph. In this case we set lenght(c) = length(l1) = π

2nR1
In the case R1 < R2, we choose the graph depicted on the left hand side

of Figure 5.5 and we choose the branch point to lie on q1, this way, since q1
is the only vertex of valency 1, we get that the preimage of this graph by p
does not have univalent vertices. We set the lengths, length(l1) = π

nR1
and

length(c) = ( π
nR2
− π

nR1
)/2.

Suppose now r > 2.
We are going to assign lengths to every edge in Figure 5.4 and decide

how to divide and glue P in order to recover Σφ′ . This means that we are
going to decide the position of q1 and q2 in P , relative to the position of
the ends of the li’s, in order to get a suitable metric spine of the quotient
surface Σφ′ .
To every vertical interior segment lj we assign the same length

L < min
{

π

2(n ·Ri)

}
.
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a1 a2 a1 a2

p(C1)

p(C2)

q1

q2

p(C2)

p(C1)
l1

l1

q1

q1

Figure 5.5. On the left, the case R1 < R2. On the right the case when
R1 = R2.

We look at the segments a1, a2, a
′
2, . . . , ar−1, a

′
r−1, ar in which P is di-

vided by the vertical segments (see Figure 5.4) and give lengths A1, A2, A
′
2,

. . . , Ar−1, A
′
r−1, Ar. The following system corresponds to (5.6) for this

case:

(5.8)

A1 + L = π

n ·R1

Ai +A′i + 2L = π

n ·Ri
for i = 2, . . . , r − 1

Ar + L = π

n ·Rr
.

It has obviously positive solutions Ai. We choose Ai = A′i for i = 2, . . . ,
r − 1.
In order this distances can be pullback to the original graph Σφ′ , there

is one equation left: we have to impose equal length to the two paths c and
c−1, or in other words to place q1 and q2 dividing P in two segments of
equal length.
If φ has at least two branching points, we choose q1 and q2 to be any two

of the branching points. Then, we can choose the metric and the vertical
segments so that q1 and q2 are the middle points of a1 and ar. If we identify
the two paths c and c−1 joining q1 and q2 then we recover Σφ′ , and we get
a metric graph on it. Then, the preimage by p of the resulting metric
graph gives a metric graph. We claim that this graph has no univalent
vertices. Indeed, a univalent vertex of this graph has to be the preimage of
univalent vertices of the graph below, which are only q1 and q2, which are
branching points. By Remark 4.6 all their preimages are ramification points
and then they are not univalent vertices. The metric induces a tête-à-tête
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structure in the graph by construction. Now, we finish the proof as in the
case genus(Σφ′) > 1.
If φ has no ramification points or only one, in the previous construction

we could obtain univalent vertices at the preimages of q1 and q2. So we
need to do some changes in the assignations of lengths and in the positions
of the vertical segments relative to q1 and q2 in order that the extremes q1
and q2 of c coincide with vertices of the graph in Σφ′ .
Assume that A1 > A2 > · · · > Ar.
We choose q1 := a1 ∩ a2. Let q2 be the antipodal point (so q1 and q2

divides P in two paths of equal length). If q2 is a vertex we have finished.
If it is not, then it is on a segment a′i, for some i = 2, . . . , r1. We redefine
A′i := d(a′i ∩ a′i−1, q2) and Ai := Ai + d(q2, a

′
i ∩ a′i+1). Now the antipodal

point of q1 is ai ∩ ai+1. We redefine q2 := ai ∩ ai+1 and identify orientation
reversing the two paths joining q1 and q2 to recover Σφ.
Now the pullback of the resulting metric graph has no univalent ver-

tices and gives a tête-à-tête structure since the corresponding system of
equations is satisfied. �

Remark 5.13. — Observe that in the case that genus(Σφ̂) 6= 0 or the
quotient map by φ̂ has at least two branching points, we have found a
spine Γ of Σ such that for any homeomorphism ψ which fixes pointwise
the boundary and is boundary-free isotopic to φ̂, there is a signed tête-à-
tête structure on Γ (that is, a metric and a sign function ι) such that ψ
is isotopic relative to the boundary to the corresponding signed tête-à-tête
homeomorphism. In other words, there is a universal spine which may be
endowed of signed tête-à-tête structures representing all boundary fixed
isotopy classes of homeomorphisms which are boundary-free isotopic to φ.

Now we state the relative case in a simple way, skipping the obvious
strengthenings similar to the previous theorem:

Theorem 5.14. — Let Σ be an oriented surface with non-empty bound-
ary. Let ∂1Σ be a non empty union of boundary components. Let A be the
union of the boundary components not contained in ∂1Σ. Let φ be an ori-
entation preserving homeomorphism fixing pointwise ∂1Σ and boundary-
free isotopic to a periodic one φ̂. Then, there exists a signed tête-à-tête
spine (Γ, A, ι) ↪→ Σ such that φ(Σ,Γ, A, ι) is isotopic relative to ∂1Σ to
φ. Moreover, if φ is periodic outside a collar of ∂1Σ, we have also that
[φ]∂, φ|∂ = [φ(Σ,Γ, A, ι)]∂, φ|∂ .

Proof. — Apply Alexander’s trick (see Definition 4.7) to the boundary
components in A in order to obtain a larger surface and a homeomorphism
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fixing pointwise the boundary. Construct a signed tête-à-tête graph induc-
ing this homeomorphism like in the proof of Theorem 5.10. We can always
get that this signed tête-à-tête graph contains as vertices the centers of the
disks added by Alexanders’s trick. Now apply an ε-blow up (recall Defi-
nition 3.13) to these vertices to get the desired signed relative tête-à-tête
graph. �

Remark 5.15. — Note that this produces a relative tête-à-tête graph
where all the vertices in the boundary have valency at most 3.

5.2. Periodic tête-à-tête twists and periodic representatives in
MCG(Σ).

In this section we introduce a periodic twist induced by a tête-à-tête
graph. We prove Theorem 5.25 as a corollary of the previous section, which
shows that periodic tête-à-tête twists give rise to all truly periodic home-
omorphisms (leaving at least one boundary component invariant) up to
isotopy and conjugacy.

Definition 5.16 (Periodic tête-à-tête twist). —Replacing the map (5.1)
in Definition 5.4 by

ψi : Γ̃i × I −→ Γ̃i × I
(p, s) 7→

(
γ̃+
p (π), s

)
we get a truly periodic homeomorphism that we denote by φperΣ,Γ, A, ι.
We call it the induced periodic tête-à-tête twist.

Remark 5.17. — For two different product structures of the cylinders,
the induced periodic tête-à-tête twists are conjugate by a homeomorphism
that fixes Γ.
For two different embeddings in Σ, the periodic tête-à-tête twists are

conjugate by the same homeomorphism of Σ that relates the two embed-
dings.

Note that obviously φperΣ,Γ, A, ι is boundary-free isotopic to φ(Σ,Γ, A, ι) and
coincides along Γ.

Given a periodic homeomorphism φ, we can clearly choose a representa-
tive φ′ of [φ] that leaves ∂1Σ fixed pointwise (by isotoping φ near ∂1Σ until
it is the identity on it). Then, we can find a signed tête-à-tête graph (Γ, A, ι)
embedded in Σ to represent it using Theorems 5.10 and 5.14. Then, we can
consider the periodic homeomorphism φperΣ,Γ, A, ι. Note that we can always
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get that φ′ has all its fractional Dehn twist coefficients positive, which
means ι ≡ +. Then, we get the following theorem by using Remark 4.12:

Theorem 5.18. — Let Σ be a connected surface with non-empty bound-
ary which is not a disk or a cylinder. Let φ be an orientation preserving
periodic homeomorphism of Σ that leaves (at least) one boundary compo-
nent invariant. Let A be the set containing all boundary components that
are not invariant by φ. Then there exists a relative tête-à-tête graph (Γ, A)
embedded in (Σ, A), which is invariant by φ, such that

(i) We have the equality of boundary-free isotopy classes[
φper(Σ,Γ, A, ι)

]
A, φ|A

= [φ]A, sφ|A

(see Notation 4.1).
(ii) the homeomorphism φ is conjugate to φper(Σ,Γ, A, ι) by a homeomor-

phism that fixes Γ.

Remark 5.19. — Observe that in order to represent all truly periodic
homeomophisms we do not need the extension to signed tête-à-tête graphs
in Definition 5.2; The first author original definition, given in Definition 3.5
is enough.

The following corollary recovers a known result giving an elementary
proof of it. See, for example, [3, Theorem 7.14] and the introduction to
section 7.4 in that same reference for a different proof.

Corollary 5.20. — Let Σ be the surface of genus g and r bound-
ary components. There are finitely many conjugacy classes of finite-order
mapping classes in MCG(Σ).

Proof. — Observe that there are only a finite amount of spines without
vertices of valency 1. By Theorem 5.18, these are enough to model all
periodic mapping classes. By Remark 5.17, two distinct embeddings of the
same graph produce conjugate periodic homeomorphisms and the result
follows. �

6. Pseudo-periodic homeomorphisms.

Definition and conventions

We recall some definitions and fix some conventions on pseudo-periodic
homeomorphisms of surfaces with boundary.
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Definition 6.1. — A homeomorphism φ : Σ → Σ is pseudo-periodic
if it is isotopic to a homeomorphism satisfying that there exists a finite
collection of disjoint simple closed curves C such that

(1) φ(C) = C
(2) φ|Σ\C is boundary-free isotopic to a periodic homeomorphism.

This system of cut curves C is called a system of cut curves subordinated
to φ.

The following theorem is due to Nielsen (see [8, Section 15]):

Theorem 6.2. — Given a pseudo-periodic homeomorphism φ, there ex-
ists a minimal system of cut curves C. In particular, none of the connected
components of Σ \ C is neither a disk nor an annulus. A minimal system of
cut curves is unique up to isotopy.

Remark 6.3 (Quasi-Canonical Form). — Given a system of cut curves
C = {Ci} subordinated to φ, it is clear that there exists an isotopic homeo-
morphism φ′ that admits annular neighbourhoods A = {Ai} of the curves
in C with Ci ⊂ Ai such that

(1) φ′(A) = A,
(2) the map φ′|Σ\A is periodic.
Moreover, in the case φ fixes pointwise some components ∂1Σ of the

boundary ∂Σ, we can always find an isotopic homeomorphism φ′′ relative
to ∂1Σ that coincides with a homeomorphism satisfying (1) and (2) outside
a collar neighborhood U of ∂1Σ.We may assume that there exists an isotopy
connecting φ and φ′′ relative to ∂1Σ.
We say φ′ and φ′′ are quasi-canonical forms for φ with respect to the set

C of cut curves.

Definition 6.4 (Canonical Form). — A quasi-canonical form for a qua-
si-periodic homeomorphism φ with respect to a minimal system of cut
curves is called a canonical form for φ.

Remark 6.5. — Note that the uniqueness up to isotopy of a minimal
system of cut curves C (see Theorem 6.2) implies that φ|A is unique up
to conjugacy where A is the collar neighbourhood of C in the definition of
canonical form.

Notation 6.6. — Let m, c ∈ R. We denote by Dm, c the homeomorphism
of S1 × I induced by (x, t) 7→ (x + mt + c, t) (we are taking S1 = R/Z).
Observe that

(6.1) Dm, c ◦ Dm′, c′ = Dm+m′, c+c′ ,
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(6.2) D−1
m, c = D−m,−c.

In any case, in this work we will always have m ∈ Q.

Lemma 6.7 (Linearization. [6, Lemma 2.1]). — Let A1 be an annulus
and let φ : A1 → A1 be a homeomorphism that does not exchange bound-
ary components. Suppose that φ|∂A1 is periodic. Then, after an isotopy
of φ preserving the action at the boundary, there exists a parametrization
η : S1 × I → A1 such that

φ = η ◦ D−m,−c ◦ η−1

for some m, c ∈ Q.

Remark 6.8. — In the case φ|∂A1 is the identity, we have that

φ = η ◦ Dm, 0 ◦ η−1

for some m ∈ Z.
In the case m = 1, that is the conjugacy class of D1, 0, is what is called in

the literature negative Dehn twist (compare to convention in Remark 4.13).
The same name of negative Dehn twist is used for the extension of φ by

the identity to a homeomorphism of a bigger surface.

Remark 6.9. — Note that m and c are completely determined in Lem-
ma 6.7. The parameter c (which only matters modulo Z) equals the rotation
number of φ|η(S1×{0}). The sum c+m modulo Z equals the rotation number
of φ|η(S1×{1}) measured with the orientation induced by the direct identifi-
cation with S1 × {0} (and not as boundary of the annulus). Moreover, the
parameter m is completely determined since Dm, c and Dm′, c with m 6= m′

and m ≡ m′modZ are never isotopic relative to the boundary.

Definition 6.10 (Screw number). — Let {Ai}αi=1 be a set of annuli
cyclically permuted by a homeomorphism φ, i.e. φ(Ai) = Ai+1 and φ(Aα) =
A1. Denote A :=

⋃α
i=1Ai. Assume that φ|∂A is periodic and let n be its

order.
By Remark 6.8, φn|Ai equals a conjugate to Dei, 0 for a certain e ∈ Z.

We define

(6.3) s(Ai) := − e
n
θ

where θ = α if φα|Ai does not interchange boundary components and
θ = 2α in the other case. We call s(Ai) the screw number of φ at Ai.
Let C = {Ci} be a system of cut curves subordinated to a pseudo-periodic

homeomorphism φ. Assume φ is in quasi-canonical form (see Remark 6.3)
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with respect to C. We define the screw numbers s(Ci) as the screw number
of the corresponding annulus.

Remark 6.11. — Let {Ci}αi=1 be curves cyclically permuted by a homeo-
morphism φ and that are a subset of a system of cut curves subordinated
to a pseudo-periodic homeomorphism φ that we assume in quasi-canonical
form (see Remark 6.3). It can be checked that these numbers are well de-
fined independently of the choice of C and A.

Remark 6.12. — Compare Definition 6.10 with [6, p. 4] and with [6,
Definition 2.4]. The original definition is due to Nielsen [8, Section 12].

Remark 6.13. — By [6, Corollary 2.2] we have that Ds, c has a screw
number equal to −s. In particular the negative Dehn twist D1, 0 has screw
number −1.

We start with an easy lemma that is important for Theorem 7.20.

Lemma 6.14. — Let {Ai}αi=1 be a set of annuli and φ as in Defini-
tion 6.10 permuting them cyclically. Suppose that φ|αA1

does not inter-
change boundary components. Then, after an isotopy of φ preserving the
action at all the boundary components, there exist coordinates

ηi : S1 × I → Ai
for the annuli in the orbit such that

η−1
j+1 ◦ φ ◦ ηj = D−m/α,−c/α

where m and c are associated to A1 and φα|A1 as in Lemma 6.7.

Proof. — Isotope φ if necessary in order to take a parametrization of A1,
associated to φα : A1 → A1 as in Lemma 6.7. Denote this parametrization
by η1 : S1 × I → A1.
Define recursively ηj := φ◦ηj−1 ◦Dm/α, c/α (see Notation 6.6). Then, we

have
η−1
j+1 ◦ φ ◦ ηj = D−m/α,−c/α.

Since for every j we have that ηj = φj−1 ◦ η1 ◦ Dm(j−1)/α, c(j−1)/α we have
also that

η−1
1 ◦ φ ◦ ηα = η−1

1 ◦ φ ◦ φα−1 ◦ η1 ◦ Dm(α−1)/α, c(α−1)/α

= D−m/α,−c/α. �

Remark 6.15. — In particular, in the setting of this lemma, we have the
equality m = s(A1) since by (6.1) we have e = m · n/α and in this case we
have θ = α in (6.3).
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Moreover, after this proof we can check that η−1
k ◦ φα ◦ ηk = D−s,−c to

see that the screw number s = s(Ai) and the parameter c modulo Z of
Lemma 6.14 only depend on the orbit of Ai.

6.1. Gluings and boundary Dehn twists

In this section we introduce some notions and examples that will be used
in the rest of the paper. We begin with two easy remarks.

Remark 6.16. — Given a homeomorphism φ of a surface Σ with ∂Σ 6= ∅.
Let C be a connected component of ∂Σ. Let A be a cylinder parametrized
by η : S1×I → A. We glue A with Σ by an identification f : S1×{0} → C.
Then, we can extend φ trivially along A by defining a homeomorphism φ̄

of Σ ∪f A as φ̄|Σ = φ and for any p ∈ A we set φ(p) = φ(f ◦ p1 ◦ η−1(p))
where p1 is the canonical projection from S1 × I to S1 = S1 × {0}.

Remark 6.17. — Given a homeomorphism φ of a surface Σ with ∂Σ 6= ∅.
Let C be a connected component of ∂Σ. Let A be a compact collar neigh-
borhood of C (isomorphic to I × C) in Σ. Let η : S1 × I → A be a
parametrization of A, with φ(S1 × {1}) = C.

Then, there exists a homeomorphism φ′ isotopic to φ relative to the
boundary such that

• the restriction to A satisfies p2 ◦ η−1 ◦ φ′|A ◦ η(t, x) = p2 ◦ η−1 ◦
φ′|A ◦η(t′, x) for all t, t′ ∈ I, where p2 : S1×I → S1 is the canonical
projection.

Definition 6.18 (Boundary Dehn twist). — Let C be a component
of ∂Σ and let A be a compact collar neighbourhood of C in Σ. Suppose
that C has a metric and total length is equal to `. Let η : S1 × I →
A be a parametrization of A, such that η|S1×{1} : S1 × {1} → C is an
isometry. Suppose that S1 has the metric induced from taking S1 = R/`Z
with ` ∈ R>0 and the standard metric on R. A boundary Dehn twist of
length r ∈ R>0 along C is a homeomorphism Dηr (C) of Σ such that:

(1) it is the identity outside A
(2) the restriction of Dηr (C) to A in the coordinates given by η is given

by (x, t) 7→ (x+ r · t, t).
The isotopy type of Dηr (C) by isotopies fixing the action on ∂Σ does not de-
pend on the parametrization η. When we write just Dr(C), it means that we
are considering a boundary Dehn twist with respect to some parametriza-
tion η.
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Example 6.19. — We can restate the `−tête-à-tête property in terms of
boundary Dehn twists of length ` as follows. Let (Σ,Γ) be a thickening
surface of a metric ribbon graph Γ. Let gΓ : ΣΓ → Σ be the gluing map.
Consider the pull back metric on g−1(Γ). Denote by D` the composition
of the boundary Dehn twists D` along each Γ̃j ⊂ Γ̃. Then (Σ,Γ) holds the
`-tête-à-tête property if and only if D` is compatible with the gluing gΓ.
We see from this that the lenghts of Γ̃j are in `Q+.

7. Mixed tête-à-tête graphs and twists and
pseudo-periodic homeomorphisms.

In this section we introduce the notion of mixed tête-à-tête graphs and
the homeomorphisms that they induce which we call mixed tête-à-tête
twists. Mixed tête-à-tête graphs and twists are generalizations of tête-à-
tête graphs and twists, but they are able to model pseudo-periodic home-
omorphisms. Our main result is a realization theorem for a certain class of
homeomorphisms whose isotopy classes are representable by a tête-à-tête
twists (see Theorem 7.20). The class contains the monodromies of arbitrary
plane branches, generalizing the construction for branches with 2 Puiseux
pairs in [2].

Before introducing the definition of mixed tête-à-tête graphs and twists,
we analyze in Section 7.1 the structure of the class of pseudo-periodic home-
omorphisms refrerred above, and show how to codify them using metric
spines. We think this section makes the reading easier, but strictly speak-
ing the reader could skip it now, read the definition of mixed tête-à-tête
graphs and twists in Section 7.2 and Section 7.3, read the statement of
Theorem 7.20 in Section 7.4, and come back to Section 7.1 for its proof.
In a sequel article by the third author and B. Sigurdsson [9] it is proved
a general realization theorem for pseudo-periodic mapping classes in terms
of the mixed tête-à-tête graphs defined here.

7.1. A restricted type of pseudo-periodic homeomorphisms

In this section we work with a restricted type of pseudo-periodic homeo-
morphisms and give a natural construction of an embedded metric filtered
graph that is a retract of the surface and that codifies the homeomorphism
up to isotopy relative to the boundary. It is important, however, to notice
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that, unlike in the case of the previous sections, the graph is not left invari-
ant by the homeomorphism (in fact this would force the homeomorphism to
be boundary-free periodic). This study will lead to the more general defini-
tion of mixed tête-à-tête graph and the induced tête-à-tête twist developed
in the next sections.
We start giving the hypothesis of our homeomorphism.
Let φ be a pseudo-periodic homeomorphism of a surface Σ with ∂Σ 6= ∅.

Let C be a system of cut curves for φ as in Definition 6.1. Let G(φ,Σ) be
a graph constructed as follows:

(1) It has a vertex for each connected component of Σ \ C.
(2) There are as many edges joining two vertices as curves in C intersect

the two surfaces corresponding to those vertices.

7.1.1. Assumptions on φ:

(1) the graph G(φ,Σ) is a tree and
(2) the screw numbers are all non-positive.
(3) We assume that

(3’) it leaves at least one boundary component pointwise fixed,
(3”) the fractional Dehn twist coefficients along at least one of these

fixed-boundary components is positive (we extend in the ob-
vious way the notion of fractional Dehn twist coefficients in
Definition 4.16 and Lemma 4.18 to pseudo-periodic homeomor-
phisms by considering the restriction of the homeomorphism
to the connected component in Σ \A that contains C). Recall
that A is a collection of pairwise disjoint annuli (Remark 6.3).

We denote by ∂1Σ the union of some, at least one, connected components
of ∂Σ contained in a single connected component of Σ\C and that are fixed
pointwise by φ and have positive fractional Dehn twist coefficient.
We will obtain a metric spine codifying [φ]∂Σ, φ|∂Σ (recall Notation 4.1).

Remark 7.1. — Observe that G(φ,Σ) being a tree implies that for any
invariant orbit of annuli associated to the system of cut curves, we are
under the hypothesis of Lemma 6.14.

Notation 7.2. — Figure 7.1 may help. We assume φ is in the quasi-
canonical form of Remark 6.3 with respect to ∂1Σ. We denote by Σ̂ the
closure of Σ \ A in Σ.

Let v(G(φ,Σ)) be the set of vertices of G(φ,Σ). We choose as root of
G(φ,Σ) the vertex v ∈ v(G(φ,Σ)) corresponding to the connected compo-
nent of Σ \ A that contains ∂1Σ. We say that G(φ,Σ) is rooted at v.
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Σ1
1,1

Σ1
1,2

Σ0
1,1

∂1Σ

B0B0

C′1
1,2 C′1

1,1

C′′1
1,1C′′1

1,2

A1
1,2

A1
1,1A1
1,1

Figure 7.1. This figure helps understand Notation 7.2. It is the sur-
face of genus 3 and 3 boundary components. Suppose that the nota-
tion is induced by an homeomorphism that rotates by π around the
z-axis composed by some Dehn twist around the annuli A and iso-
toped to be the identity on the bottom boundary. We also include in
blue the relative spine (Γ60, B6 0) of the first step in the construc-
tion of an associated metric relative spine. In particular B0 consists
of the boundary components in Σ0 not in ∂1Σ. It can be checked that
this relative spine admits a relative tête-à-tête structure that induces
φ|Σ0

1, 1
.

Since φ̂ permutes the surfaces in Σ̂, it induces a permutation of the set
v(G(φ,Σ)) which we denote by σφ.
We begin filtering the set v(G(φ,Σ)):
(1) Denote the vertex chosen as the root by v0

1, 1. Let V 0 := {v0
1, 1}.

(2) Let d : G(φ,Σ) → Z> 0 be the distance function to V 0, that is,
d(v) is the number of edges of the bamboo in G(φ,Σ) that joins v
with V 0. This bamboo is unique because G(φ,Σ) is a tree. Let V i :=
d−1(i). Observe that the permutation σφ leaves the set V i invariant.
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There is a labelling of V i induced by the orbits of σφ: suppose it
has βi different orbits. For each j = 1, . . . , βi, we label the vertices
in that orbit by vij, k with k = 1, . . . , αj so that σφ(vij, k) = vij, k+1
and σφ(vij, αj ) = vij, 1.

We accordingly give names to distinct parts of the surface Σ (see Fig-
ure 7.3 for an example):

• Denote by Σij, k the surface in Σ̂ corresponding to the vertex vij, k.
• Denote by Σi the union of the surfaces corresponding to the vertices

in V i. Note that Σ0 equals Σ0
1, 1.

• Denote by Ai+1
j, k the only annulus in A that intersects both Σi+1

j, k

and Σi. Observe that if there were more than one such annulus,
G(φ,Σ) would not be a tree.

• Denote by C′i+1
j, k the boundary component of Ai+1

j, k that lies in ∂Σi

and by C′′i+1
j, k the other boundary component.

• Denote Ai+1 the union of all the annuli that intersect Σi+1 and Σi
and define analogously C′i+1 and C′′i+1.

• We also define recursively

Σ6 0 := Σ0, Σ6 i+1 := Σ6 i ∪ Ai+1 ∪ Σi+1.

We recall that αij is the smallest positive number such that

φα
i
j

(
Ai+1
j, k

)
= Ai+1

j, k ,

and in consequence the least such that

φα
i
j

(
C′i+1
j, k

)
= C′i+1

j, k and φα
i
j

(
C′′i+1
j, k

)
= C′′i+1

j, k .

7.1.2. Construction of the metric relative spines for Σ6i

We start now recursively building an embedded metric spine (Γ6 i, B6 i)
for Σ6 i codifying φΣ6 i . The way in which the metric spine codifies the
automorphism will become clear along the construction The starting point
is the following:

• By Theorem 5.18, there exists a π-relative tête-à-tête graph (Λ0, B0)
embedded in Σ0

– it induces φ|Σ0 relative to ∂1Σ, that is [φ|Σ0 ]∂1Σ = [φΛ0 ]∂1Σ
– it contains the boundary components of Σ0 that intersect with
A1 and any other boundary component of Σ0 different from
∂1, that is B0 = ∂Σ0 \ ∂1Σ.

– φ|B0 = φΛ0 |B0 , (in particular φ|B0 is an isometry).
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– All the vertices in B0 have valency 3 (see Remark 5.15).
To construct the metric relative spine (Γ6 i+1, B6 i+1) from (Γ6 i, B6 i)

we will use the following:
• parametrizations {ηi+1

j, k } of the annuli {Ai+1
j, k } as in Lemma 6.14

for each j = 1, . . . , βi+1 and for each k = 1, . . . , αj . For using this
lemma we might have to isotope φ|Ai+1

j, k
by an isotopy that preserves

the action at the boundary, so in particular, it does not change φ
outside A. We choose the parametrizations such that ηi+1

j, k (S1 ×
{0}) = C′i+1

j, k .
• a metric relative spine (Λi+1

j, k , B
i+1
j, k ) for Σi+1

j, k invariant by φα
i
j |Σi+1

j, k

for each j = 1, . . . , βi+1, and for each k = 1, . . . , αij − 1 such that
(i) Bi+1

j, k contains all the boundary components of Σi+1
j, k except

C′′i+1
j, k (which is invariant by φα

i
j |Σi+1

j, k
). This may include bound-

ary components from the surface Σ not in ∂1Σ, not only bound-
ary components with non-empty intersection with Ai+1,

(ii) all the vertices in Bi+1
j, k have valency 3 (the important ones are

the ones in C′i+1).
Note that condition (1) of the assumptions on φ (page 2687) implies
that the surface obtained by cutting Σi+1

j, k along Λi+1
j, k is a unique

cylinder Σ̃i+1
j, k . Let

gi+1|Σ̃i+1
j, k

: Σ̃i+1
j, k → Σi+1

j, k

be the gluing mapping.
• mappings ri+1

j, k :

(7.1) ri+1
j, k : Λ̃i+1

j, k × I → Σi+1
j, k ,

composition of the gluing map gi+1|Σ̃i+1
j, k

with a product structure

for the cylinder Σ̃i+1
j, k

(7.2) r̃i+1
j, k : Λ̃i+1

j, k × I → Σ̃i+1
j, k ,

which is invariant by the lifting of φαj |Σi+1
j, k

to Σ̃i+1
j, k .

We choose ri+1
j, 1 (x, 1) such that:

(iii) ri+1
j, k (x, 1) is not a vertex of Λi+1

j, 1 whenever ηi+1
j, k (x, 0) is a vertex

of Γ6 i

The reader can now have a look at the final construction of the spine
in (a)-(e) in page 2692, in order to have an impression of the final construc-
tion.
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We first explain more details about how to get (Λi+1
j, k , B

i+1
j, k ) and the ri+1

j, k

satisfying (i)-(iii). Afterwards we will show how we choose the right metric.
To construct Λi+1

j, k , we first find Λi+1
j, 1 and ri+1

j, 1 and then define Λi+1
j, k+1 :=

φk(Λi+1
j, 1 ).

To find the spine (Λi+1
j, 1 , B

i+1
j, 1 ) we consider the quotient map by the action

of φαj in Σi+1
j, 1 as in the proof of Theorem 5.10 or Theorem 5.18. We choose

a relative spine of the quotient surface such that:
- it contains the image of all points whose isotropy subgroup by the
action of the group generated by φα

i
j |Σi+1

j, k
is non-trivial,

- it contains all the boundary components except the image by the
quotient map of C′′i+1,

- it has only vertices of valency 3 along the boundary.
Then we denote by Λi+1

j, k its preimage by the quotient map which is a
relative spine satisfying (i)-(ii). Moreover, we can lift any regular retraction
(or product structure in the cylinder) in the quotient and find a product
structure for the cylinder Σ̃i+1

j, 1

(7.3) r̃i+1
j, 1 : Λ̃i+1

j, 1 × I → Σ̃i+1
j, 1 ,

that is invariant by the lifting of φαj |Σi+1
1, j

to Σ̃i+1
j, 1 . To get (iii) we choose

carefully the retraction in the quotient such that r̃i+1
j, 1 (x, 1) does not corre-

spond to a vertex of Λi+1
j, 1 whenever r̃i+1

j, 1 (x, 0) is a point preimage either of
a vertex of Γ6 i or the image of a vertex of Γ6 i by any power of φ.
Now we choose the right metric.
The metric of the graph Γ6 i assigns a metric on C′i+1

j, k for every j, k. We
use the natural identification from C′i+1

j, k to C′′i+1
j, k by ηi+1

j, k (i.e. ηi+1
j,k (x, 0) 7→

ηi+1
j, k (x, 1)) to put a metric on C′′i+1

j, k .
Note that from the 2 boundary components of Σ̃i+1

j, 1 , one comes from
cutting Λi+1

j, 1 and the other is C′′i+1
j, 1 . Now, for each j = 1, . . . , βi+1 we put

a metric on Λ̃i+1
j, 1 by pull back the metric in C′′i+1

j, 1 with the mapping given
by r̃i+1

j, 1 (x, 1) 7→ r̃i+1
j, 1 (x, 0).

Let gi+1|Λ̃i+1
j, 1

: Λ̃i+1
j, 1 → Σi+1

j, 1 be the restriction of the gluing map. The

metric on Λ̃i+1
j, 1 is compatible with the gluing because φαj |C′′i+1

j, 1
is an isom-

etry and φαj respects retraction lines.
We define the metric on Λi+1

j, k+1 = φk(Λi+1
j, 1 ) to be the pullback metric

on Λi+1
j, 1 .

We denote by (Λi+1, Bi+1) the union of the graphs (Λi+1
j, k , B

i+1
j, k ) for all

j, k. Note that the metric that we have put on makes φ|Λi+1 an isometry.
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We build Γ6 i+1 starting with (Γ6 i, B6 i) ↪→ Σ6 i ⊆ Σ6 i+1 and doing
following:

(a) We remove C′i+1
j, k from Γ6 i for every j and k.

(b) For every edge e in Γ6 i \ C′i+1 containing a vertex in C′i+1
j, k , if L is

its length in Γ6 i, then, we redefine its metric to L− ε (to simplify
we take ε smaller than the lengths of every edge).

(c) We add the embedded segments ηi+1
j, k (I × {x}) for all x such that

ηi+1
j, k (0, x) is a vertex of Bi (that is, a vertex in C′i+1. We set the
length of each of this segments to be ε/2.

(d) We add the embedded segments ri+1
j, k (I×{x}) that concatenate with

the ones added in the previous step. We set the length of each of
this segments to be ε/2.

(e) We add Λi+1 with the metric we defined previously.
We set B6 i+1 := B6i ∪Bi+1 \ C′i+1.

This is obviously a relative metric spine for Σ6 i+1.
We observe that(

Γ6 i+1
Λi+1 , B

6 i+1
Λi+1

)
is isometric to

(
Γ6 i, B6 i

)
.

This will allow us to codify all the information of the (Γ6 i, B6 i) in the
metric spine (Γ6 d, B6 d) (for d maximal). We will define a filtration to keep
the recursive steps in the construction we have just explained.

7.1.3. Recovering [φ]∂1 from the metric relative spines for (Σ6i, B6i)

Now we explain in which sense the sequence of metric spines (Γ6 i, B6 i)
that we have constructed, together with some extra numerical information,
codify the automorphisms

[φΣ6 i ]B6 i, φ|
B6 i

for all i.
For i = 0 it is immediate and we don’t need extra information because

(Γ6 0, B6 0) is a π-tête-à-tête graph codifying it in the sense of Theo-
rem 5.18.
Assume that we know how to recover the automorphisms up to a cer-

tain i, let us see how to recover the automorphism for i+ 1.
Firstly, we make some observations about the original φ in quasi-canonical

form as in (6.3).
We define the homeomorphism φ̄i as the homeomorphism of the(

Σ6 i+1)
Λi+1
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that coincides with φ|Σ6 i in Σ6 i and that extends trivially to the remaining
cylinders as in Remark 6.16 using the parametrizations ηi+1

j, k and r̃i+1
j, k for

every j, k successively.
Recall Notation 6.6 and for every j, k consider the Dehn twists

ηi+1
j, k ◦ D−sj/αj , 0 ◦

(
ηi+1
j, k

)−1

along the annuli Ai+1
j, k with sj the screw number of φ on at Ai+1

j, k . We extend
the composition of all this Dehn twists to Σ6 i+1

Λi+1 in the following way: we
extend by the identity to Σ6 i and we extend to the cylinders Σi+1

Λi+1 as in
Remark 6.16 using the parametrizations r̃i+1

j, k . We denote by

Di : Σ6 i+1
Λi+1 → Σ6 i+1

Λi+1

the extension that we just have constructed.
Observe that Di◦φ̄i is compatible with the gluing gi+1 because its restric-

tion to Σ6 i ∪ Ai+1 coincides with φ|Σ6 i∪Ai+1 up to isotopy fixing C′′i+1.
Then, it induces a mapping in Σ6 i+1 that coincides with φ|Σ6 i+1 up to
isotopy fixing the boundary.
Now, we come back to the graph (Γ6 i+1, B6 i+1). Assume we know φ|Σ6 i

up to isotopy fixing the action at the boundary B6 i. We extend trivially
φ|Σ6 i using parametrizations of the collars of Σ6 i+1

Λi+1 \ Σ6 i for which the
segments of Γ6 i+1 inside are retraction lines of the parametrizations (use
Remark 6.16). We call it φ̃i. It is a homeomorphism of Σ6 i+1|Λi+1 . Let
`i+1
j be the length of Λ̃i+1

j, k for any k, that is, it coincides with the original
length(C′′i+1

j, 1 ). Define

(7.4) δi+1
j := −sj/αj · `i+1

j

with sj the screw number of φ on Ai+1
j, k . Let Dδi+1 be the composition of the

boundary Dehn twists of length δi+1
j along each Λ̃i+1

j, k (see Definition 6.18).
Then, it is clear, by the previous observations about φ, that [φ̃i]∂, φ̃i|∂ is
compatible with the gluing gi+1 and that the homeomorphism it induces
in Σ6 i+1 coincides with φ|Σ6 i+1 up to isotopy fixing the action at the
boundary.
Below we see the diagram which shows how [φ]∂1 is obtained from the

metric graphs (Γ6 i, B6 i) and the numbers δij .
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(7.5)

Σ6 1
Λ1 Σ6 1

Λ1 Σ6 1
Λ1

Σ6 2
Λ2 Σ6 2

Λ2 Σ6 2
Λ2

...
...

...
...

...

Σ6 d
Λd Σ6 d

Λd Σ6 d
Λd

Σ Σ

g1

φ̃0 Dδ1

g1

g2

φ̃1 Dδ2

g2

gd

φ̃d−1 Dδd

gd

φ=φ̃d

We have obtained the following:

Proposition 7.3. — The collection of metric spines (Γ6 i, B6 i) for
i = 0, . . . , d together with the numbers δij obtained in (7.4) determine
[φ]∂Σ, φ|∂Σ .

7.1.4. Filtration on Γd

We can codify the information of the collection the metric relative spines
(Γ6i, B6i) by a filtration on the last spine (Γ6d, B6d) as follows. Define

Γi :=
⋃
`> i

(
Λ` \ C′`+1) ∪ ⋃

`> i j, k

η`+1
j, k (I × {x}) ∪

⋃
`> i j, k

r`+1
j, k (I × {x}) ,

Ai := B6 d ∩ Γi

where x runs exactly as in the construction in the steps (c) and (d).
In this way we obtain a filtered relative spine(

Γ6 d, B6 d
)

=
(
Γ0, A0) ⊃ (Γ1, A1) ⊃ · · · ⊃ (Γd, Ad) .

Proposition 7.4. — The metric filtered graph defined above, together
with the numbers δij in (7.4), determine [φ]∂Σ, φ|∂Σ .

Proof. — This follows from Proposition 7.3 since Γ0
Γi+1 is isometric to

Γ6i. �
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The properties of this filtered metric relative spine and the numbers δi,
which can be summarized in the diagram 7.5, can be restated in terms of
mixed tête-à-tête graphs that we introduce in the next section.

7.2. Mixed tête-à-tête graphs.

Now we introduce the definition of mixed tête-à-tête graphs and twists,
inspired by the constructions of the previous section.

Let (Γ•, A•) be a decreasing filtration on a connected relative metric
ribbon graph (Γ, A). That is

(Γ, A) =
(
Γ0, A0) ⊃ (Γ1, A1) ⊃ · · · ⊃ (Γd, Ad)

where ⊃ between pairs means Γi ⊃ Γi+1 and Ai ⊃ Ai+1, and where
(Γi, Ai) is a (possibly disconnected) relative metric ribbon graph for each
i = 0, . . . , d. We say that d is the depth of the filtration Γ•. We assume
each Γi does not have univalent vertices and is a subgraph of Γ in the
usual terminology in Graph Theory. We observe that since each (Γi, Ai) is
a relative metric ribbon graph, we have that Ai \ Ai+1 is a disjoint union
of connected components homeomorphic to S1.
For each i = 0, . . . , d, let

δi : Γi → R> 0

be a locally constant map (so it is a map constant on each connected com-
ponent). We put the restriction that δ0(Γ0) > 0. We denote the collection
of all these maps by δ•.

Given p ∈ Γ, we define cp as the largest natural number such that p ∈ Γcp .

Definition 7.5 (Mixed safe walk). — Let (Γ•, A•) be a filtered relative
metric ribbon graph. Let p ∈ Γ\(A∪v(Γ)). We define a mixed safe walk γp
starting at p as a concatenation of paths defined iteratively by the following
properties

(i) γ0
p is a safe walk of length δ0(p) starting at pγ0 := p. Let pγ1 := γ0(δ0)

be its endpoint.
(ii) Suppose that γi−1

p is defined and let pγi be its endpoint.
• If i > cp or pγi /∈ Γi we stop the algorithm.
• If i 6 cp and pγi ∈ Γi then define γip : [0, δi(pi)] → Γi to be a

safe walk of length δi(pγi ) starting at pγi and going in the same
direction as γi−1

p .
(iii) Repeat step (ii) until algorithm stops.
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Finally, define γp := γkp ? · · · ? γ0
p , that is, the mixed safe walk starting at

p is the concatenation of all the safe walks defined in the inductive process
above.

As in the pure case, there are two safe walks starting at each point on
Γ \ (A ∪ v(Γ)). We denote them by γp and ωp.

Definition 7.6 (Boundary mixed safe walk). — Let (Γ•, A•) be a fil-
tered relative metric ribbon graph and let p ∈ A. We define a boundary
mixed safe walk bp starting at p as a concatenation of a collection of paths
defined iteratively by the following properties

(i) b0p0
is a boundary safe walk of length δ0(p) starting at p0 := p and

going in the direction indicated by A (as in the relative tête-à-tête
case). Let p1 := b0p(δ0) be its endpoint.

(ii) Suppose that bi−1
pi−1

is defined and let pi be its endpoint.
• If i > cp or pi /∈ Γi we stop the algorithm.
• If i 6 c(p) and pi ∈ Γi then define bipi : [0, δi(pi)]→ Γi to be a
safe walk of length δi(pi) starting at pi and going in the same
direction as bi−1

pi−1
.

(iii) Repeat step (ii) until algorithm stops.
Finally, define bp := bkpk ? · · · ? b

0
p0
, that is, the boundary mixed safe

walk starting at p is the concatenation of all the safe walks defined in the
inductive process.

Notation 7.7. — We call the number k in Definition 7.5 (resp. Defini-
tion 7.6), the order of the mixed safe walk (resp. boundary mixed safe
walk) and denote it by o(γp) (resp. o(bp)).
We denote by l(γp) the length of the mixed safe walk γp which is the

sum
∑o(γp)
j=0 δj(pγj ) of the lengths of all the walks involved. We consider the

analogous definition l(bp).
As in the pure case, two mixed safe walks starting at p ∈ Γ \ v(Γ) exist.

We denote by ωp the mixed safe walk that starts at p but in the opposite
direction to the starting direction of γp.
Observe that since the safe walk b0p0

is completely determined by p, for
a point in A there exists only one boundary safe walk.

Now we define the relative mixed tête-à-tête property.

Definition 7.8 (Relative mixed tête-à-tête property). — Let (Γ•, A•)
be a filtered relative metric ribbon graph and let δ• be a set of locally
constant mappings δk : Γk → R> 0. We say that (Γ•, A•, δ•) satisfies the
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relative mixed tête-à-tête property or that it is a relative mixed tête-à-tête
graph if for every p ∈ Γ− (v(Γ) ∪A)

(i) The endpoints of γp and ωp coincide.
(ii) cγp(l(γp)) = cp

and for every p ∈ A, we have that
(iii) bp(l(bp)) ∈ Acp

As a consequence of the two previous definitions we have:

Lemma 7.9. — Let (Γ•, A•, δ•) be a mixed relative tête-à-tête graph,
then

(a) o(ωp) = o(γp) = cp
(b) l(γp) = l(ωp) for every p ∈ Γ\v(Γ).

Proof.
(a) By Definition 7.5(ii), we have that o(γp) 6 cp for all p ∈ Γ \ v(Γ).

Suppose that for some p, we have that o(γp) = k < cp. This means, that
while constructing the mixed safe walk we stopped after constructing the
path γkp either because k > cp which contradicts the supposition, or because
the endpoint pγk of γkp is not in Γk which contradicts that cp = cγp(l(γp)).
This proves the equality o(γp) = cp. In order to prove o(ωp) = cp use the
equality γp(l(γp)) = ωp(l(ωp)) and repeat the same argument.
(b) Let q be the endpoint of γp and ωp. Since the image of the safe walks

γ
cp
p and ωcpp lies on the same connected component of Γcp we have that their

starting points pγcp and pωcp also lie on that same connected component.
Therefore δcp(pγcp) = δcp(pωcp).
Suppose now that pγi and pωi lie on the same connected component of

Γi (and so δi(pγi ) = δi(pωi )). Then the image of the safe walks γi−1
p and

ωi−1
p lies on the same connected component of Γi−1 and we have that their

starting points pγi−1 and pωi−1 also lie on that same connected component.
So δi−1(pγi−1) = δi−1(pωi−1).
We conclude that δj(pγj ) = δj(pωj ) for all j = 0, . . . , d which concludes

the proof. �

Remark 7.10. — Note that for mixed tête-à-tête graphs it is not true
that p 7→ γp(δ(p)) gives a continuous mapping from Γ to Γ. A example
of this phenomena is given in Figure 7.5 and the discussion at the end of
Example 7.23 commenting on it.

The reader can check that the filtered graph associated with the pseudo-
periodic homeomorphism φ in the previous section is a mixed relative tête-
à-tête graph.
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7.3. Mixed tête-à-tête twists.

Let (Γ•, A•, δ•) be a a mixed tête-à-tête graph and let (Σ,Γ, A) be a
thickening surface of (Γ, A). Let ∂1Σ be the union of the boundary compo-
nents of Σ not contained in A. In this section we define a pseudo-periodic
homeomorphism φ(Σ,Γ•, δ) of Σ associated to (Γ•, A•, δ•). This homeomor-
phism is well defined up to isotopy fixing ∂1Σ and relative to the action
on A.
For the sake of simplicity in notation we assume that A• = ∅ during the

construction. The general case is analogous.

Notation 7.11. — Let gΓi : ΣΓi → Σ be the gluing map as in Nota-
tion 2.3. Let ΓΓi be the preimage of Γ by gΓi . We also denote by gΓi its
restriction gΓi : ΓΓi → Γ. The union of the boundary components of ΣΓi

that come from Γi is denoted by Γ̃i. Observe that a single connected com-
ponent of Γi might produce more than one boundary component in ΣΓi .
It’s clear that gΓi factorizes as follows:

ΣΓi → ΣΓi+1 → . . . → Σ.

We denote these mappings by gj : ΣΓj → ΣΓj+1 for j = 0, . . . , d − 1 and
also their restrictions gj : ΓΓj → ΓΓj+1 .

Remark 7.12. — Observe that by Definition 7.8, each connected compo-
nent of the relative metric ribbon graph (ΓΓ1 , Γ̃1) ↪→ ΣΓ1 has the relative
tête-à-tête property for safe walks of length δ0(Γ).

Let φΓ, 0 : ΣΓ1 → ΣΓ1 be the induced tête-à-tête twist fixing each bound-
ary component that is not in Γ̃1 as in Definition 5.4. It is the homeo-
morphism induced by the relative tête-à-tête property of each connected
component of (ΓΓ1 , Γ̃1) for some choice of product structures on (ΣΓ1)ΓΓ1 .
Also according to Definition 5.4, observe that since we do not specify

anything, we assume that the sign ι is constant +1.
Now we continue to define inductively the homeomorphism φ(Σ,Γ•, δ).

Notation 7.13. — Let
Dδi : ΣΓi → ΣΓi

be the homeomorphism consisting of the composition of all the boundary
Dehn twists Dδi(gΓi (C))(C) for all components in Γ̃i. Recall Definition 6.18.

Lemma 7.14. — The homeomorphism

φ̃Γ, 1 := Dδ1 ◦ φΓ, 0 : ΣΓ1 → ΣΓ1

is compatible with the gluing g1 : ΣΓ1 → ΣΓ2 .
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Proof. — We use the notation introduced in Definition 7.5.
Since g1 only identifies points in Γ̃1, we must show that if x, y are different

points in Γ̃1 such that g1(x) = g1(y) ∈ Γ1, then g1(φ̃Γ, 1(x)) = g1(φ̃Γ, 1(y)).
So let x, y ∈ Γ̃1 be such that g1(x) = g1(y) = p. In particular, cp = 1

and we have that γp = γ1
p ? γ

0
p and ωp = ω1

p ? ω
0
p by Lemma 7.9(a). So the

mixed safe walks end in a connected component of Γ1. Denote by p̂ their
endpoint. By Definition 7.8(ii) we have that cp̂ = 1.

First observe that φΓ, 0(x) = bx(δ0(p)) where bx : [0, δ0(p)] → ΓΓ1 is
the boundary safe walk of length δ0(p) given by the relative tête-à-tête
structure on (ΓΓ1 , Γ̃1). Analogously φΓ, 0(y) = by(δ0(y)). So we have

g1 (φΓ, 0(x)) = γp (δ0(p))

and

g1 (φΓ, 0(y)) = ωp (δ0(p)) .

It is clear that(
Dδ1(φΓ, 0(x))

)
= γ̃0

p

(
δ1(φΓ, 0(x)) + δ0(p)

)
with γ̃p the safe walk in Γ̃1. It is also clear that γ̃p is the actual lifting of
γp along Γ. Then,

g1 (Dδ1 ◦ φΓ, 0(x)) = γp
(
δ1 (φΓ, 0(x)) + δ0(p)

)
= γp

(
δ1
(
γ0
p(δ0(p))

)
+ δ0(p)

)
= γp (l (γp))

and analogously g1(Dδ1 ◦ φΓ, 0(y)) = ωp(l(ωp)).
By property (i) of a mixed tête-à-tête graph, we can conclude. �

Now, we consider the homeomorphism induced by φ̃Γ, 1 and we denote
it by

φΓ, 1 : ΣΓ2 → ΣΓ2 .

The same argument applies inductively to prove that each map

(7.6) φ̃Γ, i := Dδi ◦ φΓ, i−1 : ΣΓi → ΣΓi

is compatible with the gluing gi and hence it induces a homeomorphism

(7.7) φΓ, i : ΣΓi+1 → ΣΓi+1 .

In the end we get a map

(7.8) φ(Σ,Γ•, δ) := φΓ, d : Σ→ Σ

which we call the mixed tête-à-tête twist induced by (Γ•, δ•) and the chosen
embedding Γ ↪→ Σ.
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Notation 7.15. — We can extend the notation introduced before by defin-
ing φΓ,−1 := id and φ̃Γ, 0 := Dδ0 ◦ φΓ,−1 = Dδ0 . Then we can restate Re-
mark 7.12 by saying that φ̃Γ, 0 is compatible with the gluing g0 and induces
the homeomorphism φΓ, 0.

Remark 7.16. — After the description of the construction of the mixed
tête-à-tête twist above and the diagram 7.5 and 7.9, we observe that sat-
isfying (i) and (ii) of the mixed tête-à-tête property in Definition 7.8 is
equivalent to satisfying:

I’) For all i = 0, . . . , d− 1, the homeomorphism φ̃Γ, i = Dδi ◦ φΓ, i−1 is
compatible with the gluing gi, that is,

gi(x) = gi(y)⇒ gi

(
φ̃Γ, i(x)

)
= gi

(
φ̃Γ, i(y)

)
.

Below we see the diagram which shows the construction of φΓ.

(7.9)

ΣΓ0 ΣΓ0 ΣΓ0

ΣΓ1 ΣΓ1 ΣΓ1

ΣΓ2 ΣΓ2 ΣΓ2

...
...

...
...

...

ΣΓd ΣΓd ΣΓd

Σ Σ

φΓ,−1

g0

Dδ0

g0

g1

φΓ, 0 Dδ1

g1

g2

φΓ, 1 Dδ2

g2

gd

φΓ, d−1 Dδd

gd

φΓ=φΓ, d

We prove the following:

Theorem 7.17. — The homeomorphism φΓ, i is pseudo-periodic for
all i = 0, . . . , d. In particular, φΓ is pseudo-periodic.

Proof. — The mapping φΓ, 0 is periodic. Assume φΓ, i−1 is pseudo-perio-
dic. Let’s see so is φΓ, i. Choose a collar neighbourhood U i of Γ̃i, invariant
by φΓ, i−1. We denote by U ij, 1, . . . , U ij, αj any set of its connected annular
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components permuted by φΓ, i−1 such that φΓ, i−1(U ij, k) = U ij, k+1. Similarly
to Remark 6.17 we can assume that, up to isotopy fixing the action on the
boundary, the homeomorphism φΓ, i−1 satisfies that for some parametriza-
tions ηij, k : S1 × I → U ij, k we have that

p2 ◦
(
ηij, k+1

)−1 ◦ φΓ, i−1|Ui
j, k
◦ ηij, k(x, t)

= p2 ◦
(
ηij, k+1

)−1 ◦ φΓ, i−1|Ui
j, k
◦ ηij, k (x, t′)

for every t, t′ ∈ I where p2 : S1 × I → S1 is the canonical projection.
Now we consider φ̃Γ,i := Dδi ◦ φΓ, i−1 as in (7.6). The curves

Cij, k = ηij, k
(
S1 × {0}

)
are invariant by φ̃Γ, i. These curves separate ΣΓi in two pieces: U i and
its complementary that we call B. After quotienting by gi, we get a φΓ, i-
invariant piece that is gi(B) ≈ B and another one that is gi(U i). The
restriction of φΓ, i to gi(B) is conjugate to φΓ, i−1 and then pseudo-periodic.
The restriction to gi(U i) has an invariant spine that is gi(Γ̃i) and then, by
Lemma 4.9, it is boundary-free isotopic to a periodic one. Then, we have
seen that φΓ, i is pseudo-periodic. �

Remark 7.18. — The screw number associated to the orbit of an invariant
annuli at the curve Cij, k that appears in the previous proof is

(7.10) s
(
Cij, k

)
= −

∑
k

δ1
j, k/l

(
Γ̃1
j, 1

)
.

We check this by giving a more elaborated construction that the one
in the proof of Theorem 7.17 from which the computation of the screw
number follows easily.

Let Γ̃ij, 1, . . . , Γ̃ij, αj be a set of boundary components of ΣΓi contained
in Γ̃i and cyclically permuted by φΓ, i−1. Let Aij, k annular neighbourhoods
of them as in the previous proof such that

φΓ, i−1
(
U ij, k

)
= U ij, k+1.

Since φαΓ, i−1|Uij, 1 is periodic, we can choose coordinates/parametrization
rij, 1 from S1 × [0, 1] (with S1 ≈ R/Z of total length 1) to U ij, 1 with respect
to which φαΓ, i−1|Uij, 1 is a rotation of the annulus, that is(

rij, 1
)−1 ◦ φαjΓ, i−1 ◦ r

i
j, 1(x, t) = (x+ τi−1, t) ,
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where τi−1 is the rotation number rot(φαjΓ, i−1|Γ̃i
j, i

) (note that τi−1 depends
on the considered orbit of annuli, not only on i). Assume

Γ̃ij, k = rij, k
(
S1 × {1}

)
.

Let l(Γ̃ij, k) be the length of Γ̃ij, k. We assume without loss of generality that
rij, k|S1×{1} is a homotethy of ratio l(Γ̃ij, k) onto Γ̃ij, k.

Define
rij, k := φk−1

Γ, 0 ◦ r
i
j, 1 for k = 2, . . . , αj − 1.

Define now

Aij, k := rij, k
(
S1 × [0, 1/2]

)
and Cij, k := rij, k(S1 × {1/4})

(note that this system of curves Cij, k is different from that of the previous
proof but isotopic to it). We choose a representative of the boundary Dehn
twists Dδi (defined up to isotopy fixing the boundary) performing all the
twisting in the annuli Aij, k. More precisely we can assume Dδi is expressed
on U ij, k in the coordinates rij, k as follows:(

rij, k+1
)−1 ◦ Dδi ◦ rij, k(x, t)

:=


(
x+ 2 · t · δij, k/l

(
Γ̃ij, k

)
, t
)

if 0 6 t 6 1/2(
x+ δij, k/l

(
Γ̃ij, k

)
, t
)

if 1/2 6 t 6 1

where we denote by δij, k := δi(gi(Γ̃ij, k)) with gi : ΣΓi → ΣΓi+1 the gluing
function.
Then, we have that φ̃Γ,i := Dδi ◦ φΓ, i−1 satisfies that

(7.11)
(
rij, 1

)−1 ◦ φ̃αjΓ, i ◦ r
i
j, 1(x, t)

=


(
x+ τi−1 + 2 · t ·

∑
k δ

i
j, k/l

(
Γ̃ij, 1

)
, t
)

if 0 6 t 6 1/2(
x+ τi−1 +

∑
k δ

i
j, k/l

(
Γ̃ij, 1

)
, t
)

if 1/2 6 t 6 1

where

τi−1 = rot

(
φ
αj
Γ, i−1

∣∣
Γ̃i
j, i

)
is the rotation number of φαjΓ, i−1 at Γ̃ij, 1.

Recall that this rotation number is computed orienting Γ̃ij, 1 with the orien-
tation induced by relative safe walks, that is, the opposite as the orientation
that it inherits as boundary component of ΣΓi .
From the expression in (7.11) we see that the restriction of φ̃αjΓ, i to Aij, k is

conjugated to Ds,τi−1 (note that we have to reparametrize t = t/2 in order
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to get the expression of Ds, τi−1 which is defined in S1× [0, 1]) where s is the
opposite of the expression in (7.10). Applying Definition 6.10, we get that
the screw number at Aij, k are given exactly by by the expression (7.10).
By Definition 6.10 (see also Remark 6.11) this computes the screw num-

ber at Cij, k since the mapping φ̃Γ, i, after quotienting by gi, goes down to
a homeomorphism that is periodic restricted to gi(U ij \ Aij) where U ij =
∪kU ij, k and Aij = ∪kAij, k, and to a pseudo-periodic homeomorphism of
ΣΓi \ U i ⊆ ΣΓi+1 in a quasi-canonical form (see Remark 6.3).

Remark 7.19. — Given a relative mixed tête-à-tête graph (Γ•, A•, δ•) and
given two different embeddings of (Γ, A) into the surface Σ, the induced
mixed tête-à-tête twists are conjugated by the same homeomorphism that
relates the two embeddings.

7.4. A realization theorem

It is straightforward that the filtered metric graph described at the end
of Section 7.1 is a mixed relative tête-à-tête graph with the given δ’s. The
construction given in that section proves the following:

Theorem 7.20. — Let φ be a pseudo-periodic homeomorphism satis-
fying assumptions (1)-(3) at the beginning of Section 7.1. Let ∂1Σ be a
union of some, at least one, connected components of ∂Σ that:

• are fixed pointwise by φ,
• are contained in a single connected component of Σ \ C and
• have positive fractional Dehn twist coefficient.

Then, there exists a mixed tête-à-tête graph (Γ•, A•, δ•) with A0 = ∂Σ\∂1Σ
and an embedding Γ ↪→ Σ such that:[

φ(Σ,Γ)
]
∂Σ, φ|∂Σ

= [φ]∂Σ, φ|∂Σ .

And we have as a corollary the case of the monodromy of plane branches:

Corollary 7.21. — Let f : C2 → C be an irreducible polynomial
with an isolated singularity at 0. Let Σ be the corresponding Milnor fiber
and let h : Σ → Σ be a representative of the monodromy that fixes ∂Σ
pointwise. Then, there exists a mixed tête-à-tête graph (Γ•, δ•) (with no
relative boundaries) embedded in Σ such that [φ(Σ,Γ)]∂Σ = [h]∂Σ. Notice
that in the subsequent paper of the fourth author with B. Sigurdsson [9]
this has been generalized to any function f : X → C defined on a normal
surface singularity X.
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p
φβj (p) φ(p)

C ′′i+1
j,1

C ′i+1
j,1

C ′′i+1
j,2

C ′i+1
j,2

φ

Ai+1
j,2Ai+1

j,1

Figure 7.2. In red, the edges of Γ̃6 i+1 passing by a point p ∈ Σ6 i∩A1,
by φ(p) and by φβi+1(p). In black, the image by φΓi+1 or φ̂i+1 of the
first one, and the image through the point φβ(p) of an edge through
the point φβ−1(p). In yellow, a curve in C′′1 and C′′2 that has length
−s · length(C′′1 ) and −s/α · length(C′′1 ) respectively.

Proof. — In [1] it is given a description of the Milnor fiber and the mon-
odromy, which, in particular shows that:

(0) h is pseudo-periodic,
(1) G(h,Σ) is a tree,
(2) it has all screw numbers negative,
(3) the Milnor fiber has 1 boundary component and the fractional Dehn

twist coefficient with respect to it is positive.
hence we conclude by Theorem 7.20. �

Remark 7.22. — We could broaden the definition of mixed tête-à-tête
twist allowing δi : Γi → R. In this way, we allow turning in the other
direction along the separating annuli. We would find a signed mixed tête-à-
tête twist that would model pseudo-periodic homeomorphisms with positive
screw numbers as well.

Example 7.23. — Let Σ be the surface of which is symmetrically embed-
ded in R3 as in Figure 7.4 with its boundary component being the unit
circle in the xy-plane. We follow the notation of the figure.
Consider the rotation of π radians around the z-axis. By the symmetric

embedding of the surface, it leaves the surface invariant. Isotope the rota-
tion so that it is the identity on z 6 0 and its restriction to Σ has fractional
Dehn twist coefficient 1/2 at the only boundary component. We denote the
homeomorphism after the isotopy by Rπ.
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Let Di be a full positive Dehn twist on A1
1, k, k = 1, 2. We define the

homeomorphism

(7.12) φ := D2 ◦D−2
1 ◦Rπ|Σ

It is clear that φ is a pseudo-periodic homeomorphism and it is already
in quasi-canonical form of Remark 6.3. We consider the decomposition of
Σ adapted to φ as in Figure 7.3. In particular we have a single annuli orbit
A1 and s(A1) = −1.

One can follow the proof of Theorem 7.20 to find a mixed tête-à-tête
graph embedded in Σ that models φ. In Figure 7.3 you can find the ab-
stract mixed tête-à-tête graph for δ0 = π, δ1 = π/18 which determines the
homeomorphism only up to conjugacy (see Remark 7.19). In Figure 7.4
you can find the embedded graph one obtains following the proof of Theo-
rem 7.20 which determines also the isotopy classes [φ]∂, φ|∂ or [φ].

1
2

3
4

3
2

1

4

1
2

3

1

23

1
2

4
3 1

2
3

4

π/3

π/3

π/18 π/18

π/36

π/36

π/72

π/72

π/72

π/72

π/9

Figure 7.3. Mixed tête-à-tête graph with Γ1 in red.

In Figure 7.5 we can see a modified graph which is still a mixed tête-à-
tête graph for the same values of the functions δ. This serves to exemplify
the phenomenon announced in Remark 7.10. Pick one of the two newly
created vertices on the component of the component of the red graph on
the right. Pick two sequences of points converging to this vertex, one in the
red part of the graph and the other in the blue part. A direct inspection
shows that the end point of the mixed safe walks of the points in the red
graph tend to one of the two new vertices on the left component of the red
graph; while the end points of the mixed safe walks of the points in the
blue graph tend to the other vertex.

Note that in the key example in Section 7.1, the adjacency graph of the
connected pieces of the subsurfaces where the restriction of the homeomor-
phims is periodic, is a tree. This was assumtion (1) in that section. In the
following example we show a pseudo-periodic homeomorphism not satifying
this restriction, that is a mixed tête-à-tête twist. As we have remarked at

TOME 71 (2021), FASCICULE 6



2706 N. A’Campo, J. F. Bobadilla, M. Pe Pereira & P. Portilla

A1
1,2 A1

1,1

x
y

z

Figure 7.4. We can see the surface Σ of genus 3 and 1 boundary com-
ponent. In red and blue we see the embedded graph Γ and in red we
see Γ1.

the introduction, in the sequel article [9], it is proved that this restriction is
superfluous, and that mixed tête-à-tête twist is a much more general class.

Example 7.24. — This is an example of mixed tête-à-tête twist that does
not satisfy the assumption (1) in page 2687 at the beginning of the section.
It is induced by a mixed tête-à-tête graph with a filtration Γ ⊃ Γ1. The

thickening of Γ is a surface of genus 3 and 1 boundary component.
We obtain the graph Γ as follows. We take the relative tête-à-tête graph

of the first figure in Figure 7.6 that induces the rotation of the disk with 3
more boundary components. This will correspond to ΓΓ1 . We also consider
a graph K3, 3 with edges of length π/12. Note that the thickening of K3, 3
is a torus with 3 boundary components and that this metric K3, 3 is a
tête-à-tête graph for π/6.

Now, we identify the three relative components of ΓΓ1 with K̃3, 3 which is
obtained by cutting the graph K3, 3 along itself (and consists in three S1).
After the identification we quotient by the quotient map K̃3, 3 → K3, 3 to
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εεε ε

Figure 7.5. We can see the surface Σ of genus 3 and 1 boundary com-
ponent. In red and blue we see the a modified version of the previously
constructed graph Γ. The blue segments arriving at the red graph have
been displaced ε from their original intersection point creating 4 new
vertices. The total lengths of the graphs remain invariant.

obtain a graph Γ as the third one in Figure 7.6. It is a mixed tête-à-tête
graph for δ0 = π and δ1 = π/6 with the embedding of K3, 3 as the level 1
subgraph Γ1.
It can be easily checked that the induced homeomorphism, that we de-

note by φ, has restriction to Σ1
1, 1 isotopic to the rotation of Figure 7.6,

restriction to Σ2
1, 1 permuting the boundary components in the same way

and the screw number of the annuli equals −1.

TOME 71 (2021), FASCICULE 6



2708 N. A’Campo, J. F. Bobadilla, M. Pe Pereira & P. Portilla

π/4

π/4

π/4

π/4

π/4
π/4

π/2

π/2

π/2

π/12

Figure 7.6. On the left we see ΣΓ1 , in blue and red we see ΓΓ1 and in
red we see Γ̃1. On the right, we see a projection on the plane of the
mixed tête-à-tête graph for δ0 = π and δ1 = π/6 with Γ1 in red (note
that Γ1 is K3, 3 with each edge of length π/12. If no cyclic order is
indicated, then consider the counterclockwise ordering induced by the
orientation of the plane.

A1
1,1

A1
1,2A1

1,3

Figure 7.7. The decomposition of Σ adapted to φ. The embedding of
the mixed tête-à-tête graph for δ0 = π and δ1 = π/6 with Γ1 in red.
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