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THE MARTIN BOUNDARIES
OF EQUIVALENT SHEAVES

by J. C. TAYLOR

Introduction.

Let X be a locally compact space on which a sheaf H of vector
spaces of continuous real-valued functions is defined satisfying the
basic axioms of Brelot [3](1). In addition, assume that the following
conditions hold : X has a countable base ; there is a positive potential
defined by H ; and H satisfies the hypothesis of proportionality, that
is for j / G X any two potentials with support {y} are proportional.

Then, following the original construction of R.S. Martin [13],
it is possible to define a Martin compactification of X. A priori this
compactification depends on H. The purpose of this article is to initiate
a study of the dependence.

The question is not an empty one as the following examples
show. Let B be the closed unit ball in R3 and set X=B\(SUL),
where S is the unit sphere and L is the closed line segment joining
(0 ,0 ,0 ) to (0 ,0 ,1) . Then, if H is the sheaf defined by Laplace's
equation AA = 0, the Martin compactification of X is B. This follows
from the fact that the Martin compactification of B\S is B and that
L is a closed set of capacity zero.

Now let Y = = B \ ( S U C ) , where C is the closed convex cone
defined by x2 + y2 < z2 and z > 0. Then from results of de la
Vallee Poussin [17] it follows that the Martin compactification for
Y associated with Laplace's equation is the closure Y of Y in R3.
Following a suggestion of Choquet, the differential equation AA = 0

(1) Throughout this article it will be assumed that X satisfies the customary
connectivity conditions.
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on Y can be transported to X by means of a diffeomorphism. This
defines an elliptic operator L on X whose associated Martin compac-
tification is clearly homeomorphic to Y. The Martin boundary in this
case is homeomorphic to S, which is not homeomorphic to S U L.
Hence, these two Martin compactifications of X are distinct.

The principal result of this article is the result (theorem 2)
that if two sheaves H^ and H^ are equivalent, that is they agree on
the complement of a compact subset of X [II], then the Martin com-
pactifications of X coincide. In this coincidence, the corresponding
sets of minimal points coincide (theorem 2). This has as a consequence
the result that the cones S^ and S^, equipped with the T-topology,
are isomorphic.

The last part of the article discusses the relation between
the Martin compactification of X\A, A compact, and X\A where
X is the Martin compactification of X (corollary 3 to theorem 5).
Further, it is shown that the Martin compactification is of type S
(corollary 4 to theorem 5) and that the ends of X are related to
direct decomposition of the cone of positive harmonic functions.

I wish to thank M. Sieveking for a very useful discussion in
the course of which we obtained the proof of theorem 1.

I would also like to thank Professor M. Brelot for his continued
interest in this work, and for his persistent belief that a proof for
theorem 2 could be found without the use of adjoint harmonic
functions [16].

2. Elementary properties of Q-compactification.

Let X be a locally compact space and let (Ka)aeA be a family
of continuous functions K^ : X———> R. Then, as is well known
(c.f. [6]), there is a unique compactification X of X such that (1)
each function K^ extends continuously to X and (2) the extended
functions separate the points of A = X\X(2). The space X can be
realized as the closure of the image of X under the embedding of
X in IKR^I/EC^X) + A} by the mapping e, which is defined as

(2) "Unique" means that if Xi and X^ are any_two compactifications satisfying
(1) and (2), there is a homeomorphism ^ : X^———> X^ with <p(x) = x for
each x € X.
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follows : (pr^o e) (x) equals f(x) if /GC^(X) and equals K^(x)if
/=a€EA( 3 ) .

The following formal properties of Q-compactifications are easily
verified.

1) Let ^ : X———> Y, Y locally compact, be proper and let
(K^aeA be a f^ily °f continuous functions on X, (L^)^g a family
of continuous functions on Y. Denote by X and Y the corresponding
compactifications. If for each (3GB there is an a E A with L^ o ^ == K^,
then there is a unique continuous map <^: X——> Y with<^ (x) = ^p(x),
for all x e X.

2) Let (K^g^ be a given family of continuous functions on X
and denote by OO^g a second family such that each K^ extends
continuously to X. Define (K^^+B by setting K^ == K^ if 7 = a E A
and KJy' = K^g if 7 = ^E B. JLet X" be the compactification deter-
mined by (K?. Then X" = X\

3) Let <p, X, Y, (K^)^^A an(l (^^ea be as in L Assume that
for each j3 € B, L^ o ̂  = K^ extends continuously to X. Then there is
a unique continuous map ^p : X ———> Y which extends <p.

4) Let OO^A and (^^^a^aeA be two families of continuous
functions such thit, for each a, there is a compact set D^ with
K^Oc) = K^(x) if xEX\D^ . Let X' and X" be the corresponding
compactifications of X. Then X' = X".

These elementary properties established, it is easy to prove
the following propositions.

PROPOSITION 1. - Let X be a locally compact space and
(K^cceA a ft^y °f continuous functions K^ : X\D^———> R,
where D^ is a compact subset of X. Then there is a unique compac-
tification X of X such that :

1) each K^ extends continuously to X\D^ ; and
2) the extended functions separate the points of X\X.

Proof. — It is an immediate consequence of 4), since for
each K^ there is a continuous function K^ which agrees with K^ on
the complement of a compact neighbourhood of D^.

(3) If A, B are sets, then A + B denotes their disjoint sum.
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PROPOSITION 2. - Let X, (iy^ ^ as in proposition 1 and
let Y be a locally compact space mth a family (L^g of functions
L^ : Y\E^ ——> R, E^ compact in Y.

_// (p^y prope/- and such that each L^ o ^ extends continuously
to X\^ (E^), then there is a unique continuous extension ^ •
X ——> Y of<^ .

Proof. — It is a consequence of 3) and 4).
_ If X is the compactification of X determined by (K^^ let
K^ denote the extended function. These functions separate the points
of X\X strictly if for x^ ^x^two points of X\X, there exist
o^, ̂  with K^(x,) K^) ̂  K^(^) K^(x,).

3. A general theorem.

Let Xi , X^, be locally compact spaces with countable bases
and denote by H^ and H^ sheaves on the corresponding spaces which
satisfy the axioms of Bauer [2] and are such that both harmonic
spaces are strict.

Let K : X, x X/ ———> R+ be a function with the following
properties :

!) V ———^ K (x, y) = *K^O) is continuous outside a compact
set A^ ;

2) x ——> K' (x , y ) = K^(jc) is superharmonic.
Denote by ^ : X^ ———> X^ a surjective proper map and let

A^ C X^, and A^ = ̂ -1 (A^), be compact sets such that for y E X^ \A^ :
3) K; - P^K; == /(>/) [K^^ - PAK^^IO ^ +^(x) where

d^(x) tends to zero in x as y tends to the point at infinity and, for
any superharmonic function v, PE^= R^.

THEOREM 1. - Let Xf be the compactification of\ determined
by the family (*K^x- Assume that the extensions of the func-
tions *K^ separate thej)oints of X^\X^_strictly. There is a unique
continuous extension ^ : X^ ————> X^ of ^ if the following
holds for i= 1,2 :
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4) if a net (y^) converges to a point ^GX/\X^, then the
functions Ky converge pointwise to a harmonic function, the
convergence being uniform on A^, where K i ( x ) = K i ( x , y ) .

Proof. - In view of proposition 2, it suffices to show that if
the net (y^) on Xi converges to a point ^eXi \Xi , then
lim *K^O^)) exists for each x EX,.

Since y converges to y . , the superharmonic functions K1

^T
converge pointwise to a harmonic function h^. The convergence being
uniform on A^, the functions P^ K^ converge to P^ h^. It follows
from 3) that f(y^) [K^y ^ - P^ K^ ̂  )] converges on X^VA^.For
convenience denote v?0) by z and let (z^Q and (z ") be two subnets
of the net (z/y) which converge to points z' and z" of X,, neces-
sarily in X^X, as <^ is proper. Denote by h\ and A^ the corresponding
harmonic functions.

Condition 4) implies that P^ K^ , converges to P^ A^ and/\ — 'y 2
that P^ K^ „ converges to P^ A^'. However, since

/(^) [K^ - P^ K^]

converges, it follows that / converges along both subnets and that
^2 - PA, h,] = a"^ - P^ h^] where

a' = lim f(y^) and a" = lim f(y^) .
Y 7" '

Rewriting this a' h^ + a" P^ h^ = a" A;' + af PA ^2> it follows
2 2

from the Riesz Decomposition theorem that a' h^ = a" A^ (regularize
both sides). Since h^(x) = lim *K^(^) and similarly for /^(^

7 '
it follows from the strict separation assumption that h\ = h^.

In other words, (z^) converges in X,, that is, for each

x G X,, lim *K^(<p (^)) exists.

Remark - The assumption of a countable base for X does
not enter into the proof. It is made so as to fulfil the hypotheses
of the theory of Bauer. The result holds for the theory without
this assumption.
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4. Application to the Martin Boundary.

Let X be a non compact locally compact space with a countable
base, and let H be a sheaf on X that satisfies the basic axioms of
Brelot [3](4). Assume that a positive potential is defined by H
and that H satisfies the hypothesis of proportionality. ~

Madame Herve [10] (Proposition 18.1) proved the existence
of a lower semi-continuous function G : X x X ———> R^ conti-
nuous off the diagonal and such that for each

^ G X , x——> G(x , y) = py(x)

is a potential with support {y}. Such a function will be called a
Green's function for H. If / is continuous and strictly positive on X
define G f(x , y ) = GO-, y ) f(y). Then G/ is a Green's function
and every Green's function has this form.

Let XQ E X and define K(x , y) to be 1 if x = XQ = y and
to be G(x . Y)/G(XQ , y) otherwise.

The compactification of X defined by (*K^)^x» where

* K ^ y ) = K ( x , y ) ,

will be called the Martin compactification of X and will be denoted
by M(X, H) or X. It is clearly independent of the choice of Green's
function G.

Let A be a compact base for the cone S^ equipped with the
T-topology [10]. For y ^ X denote by py the unique potential in A
with support {y}. Gowrisankaran [9] (theorem IV.I) proved that the
mapping y ——> py embeds X in A. Identifying X with its image
let X denote the closure of X in A. It is not hard to see from Scolie
21.1 of [10] that X is the compactification of X determined by
Wxex, where p;(y) = py(x),

PROPOSITION 3. — The compactifications X and X coincide. Hence,
X is independent of the choice of x^.

(4) As was pointed out by C. Constantinescu, the assumption of a countable
base is not necessary. However, in order to avoid it it is necessary to establish
some lemmas corresponding to results of Madame Herve [10]. These lemmas
are established in the appendix.
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Proof. — According to proposition 22.1 of [10], the function
G ( x , y ) = py(x) is a Green's kernel for H. Let J C ^ E X and define
K(x , y) as above. Then as long as y <f.{x , x^}, py(Xo) Ky(x) = py(x)
or p^ (y) K^(y) = p^(y). Since y ———> p^ ( y ) never vanishes
on X\X (note that x ——> p ^ ( y ) is harmonic on X for each
>»EX\X), it follows that all the functions *K^ extend continuously
to X \ { x , ^ o } as functions *K^.

Suppose that y., y» are two points in X\X and that for all/•^ /^
x E X, *K^(^) = *K^(^). Denote by py and p the corresponding
harmonic functions in A. Then [py^(x)/py^(Xo)] = [py^(x)lpy^Xo) ]
for all x G X. Since the functions p are in A, it follows that p = p/•s^ • _ A •
and so y^ == ^^. Consequently, X and X are the same compactification
of X in the sense defined in 2.

The general theorem is now applied to prove the following
result.

THEOREM 2. — Let H^ and H^ be two sheaves on X that satisfy
the above hypotheses. Assume there is a compact set A C X such that
the sheaves coincide on X\A. Then M(X , H^) = M(X , H^).

Proof. — Let G* be a Green's function for H, and let

p y ( x ) = = G i ( x ^ y ) .

Define q\ = p\ - P^y, y^X\A. Then by theorem 16.4 of [6]
q1 is a potential on X\A of support {y} which is positive only on the
connected component of A that contains y. Furthermore, by the same
theorem, the hypothesis of proportionality is satisfied on CA.

Pick XQ €EA and consider the two functions K1 and K2 defined
by G1 and G2. Since K^ - P^ K^ = [l/^(^o)l^ there is a conti-
nuous function f(y) with K'y - PA K^ = f(y) [K^ - P^ K2].

Since, in the case of Martin compactifications, the harmonic
functions corresponding to the boundary points all take 1 at XQ,
it follows that the extensions to M(X,H^.) of the functions *K^
separate strictly the points of the ideal boundary.

It is well known that condition 4) is satisfied and so the condi-
tions of theorem 1 are satisfied with <^(x) = x for all x G X.
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Hence, there is a unique continuous map ^ :

M(X,gi ) ——>M(X,H^)

which extends the identity map on X. The argument being symme-
trical, it follows formally from the denseness of X in a compacti-
fication and the uniqueness condition that ^ is a homeomorphism.
In other words, the compactifications coincide.

Remarks. - Since theorem 1 holds in Bauer's theory, it is
reasonable to ask for a similar theorem there. A slight modification
of Sieveking's definition of a Martin space [15] leads to similar
results.

However, the non compactness of X U A requires a hypothesis
[4'] that ensures if a net (y^) converges to a point in A1, then it
converges to a point in A2, A^ being boundaries for H/, i = 1, 2.

5. The extension of harmonic functions.

Let H be a sheaf satisfying the axioms of Bauer [2] which isi
strict. It can be assumed that 1 is superharmonic.

Denote by A, B compact subsets of X and by 0 a relatively
compact open set with A C B C B C 0.

If U is open in X denote by Hy the kernel defined by the
Dirichlet problem for U, that is, if <p is a continuous function with
compact support on X then H^(x , <^) equals \p(x) if x ^ U and equals
}ff(x) where / = ̂  \ 3U if x G U (see [11]).

The open set 0 can be chosen so that HQ H. 1 < X < 1 on
B since H 1 coincides with a potential except possibly on 3B.

Define T : ̂ (30) ——> ^(30) by setting T/= (HQB HQ /) I 30
and define S : <^(3B) ———> C(3B) by setting

S^=(HoH^) |3B.

Then S and T are positive linear operators such that II S IK X, IIT II < 1
and T" = HcBS"~ lHo. Hence IIT" II < X"-1. As a result the series
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Sl T" converges to an operator which is the inverse of (I - T).
n ^o
Therefore (I — T)~1 exists and is a positive operator.

Using these results, it is easy to prove the following proposition
due to Nakai [14] in Brelot's theory.

PROPOSITION 4. - Let h be a continuous function on X\A,
harmonic on X\B. Then_ there is a unique harmonic function Ji on
X such that h - H^ h = h - HQ^A. The function ~h is positive
if h is positive.

Proof. — Let / be the unique continuous function on 30 with
(I -T) /= (h - HCB A) 130. Define h by setting ~h(x) equal to
Ho(^ , /) if x G 0 and equal to

( H C B H O ) O C , / ) + A O C ) - H C B O C , A ) if ^B.

Consider the harmonic function

^i = H c B H o / + A - H c B A = / ! + H c B ( H o / - A )

and let 0^ = 0\B. Now the continuity of h implies that HQ h^ ==h
and from the comparison theorem it follows that

"o^ HCB (HO f-h)= Hca(Ho / - h) .

Hence, /^ = H^ /^. On 30^, h^ = H^/and so on 0^,

A i = H ^ H o / = H o / .

As a result, /! is a well defined harmonic function on X. Furthermore,
KCB ̂  = HCB "o /» ^d so A - HCB h = A - HCB h.

Assume that h is a harmonic function on X for which

h - HCB h == h -HCB h.

Then A - H^a A_= A - H^g HQ A, which coincides on 30 with (I -T) A.
Consequently, h is uniquely defined.

If h > Ojhen A - H^ A > 0 and as a result (I - T)A, and
consequently A are also positive.

It follows from the proposition that ~h is independent of the
set 0 containing B. Let B^ be compact B C B^. The fact that
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H^ HCB == ^B

implies that h is independent of the compact set B D A provided h
is harmonic on X\B. Define the linear operator E :

H(X\A) ——> H(X)

by setting E h = A.
In what follows, B and 0 will be sets such that A C § c B C 0,

B compact, 0 open, relatively compact with HQ H^g K X < 1 on B.

PROPOSITION 5. - The operator E has the following properties :
1) it is linear and positive ;
2) it is continuous and open in the topology of uniform conver-

gence on compact sets ;
3) if h = A' |X\A, A'GH(X), then E(A) = h' ;
4) E(h) = 0, if and only if for some compact B D A, h = H(^ h.

proof. - Statements 1) and 3) have been proved. To prove 2),
let (/!„) be a sequence in H(X\A) converging to A. Then h^ - H^B^
converges uniformly to h~- HQB h on the_ compact subsets^ of X\B.
The continuity of (I - T)~1 implies that /!„ converges to A.

Let P be open in H(X\A) and let h^ == E(h^, A^e P. There
exist e> 0 and K compact in X\A with h C P if \h(x) - h^(x)\ <_£
for all x € K. Clearly K can be assumed to contain 30. Let D = K U 0.

If AEH(X) and | h(x) - h^x)^ < e for all x € D then

(h - Ao) I (X\A) + Ao = A € H(X\A)

is in P. From 3) it follows that E(A) === h and so E is open.
Assume that h = HCB^ for some compact set B D A._Then

0 = h - H^h which implies (I - T) h = 0. As a result, h =0.
Assume now that h = 0. Then since h - H(^A = h - H^A it
follows that h = H(^ A.

PROPOSITION 6. - Le^ t^ and H^ 6^ ^w •s'̂ 7C^ harmonic sheaves
on X Assume that there is a compact set A C X such that the sheaves
agnee on X\A.



THE MARTIN BOUNDARIES OF EQUIVALENT SHEAVES 443

Then with respect to the topology of uniform convergence on
compact sets, the topological vector spaces H^(X) and H^(X) are
isomorphic. ~

Proof. — Let i^ be a continuous strictly positive superharmoni-
function on X (relative to H,), i = 1, 2. Define E/ :

H,(X\A) ——> H,(X)

by setting E,.(A) = v^ E(A/v,.). These operators are continuous and
open.

Assume <p (x) > 0 for all x E X is a continuous real-valued
function. If U is open in X and if H)^ is the kernel defined by the
Dirichlet problem for U relative to the sheaf <p~1 H, then

^[HS(//^)]=Hu/.

Consequently, E^ and E^ have the same kernel.
This shows that the mapping J : Hi(X) ——> H^X) defined

by setting J(E^(A)) = E^(A), for all h GH^X\A) is an isomorphism.

Remark — Again the assumption of a countable base is not
necessary. For example, the arguments hold in the theory of Brelot
without this assumption.

6. Applications.

All sheaves considered here will be assumed to satisfy the initial
hypotheses of section 3.

Let H^ and H^ be two sheaves on X that satisfy the hypothesis
of theorem 2. Denote by X the common Martin compactification
of X and by A the Martin boundary X\X.

THEOREM 3. - A point YQ E A is minimal with respect to H^
if and only if it is minimal with respect to H^. ~

Proof. - In the proof of theorem 2, it was shown that there is
a continuous function / with K^ - P^ K^ = f(y) [K^ - PA K^] for
all y ^ A.
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From the proof of theorem 1, it follows that if a net (y ) on
X converges to j / E A then lim f(y ) = f(y) exists. Hence, if

7

4(x)=Um*K^),

it follows that K'y - P^ K'y = /(^) [K^ - P^ K^ ].
Since P^ = H^A, this shows that J(K^) ==/(.y) K^ where J is

the isomorphism of proposition 4. As J is a positive operator K1 is
minimal if and only if K2 is minimal.

Denote by A, = (/,. = 1) compact bases of S^ for i = 1,2 where
/i and ^ are positive continuous linear functional. Then theorem 2
and proposition 3 imply that there is a unique homeomorphism ^ :
H^) ——>8(\2) with ^0^)=p^ for all > / E X (^ being the
potential with support {y} in A^). The fact, proved in theorem 3,
that J(K1) = f(y) K2 implies the following result.

LEMMA. - // AI ES(Ai) 0 H^, rt^w

^(A^) =[!/(/, o J) (A^)] J(A^) .

Proof. — Let A^ = ^p(h^) and for any positive harmonic function
h set A° = [l/A(JCo)] A. Let K^ denote the kernel defined by (p^x
and Xo. Then ^(h^) = h^ if lim K^ = h\ implies lim K^ = ̂ .

Hence, i fa== lim/(^) then J(^) = a A^. Since ̂  = [1//,(A?)] A?
if A, EA,, this implies that /^ = [1/(/2 o J) (h^)} J^i).

THEOREM 4. — Let Hi fly2d H^ &^ equivalent sheaves on X.
77^w the topological cones ̂  and S^ are isomorphic.

Proof. - According to a remark of Alfsen [1] (p. 120), there
is a continuous affine map $ : A^ ———> A^ extending <p providing
(^ has the following property : if ^, ju 'G OTC^(S(A^)) have the same
barycentre then the image measures !p = v and <^ » = y' have the
same barycentre.

Let 1̂ 1 = pi + /^ be the barycentre of ^ and of p . ' . Then both
measures coincide on {p1 \ y E X}. Since \p maps this set on {p2 \ y E X },
it follows that v and v ' coincide on this set. By the lemma ^coincides
on S(A^) 0 H^ with the composition of J with the affine map
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^————>[1//2(M^2 •

Hence, it follows that if ^ = p^ 4- h^ and ^ = p^ + h\ are the
barycentres of v and i/\ then p^ = p\ and /^ == A^.

Extending $ to S^ by setting $(v) = /i(v) • ^([l//!^)] i0, gives
the required isomorphism.

Remark. — This theorem implies theorems 2 and 3. It would
therefore be desirable to have a direct proof of this result.

7. The Martin Compactification of X\A.

Let H be a sheaf on X satisfying the hypotheses of section 4
for which 1 is superharmonic. Let A C X be a compact set and let
0 denote a connected component of X\A which is not relatively
compact.

Pick XQ GO and let K(x, y) be the kernel obtained by norma-
lizing the potentials p . Then if q = p — P^ p , the kernel K°OC, y)
on 0 x 0 defined by normalizing the potentials q equals

f(y) [Ky(x) - PA Ky(x)], with f(y) = py(x^/qy(x^ if qyW

is finite and 1 if ^y(^o) equals + °°.
Let X = X U A denote the Iviartin Compactification of X and

let 0 denote the closure of 0 in X.

LEMMA 1. — The functions *K^, jcGO, extend continuously to
0\A and separate the points of 0 H A.

Proof. — Since X is locally connected [30]\ACA. Let (y )
be a net on 0 which converges in X to y G A. The functions

[1//(^)]K^

converge on 0 to the harmonic function h — P^ A, where h corres-
ponds to y.

Let (y^) and ( y ^ " ) be two subnets for which h' = lim K°
7 7 ^* Vy'

and h" == lim K° exist. Then a' = Urn /(^.) and a" = lim f(y^)
y " y^Y" -y' J -y" '
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both exist and are non zero. Now a^h' = a'h^ and as

h\x^) == h"^) = 1 ,

it follows that h' = h". Hence, lim *K^(^) exists for each JcGO.
Let }/, y be two points of 0 H A and let A, A' be the corres-

ponding harmonic functions on X. The function / extends conti-
nuously to 0\A as do the functions *K^. If the extensions of
these functions do not distinguish y from y\ then

f ( y ) [ h - ^ h ] = f ( y ) [ h f - ^ h f ] .

Consequently f(y) h = f ( y ' ) h' and so f(y) == /(/). As a result,
h = h' and so y = y\

Denote by *K^ the extension of *K^ to 6\A and let Y be
the compactification of 0 obtained by compactifying 0\A with
respect to (*K^)^o-

LEMMA 2. — Y is the Martin compactification of 0.

Proof. — The Martin compactification of 0 is the one defined
by (*K^)^o* Since these functions clearly extend continuously
to Y, it suffices to show that if y G 0 H A and y ' G Y\[0\A] their
extensions distinguish these two points.

Assume this is false. Then there are nets (y^) and (y^.) on 0
such that y = lim j\ and y ' = lim y^., with h° = lim K° = lim K°

7 ' Y 7 ^ 7 ' ' ^
a harmonic function on 0.

Because y E A, y = lim y in X and so, if h is the corresponding
7

harmonic function on X, f(y) [h — P^ h] = h° on 0. Further since
h = lim K., , h — PA h = 0 on CO. Adopting the convention of^ yf1 A

extending all functions on 0 to X\A by defining them to be zero
off 0, it follows that f(y) [h - P^ h] == h° on X\A. Hence,

f(y)h=E(h°),

E the operator of proposition 5.
Since A is a compact subset of Y it follows that the limit points

in 0 of all the convergent subnets of (>\0 lie on 3A. Let (y^n)
be such a net. Let B be a compact neighbourhood of A and let E :
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H(X\B) ———> H(X) be the operator of proposition 5. Then,
viewing all functions as defined on X\B,

E(h°) = Urn E(K^) = Urn E(/(^) [K^ -P.K^J) =

- mn E(/0^) K^,) .

However, if y „ is close enough to A, P» K., = K-, and so• — y ^ Y 1 1 V y "
E(Ky „) = 0. Therefore, h = 0, which is a contradiction.

This completes the proof of the first part of the following
result.

THEOREM 5. — 0\A is an open subspace of the Martin compac-
tification of 0. Further, a point y GO 0 A is minimal ifand only
if it is minimal as a point of the Martin boundary of 0.

Proof. — The proof of the second assertion uses the following
lemma, E being the operator of proposition 5.

LEMMA 3. — Let h' > 0 be harmonic on X\A and such tha^
PB A' decreases to zero as B, a compact neighbourhood ofA, decreases
to A. Then ifh = E(h'\ h - P^ h = h\

Assuming the lemma 3 let y E 0 0 A. It corresponds to a positive
harmonic function h on X. In the identification of OH A with a subset
of the Martin boundary of 0, the function h is replaced by

f(y) [h - PA h] .

The second assertion states that h is minimal on X if and only if
h — P^ h is minimal on 0.

Assume h is minimal on X and let h - P^ h > h' > 0 where
h' is harmonic on 0. If h^ = E(/^), viewing h' as extended by zero
to X\A, there exists X, 0 < X < 1, with /^ = \h. Hence,

h! -PAhl== ̂  - FA^) •

If B D A is compact, Pg (h - P^ h) = Pg h - P^ h and so Pg h1 decre-
ases to zero as B \ A. Lemma 3 implies that h^-P^h^h\

Assume now that h - P^ h = h' is minimal on 0 and that
h > AI > 0. Then if h^ - P^ h^ = h\, 0 < h\ < h' and so h\ = \h\
0 < X < 1. As a result, ̂  = E(/^) = XE(A') = XA.
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To prove the lemma, note that for any compact neighbourhood
B of A, h1 -h == Pg/!' - PgA (this follows from the definition
of E). Since Pg/z decreases to P^A, it follows that h' = h - P^ h.

COROLLARY 1. — // X\A is connected and X is the Martin
compactification of X, then X\A is an open subspace of the Martin
compactification of X\A. Further, a point y G A = X\X is minimal
if and only if it is minimal as a point of the Martin boundary of
X\A.

COROLLARY 2. — Let 0, (V be two connected components of
X\A that are not relatively compact. Then 0 0 0' 0 A = 0.

Proof. - If h corresponds to y € 0 0 0' H A, then h - P^ h = 0.
To see this note that h — P^ h is a limit of functions of the form
K — P^K , y^.0 (respectively, j /EO') which vanish on CO (res-
pectively, Co').

The following lemma together with the above corollary imply
that the Martin compactification is of type S (See [6] p. 99).

LEMMA 4. — Let A C X be compact. Then X\A has only a
finite number of connected components which are not relatively
compact. Further, if y € A there is a unique component 0 of this
type with y G 0.

Proof. — Let U be a relatively compact open set containing A.
Cover 3U with a finite number Ui ,. . . , U^ of connected open
sets with U, H A = 0.

Since X is connected, for any connected component 0 of
X\A, (TO 3A + 0. If in addition 0 0 [X\U] ̂  0, then 0 meets
some U^. Consequently, at most n connected components of X
A meet X\U. The uniqueness in the last statement follows from co-
rollary 2 to theorem 5.

COROLLARY 3. - Let 2 be the topological sum of the Martin
compactification of the connected components of X\A. Then X\A
is an open subspace of 2.
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Proof, — It follows from corollary 2 and lemma 4 that the con-
nected components of X\A are the sets 0\A, where 0 is a con-
nected component of X\A.

In view of theorem 5, each set 0\A can be identified with
an open subspace of the Martin compactification of 0 (trivially
if 6 C X).

COROLLARY 4. - The Martin compactification of X is of
type S.

Proof. — If / is a continuous function on X such that for some
compact set A C X, / is constant on the connected components
of X\A, then clearly / extends continuously to X. The result fol-
lows from Satz 9.1 of [6].

COROLLARY 5. — For y EA let 0(A , y ) be the unique connec-
ted component 0 o/X\A with y E 0. Denote by F ( y ) the intersection
of the sets 0(A , y) as A runs over the compact subsets of X. Then
F ( y ) is the connected component ofy in A.

Proof. — T h e sets F(y), y ^ A , are connected and pairwise
disjoint. Corollary 2 to theorem 5 implies that for each y E A
^(y) contains the connected component of y in A.

COROLLARY 6. — The cardinal number of the set of connected
components of A is at most 2^°

Remarks. — 1) The requirement that 1 be superharmonic is no
restriction since for an arbitrary sheaf H satisfying the hypotheses
of section 4, there exists a positive continuous superharmonic
function.

2) In [6] corollary 4 was proved for hyperbolic Riemann sur-
faces. The proof there depends on a description of the Martin boun-
dary which does not apply in general. For it to hold, the sheaf H
has to have an adjoint (see [16].

3) Corollary 6 holds without the assumption of a countable
base (as do the other results) in view of the result of Cornea [8]
which ensures that X is cr-compact.
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8. Direct Decomposition and the Ends of X.

The points of the compactification of X determined by the
functions defined in corollary 4 of theorem 5 are often called the
ends of the space X. As is pointed out in [6], since the Martin compac-
tification is of type S, there is a one-one correspondence between
the ends of X and the connected components of A.

Denote by C the cone of positive harmonic functions on X.
Let (A,),gi bo a family of elements of C. Assume that

{ S hi | F C I finite }
(,eF )

is bounded above in C. Then the supremum of this family of finite
sums will be defined to be S ̂ r Using this concept of infinite

i-ei
sum, the cone C is said to be the direct sum of the family (C,.)^i
of convex subcones C^ of C if for each h G C there is a unique family
(A,),,,, with A, G C,, Vf G I and A == ̂  Tip

161

A convex subcone Ci of C will be said to be a direct summand
of C if there is a convex subcone C^ with C the direct sum C^ © C^
of Ci and C^. If C is the direct sum of (C^i then each C/ is a
direct summand.

If C = Ci © C^ and both C^, C^ are closed in the topology
of uniform convergence on compact sets then C will be called a
topological direct sum. In this case C^, C^ will be called topological
direct summands.

The purpose of this section is to discuss the relationship between
direct sums and the ends of X. The basic result is the following
theorem.

THEOREM 6. - Let A C X be compact and let 0^ ,. .. , 0^ be
the connected components o/X\A which are not relatively compact
Set D, = A n Oi and let C, denote the set of all positive harmo-
nic functions on X represented by measures whose support lies in D,..
Then C, is a topological direct summand ofC andd C == C i ® . . . ®C^.
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Proof. - Since A = Cl D, it follows that if h E C then h = Y h,• — i A—^' •l - l /=!

with ^ G C,, which is clearly a closed convex subcone of C.
Let h € C be represented by two measures ^ and p.' and let

p.f = ^ |D,., jLiJ = JH'ID, . Then M, and ^ represent the same harmonic
n n

function. Consider h = ̂  A, = ̂  Aj where A, corresponds to ^
1=1 »=i

and h\ to ^(i.e. A,(^) = f Ky(x) d^(y) etc.). Then

h - PA A = f (A, - PA A,) = i (A; - P^ ^) .
1=1 »=i

Since A, — P^ A, and Aj — P^ /zj both equal A — P^ A on 0, and zero
on CO, (this follows because K — P^ K vanishes on Co, if y G D.)
as a result A, — P^ A, = Aj — P^ h\. Hence, A, =/!,'.

Consequently, C = Ci ® • • - © €„. Since C^ ® • - • ® €„ is closed,
it follows that C^ (and similarly each C,) is a topological direct
summand.

COROLLARY 1. — Let D C A be closed and a union of connected
components. Let jn, I J L ' be two measures on A that represent the
same positive harmonic function. Then p.\D and JIA'ID represent
the same harmonic function.

Proof. — From the theorem it follows that this is true if D
is a finite union of sets of the form D,..

Denote by D(A), A C X compact, the union of the sets D,
(defined in the theorem) that meet D. Then if (A^)^ is an increasing
sequence of compact sets with X = UA^ , D = 0 D(A^) and

D(A^)DD(A^i)

for all n. Let ^ = jLi|D(A^). Then ^ converges weakly to ju|D.
Since the same is true for ^f, the result follows.

COROLLARY 2. — Let Y be a connected component of A and
let Cp be the set of all positive harmonic functions represented by
measures supported by V. Then C is the direct sum of the cones Cp,
F running through the collection of connected components of A.
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Proof. — Using the notation of the previous corollary,

r = n F(A^) .
Hence, by corollary 1 if h G C is represented by jn and ju', then

jLi|r and ^ IF represent the same function Ap.
Clearly, h = SpAp anc* as t^ls representation is unique C is the

direct sum of the cones Cp.

COROLLARY 3. - Each connected component F of A contains
minimal points.

Proof. — If A € Cp and JLI represents h it follows from the uni-
queness of its representation that p. is supported by F. Let y E F
and let A be the corresponding harmonic function. Since it is
represented by a canonical measure jn carried by A^ the result
follows.

The cones Cp, corresponding to the connected components
of A are in some sense "canonical". The following result leads to
a characterization of the Cp in terms of the cone C when A^ = A.

PROPOSITION 7. — Let C be the topological direct sum of C^
and C^. Then there are disjoint closed sets D, with D^ U D^ = A
and Cf equal to the cone C^. of positive harmonic functions repre-
sented by measures carried by D .̂ providing A^ is dense in A.

Conversely, if A = D^ U D^ with D^ and D^ disjoint closed
sets then C is the topological direct sum of Cp and C^ .

Proof. — The converse follows from corollary 1 to theorem 6.
Viewing A as a subset of C let D, = C^ H Ap The sets_Di, D^

are disjoint, closed and since their union contains A^, D^ UD^ = A^ = A.
Hence, C = C^ © C^ .

Let Cj be the cone of functions whose canonical measure is
carried by D,. Then C = C[ © C^ and as C,' C C^., C,' = C .̂ for
f = 1,2. Further, since C, is closed it follows that C^ C C^. As a
result, C, === Co. for z = 1,2.

In view of this proposition, it follows that the cones Cp have
the following property : if C is the topological direct sum of C^
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and C^ then CpCC^ or CpCC^. Subcones of C with this property
will be called compatible.

THEOREM 7. — Assume A^ = A. Then the cones Cp are the
maximal compatible subcones of C. // Cp is a topological direct
summand it is a minimal one.

Further, the following statements are equivalent :
1) X has a finite number of ends ;
2) A has a finite number of connected components ;
3) C has only a finite number of topological direct summands ;
4) each Cp is a topological direct summand.
In this case, C is the topological direct sum of the cones Cp.

Proof. — It follows from proposition 7 that if a cone Cp is a
topological direct summand, then it is minimal.

Let CQ be a compatible subcone of C. If A C X is compact
then there is a unique non relatively compact connected component
0 of X\A with Co C C^, where D = 0 0 A and C^ is defined as
in proposition 7. Hence if F is the intersection of these sets
D, Co C Cr.

It is clear that 1), 2) and 3) are equivalent and that 2) implies
4). Assume A has an infinite number of connected components
^0)0 e i • For each a let VCL e ̂  and let y be a limit P01111 of ^a l^ e I^
Assume that F^ is the connected component of y. Since Cp is

a topological direct summand ^ Cp == C^ is a closed subcone.
afcLQ a

This contradicts the fact that y is a limit point since the harmonic
functions h^ corresponding to y^ lie in C^ if a ¥= o^.

When A has a finite number of connected components then,
for some compact A C X, the connected components of A coincide
with the sets 0 H A, 0 a non relatively compact connected com-
ponent of X\A. Consequently, the last statement follows from
theorem 6.

Example. - Let B be an open ball in R^n > 2) and let D CB
be a sequence of points all of whose limit points lie outside B.
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Set X == B \D. The Martin boundary of X equals D U S, S the
sphere bounding B. Each x ED is a connected component of A
whose corresponding subcone is a topological direct summand. The
cone corresponding to the component S does not have this
property.

Remarks. — In [4] Constantinescu and Cornea show that for
any integer n > 0, there exists a hyperbolic Riemann surface X
with one end and A^ a set of n points. Since A is connected

A^ = A^ A .

Furthermore, for these examples theorem 7 clearly breaks down.
It would be of interest to have sufficient conditions that ensure

A, = A.

9. Appendix.

Let X and H be as in section 4 without the assumption of
a countable base. Denote by S^ the cone of positive superharmonic
functions equipped with the T-topology. Then S^ has a compact
base A by corollary 3.2 of [7].

Let E denote the set of superharmonic functions that are
either harmonic or potentials with point support.

LEMMA 5. — E"^ H A is compact.

Proof. — Let ^IL be an ultrafilter on E 0 A and denote by
s^ the function defined in [7] (p. 1335). Define <^: E ——> X U {a},
a the Alexandroff point at infinity by setting ^p(s) = a if s is harmonic
and ^p(s) = y if the support of s is {y}.

The image ultrafilter ^U converges to a or to a point y €E X.
In the first case s^ is harmonic, and in the second it has its support
contained in {y} (see theorem 2.1 of [7].

Since in theorem 3.1 of [7] it is shown that ^ converges to s^
in the T-topology, the result follows.

It was proved in [6] (theorem 5) that for each y G X there is
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a potential with support {y}, and so there is a unique potential
p in A with this property.

PROPOSITION 8. — The mapping y ——> p embeds X in A.
Further the function G(x , y) = p (x) is a lower semicontinuous
function on X x X, continuous off the diagonal.

Proof. - The proofs of propositions 18.1 and 19.1 of [10] do
not use the second axiom of countability.

Lemma 5 therefore allows the argument of proposition 22-1 of
[10] to apply without change.

It remains to note that proposition 19.1 of [10] implies that
p ——> y is a continuous function.

Remark. — From what has been said above, proposition 3 holds
without the second axiom of countability.
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