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RELATIONS IN THE CREMONA GROUP OVER A
PERFECT FIELD

by Julia SCHNEIDER

Abstract. — For perfect fields k satisfying [k : k] > 2, we construct new
normal subgroups of the plane Cremona group and provide an elementary proof
of its non-simplicity, following the melody of the recent proof by Blanc, Lamy and
Zimmermann that the Cremona group of rank n over (subfields of) the complex
numbers is not simple for n > 3.
Résumé. — Pour les corps parfaits k qui satisfont [k : k] > 2, nous construi-

sons de nouveaux sous-groupes distingués du groupe de Cremona du plan et nous
donnons une preuve élémentaire de sa non-simplicité en suivant la mélodie de la
preuve récente de Blanc, Lamy et Zimmermann du fait que le groupe de Cremona
de rang n sur les (sous-corps des) nombres complexes n’est pas simple pour n > 3.

1. Introduction

The Cremona group Crn(k) = Birk(Pn) is the group of birational trans-
formations of the projective n-space over a field k. In dimension n = 2 it has
been proven [5, 15, 18] that the Cremona group over any field is not simple,
answering a long-open question. For algebraically closed fields, the classical
result by Noether and Castelnuovo [6, 16], which states that the Cremona
group is generated by PGL3(k) and the standard quadratic involution, has
as a consequence that the Cremona group is a perfect group, meaning that
all group homomorphisms from the Cremona group to an abelian group
are trivial. For many perfect fields, however, Lamy and Zimmermann con-
structed a surjective group homomorphism from the plane Cremona group
to a direct sum of Z/2Z [13, Theorem C], implying non-perfectness and thus
reproving non-simplicity of the Cremona group in these cases. Hence, the
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2 Julia SCHNEIDER

structure of the plane Cremona group depends fundamentally on the field.
Observing similarities between the plane Cremona group over non-closed
fields and the Cremona groups in high dimensions, Blanc, Lamy and Zim-
mermann have recently managed to construct a surjective group homomor-
phism from the high-dimensional Cremona group Crn(k) to a free product
of direct sums of Z/2Z, where n > 3 and k ⊂ C is a subfield [3]. (More con-
structions in this setting can be found in [4, 19].) For the high-dimensional
case, it turned out that it is more suitable not to use the high-dimensional
analogue of [13] but to take a different construction. The goal of this article
is to adapt the strategy of [3] back to dimension two over perfect fields and
find new normal subgroups of Cr2(k). No knowledge of [3] is required to
read our paper but we will highlight the connections to their proof. In fact,
only classical algebraic geometry is used, and the well-established decom-
position of birational maps into Sarkisov links (proven in [10, Theorem 2.5]
and [7, Appendix], see Theorem 2.11 below). Therefore, the following result
can be seen as an elementary proof of the non-simplicity of the Cremona
group over perfect fields whose extension degree of the algebraic closure is
larger than 2 (and thus infinite by Artin–Schreier):

Theorem 1.1. — For each perfect field k such that [k : k] > 2, there
exists a group homomorphism

Birk(P2)�
⊕
I

Z/2Z

where the indexing set I is infinite and whose kernel contains Autk(P2) =
PGL3(k) such that the restriction to the subgroup that is locally given by

{(x, y) 7→ (xp(y), y) | p ∈ k(y) \ {0}}

is surjective. In particular, the Cremona group Birk(P2) is not perfect and
thus not simple.

The result is thus a 2-dimensional analogue of [3, Theorem A]. Theo-
rem 1.1 together with [20] (which states that the abelianisation of the real
Cremona group is isomorphic to an uncountable direct sum of Z/2Z and
whose proof seems to work over any field with [k : k] = 2 when replacing
“uncountable” with “cardinality of the field”) shows that for all perfect
fields that are not algebraically closed, there is an infinite abelian group A,
all of whose elements have order 2, and a surjective group homomorphism
Birk(P2) 99K A whose kernel contains PGL3(k).
While Noether and Castelnuovo provided a nice set of generators of the

Cremona group over algebraically closed fields, over non-closed fields such a
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CREMONA GROUP OVER A PERFECT FIELD 3

nice set of generators is not known (a set of generators can be found in [11]).
For a Mori fiber space X (a simple fibration, see Definition 2.2 below),
however, we do not look at the group Bir(X) but consider instead the
groupoid BirMori(X), which consists of birational maps between Mori fiber
spaces that are birational to X. The advantage is that we have generators:
The groupoid BirMori(X) is generated by Sarkisov links of type I to IV
(simple birational maps, see Definition 2.9) [10, Theorem 2.5]. Details about
generators and relations for groupoids can be found in [9]. Whereas over
an algebraically closed field the Sarkisov links are just the blow-up of one
point (type III), or its inverse (type I), or the blow-up of one point followed
by the contraction of one curve (type II), or an exchange of the fibration
of P1 × P1 (type IV), over a perfect field one has to consider orbits of the
Galois action of Gal(k/k) on X. In this paper, the size of the orbits that
lie in the base locus of a birational map is going to be important. We say
that the Galois depth of a birational map ϕ is the maximal size of an orbit
that lies in the base locus of ϕ or ϕ−1.
So we do not directly construct a group homomorphism from Bir(X), but

we first construct a groupoid homomorphism from BirMori(X) and then
take the restriction to Bir(X). For this one has to study relations in the
groupoid. Note that in [10] there is a long and complicated list of generating
relations. In [13] the focus lies on Bertini involutions (the blow-up of an
orbit of size 8 in P2, followed by the contraction of an orbit of curves of size
8). For higher dimensions, the focus lies on links of type II between Mori
conic bundles that have a large covering gonality (see [3] for definitions).
Translating this back to the 2-dimensional case, we focus on links of type
II between Mori conic bundles (that is, a Mori fiber space X → B where B
is a curve) that have large Galois depth and find the following generating
relations:

Theorem 1.2. — Let X be a Mori fiber space (of dimension 2) over a
perfect field. Relations of the groupoid BirMori(X) (with Sarkisov links as
a set of generators) are generated by the trivial relations and relations of
the following form:

(1) ϕn · · ·ϕ1 = id, where the Galois depth of all ϕi is 6 15, and
(2) χ4χ3χ2χ1 = id where χi : Xi−1 99K Xi are links of type II between

Mori conic bundles such that the links χ1 and χ3 are equivalent
and χ2 and χ4 are equivalent.

(What is meant by trivial relations is explained at the beginning of Sec-
tion 3. For the notion of equivalent links see Remark 3.4 and Definition 5.2.)

TOME 72 (2022), FASCICULE 1



4 Julia SCHNEIDER

This can be compared with [3, Proposition 5.5]. We give a simple and self-
contained proof to the above theorem using elementary techniques. One
could also give a proof of Theorem 1.2 with 8 instead of 15, using the work
of [13] (or [11]) and the fact that the blow-up of more than 8 points is not
del Pezzo anymore, but we do not achieve this with the elementary ap-
proach that we follow here: Some technicalities in Lemma 3.10 deny us this
pleasure. One may however observe that in dimension n > 3 the bound on
the covering gonality given in [3], the analogue of the Galois depth, is not
explicit. Using these generating relations, we are finally able to construct
a groupoid homomorphism. (For the notation: CB(X) denotes the set of
equivalence classes of Mori conic bundles, and M(C) denotes the set of
equivalence classes of Sarkisov links between Mori conic bundles equivalent
to C; see Definitions 5.1 and 5.2.)

Theorem 1.3. — LetX be a Mori fiber space over a perfect field. There
exists a groupoid homomorphism

BirMori(X) −→ ∗
C∈CB(X)

⊕
χ∈M(C)

Z/2Z

that sends each Sarkisov link χ of type II between Mori conic bundles that
is of Galois depth > 16 onto the generator indexed by its equivalence class,
and all other Sarkisov links and all automorphisms of Mori fiber spaces
birational to X onto zero.

Moreover it restricts to group homomorphisms

Bir(X)→ ∗
C∈CB(X)

⊕
χ∈M(C)

Z/2Z, Bir(X/W )→
⊕

χ∈M(X/W )

Z/2Z.

This is analogue to [3, Theorem D]. Note that the group homomorphism
of Theorem 1.3 is trivial if the field does not admit large orbits. If the group
homomorphism is not trivial, the kernel is a non-trivial normal subgroup of
Bir(X). For perfect fields k that admit a large orbit andX = P2

k, we restrict
the obtained group homomorphism to the equivalence class of Mori conic
bundles corresponding to the Hirzebruch surfaces and provide an example
that shows that the group homomorphism is not trivial and therefore obtain
Theorem 1.1. Here ends the first part of this paper.
In the final section we investigate rational Mori conic bundles in order

to refine Theorem 1.1:
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CREMONA GROUP OVER A PERFECT FIELD 5

Theorem 1.4 (Refinement of Theorem 1.1). — For each perfect field k
such that [k : k] > 2, there exists a surjective group homomorphism

Birk(P2)�
⊕
I0

Z/2Z ∗
(
∗
J5

⊕
I

Z/2Z
)
∗

(
∗
J6

⊕
I

Z/2Z
)

where I0 is infinite and I is the set of integers n > 8 such that there exists an
irreducible polynomial in k[x] of degree 2n+ 1, and the indexing sets Jd of
the free products denote a set of equivalence classes of Mori conic bundles
X with K2

X = d. The sets have cardinalities |J5| > N4 and |J6| > N2,
where Nn denotes the number of Galois orbits of size n in P2, up to linear
transformations of PGL3(k).
In particular, if k = Q then there is a surjective group homomorphism

Birk(P2)� ∗
N
Z/2Z,

and for any finite field k there is a surjective group homomorphism

Birk(P2)� Z/2Z ∗ Z/2Z ∗ Z/2Z.

The existence of a group homomorphism from Birk(P2) to a free prod-
uct of at least three copies of Z/2Z implies SQ-universality of the plane
Cremona group over finite fields and the field of rational numbers (see [17,
Theorem 3] and [3, Corollary 8.4]). This is new for k = F2 but for many
fields it is already given in [13], though with a different construction of the
homomorphism. (The kernel in Theorem 1.4 contains all Bertini involu-
tions, whereas the kernel in [13] contains all de Jonquières maps.) In this
final section, however, we do not only use [10, Theorem 2.5] but also the
above mentioned long list of Sarkisov links in the same paper.
The paper is structured as follows: In Section 2 we introduce the notion

of Mori fiber space and Sarkisov link, and state some basic but important
remarks about the Galois depth of birational maps. In Section 3 we study
relations of BirMori(X) and prove Theorem 1.2. Then, we make a detour to
Galois theory in Section 4 to establish that a perfect field k with [k : k] > 2
has arbitrarily large orbits (Lemma 4.2), and that there are such fields that
do not have an orbit of size exactly 8 (Lemma 4.3). The latter is to contrast
our result with [13]. The main part of this paper ends with Section 5, where
we prove Theorem 1.3 and finally Theorem 1.1, concluding the main part
of the paper.
In Section 6, we study rational Mori conic bundles and give the proof

of Theorem 1.4. As we use here the long list of Sarkisov links from [10,
Theorem 2.6], we provide the reader with a visualisation of it in Section 6.3.

TOME 72 (2022), FASCICULE 1
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2. Preliminaries

Consider a perfect field k and the Galois group Γ=Gal(k/k)=Aut(k/k).
We will work over the algebraic closure k, equipped with the Galois action
of Γ. A perfect field is a field such that every algebraic extension is separa-
ble. We will use the following property of perfect fields: A field k is perfect
if and only if the extension k/k is normal and separable, which means that
k/k is Galois. In particular, the field fixed by the action of Γ is exactly
k [14, Theorem 1.2, Chapter VI]. So a point is fixed by the Galois action
if and only if it is defined over k.
We are interested in surfaces. In the sequel, we assume all surfaces to be

smooth and projective. A (rational) map ϕ : X 99K Y is always supposed
to be defined over k (and thus X and Y are defined over k, too). However,
we will look at k-points and k-curves on our surfaces.

2.1. Spaces of interest: Mori fiber spaces

Definition 2.1. — Let X be a surface and π : X → B a surjective
morphism to a smooth variety B. The relative Picard group is the quotient
Pick(X/B) := Pick(X)/π∗ Pick(B).

We study Mori fiber spaces and only consider surfaces X over k. So the
definition is as follows:

Definition 2.2. — A surjective morphism π : X → B with connected
fibers, where X is a smooth surface and B is smooth, is called a Mori fiber
space if the following conditions are satisfied:

(1) dim(B) < dim(X),
(2) rk Pick(X/B) = 1 (relative Picard rank),
(3) −KX ·D>0 for all effective curves D on X that are contracted by π.

If B is 1-dimensional, we say that X → B is a Mori conic bundle.

ANNALES DE L’INSTITUT FOURIER



CREMONA GROUP OVER A PERFECT FIELD 7

Note that we say that an arbitrary fibration (not necessarily a Mori
fiber space) X → B with B one-dimensional is a conic bundle, if a general
fiber is isomorphic to P1 over k and any singular fiber is the union of two
(−1)-curves intersecting at one point.

Remark 2.3. — Any Mori fiber space X → B is of one of the two follow-
ing forms, depending on the dimension of the base B:

(1) If B = {∗} then rk Pick(X) = 1 and so X is a del Pezzo surface.
(2) If B is a curve, then X → B is a Mori conic bundle, and the fiber

of each k-point of B is isomorphic to a reduced conic in P2 (irre-
ducible or reducible). In particular, it is a conic bundle. Moreover,
the two irreducible components of any singular fiber lie in the same
Galois orbit. (Otherwise, the orbit of one component consists of dis-
joint (−1)-curves. Contracting them yields a surface S → B with
rk Pick(S/B) > 1. Then rk Pick(X/B) = rk Pick(S/B) + 1 > 2, a
contradiction.)

If B is 1-dimensional and X is geometrically rational with a k-point, the
following lemma implies that B = P1 and so rk Pick(X) = 2.

Lemma 2.4. — Let π : X → B be a conic bundle. Then X is geometri-
cally rational if and only if the genus of B is 0. In this case, either B = P1

or B is a smooth projective curve without k-point.

Proof. — Assume thatX is geometrically rational, so there is a birational
map ϕ : X 99K P2 defined over k. Hence, πϕ−1 : P2 99K B is a dominant
rational map, defined over k, and so B is geometrically unirational. As B
is a curve, the solution of Lüroth’s problem implies that B is geometrically
rational. So the genus of B is zero.

The converse direction is a corollary of Tsen’s theorem [12, Coroll-
ary 6.6.2, p. 232], which states that there is a birational map from X

to B × P1 defined over k and hence X is geometrically rational. �

Remark 2.5. — For a conic bundle X → P1, there are 8 −K2
X singular

fibers on X. (Over k, contracting one irreducible component of each singu-
lar fiber gives a morphism X → Y , where Y is a P1-bundle over P1, that
is, Y is a Hirzebruch surface. Hence, K2

X = K2
Y − r = 8− r, where r is the

number of singular fibers on X.)

Definition 2.6. — Let X1 → B1 and X2 → B2 be two Mori fiber
spaces. We say that a birational map ϕ : X1 99K X2 preserves the fibration

TOME 72 (2022), FASCICULE 1



8 Julia SCHNEIDER

if the diagram

X1 X2

B1 B2

ϕ

'

commutes. Moreover, if ϕ is also an isomorphism we say that ϕ : X1
∼→ X2

is an isomorphism of Mori fiber spaces.

2.2. Maps of interest: Sarkisov links

Definition 2.7. — Let X → B be a Mori fiber space. We denote by
BirMori(X) the groupoid consisting of all birational maps ϕ : X1 99K X2
where Xi → Bi are Mori fiber spaces for i = 1, 2 such that X1 and X2 are
birational to X.

Definition 2.8. — For a Mori fiber space π : X → W we denote by
Bir(X/W ) ⊂ Bir(X) the subgroup of birational maps f ∈ Bir(X) that
preserve the fibration.

Definition 2.9. — A Sarkisov link (or simply link) is a birational map
ϕ : X1 99K X2 between two Mori fibrations πi : Xi → Bi, i = 1, 2, that is
part of a commuting diagram of one of the following four types:

Type I X1 X2

{∗} = B1 B2

ϕ

where ϕ−1 : X2 → X1 is the
blow-up of one orbit of Gal(k/k).

Type II Z

X1 X2

B1 B2

ϕ
σ1 σ2

'

where σi : Z → Xi is the blow-up
of one orbit.

Type III X1 X2

B1 {∗} = B2

ϕ where ϕ : X1 → X2 is the blow-
up of one orbit.

Type IV X1 X2

B1 B2

ϕ

'
where ϕ is an isomorphism that
does not preserve the fibration
and B1, B2 are curves.

ANNALES DE L’INSTITUT FOURIER



CREMONA GROUP OVER A PERFECT FIELD 9

Remark 2.10. — In fact, B1 in a link of type III (respectively B2 in a
link of type I) is always P1 (see [10]). In a link of type IV, B1 is a smooth
curve of genus 0 (follows from the proof of Lemma 3.3 and Lemma 2.4),
but not necessarily P1: For example, let C be a conic with no k-point. Then
the change of fibration of C × C is a link of type IV.

Theorem 2.11 ([10, Theorem 2.5] and [7, Appendix]). — Let X be a
geometrically rational Mori fiber space. The groupoid BirMori(X) is gen-
erated by Sarkisov links and isomorphisms of Mori fiber spaces.

The following two lemmas follow from the classification of Sarkisov links
[10, Theorem 2.6]. In order to keep the promise of providing elementary
proofs, we reprove the statement for completeness.

Lemma 2.12. — Let ϕ : X1 → X2 be a link of type III.
(1) The cone of effective curves NEQ(X1) equals Q>0f+Q>0E, where f

is a fiber of the Mori fiber space X1 → B1 and E is the exceptional
locus of ϕ.

(2) X1 is a del Pezzo surface.
(3) The size r of the orbit blown up by ϕ is less or equal than 8.

Proof. — As E is an orbit of r disjoint (−1)-curves, none of these is
contained in a fiber of X1 → B1 (see Remark 2.3). Hence, f ·E > 0 and so
f and E are not linearly equivalent because f2 = 0 and E2 = −r < 0. As
the rank of the Picard group Pick(X1) is 2 (since the rank of the Picard
group of X2 is 1), any curve C in NEQ(X1) is linearly equivalent to αf+βE
for some α, β ∈ Q. We want to prove that α, β > 0. If C = E, then α = 0
and β = 1, so assume that C 6= E. We compute

0 6 f · C = βE · f,

hence β > 0. We also find

0 6 E · C = αE · f + βE2,

which implies that α > 0, since βE2 6 0 and E · f > 0. This proves (1).
For (2), we prove ampleness of −KX1 using Kleiman’s Criterion. Note

that the expression of NEQ(X1) in (1) is closed, hence NEQ(X1) \ {0} =
(Q>0f + Q>0E) \ {0}. We compute for (α, β) ∈ Q2

>0 \ {(0, 0)}

−KX1(αf + βE) = α(−KX1f) + β(−KX1E) = 2α+ βr > 0,

where we used the adjunction formula to compute −KX1f and −KX1E.
Therefore, Kleiman’s Criterion implies that −KX1 is ample, and so (2)
holds.

TOME 72 (2022), FASCICULE 1



10 Julia SCHNEIDER

For (3), note that (2) implies in particular that 0 < (−KX1)2 6 9. Since
ϕ : X1 → X2 is a blow-up of r points (over k), we also have (−KX1)2 =
(−KX2)2 − r. This gives r < (−KX1)2 6 9, hence r 6 8. �

Lemma 2.13. — For i = 1, 2, let Xi → {∗} be two Mori fiber spaces
and let ϕ : X1 99K X2 be a link of type II that has a resolution σi : Z → Xi,
where σi is the blow-up of an orbit of size ri with exceptional divisor Ei.

(1) The cone of effective curves NEQ(Z) equals Q>0E1 + Q>0E2.
(2) Z is a del Pezzo surface. In particular, ri 6 8 for i = 1, 2.

Proof. — For (1) it is enough to show that E1 and E2 are (different)
extremal rays in the cone of effective 1-cycles NE(Z) since rk Pick(Z) = 2.
First, we remark that NEQ(X1) = −KX1Q>0: Having rk Pic(X1) = 1, there
is a curve C on X1 such that NEQ(X1) = Q>0C. As −KX1 is ample (since
X1 is del Pezzo), −KX1 is effective and non-zero, hence −KX1 = λC for
some λ > 0. Therefore, NEQ(X1) = −KX1Q>0. Now, let D ∈ NEQ(Z) be
such thatD is no multiple of E1. Hence, π∗(D) is effective. AsD ∈ Pic(Z) =
QE1 + Qπ∗(−KX1), we can write D ∼ aπ∗(−KX1) + bE1 with a > 0.
Therefore, NEQ(Z) lies in Q>0π

∗(−KX1) + QE1. Hence, E1 is extremal.
The same argument works for E2. The two extremal rays E1 and E2 are
different because E1 is effective with E2

1 < 0 but E1E2 > 0 (ϕ is not an
isomorphism, hence E1 and E2 are distinct).
For (2), compute with the adjunction formula −KZEi = ri. For α, β ∈

Q>0, not both zero, this gives

−KZ(αE1 + βE2) = αr1 + βr2 > 0

and Kleiman criterion implies that −KZ is ample, hence Z is del Pezzo.
Note that ri 6 8 follows in the same way as the proof of (3) of Lem-
ma 2.12. �

This leads us to one of the main points of this article: The Galois depth of
birational maps, which plays in our article the role of the covering gonality
in [3, Theorem D].

2.3. Galois depth of birational maps

Definition 2.14. — Let ϕ : X 99K X ′ be a birational map between
surfaces. The Galois depth of ϕ is the maximal size of all orbits contained
in the base loci of ϕ or ϕ−1.

ANNALES DE L’INSTITUT FOURIER



CREMONA GROUP OVER A PERFECT FIELD 11

Remark 2.15. — A Sarkisov link ϕ : X1 99K X2 has Galois depth 6 8
except if it is a link of type II between Mori conic bundles. Indeed, the
statement for links of type I and III is implied by Lemma 2.12, for type
II it is Lemma 2.13, and links of type IV do not have base points so they
have Galois depth 0.

Remark 2.16. — With the above remark, any f ∈ BirMori(X) can be
decomposed by Iskovskikh’s Theorem 2.11 as

f = ΨN+1 ◦ ΦN ◦ΨN ◦ · · · ◦Ψ2 ◦ Φ1 ◦Ψ1,

where Ψi : Yi−1 99K Xi are birational maps with Galois depth 6 8 (or an
isomorphism of Mori fiber spaces), and Φi : Xi 99K Yi are a composition
of links of type II between Mori conic bundles, possibly followed by an
isomorphism of Mori fiber spaces.
Note that if f is not an isomorphism of Mori fiber spaces, then at least

one Sarkisov link has to appear in the above decomposition.

3. Relations

Let X be a Mori fiber space (of dimension 2). By Theorem 2.11, the
groupoid BirMori(X) is generated by Sarkisov links and isomorphisms of
Mori fiber spaces. We study the set of relations of these generators. The
following two relations will be called trivial:

• αβ = γ, where α, β, γ are isomorphisms of Mori fiber spaces,
• αψ−1ϕ = idX , where ϕ : X 99K Y and ψ : Z 99K Y are Sarkisov
links and α : Z ∼→ X is an isomorphism of Mori fiber spaces.

Whereas [13] and [3] encode the information of Sarkisov links and re-
lations between them in a simplicial square complex (where the vertices
are rank r-fibrations) and find generating relations via the Sarkisov pro-
gram [13, Sections 2 and 3], here we discuss a more classical and elementary
approach.

3.1. Relations between Mori conic bundles

Lemma 3.1. — Let X → V and Y →W be two Mori conic bundles and
let ϕ : X 99K Y be a birational map such that every curve contracted by ϕ is
contained in a fiber of X → V . Then there is a composition ϕ = αϕn · · ·ϕ1
of Sarkisov links ϕi of type II between Mori conic bundles such that each

TOME 72 (2022), FASCICULE 1
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ϕi is the blow-up of one orbit of ri > 1 distinct points on ri distinct smooth
fibers, followed by the contraction of the strict transforms of these fibers,
where α is an isomorphism (not necessarily of Mori fiber spaces).

Proof. — Consider the minimal resolution

S

X Y,ϕ

σ τ

where σ and τ are compositions of blow-ups in points. Let C ⊂ S be a (−1)-
curve contracted by τ . So σ(C) is either a smooth fiber or a component of
a singular fiber.
Let us show that it is not possible that σ(C) = F is a component of

a singular fiber. In this case, the self-intersection of F is −1. Hence, no
point on F is a base point of σ, since otherwise C2 6 −2. Let E be the
other irreducible component of the fiber containing F , so E2 = −1. By
Remark 2.3, E and F lie in one orbit. As τ contracts C = Ẽ, it also
contracts F̃ (since they are in the same orbit). This is not possible, since
after the contraction of C onto a point, the push-forward of F̃ is a curve
of self-intersection 0 and can therefore not be contracted.
Hence, σ(C) = F is a smooth fiber and so its self-intersection is 0. As

σ is a composition of blow-ups, there is one base point p ∈ F of σ. So
all points of the Galois orbit of p are base points of σ, and no two lie on
the same fiber, since otherwise the self-intersection of C would be 6 −2.
Therefore, τ contracts all fibers through the orbit. Let ϕ1 be the blow-up
of the orbit of p followed by the contraction of the strict transforms of
the fibers through the orbit. This is a link of type II between Mori conic
bundles, and ϕ factors through ϕ1. Moreover, ϕϕ−1

1 has fewer base points.
Repeating this process for all (−1)-curves that are contracted by τ gives

an isomorphism α = ϕϕ−1
1 · · ·ϕ−1

n , that is, ϕ = αϕn · · ·ϕ1 where all ϕi are
blow-ups of an orbit followed by the contraction of the strict transforms of
the fibers through it, as in the statement of the lemma. �

Corollary 3.2. — Let X → V and Y → W be two Mori fiber spaces
and let ϕ : X 99K Y be a birational map that preserves the fibration. If
ϕ is not an isomorphism, then ϕ = ϕn · · ·ϕ1 for Sarkisov links ϕi of type
II between Mori conic bundles such that each ϕi is the blow-up of one
orbit of ri > 1 distinct points on ri distinct smooth fibers, followed by the
contraction of the strict transforms of these fibers.
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Proof. — Since ϕ preserves the fibration, any curve in X that is con-
tracted by ϕ onto a point in Y is contained in a fiber and so Lemma 3.1
can be applied. Hence, ϕ = αϕn · · ·ϕ1 where the ϕi are links of type II
as desired and α is an isomorphism. As ϕ and each of the ϕi preserve the
fibration, also α preserves the fibration and is therefore an isomorphism of
Mori fiber spaces. Hence αϕn is also a link of type II between Mori conic
bundles and the corollary follows. �

Note that Corollary 3.2 implies that a birational map preserving the
fibration sends singular fibers onto singular fibers.

Lemma 3.3. — Let X be a Mori fiber space that is not geometrically ra-
tional. Then, BirMori(X) is generated by links of type II and isomorphisms
of Mori fiber spaces.

Proof. — Let ϕ : X1 99K X2 be a birational map in BirMori(X), where
Xi → Bi are Mori fiber spaces where Bi are curves of genus at least 1. Any
curve C in X1 contracted by ϕ is rational, and so every morphism C → B1
is constant (by Riemann–Hurwitz). Therefore, C is contained in a fiber.
Lemma 3.1 can be applied and therefore ϕ = αϕn · · ·ϕ1, where α is an
isomorphism and ϕi are links of type II between Mori conic bundles. If α
preserves the fibration, then we are in the case of Corollary 3.2 and so ϕ is a
product of links of type II. If α does not preserve the fibration, α : Y1

∼→ Y2
is a link of type IV, where Yi → Ci are Mori fiber spaces. Such a link
does not exist for geometrically non-rational surfaces: Consider F2 ⊂ Y2 a
general fiber (hence isomorphic to P1) of Y2 → C2 and consider its image
F1 = α−1(F2) in Y1, which is also isomorphic to P1. As F2 was chosen to
be a general fiber and α does not preserve the fibration, the restriction of
the fibration Y1 → C1 to F1 is surjective. This gives a contradiction, since
every map from P1 → C1 is constant as before. �

Remark 3.4. — Let χ1 : X0 99K X1 and χ2 : X1 99K X2 be two links of
type II between Mori conic bundles Xi → Bi such that no fiber of X1 → B1
is contracted by both χ−1

1 and χ2. Then, the composition χ2χ1 can be
written as χ−1

3 χ−1
4 , where χ3 : X2 99K X3 is the blow-up of χ2(Bas(χ−1

1 ))
followed by the contraction of the strict transform of the corresponding
fiber, and χ4 : X3 99K X4 is the blow-up of χ3(Bas(χ−1

2 )) followed by the
contraction of the strict transform of the corresponding fiber. So χ4χ3χ2χ1
is an isomorphism of Mori fiber spaces and χ4 can be chosen such that
χ4χ3χ2χ1 = id.

Note that χ1 and χ3 have the same Galois depth, as well as χ2 and χ4.
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Lemma 3.5. — Let X be a Mori conic bundle and let ϕn · · ·ϕ1 = idX
be a relation in BirMori(X) such that ϕi : Xi−1 99K Xi is a link of type
II between Mori conic bundles, where X0 = Xn = X. This relation is
generated in BirMori(X) by the trivial relations and those of the form
χ4χ3χ2χ1 = id as in Remark 3.4, where χ1, . . . , χ4 are links of type II
between Mori conic bundles.

Proof. — For each link ϕi of type II we call pi−1 ⊂ Xi−1 the base orbit
of ϕi, and qi ⊂ Xi the base orbit of ϕ−1

i .
In the following, we show that using relations of the form χ4χ3χ2χ1 = id

and the trivial relations, we can reduce the word ϕ = ϕn · · ·ϕ1 to the empty
word.
Starting from a fiber F = F0 ⊂ X0 and the value N (F, 0) = 0, we define

a sequence of subsets Fi = (ϕi · · ·ϕ1)(F ) ⊂ Xi, and a sequence of values
N (F, i) ∈ N for i = 1, . . . , n that “keep track of what happens to F” in
each step of our fixed decomposition ϕn · · ·ϕ1.
We inductively define N (F, i) > 0 in the following way:
(1) If ϕi is a local isomorphism on the fiber containing Fi−1, then

N (F, i) = N (F, i− 1).

(2) Otherwise, Fi−1 lies on the same fiber as a point of pi−1. We define

N (F, i) =


1 if Fi−1 is a fiber (so Fi is a point in qi),
N (F, i− 1)− 1 if Fi−1 is a point in pi−1,
N (F, i− 1) + 1 if Fi−1 is a point but not in pi−1

(again, Fi is a point in qi).

Observe that N (F, i) is the number of base points of ϕi · · ·ϕ1 that are equal
or infinitely near to a base point on F . Note that the sequence

ΣF = (N (F, 0),N (F, 1), . . . ,N (F, n))

is the same for each fiber in the same orbit as F . We consider connected
subsequences of ΣF and note that the last value N (F, n) is zero as the
product of all the ϕi is the identity.

(1) First, we look at subsequences of the form (m − 1,m,m − 1) for
m > 1 with corresponding links ϕi and ϕi+1. This occurs only
if ϕ−1

i and ϕi+1 have common base points, so ϕi+1ϕi equals an
isomorphism. Hence, this part of the sequence is equivalent to the
empty word modulo the trivial relations.

(2) Now, we consider subsequences of the form (m − 1,m,m) with
corresponding links ϕi, which is not an isomorphism on F , and
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ϕi+1, which is a local isomorphism on F . In this case, the fibers of
Xi → Bi that are contracted by ϕ−1

i are not contracted by ϕi+1. By
Remark 3.4, there exist links χi and χi+1 of type II between Mori
conic bundles such that χi has ϕi+1(Bas(ϕ−1

i )) as base points, and
χi+1 has base points χi(Bas(ϕi+1)), and ϕi+1ϕi = χ−1

i χ−1
i+1 is sat-

isfied. So by replacing ϕi+1ϕi with χ−1
i χ−1

i+1 in the factorisation of
ϕ, we can change this part of the sequence to (m − 1,m − 1,m),
leaving the rest of it invariant.

Using these two kinds of reduction modulo the said relations, we proceed
by induction over

m = mF = max{N (F, i) | i = 0, . . . , n}.

There exists at least one subsequence Σ′ = (m− 1,m, . . . ,m,m− 1) of size
k + 2 for some k > 1. Using (2) multiple times we can change this part
of the sequence to (m− 1, . . . ,m− 1,m,m− 1). This can then be reduced
to (m − 1, . . . ,m − 1) of size k + 1 with (1). Doing this for any such Σ′,
we get a new sequence (corresponding to the new factorisation of ϕ) whose
maximum is m − 1. By induction, we find the sequence (0, . . . , 0). Hence,
ϕ is a local isomorphism on F .
Note that mF > 1 only for finitely many fibers F . We repeat the de-

scribed process for each fiber F with mF > 1 and can therefore reduce ϕ
to an isomorphism using the trivial relations and compositions of four links
of type II between Mori conic bundles. �

Corollary 3.6. — Let ∆ > 1. Let X1 → B1 and X2 → B2 be two
Mori conic bundles. Let ϕ = ϕn · · ·ϕ1 : X1 99K X2 be a composition of links
of type II. Then we can write ϕ modulo the trivial relations and those of the
form χ4χ3χ2χ1, where χi are links of type II between Mori conic bundles,
as ψn · · ·ψ1, where ψ1, . . . , ψr are of Galois depth > ∆ and ψr+1, . . . , ψn
are of Galois depth < ∆.

Proof. — We use relations of Lemma 3.5. If ϕi and ϕi+1 are centered
at the same fiber (that is, Bas(ϕ−1

i ) lies on the same orbit of fibers as
Bas(ϕi+1)), then they have the same Galois depth. If ϕi and ϕi+1 are
centered at different fibers and the Galois depth of ϕi is < ∆ and the one
of ϕi+1 is > ∆, let χ1 = ϕi and χ2 = ϕi+1. As in Remark 3.4 there are
links χ3 (of the same Galois depth as χ1, hence < ∆) and χ4 (of the same
Galois depth as χ2, hence > ∆) such that χ4χ3χ2χ1 = id. Therefore, by
replacing χ2χ1 with χ−1

3 χ−1
4 we have the desired order of orbit sizes on

these two elements. In this manner we can move all small orbits to the end
of the composition. �
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Lemma 3.7. — Let X → B be a Mori conic bundle that is not geo-
metrically rational. Relations of the groupoid BirMori(X) are generated
by relations of the form χ4χ3χ2χ1 = id, where χi : Xi−1 99K Xi are links
of type II between Mori conic bundles.

Proof. — By Lemma 2.4, the genus of B is > 1. Links of type I or III
do not occur as they are between del Pezzo surfaces (see Lemma 2.12),
which are geometrically rational. Also no links of type IV are possible by
Lemma 3.3. Therefore, only links of type II between Mori conic bundles
occur. By Lemma 3.5, they are generated by links as in the statement. �
The following section is dedicated to the more interesting case of ge-

ometrically rational Mori fiber spaces. We want to prove that relations
are generated by this type of relations together with relations of the form
ϕn · · ·ϕ1 = id, where the Galois depth of all ϕi is 6 15.

3.2. Birational maps on geometrically rational Mori conic
bundles

Lemma 3.8. — Let X → B be a geometrically rational Mori conic bun-
dle with general fiber f . Then, each effective divisor D on X is linearly
equivalent to −aKX + bf for a, b ∈ 1

2Z and a > 0. Moreover, if the support
of D is not contained in fibers, then a > 1

2 .

Proof. — By the adjunction formula, we have −KX ·f = 2. Hence, −KX

and f are linearly independent as f2 = 0. By the geometrical rationality of
X, we have that Bk̄ = P1

k̄, hence the Picard rank of X is 2. Hence, there are
a, b ∈ Q withD ∼ −aKX+bf . AsD is effective, we have 0 6 D·f = 2a ∈ N.
Moreover, if the support of D is not contained in fibers, a > 0. So a > 0
and a ∈ Z 1

2 . Since X is geometrically rational, there exists a section s on
X defined over k (by a corollary to Tsen’s theorem [12, Corollary 6.6.2,
p. 232]). As −KX · s is an integer and D · s = a(−KX · s) + b, we also find
that b ∈ 1

2Z. �

Lemma 3.9. — Let X1 →W1 and X2 →W2 be two Mori conic bundles
that are geometrically rational and let ϕ : X1 99K X2 be a birational map
that preserves the fibration (see Definition 2.6). Let H1 ∼ −λ1KX1 +ν1f be
a linear system without fixed component onX, and letH2 ∼ −λ2KX2 +ν2f

be the strict transform of H1 on X2. Then,
(1) λ1 = λ2 =: λ,
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(2) ν2 = ν1 +
∑
|ω1| (λ−mω1), where the sum runs over all orbits ω1

in Bas(ϕ),
(3) mω2(H2) = 2λ−mω1 for orbits ω2 in Bas(ϕ−1) (and ω1 the corre-

sponding orbit in Bas(ϕ)),
where |ωi| denotes the size of the orbit ωi, and mωi

= mωi
(Hi) denotes the

multiplicity of Hi at the points in ωi, for i = 1, 2.

Proof. — Consider the minimal resolution

S

X1 X2.ϕ

σ1 σ2

We consider the case where ϕ is one link of type II, that is, σi is the blow-
up of one orbit ωi. Let Ei ⊂ S be the exceptional divisor of the blow-up
σi for i = 1, 2, and let f̂ be a general fiber on S. So E1 + E2 = |ω1|f̂ . We
compute

H̃i = σ∗i (Hi)−mωi
Ei

= −λiσ∗i (KXi) + νiσ
∗
i (f)−mωiEi

= −λi(KS − Ei) + νif̂ −mωi
Ei

= −λiKS + νif̂ + (λi −mωi
)Ei

Replacing E1 = |ω1|f̂ − E2 in H̃ we get

H̃1 = −λ1KS + (ν1 + |ω1|(λ1 −mω1)) f̂ + (mω1 − λ1)E2.

Comparing H̃1 = H̃2 we find λ2 = λ1, ν2 = ν1 + |ω1|(λ − mω1), and
mω2 = 2λ − mω1 . Repeating this for every orbit ω1 ∈ Bas(ϕ), we find
λ2 = λ1 and ν2 = ν +

∑
|ω1|(λ−mω1). �

According to the previous lemma, the behaviour of λ and of the multiplic-
ities under a birational map Φ preserving the fibration is well understood.
The following lemma deals with the situation when Φ has large Galois depth
and is followed by a birational map Ψ that does not preserve the fibration.
We introduce two constants: ∆ > 8, the Galois depth of Φ, and δ > 0, a
constant that bounds from above the multiplicities of the linear system in
the large base orbits with respect to λ. The idea is to play with ∆ and δ to
achieve that λ increases while the multiplicities do not increase too much
(with respect to the “new” λ). The desired outcome would be ∆ = 9, but
we do not achieve this. As it is a very technical lemma, the reader might be
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interested in first reading Corollary 3.11 and then the proof of Theorem 1.2
in Section 3.3 to see how it is applied.
Lemma 3.10. — Let ∆ = 16 and δ = 1

2 . Let X → V , Y → W and
X ′ → V ′ be three minimal Mori conic bundles and let Φ: X 99K Y be a
birational map of Galois depth > ∆ and Ψ: Y 99K X ′ a birational map of
Galois depth < ∆ such that

X Y X ′

V W V ′.

Φ Ψ

' 6

where we mean by “ W 6→ V ′” that there is no such morphism making the
diagram commute.
Let H be a linear system on X without fixed component, so

H ∼ −λKX + νf,

where f is a general fiber of X → V , and let H ′ ∼ −λ′KX′ + ν′f ′ be the
strict transform of H on X ′.

Let µ (respectively µ′) be the maximum of the multiplicities mω(H)
(respectively mω(H ′)) for all orbits ω with |ω| > ∆.

Assume µ < δλ. Then λ′ > λ and µ′ < δλ′.
Proof. — By Corollary 3.2, we can write Φ as a composition of links of

type II between Mori conic bundles. By shifting the links of Galois depth
< ∆ from Φ to Ψ via Corollary 3.6, we change the intermediate conic
bundle Y → W without changing λ′ and µ′. So we can assume that each
base orbit of Φ has size > ∆.

Since Ψ is an isomorphism on the points lying in an orbit of size > ∆,
the maximal multiplicity µ′ on X ′ of H ′ equals the multiplicity of HY at
a point in Y , where HY ∼ −λYKY + νY fY is the strict transform of H on
Y . Hence, µ′ 6 HY · fY = 2λY (when taking fY to be the fiber through a
point of maximal multiplicity). As λY = λ by Lemma 3.9, we get µ′ 6 2λ.
So if we show that λ′ > 2

δλ = 4λ, then δλ′ > 2λ > µ′ and λ′ > λ are
implied.
Let g ⊂ Y be the pull back of a general fiber f ′ of X ′ → V ′ under Ψ. We

write g ∼ −aKY +bf . As g is not a fiber, a > 1
2 by Lemma 3.8. We will use

H ′ · f ′ = 2λ′ to find a lower bound for λ′. Consider a minimal resolution

T

Y X ′.
Ψ
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As f ′ is a general fiber, we have H̃ ′ · f̃ ′ = H ′ · f ′ for the strict transforms
of H ′ respectively f ′ in T . So we find

2λ′ = H ′ · f ′ = H̃Y · g̃

= HY · g −
∑
j

mpj
(HY )mpj

(g),

where the points pj are the points blown up in T → Y (corresponding to
points in Y or infinitely near). Since Ψ is of Galois depth < ∆, the pj form
orbits of size < ∆. As we have remarked in the beginning of the proof, the
base points of Φ consist of orbits of size > ∆, hence the map Φ is a local
isomorphism onto the points pj . Hence, Mj := mpj

(HY ) = mΦ−1(pj)(H).
We have H2 −

∑
mq(H)2 > 0, where the sum goes over all points q that

are either in X or infinitely near (since H is a linear system, hence nef), so
also H2 −

∑
M2
j > 0. This gives an upper bound

∑
M2
j 6 H

2.
Let Nj = mpj

(g). As g̃2 = f̃ ′2 = 0, we find g2 = g̃2 +
∑
N2
j =

∑
N2
j .

By Cauchy–Schwarz, we have (
∑
MjNj)2 6 (

∑
M2
j )(
∑
N2
j ) and, with the

above discussion, get the inequality

2λ′ > HY · g −
√(∑

M2
j

)(∑
N2
j

)
> HY · g −

√
H2g2.(3.1)

Let β be such that νY = ν + βλ, namely

β =
∑
|ω|(1− mω

λ
) > ∆(1− δ) = 8,

where the notation is from Lemma 3.9 and the inequalities come from our
assumptions that |ω| > ∆ = 16 and mω 6 µ < δλ = 1

2λ.
To compare HY · g with the square root of H2g2, let d = K2

Y and denote
by e1 the expression 1

λ2H
2 = λ(λd + 4ν) = d + 4 νλ , and similary e2 =

1
a2 g

2 = d+ 4 ba . We compute

HY · g = (−λYKY + νY f) · (−aKY + bf)
= aλd+ 2bλ+ 2aνY
= λ(ad+ 2b) + 2a(ν + βλ)

and so
1
aλ
HY · g = d+ 2 b

a
+ 2ν

λ
+ 2β = 1

2(e1 + e2) + 2β.
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Therefore,

2λ′

aλ
>

1
aλ

(
HY · g −

√
H2g2

)
= e1

2 + e2

2 + 2β −
√
e1e2

> 2β,

where the last inequality holds because of the inequality of the arithmetic
and the geometric mean. Hence, using a > 1

2 , we conclude the proof with

λ′ > aβλ > 8aλ > 4λ.

So we have λ′ > λ, and δλ′ = 1
2λ
′ > 1

24λ = 2λ > µ′. �

Corollary 3.11. — Let ∆ = 16. Assume N > 1. For i = 0, . . . , N
let Xi → Vi and Yi → Wi be Mori conic bundles that are geometrically
rational with birational maps Φi : Xi 99K Yi of Galois depth > ∆ and
birational maps (for i 6= 0) Ψi : Yi−1 99K Xi of Galois depth < ∆ such that
the diagram

X0 Y0 X1 YN−1 XN YN

V0 W0 V1 WN−1 VN WN

Φ0 Ψ1 ΨN ΦN

' 6 6 '

commutes, where we mean by “Wi−1 6→ Vi” that there is no such morphism
making the diagram commute.
Let ϕ = ΦNΨNΦN−1 · · ·Φ1Ψ1Φ0, and let H ∼ −λKX + νf be a linear

system without fixed component on X = X0 and let H ′ ∼ −λ′KX′ + ν′f

be its strict transform in X ′ = YN under ϕ. Then λ′ > λ. In particular,
there is no morphism V0 →WN making the diagram

X0 YN

V0 WN

ϕ

6

commute, hence ϕ is not an isomorphism of Mori conic bundles.

Proof. — This is a direct corollary from Lemma 3.10: We can assume
that H is smooth, hence µ = 0, and we can apply the lemma.

For the last part: If ϕ would preserve the fibration, then it would be of
type II, hence we would have λ′ = λ, a contradiction to Lemma 3.9. �
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3.3. Generating relations

Proof of Theorem 1.2. — The statement was already proven in Lem-
ma 3.7 if X is not geometrically rational. So we assume now that X is
geometrically rational.
Let ϕn · · ·ϕ1 = idX be a relation in BirMori(X), where ϕi : Zi−1 99K Zi

is a Sarkisov link of Galois depth di. If all di 6 15, we are in situation (1).
Otherwise, the base locus of at least one of the ϕi contains an orbit

of size > 16. In particular, ϕi : Zi−1 99K Zi is a link of type II between
Mori conic bundles (since these are the only links of big Galois depth,
see Remark 2.15). We will prove that we are always in the situation of
Lemma 3.5 using Corollary 3.11. By replacing the relation with

ϕi−1 · · ·ϕ1ϕn · · ·ϕi+1ϕi,

we can assume that Z0 is a Mori conic bundle. We consider the relator
ϕ = ϕn · · ·ϕ1 and write it (as in Remark 2.16) as

ϕ = ΦNΨN · · ·Φ1Ψ1Φ0,

where for i = 0, . . . , N the Xi → Vi and Yi → Wi are Mori conic bundles
with birational maps Φi : Xi 99K Yi that are a composition of links of type
II between Mori conic bundles, and birational maps (for i 6= 0) Ψi : Yi−1 99K
Xi of Galois depth 6 15.

If N = 0 then ϕ = Φ0 is a composition of links of type II between Mori
conic bundles. The result follows with Lemma 3.5.
If N > 1, we can assume with Corollary 3.6 that each Φi is either

a product of links of Galois depth > 16 or an isomorphism. Now, we
change our decomposition of the relator ϕ such that it is of the form of
Corollary 3.11. If one of the Φi is an isomorphism, we look at the bira-
tional map Ψ′i = Ψi+1ΦiΨi : Yi−1 99K Xi+1. There are two possibilities:
Either Ψ′i preserves the fibration, or it does not. If it does not, we re-
place Ψi+1ΦiΨi with Ψ′i in the decomposition of ϕ. Note that Ψ′i is of
Galois depth 6 15. If Ψ′i preserves the fibration, we replace Φi−1 with
Φ′i−1 = Φi+1Ψ′iΦi−1 : Xi−1 99K Yi+1. Applying Corollary 3.6 once more,
we can assume that Φ′i−1 is a product of links of Galois depth > 16 or an
isomorphism. In the latter case we repeat the process.
In this way, we arrive either at the case N = 0 and we are done, or we

are in the situation of Corollary 3.11, which implies that the relator ϕ is
not an isomorphism, a contradiction. �
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4. Detour to Galois theory for non-experts

In this section we will prove that a perfect field k with [k : k] > 2 contains
an arbitrarily large Galois orbit. Moreover, for any integer ∆ > 2 (for
example ∆ = 8) we construct in Lemma 4.3 a perfect field with [k : k] > 2
that has no Galois orbit of size exactly ∆, implying that our approach works
for slightly more fields than the approach via Bertini involutions of [13].
We recall first the statements from Galois theory that we need.
A field k is called perfect if every algebraic extension is separable. In

particular, any finite extension of a perfect field is again perfect. A finite
field extension L/K is called Galois if it is normal and separable. In this
case, the extension degree [L : K] equals the number of elements in the
Galois group Gal(L/K).
Moreover, for any splitting field L of an irreducible polynomial f ∈ k[x],

the extension L/k is normal. So if k is perfect, then L/k is Galois. We will
use the Artin–Schreier Theorem [14, Corollary 9.3, Chapter IV] and the
Primitive Element Theorem [14, Theorem 4.6, Chapter V].

Lemma 4.1. — Let L/k be a finite Galois extension. For γ ∈ L the
degree of [k(γ) : k] equals the length of the orbit of γ under the action of
Gal(L/k).

Proof. — As L/k is normal and separable by assumption, also L/k(γ)
is normal [14, Chapter V, Theorem 3.4] and separable, hence it is Galois.
Note that the stabilizer of γ is Gal(L/k(γ)). By the orbit formula, the
length of the orbit of γ under the action of Gal(L/k) equals [Gal(L/k) :
Gal(L/k(γ))], which is equal to

|Gal(L/k)|
|Gal(L/k(γ))| = [L : k]

[L : k(γ)] = [k(γ) : k]. �

Lemma 4.2. — Let k be a perfect field with [k : k] > 2 and let ∆ > 1.
Then k contains an orbit of length > ∆ under the action of Gal(k/k).

Proof. — The Artin–Schreier Theorem directly implies that the degree
[k : k] is infinite, and hence for any finite field extension L/k with L ⊂ k
we have that L is not equal to the algebraic closure k. We inductively
construct a series of finite field extensions Ln/k such that [Ln : k] > 2n.
For the base case, set L0 = k so [L0 : k] = 1 = 20 is finite. For the
induction step n − 1 → n, assume that there is a finite field extension
Ln−1/k with [Ln−1 : k] > 2n−1. Hence, Ln−1 6= k and so there exists
αn ∈ k \ Ln−1. Set Ln = Ln−1(αn), so Ln/Ln−1 is a finite extension. As
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Ln 6= Ln−1 we have [Ln : Ln−1] > 2. The induction hypothesis implies
with [Ln : k] = [Ln : Ln−1][Ln−1 : k] that

∞ > [Ln : k] > 2 · 2n−1 = 2n,

which means that Ln/k is a finite extension of degree > 2n.
Now, choose n such that 2n > ∆. As Ln/k is an algebraic extension of the

perfect field k, it is a separable extension. The Primitive Element Theorem
can be applied and provides the existence of γ ∈ Ln such that Ln = k(γ).
Take a finite Galois extension L/k with γ ∈ L ⊂ k. (For example take L
to be the splitting field in k of the minimal polynomial of γ over k.) By
Lemma 4.1, the orbit of γ is of length [k(γ) : k] = [Ln : k] > ∆. �

Note that we do not claim that an orbit of exact size ∆ exists. In fact,
for any ∆ > 2 there exists a perfect field with no Galois orbit of exact size
∆, namely the following example that was provided to me by Lars Kuehne.

Lemma 4.3. — Let ∆ > 2. There exists a perfect field k with [k : k] =
∞ such that no element in k has an orbit of length ∆ under the action of
Gal(k/k).

Proof. — Consider the field extension Q ⊂ k ⊂ Q, where k is the set
consisting of elements a ∈ Q such that there exists a tower of fields Q =
L0 ⊂ L1 ⊂ · · · ⊂ Ln 3 a such that Li/Li−1 is the splitting field of a
polynomial of degree ∆ with coefficients in Li−1.

Indeed, k is a (perfect) field: For a, b ∈ k let L0 ⊂ L1 ⊂ · · · ⊂ Ln 3 a
be the tower of fields corresponding to a, and let gi be the polynomials of
degree ∆ corresponding to the splitting fields corresponding to b for i =
1, . . . ,m. There exists a tower of fields L0 ⊂ · · · ⊂ Ln ⊂ Ln+1 ⊂ · · ·Ln+m,
where Ln+i/Ln+i−1 is the splitting field of gi (seen as a polynomial with
coefficients in Ln+i−1). Since Ln+m is a field containing a and b, it also
contains a + b and ab. So alos k contains a + b and ab. Therefore, k is a
field, and it is perfect because its characteristic is zero.
To prove that [Q : k] =∞, we assume that [Q : k] = N for some N ∈ N.

Let p > max{N,∆!} be a prime number. First, we prove that there exists a
Galois extension F/Q of degree p. By Dirichlet’s Theorem, one can choose
a prime q ≡ 1 mod p. Let Q(µq) be the cyclotomic extension of Q, where
µq is a qth root of unity. The Galois group of Q(µq)/Q is the multiplicative
group (Z/qZ)×, which is cyclic of order q−1. As p divides q−1, there exists
a (normal) subgroup H ⊂ Gal(Q(µq)/Q) of order q−1

p . Let F ⊂ Q(µq) be
the field that is fixed by H. By Galois Theory, the extension F/Q is Galois
and of degree p (using that the extension degree of Q(µq)/Q is q − 1) [14,
Chapter VI, Theorems 1.1 and 1.8].
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By the Primitive Element Theorem, we can choose α ∈ Q such that
F = Q(α). Hence Q(α)/Q is a Galois extension with [Q(α) : Q] = p. We
prove that α ∈ k. As k/Q is an (arbitrary) extension, the degree [k(α) : k]
divides [Q(α) : Q] = p [14, Chapter VI, Corollary 1.13] (using that the
compositum Q(α)k of the two fields Q(α) and k equals k(α)). By the
transitivity of the degree, we also find that

N = [Q : k] = [Q : k(α)][k(α) : k],

so [k(α) : k] divides N . Since it also divides the prime number p > N , the
only possibility is [k(α) : k] = 1 and so α ∈ k.

Now, we find a contradiction to p > ∆!. As α lies in k, there exists a
tower of fields L0 ⊂ · · · ⊂ Ln 3 α such that Li/Li−1 is the splitting field
of a polynomial of degree ∆. Hence, [Li : Li−1] 6 ∆!. So [Ln : Q] = [Ln :
Ln−1] · · · [L1 : Q] is a product of numbers smaller than or equal to ∆!.
Note that Q(α) ⊂ Ln, hence [Ln : Q] = [Ln : Q(α)][Q(α) : Q] and so
p = [Q(α) : Q] divides [Ln : Q]. As p is a prime, it implies that p 6 ∆!,
which is a contradiction to p > ∆!.
Finally, we prove that k has no Galois orbit of size ∆. Assume that there

exists β ∈ Q such that k(β)/k is finite and such that the length of the
Galois orbit of β is ∆. In particular, β ∈ Q \ k. Consider the minimal
polynomial mink(β) of β over k and its splitting field L. So β ∈ L and L/k
is finite and Galois. Hence with Theorem 4.1 we have that the size of the
Galois orbit of β, which is ∆, equals [k(β) : k], which in turn is the degree
of the minimal polynomial mink(β). By the construction of our field k, this
implies that β already lies in k, a contradiction. �

5. Group homomorphism

Definition 5.1. — We say that two Mori conic bundles X/W and
X ′/W ′ are equivalent if there exists a birational map X 99K X ′ that pre-
serves the fibration (see Definition 2.6).

We denote the set of equivalence classes of Mori conic bundles birational
to X by CB(X).

Definition 5.2. — We say that two Sarkisov links χ and χ′ of Mori
conic bundles of type II are equivalent, if

(1) the Mori conic bundles are equivalent,
(2) the Sarkisov links have the same Galois depth.
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For an equivalence class C ∈ CB(X) of Mori conic bundles, we denote
by M(C) the set of equivalence classes of Sarkisov links of type II (between
Mori conic bundles in the equivalence class of C). That is, an element of
M(C) is the class of Sarkisov links of type II between equivalent Mori conic
bundles of the same Galois depth.

Proof of Theorem 1.3. — One has to show that the homomorphism is
well defined, that is, to show that every relator is mapped onto the identity.
By construction, relators that consist of Sarkisov links of Galois depth

6 15 are mapped on the identity.
The trivial relation αβ = γ, where α, β, γ are isomorphisms of Mori fiber

spaces, is mapped onto the identity by construction. Trivial relations of
the form αψ−1φ = id satisfy Bas(φ) = Bas(ψ), hence they have the same
Galois depth and are therefore in the same equivalence class of Sarkisov
links. Hence ψ and φ have the same image and so the relator is mapped
onto the identity.
Relations of the form χ4χ3χ2χ1 = id, where χi are Sarkisov links of type

II between Mori conic bundles, are such that χ4 and χ2, as well as χ3 and
χ1 have the same Galois depth as in Remark 3.4. As they are all links
between Mori conic bundles of the same equivalence class of Mori conic
bundles, χ1 and χ3, as well as χ2 and χ4 have the same image. Therefore,
the relator is mapped onto the identity. This proves the existence of the
groupoid homomorphism. The fact that it restricts to a group homomor-
phism from Bir(X) is immediate, and the fact that it restricts to a group
homomorphism from Bir(X/W ) is a consequence of Corollary 3.2. �

Having established Theorem 1.3, it is now not hard to prove Theorem 1.1:
We take the restriction of the group homomorphism to the equivalence class
of P1×P1 (the Hirzebruch surfaces), and construct links of type II of large
Galois depth.

Example 5.3. — Consider the birational map

(x, y) 7→ (xp(y), y),

and its extension to a birational map ϕ : P1×P1 99K P1×P1 that is given by

[x0 : x1; y0 : y1] 7→ [x0y
d
1 : x1p(y0, y1); y0 : y1],

where p ∈ k[y0, y1] is an irreducible polynomial of degree d > 16. Since k
is perfect, p(t, 1) has d different zeroes t1, . . . , td ∈ k. So ϕ is not defined
on p = [1 : 0; 1 : 0] and on the points pi = [0 : 1; ti : 1] for i = 1, . . . , d.
We check that ϕ is the composition of a link ϕ0 : P1 × P1 99K Fd of type II
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centered at the orbit {p1, . . . , pd}, followed by d links ϕn : Fn 99K Fn−1 of
type II of Galois depth 1 for n = d, . . . , 1:
To resolve ϕ we need to resolve the linear system of bidegree (1, d)

given by [x0y
d
1 : x1p(y0, y1)]. It consists of smooth curves and has self-

intersection 2d, so we need to blow up 2d points with multiplicity 1. With
ϕ0 and a link ϕd : Fd 99K Fd−1 of type II centered at the image of p in
Fd, we have resolved the d+ 1 base points that we see from the equation.
Hence, the remaining d− 1 base points are infinitely near to them. As the
exceptional divisors of the pi form an orbit of size d, the d− 1 base points
are infinitely near to p. Note that p lies on the section s given by x1 = 0,
which is mapped onto itself by ϕ, and that the pi do not lie on s. The image
of s in Fd−1 has self-intersection d−1 and so the remaining d−1 base points
lie on the strict transform of s, each of them giving a link ϕn : Fn 99K Fn−1
of type II of Galois depth 1, for n = d− 1, . . . , 1.

Note that ϕ0 is not mapped onto the identity (its image is 1 ∈ Z/2Z
corresponding to the equivalence class of ϕ0 in M(P1 × P1)), whereas all
ϕn for n = 1, . . . , d are mapped onto the identity. Therefore, the image of
ϕ ∈ Birk(P1 × P1) under the group homomorphism is non-trivial.

Proof of Theorem 1.1. — We take the group homomorphism from The-
orem 1.3. For a constant polynomial p ∈ k, the local map (x, y) 7→ (px, y)
is an automorphism and therefore it is mapped onto the identity. For the
surjectivity, using Lemma 4.2 we can construct an infinite and countable
indexing set I such that for each d ∈ I there exists an irreducible poly-
nomial p ∈ k[y] of degree d, and each d ∈ I is at least 16. For each such
polynomial we consider ϕ : P1 × P1 → P1 × P1 as in Example 5.3. Let
α : P2 99K P1×P1 be the blow-up of two points in P2 that are defined over
k, followed by the contraction of the line connecting the two points. Then
α−1ϕα lies in Birk(P2) and, since α and α−1 have Galois depth 1, its image
under the group homomorphism of Theorem 1.3 is non-trivial on the index
of I corresponding to the degree of p. �

6. Rational Mori conic bundles

In this section, we are interested in rational surfaces, especially (Mori)
conic bundles, over an arbitrary perfect field k. In Proposition 6.12 we
find a way to distinguish equivalence classes of Mori conic bundles, and in
Lemma 6.13 we find that rational Mori conic bundles are either a Hirze-
bruch surface, or given by the blow-up of an orbit of size 4 in P2, or given
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by the blow-up of two orbits of size 2 in P2, followed by the contraction of
the strict transform of the line between two of them. Building upon that
we remark in Corollary 6.14 that Birk(P2) is generated by the Jonquières
maps, the sets of birational maps that preserve the pencil of conics through
an orbit of size 4 or two orbits of size 2, and the set of birational maps with
Galois depth at most 8. Finally, we prove Theorem 1.4 (the refinement of
Theorem 1.1) in Section 6.2, and give a visualization of the long list of
Sarkisov links of [10, Theorem 2.6] in Section 6.3.

6.1. Geography

Remark 6.1. — The list of Sarkisov links in [10, Theorem 2.6] (see Sec-
tion 6.3 for a quick overview) implies that a rational Mori conic bun-
dle X → P1 satisfies either K2

X = 8 and X is a Hirzebruch surface, or
K2
X ∈ {5, 6}.

To study the rational Mori conic bundles with K2
X ∈ {5, 6} simulta-

neously, we are going to take a closer look at the blow-up of P2 at four
points.

Remark 6.2. — Let p1, p2, p3, p4 ∈ P2(k) be four points, no three of
them collinear, and let π : X → P2 be the blow-up centered at the four
points (defined over k). There is a morphism X → P1 whose fibers are the
strict-transforms of the conics of P2 passing through the four points. The
morphism has three singular fibers, namely the strict transforms of conics
consisting of two lines each through two of the points.
Assuming that the set {p1, . . . , p4} is invariant under the action of

Gal(k/k), then the morphisms π : X → P2 and X → P1 are defined over
k, and the union of the three singular fibers is invariant under Gal(k/k).

Definition 6.3. — Let X → P1 be a conic bundle. We call a section
(defined over k) that is a (−1)-curve a (−1)-section. A (−1)-curve that
is an irreducible component of a singular fiber will be called a vertical
(−1)-curve.

Lemma 6.4. — Let X → P1 be a conic bundle with a k-point in X.
Then the following are equivalent:

(1) There exists a morphism X → P2 that is the blow-up of four points
p1, . . . , p4 ∈ P2(k), no three collinear, and the set of the four points
is invariant under the action of Gal(k/k).
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•
p1

•
p2

•
p3

•
p4

P2 X

E12 E13 E14

E34 E24 E23

E1

E2

E3

E4

Figure 6.1. The situation of Lemma 6.4. On the left: The three singular
conics through p1, p2, p3 and p4 of (1). On the right: The ten (−1)-
curves as in (2).

(2) X satisfies K2
X = 5 and it contains ten (−1)-curves Eij , 1 6 i 6

j 6 4, whose union is invariant under the action of Gal(k/k) such
that (see also Figure 6.1)
(a) each Ei := Eii for i = 1, . . . , 4 is a (−1)-section, and
(b) E12 +E34, E13 +E24, and E14 +E23 are three singular fibers,
(c) Ek intersects Eij if and only if k ∈ {i, j}.

In this case, X is a del Pezzo surface of degree 5.

Proof. — Let X → P2 be the blow-up of the four points from (1). Since
no three of the points are collinear, X is a del Pezzo surface of degree 5. For
i 6= j let Eij be the strict transform of the line through pi and pj , and let Ei
be the exceptional divisor of pi, for i = 1, . . . , 4. As in Remark 6.2, there is a
fibration X → P1 where the fibers correspond to conics through p1, . . . , p4.
So the only singular fibers are Eij+Ekl, where i, j, k, l are pairwise distinct.
These are exactly three. The intersection of the Ei and Eij are as in (2c).

For the converse direction, let X be as in (2). As the union of the ten
(−1)-curves is invariant under the action of Gal(k/k), and the morphism
X → P1 is defined over k, so the Galois action maps fibers onto fibers, and
so the union of the other four (−1)-curves E1, . . . , E4 is again invariant
under the Galois action. So the contraction X → Y of E1, . . . , E4 onto
points p1, . . . , p4 is defined over k. As X contains a k-point and since K2

Y =
5 + 4 = 9, we have Y = P2. The blow-down of the vertical (−1)-curves Eij
are the lines through the points pi and pj . If three of the four points were
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collinear, the line through them would have self-intersection −2. This is
not possible since by assumption, each Eij has self-intersection −1. �

Recall that in Remark 2.5 we have observed that a conic bundle X → P1

with K2
X = 5 has 3 singular fibers, and in Remark 2.3 we have seen that

if it is moreover a Mori conic bundle, then the two irreducible components
of any singular fiber lie in the same Galois orbit, which then implies that
there exists σ ∈ Gal(k/k) that exchanges the two components.

Lemma 6.5. — Let X → P1 be a conic bundle with K2
X = 5 and a k-

point in X. If there exists σ1 ∈ Gal(k/k) that exchanges the two irreducible
components of one of the three singular fibers, then the following hold:

(1) The minimal self-intersection of a section on X is −1.
(2) There exists a morphism X → P2 that is the blow-up at four points,

no three collinear, and the set of the four points is invariant under
the action of Gal(k/k). In particular, X is a del Pezzo surface of
degree 5.

(3) There are exactly four (−1)-sections E1, . . . , E4 on X. Moreover,
for i 6= j there is exactly one vertical (−1)-curve that intersects Ei
and Ej , and each vertical (−1)-curve meets exactly two of the Ei.

(4) Denote by E12 +E34, E13 +E24, E14 +E23 the three singular fibers
of X. Up to reordering E1, . . . , E4 from (3), there are only two
possibilities:
(a) Ei intersects Ejk if and only if i ∈ {j, k}, or
(b) Ei intersects Ejk if and only if i /∈ {j, k}.

Proof. — By [2, Lemma 3.3], the minimal self-intersection of a section
is −n for some n > 1. To show that n = 1, we assume by contradiction
that there is a section E1 with self-intersection −n and n > 2. As E1 is
a section, its intersection with each fiber is 1, so also with the singular
fiber whose irreducible components are exchanged by σ1. Hence, E1 meets
exactly one of the irreducible components. So E2 = σ1(E1) intersects the
other irreducible component, and it is again a section with self-intersection
−n, implying E2 6= E1. Hence there are two distinct sections with self-
intersection −n. [2, Lemma 3.3] implies that the number of singular fibers
is at least 2n, giving 3 > 2n > 4, a contradiction. We have proven (1).
We now prove (2) and (3). Let E1 be a section with self-intersection
−1, which exists by (1). Up to exchanging the names of two irreducible
components in the same singular fiber, we can assume that E1 meets E12,
E13, and E14. Let X → Y be the contraction (only defined over k) of
the (−1)-curves E34, E24, E23 and E1 onto points F , G, and H and P .
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As X contains a k-point, also Y has one, so K2
Y = K2

X + 4 = 9 implies
Y = P2. Note that the image of the fibers are lines through the point P .
So F , G, and H are not collinear because a line through all of them would
be a section of self-intersection −2 in X, which is not possible by (1). So
let E2 = LGH , E3 = LFH , and E4 = LFG be the lines through two of
the three points F , G and H. On X, these correspond to (−1)-sections.
Note that on X, E2 (respectively E3, respectively E4) meets E12, E24 and
E23 (respectively E34, E13, E23, respectively E34, E24, E14). So X is in the
situation of Lemma 6.4(2), and so (2) holds. As X is a del Pezzo surface,
there are only ten (−1)-curves on X [8, Section 8.5], and so E1, . . . , E4 are
the only (−1)-sections on X. So we see that there is exactly one vertical
(−1)-curve that intersects Ei and Ej . If it would intersect a third Ek, then
there is another vertical (−1)-curve that contains two of the (−1)-sections,
a contradiction. This proves (3).
Note that in the proof of (3) we exchanged the names of the irreducible

components of a singular fiber (if needed). For (4), we fix our fibers and
look at the possibilities of how E1, . . . , E4 intersect them. Looking only at
E12 +E34 and E13 +E24, there is only one possibility (up to exchanging the
order of the Ei): E1 intersects E12 and E13, E2 intersects E12 and E24, E3
intersects E34 and E13, and E4 intersects E34 and E24. For the intersection
with E14 and E23 there are now two possibilities:

• Either E1 intersects E14 (then E2 and E3 intersect E23, E4 inter-
sects E14), and we get the first configuration, or
• E1 intersects E23 (then E2 and E3 intersect E14, E4 intersects E23).
Now, we exchange the order of the Ei in the following way: We
exchange E1 with E4, and E2 with E3. Then we get the second
configuration. �

Observation 6.6. — Any transitive subgroup of Sym4 contains an ele-
ment that exchanges {1, 2} with {3, 4} (respectively {1, 4} with {2, 3}, re-
spectively {1, 3} with {2, 4}): All transitive subgroups of Sym4 are

(1) Sym4,
(2) A4 ⊂ Sym4,
(3) D8 = 〈(1234), (13)〉 ⊂ A4,
(4) V4 = {id, (12)(34), (13)(24), (14)(23)} ⊂ D8, and
(5) Z4 = 〈(1234)〉 = {id, (1234), (13)(24), (1432)} ⊂ D8.

An exchange of {1, 3} with {2, 4} happens in V4 with the permutation
(14)(23), in Z4 there is (1234) doing the same. The permutation (13)(24) is
contained in all subgroups, and it exchanges {1, 2} with {3, 4}, and {1, 4}
with {2, 3}.

ANNALES DE L’INSTITUT FOURIER



CREMONA GROUP OVER A PERFECT FIELD 31

Observation 6.7. — Let P = {p1, . . . , p4} ⊂ P2(k) be an orbit of size
4 of the action of Gal(k/k) and let Lij be the line through pi and pj . As
Gal(k/k) acts transitively on these four points, P is defined over a field L ⊃
k with Gal(L/k) a transitive subgroup of Sym4. So up to renumbering the
four points p1, . . . , p4, the Galois group Gal(L/k) is one of Observation 6.6
and it contains a permutation that maps L12 ↔ L34 (respectively L14 ↔
L23, respectively L13 ↔ L24).

Example 6.8. — Note that Gal(L/k) does not have to be of order 4:
Consider the four points [1 : ζ : ζ2] ∈ P2(Q), where the ζ are the roots of
x4− 5. Then, Q(ζ) = Q( 4

√
5, i) and Gal(Q(ζ)/Q) is the dihedral group D8.

Observation 6.9. — Let p1, p3 and p2, p4 each be an orbit of size 2. Then,
the action of Gal(k/k) on the four points is one of the following:

(1) {id, (13), (24), (13)(24)}
(2) {id, (13)(24)}.

Again, both of these subgroups contain the permutation (13)(24), which
maps L12 ↔ L34, and L14 ↔ L23. Moreover, none of these groups contain
an element that maps L13 ↔ L24.

Lemma 6.10. — Let ϕ : X 99K X ′ be a birational map preserving fibra-
tions π : X → P1 and π′ : X ′ → P1. Assume that each fiber of π′ contains at
most two components. Then, for any singular fiber F = π−1(p) consisting
of two (−1)-curves (over k) such that there is τ ∈ Gal(k/k) that exchanges
the irreducible components of F , the birational map ϕ is defined on each
point of F and it is a local isomorphism at any point of F .

Proof. — Let ρ : Z → X and ρ′ : Z → X ′ be the minimal resolution
of ϕ. Hence, ρ and ρ′ are blow-ups of orbits. Note that ρ′ contracts only
curves lying in a fiber, since ϕ preserves the fibrations. We prove that none
of the irreducible components of F are contracted by ρ′: If an irreducible
component of F , say f1, is contracted, then also the other one, say f2, is
contracted because τ(f1) = f2 is a point. But after contracting f1, f2 has
self-intersection 0 6= −1 and can thusly not be contracted.

We can apply the same reasoning to the inverse of ϕ, hence ϕ has no
base points and is therefore a local isomorphism on the fiber F . �

The following lemma is a slight generalisation of the argument in [1,
Lemma 4.1].

Lemma 6.11. — Let L/k be a finite Galois extension (that is, normal
and separable). Let p1, . . . , p4 ∈ P2(L), no three collinear, and q1, . . . , q4 ∈
P2(L), no three collinear, be points such that the sets {p1, . . . , p4} and
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{q1, . . . , q4} are invariant under the Galois action of Gal(L/k). Assume
that for all g ∈ Gal(L/k) there exists σ ∈ Sym4 such that g(pi) = pσ(i),
and g(qi) = qσ(i) for i = 1, . . . , 4. Then, there exists A ∈ PGL3(k) such
that Api = qi for i = 1, . . . , 4.

Proof. — As no three of the points pi are collinear, and the same for qi,
there exists a unique A ∈ PGL3(L) with Api = qi for i = 1, . . . , 4. Let
g ∈ Gal(L/k). We will show that g(A) = A (where g(A) denotes the action
of g on the entries of A). By assumption, there exists σ ∈ Sym4 such that
g−1(pi) = pσ(i) and g−1(qi) = qσ(i) for i = 1, . . . , 4. We compute

g(A)pi = g(Ag−1(pi)) = g(Apσ(i)) = g(qσ(i)) = qi

and so g(A)pi = qi = Api for i = 1, . . . , 4. By the uniqueness of A, this
gives g(A) = A. �

Proposition 6.12. — Let k be any perfect field. Let P and Q each be
a union of four points in P2. Let XP → P2 and XQ → P2 be the blow-up
centered at P respectively Q and let ϕ : XP 99K XQ be a birational map
preserving the fibrations XP → P1 and XQ → P1 given by conics through
P respectively Q. Assume that one of the following holds:

(1) P is an orbit of size 4, or
(2) P consists of two orbits of size 2.

Then, there exists an automorphism α ∈ Autk(P2) such that α(P) = Q.

Proof. — Let P = {p1, p2, p3, p4} and let L/k be a Galois extension such
that P is invariant under its Galois action. Let Eij be the line through pi
and pj for j 6= i and assume that p1 and p3 are in the same orbit. With
this assumption, Observations 6.7 and 6.9 yield that (up to changing the
numbering of the pi) there exists a Galois action σ1 mapping E12 ↔ E34
and E14 ↔ E23. Recall that onX = XP , the Eij are irreducible components
of three singular fibers, so they are vertical (−1)-curves. We denote the
exceptional divisor of pi by Ei. Lemma 6.4 describes how the Ek and Eij
intersect: Ek intersects Eij if and only if k ∈ {i, j}.
Consider now the image by ϕ of the vertical (−1)-curves.

• In case (1), all vertical (−1)-curves are mapped onto vertical (−1)-
curves (since we can apply Lemma 6.10 by Observation 6.7). We
write Fij = ϕ(Eij).

• In case (2), the image of E13 or E24 might be a point, but the
image of the other vertical (−1)-curves are again vertical (−1)-
curves (again we can apply Lemma 6.10 by Observation 6.9). So
we set Fij = ϕ(Eij) for (i, j) /∈ {(1, 3), (2, 4)}, and we denote by
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F13 and F24 the other two vertical (−1)-curves on XQ (which are
defined over k).

So F12 + F34, F13 + F24, and F14 + F23 are the three singular fibers on
XQ. Since σ1 maps E12 ↔ E34, it also maps F12 ↔ F34 and Lemma 6.5
implies that there are four (−1)-sections F1, . . . , F4 that are the exceptional
divisors corresponding to the points q1, . . . , q4 of Q. As the set of the Fij
is invariant under the Galois action Gal(L/k), also the set of the Fi is
invariant under the action, and so the set of points q1, . . . , q4 is defined
over L. As no three of the four points in P respectively Q are collinear
(Lemma 6.4), we prove that there exists an automorphism defined over k
that maps P onto Q using Lemma 6.11. It is enough to prove that for each
g ∈ Gal(L/k) there exists σ ∈ Sym4 with g(pi) = pσ(i) and g(qi) = qσ(i).
Let σ ∈ Gal(L/k). We consider σ as an element in the symmetric group

Sym4 via σ(pk) = pσ(k). It remains to show that σ(qk) = qσ(k) for k =
1, . . . , 4. For this, we take a close look at the Galois action on the vertical
(−1) curves. Lemma 6.5 tells us how the Fi intersect the vertical (−1)-
curves:

(i) Fk intersects Fij if and only if k ∈ {i, j}, or
(ii) Fk intersects Fij if and only if k /∈ {i, j}.
• For case (1), remark that σ(Ek)=Eσ(k) intersects σ(Eij)=Eσ(i)σ(j)

if and only if σ(k) ∈ {σ(i), σ(j)}. We distinguish cases (a) and (b).
(a) σ(k) ∈ {σ(i), σ(j)} holds if and only if Fσ(k) intersects Fσ(i)σ(j).

The action of σ onto qk is determined by the action of the three
lines Fij with k ∈ {i, j}. Hence, σ(qk) = qσ(k).

(b) σ(k) ∈ {σ(i), σ(j)} holds if and only if Fσ(k) does not intersect
Fσ(i),σ(j). The action of σ onto qk is determined by the action
of the three lines Fij that do not contain qk (namely k /∈ {i, j})
and so we have again that σ(qk) = qσ(k).

• In case (2), we have that E13 and E24 are defined over k, so the
union of the other four vertical (−1)-curves is invariant under the
Galois action. As we have given the names E13 and E24 to the two
vertical (−1)-curves that are defined over k arbitrarily, cases (a)
and (b) are the same, up to reordering the Fk (exchange F1 with
F3, and F2 with F4). So we assume that the intersection properties
of (a) hold. So it is enough to consider the action on E12, E34, E14,
E23.
As qk is the intersection point of the two lines Fki and Fkj

from the above four lines, the action on qk is determined by the
action on these two lines. So σ(qk) is the point of intersection
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of the lines Fσ(k)σ(i) and Fσ(k)σ(j), which is exactly qσ(k). Hence,
σ(qk) = qσ(k). �

Lemma 6.13. — Let X → P1 be a rational Mori conic bundle. Then X
is either a Hirzebruch surface, or

(1) K2
X = 5 and then there exists a link X → P2 of type III, given by

the blow-up of an orbit of size 4, or
(2) K2

X = 6 and then X is given by the blow-up of an orbit of two
points in P2 followed by the contraction of the strict transform of
the line through the two points (this is a link of type II), followed
by the blow-up of an orbit of size 2.

In particular, the fibration in cases (1) and (2) corresponds to the linear
system of conics through the four blown up points.

Proof. — By Remark 6.1 (where we used Iskovskikh’s list [10, Theo-
rem 2.6]), if X is not a Hirzebruch surface then K2

X ∈ {5, 6}.
First, assume that K2

X = 5. Remarks 2.3 and 2.5 tell us that X has
three singular fibers and that there exists σ ∈ Gal(k/k) that exchanges
two components of a singular fiber. Hence, the assumptions of Lemma 6.5
are satisfied and we find that X → P2 is the blow-up centered at four points
q1, . . . , q4 whose union is defined over k. Iskovskikh’s list also says that X
is obtained by the blow-up X ′ → P2 of an orbit {p1, . . . , p4} of size 4 in
P2, followed by a sequence X ′ 99K X of links of type II between Mori conic
bundles. So we can apply Proposition 6.12, which implies in particular that
{q1, . . . , q4} is again an orbit of size 4 in P2.

Now, we assume that K2
X = 6. As X is rational, Iskovskikh’s list gives

that X is obtained by the blow-up of an orbit of size 2 in P2 followed by the
contraction of the strict transform of the line between the two points (this
is a link Q 99K P2 of type II), followed by the blow-up X ′ → Q of an orbit of
size 2 (link of type III), followed by a sequence X ′ 99K X of links of type II
between Mori conic bundles. Instead of this construction, we can consider
X to be obtained by the blow-up Y ′ → P2 of two orbits {p1, p2} and {p3, p4}
of size 2 in P2, followed by a birational map ϕ : Y ′ 99K Y preserving the
fibration, followed by the contraction Y → X of a singular fiber defined over
k. Note that Y is a conic bundle (but not a Mori conic bundle) withK2

Y = 5.
With Observation 6.9 there is σ1 ∈ Gal(k/k) that exchanges the irreducible
components of one of the three singular fibers of Y ′ and hence also of Y
(since singular fibers are mapped onto singular fibers by Corollary 3.11). So
the assumptions of Lemma 6.5 are satisfied and so Y is the blow-up of four
points q1, . . . , q4 ∈ P2(k). As the birational map ϕ : Y ′ 99K Y preserves the
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fibration, Proposition 6.12 gives an automorphism of P2(k) defined over k
that maps {p1, . . . , p4} onto {q1, . . . , q4}. Hence, also {q1, . . . , q4} consists
of two orbits of size 2. �

Corollary 6.14. — Let k be any perfect field. The group Birk(P2) is
generated by the subsets J∗, J◦ and G68 of Birk(P2), where

(1) J∗ are the Jonquieres maps (i.e. the birational maps preserving a
pencil of lines),

(2) J◦ =
⋃
JP is the union of groups JP of birational maps that fix

a pencil of conics through four points P, of which no three are
collinear, and such that P is either an orbit of size 4 or consists of
two orbits of size 2.

(3) G68 is the set of birational maps with Galois depth 6 8.

Proof. — Let f ∈ Birk(P2). By [10, Theorem 2.5], the birational map
f can be written as a product of Sarkisov links of type I,II, III and IV.
By Iskovskikh’s classification of Sarkisov links in [10, Theorem 2.6], the
only link of type IV between rational surfaces is exchanging the fibration
P1 × P1 ∼→ P1 × P1, [x1 : x2; y1 : y2]. This can be decomposed as

P1 × P1 = F0
ψ
99K F1

π→ P2
σ
∼→ P2 π−1

99K F1
ψ−1

99K F0 = P1 × P1,

where ψ is a link of type II, π is the blow-up at one point (that is, of
type III), and σ is a change of coordinates of P2. Therefore, we can write
ϕ as a composition of Sarkisov links of type I, II, and III.
As in Remark 2.16, we can write

f = FN+1ΦNFN · · ·F2Φ1F1,

where Fi : Yi−1 99K Xi are a composition of links of type I and III, as well
as links of type II between Mori fiber spaces with 0-dimensional base (In
particular, the set of base points consists of unions of orbits of size 6 8.),
and Φi : Xi 99K Yi are a composition of links of type II between Mori conic
bundles Xi → P1, Yi → P1 for i = 1, . . . , N , and Y0 = P2 = XN+1.
Lemma 6.13 gives us a “shortcut” (that is, a birational map of Galois

depth 6 8) πYi
: Yi 99K P2 (respectively πXi

: Xi 99K P2) from any of these
Xi, Yi to P2. We let fi = πXi

◦ Fi ◦ (πYi−1)−1 ∈ Birk(P2) and note that
it has Galois depth 6 8, where the πXi and πYi are the “shortcuts” to P2

from above. Hence, fi ∈ G68. We can thusly write

f = f1 ◦ π−1
X1
◦ Φ1 ◦ πY1 ◦ f2 ◦ π−1

X2
◦ Φ2 ◦ · · · ◦ ΦN ◦ πYN

◦ fN+1.

Therefore, it is enough to prove that any element of the form

f = π−1
X ◦ Φ ◦ πY
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lies in 〈J∗, J◦, G68〉 (and then proceed by induction). Recall that Φ =
ϕn · · ·ϕ1 is a composition of links ϕi : Zi−1 99K Zi of type II between Mori
conic bundles Zi → P1 withK2

Zi
∈ {5, 6, 8} (see Lemma 6.13), and Z0 = X,

Zn = Y . As each of the ϕi preserves the fibration, so does Φ.
If X and Y are Hirzebruch surfaces, then X = Y = F1 and the Zi are

some Hirzebruch surfaces. As πX : X → P2 is the blow-up of one point p in
P2, the fibers of X correspond to the pencil of lines through p. Similarly,
the fibers of Y correspond to the pencil of lines through some point q (and
by applying an element of Autk(P2) we can assume q = p). As Φ preserves
the fibration, the pencil of lines through p is mapped under f onto the
pencil of lines through p, so f is the product of an element of Autk(P2) and
one of J∗.

If X has K2
X = 5, we let P ⊂ P2 be the set of base points of π−1

X ,
which is an orbit of size 4. As in Remark 6.2, the fibration of X → P1

corresponds to the pencil of conics through P. Analogously, let Q ⊂ P2

be the set of base points of π−1
Y , which is again an orbit of size 4. The

fibration Y → P1 corresponds to the pencil of conics through Q. As Φ
preserves the fibration and no base point of Φ lies on a singular fiber by [10,
Theorem 2.6], the singular fibers are preserved. By Proposition 6.12, there
exists an automorphism α ∈ Autk(P2) such that α(P) = Q. Therefore, f
is the product of an element of Autk(P2) and one of JP .
If X has K2

X = 6, we let P ⊂ P2 be the set of base points of π−1
X , which

consists of two orbits of size 2. We can argue as before and find that f is
the product of an element of Autk(P2) and one in JP . �

6.2. Free product

Lemma 6.15. — Let P = {p1, . . . , p4} be a set of four points in P2(k),
no three collinear.

(1) If P is an orbit of size 4 of the action of Gal(k/k), then there exists
A ∈ PGL3(k) such that Api = [1 : ai : a2

i ] with ai ∈ k forming an
orbit {a1, . . . , a4} ⊂ k of size 4 under the Galois action.

(2) If {p1, p2} and {p3, p4} form two orbits of size 2, then there exists
A ∈ PGL3(k) such that Api = [1 : ai : 0] for i = 1, 2 and Api = [1 :
0 : ai] for i = 3, 4 with ai ∈ k and {a1, a2} as well as {a3, a4} form
an orbit in k.

In both cases, the field of definition of P is k(a1, . . . , a4).
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Proof. — For (2) it is enough to observe that the line L through p1 and
p2 is invariant under the Galois action, hence it is defined over k. The
same holds for the line L′ through p3 and p4. Therefore, there exists an
automorphism defined over k that maps L onto z = 0 and L′ onto y = 0.
For (1), we remark that if there exists a k-point p that is not collinear

with any two of the four points, then the unique conic C through the five
points is irreducible. Since the set of the five points is invariant under the
action of Gal(k/k), the conic is defined over k. Moreover, the conic contains
a k-point and so there exists an automorphism of P2 defined over k that
maps C onto the conic xz−y2 = 0, giving the desired coordinates of the pi.
So it remains to prove that there exists a k-point p that does not lie on any
of the six lines through two of the points of P. By contradiction, assume
that each point in P2(k) is collinear with two of the points in P. Hence, all
points of P2(k) lie on the union of the six lines Lij through two points pi
and pj . Note that for any field k, P2(k) consists of at least 7 points. Hence,
there are two points in P2(k) that lie on the same line Lij , say L12. So L12
is invariant under the Galois action, and hence the set {p1, p2} is defined
over k. This is a contradiction to P being a Galois orbit of size 4. �

Example 6.16 (Construction of a link with Galois depth 2n + 1 for the
case K2

X = 5). — Let k be a perfect field with an orbit P = {p1, . . . , p4}
in P2 of size 4, no three collinear. We assume that there is an irreducible
polynomial in one variable of odd degree 2n+1 with roots r1, . . . , r2n+1 ∈ k.
With Lemma 6.15 we can assume that pi = [1 : ti : t2i ]. Consider the 2n+ 1
points qi = [0 : 1 : ri] (all lying on the line L defined by x = 0) and the
conics Ci given uniquely by the 5 points p1, p2, p3, p4 and qi. We want to
show that all the conics Ci are distinct.

Assume by contradiction that there exist i 6= j with qj ∈ Ci, so Ci ∩L =
{qi, qj}. As the Galois group acts transitively on the qk, and L is invariant
under the Galois action, for all k we have Ck ∩ L = {pk, pl} for a l 6= k.
Since the orbit Q = {q1, . . . , q2n+1} consists of an odd number of points,
this is a contradiction.
Let X → P2 be the blow-up at P, so X → P1 is a Mori conic bundle

with K2
X = 5. As the conics Ci are distinct, the orbit Q of size 2n + 1

from above gives an orbit in X such that each point of the orbit lies on a
different fiber. Hence, the birational map X 99K X ′ that is given by the
blow-up of Q (seen as an orbit in X) followed by the contraction of the
orbit containing the strict transform of the fibers through the points of Q
is a link of type II between Mori conic bundles, and it has Galois depth
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2n+ 1.

p1
p2

p3
p4

q1

q2

q2n−1

q2n

q2n+1

Example 6.17 (Construction of a link with Galois depth 2n+1 for the case
K2
X = 6). — Let k be a perfect field with two orbits {p1, p2} and {p̃1, p̃2}

in P2(k) of size 2. We assume that there is an irreducible polynomial in one
variable of odd degree 2n+1 with roots r1, . . . , r2n+1 ∈ k. With Lemma 6.15
we can assume that pi = [1 : ai : 0] for an orbit {a1, a2} ⊂ k and p̃i =
[1 : 0 : bi] for an orbit {b1, b2} ⊂ k. So P = {p1, p2, p̃1, p̃2} consists of two
orbits of size two, and no three of the four points are collinear. The points
qi = [0 : 1 : ri] form an orbit of size 2n+1. As none of the qi is collinear with
two of the four points in P, we consider the irreducible conic Ci through
the points qi and P, which is unique. These conics are all distinct by the
same argument as in the example above.
Let X 99K P2 be the blow-up at P, followed by the contraction of the

line through the two points of one of the orbits of size 2. Then, X → P1

is a Mori conic bundle with K2
X = 6. So the birational map X 99K X ′

that is given by the blow-up of the orbit {q1, . . . , q2n+1}, followed by the
contraction of the strict transform of the conics C1, . . . , C2n+1 is a link of
type II between Mori conic bundles of Galois depth 2n+ 1.

Proof of Theorem 1.4. — We consider the group homomorphism from
Birk(P2) to a free product (indexed by equivalence classes of Mori conic
bundles) of direct sums (indexed by equivalence classes of Sarkisov links
of type II) of Z/2Z constructed in Theorem 1.3. In Theorem 1.1 we have
already seen that the restriction to the equivalence class of Mori conic
bundles corresponding to the Hirzebruch surfaces gives an infinite direct
sum of Z/2Z, providing the infinite set I0. In the following we construct
N4 distinct equivalence classes of Mori conic bundles X with K2

X = 5, and
N2 with K2

X = 6, and remark with Examples 6.16 and 6.17 that there
are (at least) as many distinct equivalence classes of links of type II as
there are irreducible polynomials of odd degree in k[x]. Projecting onto the
corresponding factors gives the desired group homomorphism.
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• To a Galois orbit P of size 4 in P2 we associate the equivalence
class of its Mori conic bundle X → P1 with K2

X = 5. Note that
if there is another orbit Q of size 4 in P2 such that no element of
PGL3(k) maps P onto Q, then the obtained Mori conic bundles
are not equivalent by Proposition 6.12. This gives us N4 distinct
equivalence classes of Mori conic bundles, explaining the cardinality
of J5.

For each n > 8 such that there exists an irreducible polynomial
of degree 2n+ 1, Example 6.16 gives a link X 99K X ′ of type II of
Galois depth 2n + 1 > 17 between two Mori conic bundles in the
equivalence class.

• Let {p1, p2} ⊂ P2 be an orbit of size 2. As the line through the two
points p1 and p2 is defined over k, we can assume it to be the line
z = 0, and so pi = [1 : ai : 0] for an orbit {a1, a2} ⊂ k. Let p̃i =
[1 : 0 : ai] for i = 1, 2. So P = {p1, p2, p̃1, p̃2} consists of two orbits
of size two, and no three of the four points are collinear. Consider
the Mori conic bundle X → P1 with K2

X = 6 associated to the two
orbits of size 2. Note that if we perform the same construction from
another orbit {q1, q2} of size 2 in P2 such that there is no element in
PGL3(k) that maps {p1, p2} onto {q1, q2}, then the obtained Mori
conic bundles are not equivalent by Proposition 6.12. This gives us
N2 distinct equivalence classes of Mori conic bundles, explaining
the cardinality of J6.
Example 6.17 gives a link X 99K X ′ of type II of Galois depth

2n+1 > 17 between two Mori conic bundles in the equivalence class
of X.

With Lemma 6.13 these links extend to a birational map P2 99K P2 that
factorizes through Sarkisov links with Galois depth 6 4 and one link of
Galois depth 2n + 1 > 17, corresponding to the generator indexed by its
equivalence class. This implies that |I| is the number of integers n > 8 such
that there exists an irreducible polynomial of degree 2n+ 1.
Finally, note that for all finite fields there is a (unique) field extension

of degree 2 and 4. For an irreducible polynomial of degree 4 with roots
a1, . . . , a4 we get an orbit [1 : ai : a2

i ] of size 4 in P2, and for an irreducible
polynomial of degree two with roots a1, a2 we take the orbit [1 : ai : 0] of
size 2. So we have that N2 and N4 are at least 1. (In fact, both are equal to
one with [1, Lemma 4.1].) Over the rational numbers Q there are infinitely
many distinct field extensions of degree 2 and of degree 4. We find that N4
and N2 are infinite. �
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6.3. Long list of Sarkisov links in a nutshell

All Sarkisov links between rational surfaces listed in [10, Theorem 2.6]
are given by links in Figure 6.2 with notation of Table 6.1. The link of
type IV, which corresponds to the exchange of the fibration of P1 × P1, is
omitted because it can be written as a composition of links of type I, II,
and III, see proof of Corollary 6.14.

Table 6.1. Notation to Figure 6.2

Dd Set of del Pezzo surfaces of degree d.
Cd Set of Mori conic bundles X → P1 with K2

X = d.

X
I:a
99K Y

Link of type I from X to Y that is given by the blow-up
Y → X of an orbit in X of size a.

X
II:a:b
99K Y

Link of type II from X to Y that is given by the blow-up
of an orbit in X of size a, followed by the contraction of an
orbit of size b to Y .

P2

X = Fn ∈ C8 X ∈ C5

X ∈ D5

Q ∈ D8

X ∈ D6

X ∈ C6

I:1 I:4

II:5:1

II:2:1 II:3:3 II:6:6 II:7:7 II:8:8

II:5:2

I:2

II:3:1

II:4:4II:6:6II:7:7

II:x:x

II:3:3

II:4:4

II:2:2

II:3:3

II:4:4

II:5:5

II:x:xII:x:x

Figure 6.2. The long list of Sarkisov links, using the notation of Ta-
ble 6.1. The links of type II between the conic bundles are special as
they allow a link of type II:x:x for any x > 1.
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