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FANO VARIETIES WITH LARGE SESHADRI
CONSTANTS IN POSITIVE CHARACTERISTIC

by Ziquan ZHUANG

Abstract. — We prove that a Fano variety (with arbitrary singularities) of
dimension n in positive characteristic is isomorphic to Pn if the Seshadri constant of
the anti-canonical divisor at some smooth point is greater than n and classify Fano
varieties whose anti-canonical divisors have Seshadri constants n. In characteristic
p > 5 and dimension 3, we also show that Fano varieties X with Seshadri constants
ε(−KX , x) > 2+ε at some smooth point x ∈ X (for some fixed ε > 0) have bounded
anti-canonical degrees.
Résumé. — Nous prouvons qu’une variété de Fano (avec des singularités ar-

bitraires) de dimension n en caractéristique positive est isomorphe à Pn, si la
constante de Seshadri du diviseur anti-canonique en un point lisse est supérieure à
n. Nous classons les variétés de Fano dont les constantes de Seshadri des diviseurs
anti-canoniques sont égales à n. En caractéristique p > 5 et en dimension 3, nous
montrons également que les degrés anti-canoniques d’une variété de Fano X avec
des constantes de Seshadri ε(−KX , x) > 2 + ε en un certain point lisse x (pour un
certain ε > 0 fixé) sont bornés.

1. Introduction

Let X be a normal projective variety and L an ample Q-Cartier divisor
on X. The Seshadri constants of L, originally introduced by Demailly [12],
serve as a measure of the local positivity of the divisor L.

Definition 1.1. — Let L be an ample Q-Cartier divisor on a projective
variety X and x ∈ X a smooth point. The Seshadri constant of L at x is
defined as

ε(L, x) := sup{t ∈ R>0 | σ∗L− tE is ample},
where σ : BlxX → X is the blow-up of X at x, and E is the exceptional
divisor of σ.
Keywords: Fano variety, Seshadri constant, positive characteristic, boundedness,
classification.
2020 Mathematics Subject Classification: 14J45, 14E99, 14C20, 14G17.
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When X is Fano, i.e. −KX is Q-Cartier and ample, it is natural to look
at the Seshadri constants of the anti-canonical divisor. It has been observed
that over a field of characteristic zero, this local invariant, when it’s large,
also governs the global geometry of the Fano variety. More precisely, Fano
varieties with large Seshadri constants enjoy nice geometric properties and
satisfy certain boundedness:

Theorem 1.2 ([4, 31, 46]). — Let X be a complex Fano variety of
dimension n and let x ∈ X be a smooth point. Let ε > 0 be a constant.

(1) If ε(−KX , x) > n, then X ∼= Pn;
(2) If ε(−KX , x) > n, then X has klt singularities;
(3) If ε(−KX , x) > n− 1, then X is rationally connected;
(4) The set of those X with ε(−KX , x) > n− 1 + ε for some x ∈ X is

weakly bounded;
(5) The set of those X with ε(−KX , x) > n − 1 for some x ∈ X is

birationally bounded.

Moreover, all the assumptions on the lower bound of Seshadri constants
here are sharp.

Here a set of Fano varieties is said to be weakly bounded if there exists
a constant M > 0 such that for any Fano variety X in the set we have
vol(−KX) = ((−KX)n) < M . It is said to be birationally bounded if there
exists a family of varieties π : X → B over a base of finite type such that
any X in the set is birational to Xb = π−1(b) for some b ∈ B.
The proof of this theorem relies on various consequences of the

Kawamata–Viehweg vanishing theorem (e.g. basepoint-free theorem,
minimal model program and Kollár–Shokurov connectedness), so does not
extend to positive characteristic. On the other hand, we believe that the
same statements also hold over a field of characteristic p > 0 (possibly
excluding a few small primes p) and indeed, using Frobenius technique,
Murayama [33, Theorem B] recently showed that if X is a smooth Fano
variety (over an algebraically closed field of any characteristic) of dimension
n and ε(−KX , x) > n + 1 for some x ∈ X then X ∼= Pn, giving a partial
generalization of the first statement in the above theorem.
Unless otherwise specified, all varieties in what follows are defined over

an algebraically closed field k of characteristic p > 0. The goal of this paper
is to provide an argument that generalizes parts of Theorem 1.2 to positive
characteristic. Here is our first main result:
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Theorem 1.3. — Let X be a normal projective variety of dimension n
and ∆ an effective Q-divisor on X such that L = −(KX + ∆) is Q-Cartier
and ample. Let x ∈ X be a smooth point.

(1) If ε(L, x) > n, then X ∼= Pn;
(2) If ε(L, x) > n and p > 2, then X is globally F -regular (see Sec-

tion 2.2 for definition).

By standard reduction mod p technique and the main result of [42], we
immediately obtain a different proof of its characteristic zero analog:

Corollary 1.4. — Let X be a normal projective variety of dimension
n over C and ∆ an effective Q-divisor on X such that L = −(KX + ∆)
is Q-Cartier and ample. Assume that ε(L, x) > n for some smooth point
x ∈ X, then X is of Fano type. If in addition ε(L, x) > n, then X ∼= Pn.

The argument we introduce here has the additional bonus that it gen-
eralizes [31, Theorem 3] (which classifies complex Fano varieties X with
ε(−KX , x) = n) to positive characteristic as well.

Theorem 1.5. — Let X be a normal projective variety of dimension n
and ∆ an effective Q-divisor on X such that L = −(KX + ∆) is Q-Cartier
and ample. Assume that ε(L, x) = n for some smooth point x ∈ X and
that either (Ln) > nn or ∆ 6= 0. Then either X ∼= Pn or X is one of the
following:

(1) a degree d + 1 weighted hypersurface (x0xn+1 = f(x1, . . . , xn)) ⊂
P(1n+1, d);

(2) the blow-up of Pn along a hypersurface of a hyperplane;
(3) a Gorenstein log Del Pezzo surface of degree > 5.

Note that the condition on Seshadri constant ε(L, x) = n already implies
(Ln) > nn. When equality holds, we have (by the above theorem, we may
assume ∆ = 0):

Theorem 1.6. — Let X be a normal projective variety of dimension n
such that −KX is Q-Cartier and ample. Assume that ε(−KX , x) = n for
some smooth point x ∈ X, ((−KX)n) = nn and p 6= 2, then X is one of
the following:

(1) a quartic weighted hypersurface X4 = (x2
n+1 +xnh(x0, . . . , xn−1) =

f(x0, . . . , xn−1)) (h 6= 0) or (xnxn+1 =f(x0, . . . , xn−1)) ⊆ P(1n, 22);
(2) the quotient of the quadric Qk = (

∑k
i=0 x

2
i = 0) ⊆ Pn+1 (2 6 k 6

n + 1) by an involution τ(xi) = δixi (δi = ±1) that is fixed point
free in codimension 1 and such that not all the δi(i = 0, . . . , k) are
the same;
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688 Ziquan ZHUANG

(3) a Gorenstein log Del Pezzo surface of degree 4.

In particular, every Fano variety X with ε(−KX , x) = dimX lifts to
characteristic zero at least when p = char(k) is different from 2.
As for the weak boundedness statement of Theorem 1.2, we’re only able

to generalize it in the 3-dimensional case:

Theorem 1.7. — Given ε > 0 and assume that char(k) = p > 5, then
the set of Fano threefolds X such that ε(−KX , x) > 2 + ε for some smooth
point x ∈ X is weakly bounded.

Combining with the main result of [35], we also have the following corol-
lary, which partially generalizes the birational boundedness statement of
Theorem 1.2:

Corollary 1.8. — Given ε > 0 and assume that char(k) = p > 5, then
the set of Fano threefolds X such that ε(−KX , x) > 2 + ε for some smooth
point x ∈ X is birationally bounded.

In view of [46], it is better to consider Theorem 1.7 in the context of
moving Seshadri constants (see Section 2.4), which generalize the notion
of Seshadri constants to arbitrary (not necessarily ample) divisors. It has
the advantage of behaving better under typical operations in the Minimal
Model Program (MMP). By a result of Demailly, the moving Seshadri
constants and the original Seshadri constants coincide for ample divisors,
hence Theorem 1.7 can be regarded as a special case of the following more
general statement:

Theorem 1.9. — Given ε > 0 and assume that char(k) = p > 5, then
there exists a constant M depending only on ε such that if X is a normal
projective threefold with εm(−KX , x) > 2+ε for some smooth point x ∈ X,
then vol(−KX) < M .

We now outline the proof of these theorems. Let σ : Y → X be the
blowup of X at x with exceptional divisor E and consider D = σ∗L −
ε(L, x)E where L = −(KX + ∆) as in Theorem 1.3. In characteristic zero,
the proof of Theorem 1.2(1) in [31] goes by analyzing the morphism defined
by |mD| (m� 0). To adapt it to positive characteristic, we need to prove
that ε(L, x) ∈ Q and that D is semiample (which are somewhat obvious
over C). Our observation (Corollary 2.4) here is that the assumption on Se-
shadri constant actually implies the global F -regularity of the pair (Y,∆)
and this suffices to conclude the rationality of ε(L, x), which is essentially
a consequence of Kodaira vanishing on Y by the argument in [4, Proposi-
tion 1.1]. On the other hand, the semiample-ness of D is a slightly delicate
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application of the methods in [9] and the key step is given by Lemma 3.5 on
the base locus of adjoint divisors. Once this is done, Theorem 1.3 almost
follows from the same argument in [31] while Theorem 1.5 (resp. Theo-
rem 1.6) reduces to the classification in positive characteristic of varieties
containing a projective space in the smooth locus (resp. Gorenstein conic
bundles in the sense of Definition 3.12 containing the projective space as a
double section) under certain conditions. These two topics are treated in
Section 3.1 and Section 3.2 respectively and they combine to give the proof
of the Theorems 1.3, 1.5 and 1.6 in Section 3.3.
As for the weak boundedness statement (i.e. Theorem 1.9), the corre-

sponding result in characteristic zero [46, Theorem 3.6] is proved using the
Kollár–Shokurov connectedness theorem, whose validity remains open in
positive characteristic (even for threefolds). Our proof strategy then, is to
come up with several weaker versions of the Kollár–Shokurov connected-
ness theorem in positive characteristic and, assuming weak boundedness
fails, construct a pair that violates one of these. As a preliminary step, by
the work of [5, 7, 18], we may run the MMP for threefolds in character-
istic p > 5, and this easily reduces Theorem 1.9 to the case of Mori fiber
spaces (Lemma 2.17). Depending on the behaviour of the Mori fiber spaces,
we have two cases to consider (treated in Section 4.1 and Section 4.2 re-
spectively). If the Mori fiber space is of fiber type, we can prove that it
is birational to a P2-bundle over a curve and it is then relatively straight-
forward to construct a pair that violates connectedness theorem using an
argument similar to [22]. The other case is when we have a terminal Fano
variety of Picard number one. In this case, our argument again relies heav-
ily on the methods in [9] and the upshot is to find some highly singular
divisors in the pluri-anticanonical system that cut out a zero dimension
subscheme (which can be viewed as an analog of isolated log canonical cen-
ter in characteristic zero) supported at a very general point. A key tool
here is a local version (see Lemma 4.15) of [34, Theorem A], which allows
us to construct new singular divisors out of existing ones.

Organisation

This paper is organized as follows. In Section 2 we collect some defini-
tions and useful results on F -singularity and moving Seshadri constants.
In Section 3 we deal with Fano varieties with anticanonical Seshadri con-
stants no smaller than the dimension and prove Theorems 1.3, 1.5 and 1.6.
Finally, Section 4 is devoted to the proof of Theorem 1.9.
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2. Preliminary

2.1. Notation and conventions

Unless otherwise specified, all varieties are assumed to be normal and
defined over an algebraically closed field k of characteristic p > 0. A pair
(X,D) consists of a variety X and an effective Q-divisor D on X such that
KX + D is Q-Cartier. A dominant morphism f : X → Y is called a fiber
type morphism if it has connected fibers and 0 < dimY < dimX.

2.2. F -singularities

We first recall a few definitions and results on singularities in character-
istic p.

Definition 2.1. — Let X be a normal quasi-projective variety and ∆
an effective Q-divisor on X. Fix a closed point x ∈ X. The pair (X,∆) is
called globally F -regular (resp. globally sharply F -split) if for all effective
Weil divisor D on X (resp. for D = 0), there exists an e such that the
composition

(2.1) OX → F e∗OX ↪→ F e∗OX(d(pe − 1)∆e+D)

splits as a map of OX -modules. It is said to be strongly F -regular (resp.
sharply F -pure) at x if the pair is globally F -regular (resp. globally sharply
F -split) in some affine neighbourhood of x.

Since X is quasi-projective, any effective divisor is contained in the sup-
port of some ample divisor, hence in the above definition of global F -
regularity, it suffices to check splitting of (2.1) when D is Cartier and am-
ple. It is also clear from the definition that if (X,∆) is globally F -regular
and 0 6 ∆′ 6 ∆ then (X,∆′) is also globally F -regular. Moreover, if H
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is another effective divisor then (X,∆ + εH) is also globally F -regular for
0 < ε � 1 and thus we can perturb the divisor ∆ (preserving global F -
regularity) so that no coefficient of ∆ has a denominator divisible by p. For
more background on global F -regularity, see [42].

Definition 2.2. — Let L be an ample Q-divisor on X. Assume that
X is strongly F -regular, then the F -pure threshold of the (polarized) pair
(X,L) is defined to be the supremum of all t > 0 such that (X, tD) is
strongly F -regular for all effective Q-divisor D ∼Q L. When X is Fano, we
define its F -pure threshold, denoted by fpt(X), as the F -pure threshold of
(X,−KX).

By [20, Lemma 3.4], for any effective divisor D on a normal variety X
and for any integer e > 0, we have an isomorphism of F e∗OX -modules

HomOX
(F e∗ (OX(D)),OX) ∼= F e∗ (OX((1− pe)KX −D)).

Viewing an element of F e∗ (OX((1−pe)KX−D)) as a map θ : F e∗ (OX(D))→
OX and evaluating at 1 ∈ F e∗OX ⊆ F e∗ (OX(D)), we obtain the trace map

TreX(D) : F e∗ (OX((1− pe)KX −D))→ OX .

By abuse of notation, we will often denote TreX(D) simply by TreX or Tre.
It is quite straightforward to see that (2.1) splits if and only if

TreX : F e∗ (OX(b(1− pe)(KX + ∆)c −D))→ OX
induces a surjective map on global sections (see e.g. [9, Proposition 2.5]).
The following criterion turns out to be quite useful when verifying a given

pair is globally F -regular.

Lemma 2.3. — Let (X,D = E+∆) be a pair such that L = −(KX+D)
is nef and big, E is a prime divisor contained in the smooth locus of X
and E 6∈ Supp(∆). Assume that (E,∆|E) is globally F -regular and L|E is
ample, then (X,∆) is also globally F -regular.

Proof. — We first make a few reductions. Since L is nef and big, there
exists an effective divisor M such that L− εM is ample for all 0 < ε� 1.
As L|E is ample, (L + εE)|E is also ample for sufficiently small ε, hence
L+εE is nef and big for 0 6 ε� 1 (if C is a curve such that (L+εE ·C) < 0
then since L is nef we have C ⊆ E, but this contradicts the ampleness of
(L+ εE)|E). Let a > 0 be the coefficient of E in M , let λ = 1

a+1 and D′ =
D+ε(λM−(1−λ)E), then E still has coefficient one in D′ (i.e. D′ = E+∆′
where E 6∈ Supp(∆′)) and for sufficiently small ε, (E,∆′|E) is still globally
F -regular. We also have −(KX + D′) = (1 − λ)(L + εE) + λ(L − εM),
hence for 0 < ε� 1, −(KX +D′) is ample. Since ∆′ > ∆, we may replace
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692 Ziquan ZHUANG

D by D′ and assume that L = −(KX + D) is ample in what follows. By
perturbing the coefficients of components of ∆, we may also assume that
(pe − 1)∆ has integral coefficients for some e > 0.
Let H be an ample Cartier divisor on X such that ∆ ∪ Sing(X) ⊆

Supp(H) 6⊆ E. Consider the following commutative diagram

F e∗OX((1−pe)(KX +E+∆)−H) i //

Tre
X

��

F e∗OE((1−pe)(KE+∆E)−H)

Tre
E

��

OX // OE

where the two vertical arrows are given by the trace map. By assumption,
TreE induces a surjection on global sections. As L is ample, for sufficiently
large and divisible e we have H1(X,F e∗OX((1 − pe)(KX + E + ∆) − E −
H)) = H1(X, (pe − 1)L − E − H) = 0, thus by the long exact sequence
of cohomology, i also induces a surjection on global sections. It follows
that H0(TreX) is surjective as well. By [42, Theorem 3.9], this implies that
(X,∆) is globally F -regular. �

Corollary 2.4. — Let (X,∆) be a pair such that L = −(KX + ∆)
is ample. Assume that (Ln) > nn and ε(L, x) > n for some smooth point
x ∈ X\∆. Let Y be the blow up of X at x and let ∆Y be the strict
transform of ∆ on Y . Then (Y,∆Y ) is globally F -regular.

Proof. — Let E be the exceptional divisor of the blowup σ : Y → X, then
the pair (Y,E + ∆Y ) satisfies all the assumptions of the Lemma 2.3. �

Remark 2.5. — Note that ε(L, x) > n already implies (Ln) > nn. How-
ever, the assumption (Ln) > nn in the above corollary can not be removed
in general (even in the boundary free case, i.e. when ∆ = 0). For exam-
ple, consider the pair (X = Pn, H) where H is a hyperplane, then clearly
ε(−(KX + H), x) = n for any smooth point x ∈ X, but H is the center
of F -purity of the pair. As another example, consider the Fermat cubic
surface Y = (x3 + y3 + z3 + w3 = 0) ⊆ P3, then Y is not even globally
F -split in characteristic 2, but Y is also the blow up of a smooth del Pezzo
surface of degree 4 whose anticanonical divisor has Seshadri constant 2 at
the point we blow up.

One of the advantages of global F -regularity is that most vanishing re-
sults that hold in characteristic zero remain valid. In particular we have
(see [42, Theorem 6.8] for the dual statement):
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Lemma 2.6. — Let (Y,∆) be a globally F -regular pair and D an ef-
fective Weil divisor on Y such that D − (KY + ∆) is nef and big. Then
Hi(Y,OY (D)) = 0 for all i > 0.

Proof. — We note that the assumption implicitly requires thatD−(KY +
∆) is Q-Cartier. We may perturb the pair as before and assume that (pe−
1)∆ has integral coefficients for sufficiently divisible e and thatD−(KY +∆)
is ample. Let q = pe. Since (Y,∆) is globally F -regular, the trace map

Tre : F e∗OY ((1− q)(KY + ∆)) ↪→ F e∗OY ((1− q)KY )→ OY
splits for every sufficiently divisible e. Taking the reflexive tensor with
OY (D) we see that Hi(Y,OY (D)) is a direct summand of Hi(Y,OY (D)⊗
F e∗OY ((1 − q)(KY + ∆))) = Hi(Y,OY ((1 − q)(KY + ∆) + qD)), but the
latter group is zero when i > 0 and q � 0 by Serre vanishing, thus
Hi(Y,OY (D)) = 0. �

Corollary 2.7. — Let (Y,∆) be a globally F -regular pair, f : Y → X

a proper morphism and D an Weil divisor on Y such that D − (KY + ∆)
is f -nef and f -big. Then Rif∗O(D) = 0 for all i > 0.

Proof. — It suffices to show thatHi(Y,OY (D+f∗H)) = 0 for sufficiently
ample divisor H on X. But for such H, D + f∗H − (KY + ∆) is nef and
big by assumption, so the statement follows directly from Lemma 2.6. �

2.3. Test ideals

Next we review the definition of test ideals on a smooth variety (this will
be the only case we need and we refer to [43] for a general treatment of
test ideals).

Our definition is taken from [8]. Let X be a smooth variety and a an
ideal sheaf on X. Let e be a positive integer. Let a[1/pe] denote the unique
smallest ideal sheaf J such that a ⊆ J [pe]. One can show that (see [8,
Proposition 2.5 and Lemma 2.8])

TreX(F e∗ (a · ωX)) = a[1/pe] · ωX
and that if c > 0 then

(adcp
ee)[1/pe] ⊆ (adcp

e+1e)[1/pe+1].

Definition 2.8. — Given a and c > 0 as above. The test ideal of the
pair (X, ac) is defined to be

τ(X, ac) =
⋃
e>0

(adcp
ee)[1/pe].

TOME 72 (2022), FASCICULE 2
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Since OX is Noetherian, this is well-defined and by the previous discus-
sion we have

τ(X, ac) · ωX = TreX(F e∗ (adcp
ee · ωX))

for e� 0. If a = OX(−D) for some divisor D > 0, we simply write τ(X, ac)
as τ(X,∆) where ∆ = cD.

The following property of test ideals is well known to expert. It is anal-
ogous to the corresponding property of multiplier ideals in characteristic
zero.

Lemma 2.9. — Let X be a smooth variety of dimension n. Let x ∈ X
and let D be an effective Q-divisor on X.

(1) If multxD < 1, then the pair (X,D) is strongly F -regular at x. In
particular, τ(X,D)x = OX,x.

(2) If multxD = N > n, then τ(X,D) ⊆ m
bN−n+1c
x . In particular,

(X,D) is not strongly F -regular at x.

Proof. — (2) is a consequence of [34, Proposition 3.3], so we only need
to prove (1). If OX(−dpeDe) ⊆ m

[pe]
x for e� 0 then multxD > 1, hence if

multxD < 1 then τ(X,D)x = OX,x by definition. If follows that (X, (1 +
ε)D) is sharply F -pure for some 0 < ε � 1. By [42, Theorem 3.9], this
implies that (X,D) is strongly F -regular at x. �

Corollary 2.10. — Let X = Pn and let D be an effective Q-divisor
of degree < 1 on X. Then (X,D) is globally F -regular.

Proof. — This follows from Lemma 2.9(1) by taking the cone over
(X,D). �

2.4. Moving Seshadri constants

We now recall some results on moving Seshadri constants and carry out
the reduction step of Theorem 1.9. Essentially all the results in this section
are contained in [46] as the same proofs there work in any characteristic.

Definition 2.11. — [36, 13] Let D be a Q-divisor on a normal variety
X. Let x ∈ X be a smooth point. The moving Seshadri constant of D at x
is defined to be

εm(D,x) = lim sup
k

s(kD, x)
k

where the limit is taken over sufficiently large and divisible integers k and
s(kD, x) is the largest integer s > −1 such that the natural map

H0(X,OX(kD))→ H0(X,OX(kD)⊗OX/ms+1
x )

ANNALES DE L’INSTITUT FOURIER
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is surjective. We also define

εm(D) = sup
x∈X◦

εm(D,x)

where X◦ is the smooth locus of X. It is not hard to see that the supremum
is actually a maximum and is achieved at a very general point of X.

Here are some of the basic properties of moving Seshadri constants.

Lemma 2.12. — Let L be a Q-Cartier Q-divisor on X, let π : Y → X

be a morphism, and let y be a smooth point of Y such that X is smooth
at π(y) and π is an immersion at y. Then εm(L, π(y)) 6 εm(π∗L, y).

Proof. — This follows from the same proof of [46, Lemma 3.1]. �

Lemma 2.13. — Let φ : X 99K Y be a birational contraction between
normal varieties, then εm(−KX) 6 εm(−KY ) and vol(−KX) 6 vol(−KY ).

Proof. — The first statement is simply [46, Corollary 3.3] while the sec-
ond follows from the injection H0(X,−mKX) → H0(Y,−mKY ) induced
by φ. �

Definition 2.14 ([26, Theorem 1.33]). — A projective birational mor-
phism φ : Y → X is called a terminal modification of X if Y is Q-factorial,
terminal and KY is φ-nef.

The existence of terminal modification is a formal consequence of the
MMP, so by the work of [5, 7, 18], terminal modification exists for three-
holds in characteristic p > 5.

Lemma 2.15. — Let φ : Y → X be a terminal modification of X, then
εm(−KX) = εm(−KY ) and vol(−KX) = vol(−KY ).

Proof. — The first equality follows from [46, Lemma 3.4]. To see the
second equality, let DX ∈ |−mKX | and DY its strict transform on Y . We
may write mKY +DY +EY ∼ φ∗(mKX +DX) ∼ 0 for some φ-exceptional
divisor EY . Note that EY has integral coefficients. Apply [46, Lemma 2.5]
to the pair (X, 1

mD) we see that EY is effective. It follows that DY +EY ∈
|−mKY | and we have an injection φ−1

∗ : H0(X,−mKX)→ H0(Y,−mKY ).
On the other hand φ∗ also induces an inclusion H0(Y,−mKY ) →
H0(X,−mKX) and φ∗ ◦ φ−1

∗ = id, hence it’s an isomorphism and
vol(−KX) = vol(−KY ). �

Using these properties we can easily reduce the proof of Theorem 1.9 to
the case of Mori fiber spaces.
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Definition 2.16. — Let X be a normal variety and f : X → Y a pro-
jective morphism with f∗OX = OY . Then f is called a Mori fiber space if

(1) X has Q-factorial terminal singularities,
(2) the relative Picard number ρ(X/Y ) = 1, and
(3) −KX is f -ample.

Lemma 2.17. — It suffices to prove Theorem 1.9 when the threefold X
admits a Mori fiber space structure.

Proof. — Let Y → X be a terminal modification of X and run the KY -
MMP on Y . Since KX is not pseudoeffective by assumption, the MMP
ends with Y 99K Y1 where Y1 admits a Mori fiber space structure. By
Lemma 2.13 and 2.15, we have εm(−KY1) > εm(−KX) and vol(−KY1) >
vol(−KX). Thus if Theorem 1.9 holds for Mori fiber spaces then it holds
for all threefolds as well. �

3. Fano varieties with Seshadri constants at least n

In this section, we study Fano varieties with anticanonical Seshadri con-
stants no smaller than their dimension and in particular prove Theorem 1.3,
1.5 and 1.6. Since this eventually reduces to the classification of certain va-
rieties containing a projective space in the smooth locus or Gorenstein conic
bundles containing the projective space as a double section, we first give a
treatment of these two topics.

3.1. Varieties containing projective space as a divisor

In [31], an important step in the classification of varieties X with
ε(−KX , x) > n is the classification of varieties (over C) that contain a
divisor D ∼= Pn−1 in the smooth locus. In this section we carry out the
parallel study of such varieties in positive characteristic. We start with the
Picard number one case.

Lemma 3.1. — Let X be a normal projective variety of dimension n and
D ∼= Pn−1 a divisor contained in its smooth locus. Assume that ND/X is nef
and n > 3 if ND/X is ample. Then the natural restriction Cl(X)→ Cl(D)
is surjective.
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Proof. — Let d = degND/X . If d > 0, let Z ⊆ D be a smooth hypersur-
face of degree d and let X̃ be the blow up of X along Z. Note that since
n > 3, Z is connected. Let E be the exceptional divisor and D̃ the strict
transform of D. Then we have Cl(X̃) ∼= Cl(X) ⊕ Z[E] and the image of
Cl(X̃) → Cl(D̃) is the same as the image of Cl(X) → Cl(D) ∼= Cl(D̃).
Since ND̃/X̃ ∼= OD̃, we may replace (X,D) by (X̃, D̃) and reduce to the
case that d = 0.
As D ∼= Pn−1 and d = 0, we have h0(D,ND/X) = 1 and h1(D,ND/X) =

0, hence the Hilbert scheme of X is smooth and of dimension 1 at the point
[D]. It follows that there exists a curve C (not necessarily proper) and a
family of divisors of X

Y

f

��

g
// X

C

such that f is smooth, g identifies a fiber F of f with D and if Fs, Ft are
fibers of f over s 6= t ∈ C, then g(Fs) 6= g(Ft). As Pn−1 is rigid, after
shrinking C we may assume that all fibers of f are isomorphic to Pn−1;
moreover since C is a curve, f is indeed a Pn−1-bundle by Tsen’s theorem.
On the other hand, as ND/X ∼= OD, we have D′ ∩ D = ∅ if D′ 6= D is
algebraically equivalent to D, thus g is an isomorphism in a neighbourhood
of D. Therefore, after further shrinking of C we may assume that g is an
open immersion. Then g∗ : Cl(X)→ Cl(Y ) is surjective. Since f : Y → C is
a Pn−1-bundle, Cl(Y )→ Cl(F ) is also surjective, so the lemma follows. �

Remark 3.2. — The n > 3 assumption in the above lemma is necessary
if ND/X is ample, since Cl(X)→ Cl(D) is not surjective when D is a conic
in X = P2. It is also not hard to see that the statement does not hold if
ND/X has negative degree. For example, consider a general surface S of
degree d > 4 that contains a conic curve C, then Pic(S) is generated by
C by [32, Theorem II.3.1] and the hyperplane class H. Since (C ·H) = 2
and (C2) = 2(3 − d), Pic(S) → Pic(C) is not surjective and the image is
an index 2 subgroup.

Lemma 3.3. — Let X be a normal projective variety of dimension n > 2
containing a divisor D ∼= Pn−1 in its smooth locus. Assume that ρ(X) = 1,
then one of the following holds:

(1) X ∼= P(1n, d) for some d ∈ Z>0 and D is the hyperplane defined by
the vanishing of the last coordinate; or

(2) n = 2, X ∼= P2 and D is a smooth conic.
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Proof. — First consider the case n > 3. Let X0 be the smooth locus of
X. Since ρ(X) = 1, D is ample, so X has only isolated singularities and
the natural map Cl(X) ∼= Pic(X0) → Pic(X̂) is an isomorphism by [16,
Exposé XI, Proposition 2.1], where X̂ is the formal conpletion of X along
D. As D ∼= Pn−1 and n > 3, we have H1(D,OD(−mD)) = 0 for all m,
hence by the exact sequence (cf. [16, Exposé XI, §1])

(3.1) H1(D,OD(−mD))→Pic(Dm+1)→Pic(Dm)→H2(D,OD(−mD))

the restriction map Pic(X̂) → Pic(D) is injective; on the other hand it
is also surjective by Lemma 3.1, thus we have an isomorphism Cl(X) ∼=
Pic(D). In particular, X is Q-factorial and since −(KX + D)|D = −KD

is ample, −(KX + D) is ample on X itself. By Lemma 2.3, X is globally
F -regular.
Let H be the ample generator of Cl(X), then OD(H) ∼= OD(1) and there

exists a positive integer d such that D ∼ dH. Consider the exact sequence

(3.2) H0(X,OX(H −D))→ H0(X,OX(H))

→ H0(D,OD(H))→ H1(X,OX(H −D))

Since X is globally F -regular and H − (KX + D) is ample, we have
H1(X,OX(H − D)) = 0 by Lemma 2.6. If d = 1, then H ∼ D is Cartier
and it follows from (3.2) that H is globally generated and h0(X,H) = n+1,
thus |H| induces a morphism X → Pn of degree (Hn) = (Hn−1 ·D) = 1,
which is an isomorphism X ∼= Pn. If d > 1, then H0(X,OX(H −D)) = 0
and by (3.2) we have h0(X,H) = n and is globally generated in a neigh-
bourhood of D. The global sections of OX(H) and the canonical section
of OX(D) ∼= OX(dH) then defines a morphism X → P(1n, d) of degree
(Hn−1 ·D) = 1, which is again an isomorphism X ∼= P(1n, d). By construc-
tion, D is identified with the hyperplane defined by the vanishing of the
last coordinate.
Next assume n = 2. By assumption (D2) > 0, thus by Lemma 3.4, X is

Q-factorial. As in the n > 3 case, we still have −(KX + D) is ample and
X is globally F -regular. If Cl(X)→ Pic(D) is surjective then as before we
have X ∼= P(1, 1, d) for some d > 0. If Cl(X) → Pic(D) is not surjective
then since (KX + D ·D) = −2 we see that the image is generated by the
restriction of H = −(KX + D). We also have D ∼Q dH for some d > 0.
We now divide into three cases according to the value of d.

If d = 1, then by the same argument as in the n > 3 case, |D| is base point
free and identifies X with a quadric in P3 (note that (D2) = 2d = 2 and
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h0(X,D) = 4) and D a hyperplane section. Since ρ(X) = 1, X is singular,
but then Cl(X)→ Pic(D) is surjective, contrary to our assumption.

If d = 2, then (H2) = 1
d (H ·D) = 1. As before, by (3.2) and the global F -

regularity of X we have H0(X,OX(H)) ∼= H0(D,OD(2)) and h0(X,H) =
3, hence for any x ∈ D, we may choose two different H1, H2 ∼ H passing
through x. Clearly both Hi are integral (otherwise Cl(X) → Pic(D) is
surjective). Since (H1 ·H2) = (H2) = 1, we see that H1 only intersects H2
at x. It follows that H is Cartier, base point free and defines a morphism
X → P2 of degree 1, which is an isomorphism that identifies D with a
smooth conic.
Finally if d > 3, we still have H0(X,OX(H)) ∼= H0(D,OD(2)). Let s0

be the canonical section of H0(X,OX(D)). Choose s1, s2 ∈ H0(X,OX(H))
whose restrictions on D induce a separable morphism D → P1 of degree 2.
Then we can define a separable double cover f : X → Y = P(1, 1, d)
sending x ∈ X to [s1(x) : s2(x) : s0(x)]. We have KX = f∗KY + R for
some divisor R supported in the branched locus of f . A direct calculation
yields R ∼Q H, thus f∗R ∼ f∗H ∼ 2L where L is the ample generator
of Cl(Y ) ∼= Z. But since d > 3, f∗R and thus R cannot be integral. It
follows that we have a decomposition H ∼Q R1 + R2 for some effective
nonzero Z-divisor R1, R2, but then (R1 ·D) + (R2 ·D) = (H ·D) = 2 and
Cl(X)→ Pic(D) is surjective. So this case cannot happen and the proof is
now complete. �

The following lemma is used in the above proof.

Lemma 3.4. — Let X be a normal projective surface. Suppose there
exists a smooth rational curve C contained in the smooth locus of X such
that (C2) > 0. Then X has rational singularities. In particular, X is Q-
factorial.

Proof. — After possibly blowing up points on C we reduce to the case
that (C2) = 0. Let X̃ → X be the minimal resolution of X and let C̃ also
denote its strict transform on X̃. Since C is a smooth rational curve we
have (KX̃ · C̃) = −2 by adjunction. By Riemann–Roch we have

χ(OX̃(mC̃)) = 1
2(mC̃ ·mC̃ −KX̃) + χ(OX̃) = m+ χ(OX̃)

On the other hand by Serre duality we have h2(X̃,mC̃) = h0(X̃,KX̃ −
mC̃) = 0 when m� 0. It follows that h0(X̃,mC̃) > 2 for sufficiently large
m. Hence there exists an effective divisor Γ ∼ mC̃ for some m > 0 such
that C̃ 6⊆ Supp(Γ). As (C̃ · Γ) = m(C2) = 0, we see that Γ is disjoint from
C̃, thus mC̃ is base point free. Since C̃ is the pullback of C, C is semiample
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and induces a morphism p : X → Y with connected fibers to a curve Y
such that the general fiber is isomorphic to C (if Γ ≡ mC is an irreducible
fiber in the smooth locus of X, then 2pa(Γ)−2 = (KX +Γ ·Γ) = −2m, thus
pa(Γ) = 0 and m = 1). By [10, Theorem 2 and Remark 3], X has rational
singularities and hence is Q-factorial by [29, Proposition 17.1]. �

We next turn to the case when the Picard number is at least two. In [31,
Lemma 12], this is done by running MMP, which is not yet available in
positive characteristic in general. Nevertheless, the following lemma, which
is later used to prove the base-point-freeness of certain line bundles, serves
as a substitute at least for the purpose of this section.

Lemma 3.5. — Let (Y,∆) be a strongly F -regular pair and D a nef
divisor such that D− (KY + ∆) is nef and big. Suppose that y ∈ Y is con-
tained in the stable base locus ofD, then there exists a positive dimensional
subvariety V ⊆ Y containing y such that D|V is numerically trivial.

Proof. — This is indeed a consequence of the arguments in [9, Section 3-
4]. Namely, if y ∈ Y is not contained in any positive dimensional subvariety
V ⊆ Y such that D|V is numerically trivial, then the same argument as
in [9, Theorem 3.7] creates a Q-divisor D(e) =

∑n
i=1 ti(e)Di and an isolated

non-F -pure centerW supported at y for which the proof of [9, Theorem 1.1]
can be used to show that y is not a base point of |mD| for m� 0. �

We now briefly explain the idea for classifying varieties X containing a
divisor D ∼= Pn−1 such that ρ(X) > 2 and −(KX +D) is ample. Instead of
running the MMP, we consider divisors of the form Lλ = −(KX +λD) and
hope that for some λ, the corresponding divisor Lλ defines the contraction
of the extremal ray we want. A natural idea is to take the largest λ such
that Lλ is nef. To make the argument work, we need to show that λ ∈ Q
and that Lλ is semiample. Once this is done, it is quite straightforward to
finish the classification.
For the next couple lemmas, we introduce the following notations. Let

D be a prime divisor on X, we define

ρ(X,D) := rank Im(Pic(X)→ Pic(D))

If in addition D is Cartier and L is an ample line bundle on X, we define

ε(L,D) = sup{t |L− tD is ample}

and let s(L,D) be the largest integer s > 0 such that (L − sD)|D is base
point free and H0(X,L − sD) → H0(D,L − sD|D) is surjective. By con-
vention, we set s(L,D) = −1 if such integer s doesn’t exists.
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Lemma 3.6. — Let L be an ample line bundle on X and D a prime
Cartier divisor. Then for all m > 1 we have

s(mL,D)
m

6 ε(L,D) = lim
m→∞

s(mL,D)
m

Proof. — The proof is similar to that of the analogous statement for
Seshadri constants (where D is the exceptional divisor of a blow up). We
first prove the inequality s(mL,D)

m 6 ε(L,D). Let s = s(mL,D), it suffices
to show that mL − sD is nef. Suppose it is not, then there exists a curve
C ⊆ X such that (mL− sD ·C) < 0. Since L is ample, we have (D ·C) > 0
and therefore, C intersects D. Choose x ∈ C ∩ D. By the definition of
s(L,D), there exists a section u ∈ H0(X,mL − sD) that does not vanish
at x. But this implies (mL− sD · C) > 0, a contradiction.

Now let λ be any rational number such that λ < ε(L,D). We will show
s(mL,D) > bλmc for m� 0, thus proving the equality part of the lemma.
To this end fix m� 0 and let s = bλmc. By Lemma 3.7, mL− sD is very
ample and H1(X,mL−(s+1)D) = 0. Therefore, (mL−sD)|D is base point
free and by the long exact sequence of cohomology, H0(X,mL − sD) →
H0(D, (mL − sD)|D) is surjective. Thus s(mL,D) > bλmc and we are
done. �

Recall the following Fujita-type result that is used in the above proof (it
will also be used later).

Lemma 3.7. — Let L be an ample line bundle on X and let D be a
Cartier divisor. Let λ > 0 be such that L − λD is still ample and let
m, s > 0 be integers such that s 6 λm. Let F be a coherent sheaf on X.
Then for m� 0, mL− sD is very ample and H1(X,F(mL− sD)) = 0.

Proof. — We may assume λ ∈ Q (otherwise enlarge λ slightly). Choose
sufficiently large and divisible N such tha H1 = NL and H2 = N(L−λD)
are both very ample. Then since λ is rational, there exists finitely many
line bundles Li such that mL − sD = Li + a1H1 + a2H2 for some i and
some integers a1, a2 > 0. As m � 0 we have max{a1, a2} � 0, thus the
lemma follows from [14, Theorem 2 and Corollary 3]. �

Lemma 3.8. — Let (X,∆) be a globally F -regular pair and D a prime
Cartier divisor on X such that L = −(KX + ∆ + D) is ample. Let λ =
ε(L,D). Assume either ρ(X,D) = 1 or (L − λD)|D is ample. Then λ ∈ Q
and L− λD is semiample.

Proof. — We first prove λ ∈ Q. Suppose this is not the case. If ρ(X,D) =
1, then as λ 6∈ Q, (L−λD)|D is nef but not numerically trivial, so we reduce
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to the case when (L−λD)|D is ample. Choose µ > λ such that (L−µD)|D
is still ample. We claim that s(mL,D) > bλ(m+ 1)c for sufficiently large
and divisible m. To see this, let m be fixed and let s = bλ(m+ 1)c, then as
m� 0 we have s < µm and thus by Lemma 3.7, (mL−sD)|D is very ample.
Moreover, since λ 6∈ Q, we have s < λ(m+1), hence mL−(s+1)D−(KX+
∆) ∼ (m+ 1)L− sD is ample and as X is globally F -regular, H1(X,mL−
(s+1)D) = 0 by Lemma 2.6, thusH0(X,mL−sD)→ H0(D, (mL−sD)|D)
is onto. So s(mL,D) > s = bλ(m+ 1)c, proving the claim. On the other
hand, by Lemma 3.6 we have bλ(m+ 1)c 6 s(mL,D) 6 λm (for sufficiently
divisible m). As λ > 0 and λ 6∈ Q, this is a contradiction.

Thus we have λ ∈ Q. Let M = L − λD. Under either assumption of
the lemma, mM |D is base point free for sufficiently divisible m. We also
have H1(X,mM −D) = 0 since X is globally F -regular and mM −D −
(KX + ∆) = mM + L is ample, hence H0(X,mM) → H0(D,mM |D) is
onto and the stable base locus B = Bs(M) of M is disjoint from D. On
the other hand, by Lemma 3.5, for any x ∈ B, there exists a positive
dimensional subvariety C ⊆ X containing x such that M |C is numerically
trivial. By taking hyperplane sections we may assume that C is a curve.
Clearly C intersects D, for otherwiseM |C = L|C is ample. Since x ∈ B and
(M ·C) = 0, we have C ⊆ B, but then B∩D contains C∩D and in particular
is nonempty, a contradiction. Thus B = ∅ and M is semiample. �

The next two lemmas are natural generalizations of [31, Lemmas 4 and 7]
to pairs. We omit the proofs since the argument in [31] works verbatim here.

Lemma 3.9. — Let π : S → T be a proper birational morphism between
normal surfaces and ∆ an effective divisor on S. Let C ⊂ S be a KS-
negative π-exceptional curve such that C 6⊆ Supp(∆). Then (−(KS + ∆) ·
C) 6 1, with equality if and only if C is disjoint from ∆ and S has only
Du Val singularities along C.

Lemma 3.10. — Let g : Y → Z be a proper birational morphism
between normal varieties and ∆ an effective divisor on Y . Let D be a
smooth g-ample Cartier divisor on Y such that −(KY + ∆ + λD) is g-
nef for some λ > 1. Assume that Y is Cohen–Macaulay, D ∩ ∆ = ∅ and
g|D : D → G = g(D) is an isomorphism, then λ = 1, Ex(g) is disjoint from
∆ and Z is smooth along G.

We are ready to finish the second part of the classification of varieties
containing the projective space as a smooth divisor.
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Lemma 3.11. — Let (X,∆) be a pair and D ∼= Pn−1 a prime divisor
contained in the smooth locus of X such that L = −(KX + ∆ + D) is
ample. Assume that ρ(X) > 2 and ∆ ∩D = ∅. Then X is isomorphic to a
P1-bundle P(O ⊕O(−d)) over Pn−1 for some d ∈ Z>0 and D is a section.

Proof. — By Lemma 2.3 and our assumption, (X,∆) is globally F -
regular. Since ρ(X) > 2, we may an ample divisor H and 0 < t � 1 such
that (X,∆1 = ∆ + tH) is still globally F -regular, L1 = −(KX + ∆1 +D)
is ample and that L1 and D are linearly independent in Pic(X)Q. Let
λ = ε(L1, D). Clearly λ > 0. As D ∼= Pn−1, we have ρ(X,D) = ρ(D) = 1.
Thus by Lemma 3.8, λ ∈ Q and M = L1 − λD is semiample. Since M 6= 0
in Pic(X)Q, it induces a morphism (with connected fibers) g : X → Y

such that dimY > 1 and M = g∗H for some ample divisor H on Y . We
claim that M |D is ample. Indeed, if (L1 − λD)|D = M |D ∼Q 0, then as
L1 is ample, D|D is ample as well. Let S be a surface in X given by a
complete intersection of general hyperplanes, then we have (D|2S) > 0 and
(D|S ·M |S) = 0, but then by Hodge index theorem, (M |2S) < 0 (M |S is not
numerically trivial since M is not), contradicting the fact that M is nef.
Hence M |D is ample and by the same argument as in Lemma 3.8, we know
that H0(X,mM) → H0(D,mM |D) is onto, therefore g|D is a closed em-
bedding. Since (X,∆) is globally F -regular, X is Cohen–Macaulay by [44,
Theorem 1.18]. We also have −(KX + ∆ + (λ + 1)D) ∼Q M + tH which
is g-ample. By Lemma 3.10, g cannot be birational, hence induces an iso-
morphism Pn−1 = D ∼= Y . If C is a scheme theoretic fiber of g, then C

has dimension one since dim(C ∩D) = 0. Since g|D is an isomorphism and
every component of C intersects D, the curve C is irreducible and reduced.
Let IC be the ideal sheaf of C. Consider the exact sequence

· · · → R1g∗OX → H1(C,OC)→ R2g∗IC → · · ·

Since g has fiber dimension at most one we have R2g∗IC = 0 and as X
is globally F -regular we also have R1g∗OX = 0, thus H1(C,OC) = 0 and
since C is integral this implies C ∼= P1. It follows that g : X → Y is
a P1-fibration with a section D. Thus X ∼= PY (OY ⊕ OY (−d)) for some
d > 0. �

3.2. Conic bundles

In this subsection we study conic bundles in positive characteristic. Later
we will apply these results to classify varieties X with ε(−KX) = n and
((−KX)n) = nn.
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Definition 3.12. — Let f : X → Y be a proper morphism between
normal quasi-projective varieties. If the general fiber of f is a plane conic (so
is either a P1 or a double line in characteristic 2), we call f a rational conic
bundle. If X is Cohen–Macaulay, every fiber of f has pure dimension 1,
f∗OX = OY , and there exists a Cartier divisor D on X such that −KX ≡f
D is f -ample, then we call f a Gorenstein conic bundle.

Lemma 3.13. — Let C be a locally complete intersection (l.c.i.) curve
over k. Assume that ω−1

C is ample. Then the following are equivalent:

(1) h0(C,OC) = 1;
(2) degωC = −2 and every irreducible component of Cred is isomorphic

to P1;
(3) C is a plane conic.

Proof. — We will show (1) ⇒ (2) ⇒ (3) ⇒ (1). By Riemann–Roch and
Serre duality (see [30] for Riemann–Roch formula on singular curves) we
have χ(OC) = −χ(ωC) = −degωC − χ(OC), hence −degωC = 2χ(OC).
On the other hand, since ω−1

C is ample, −degωC > 0, thus if (1) holds we
have 0 < χ(OC) = 1−h1(C,OC) 6 1, hence χ(OC) = 1, h1(C,OC) = 0 and
degωC = −2. Moreover, as dimC = 1 the map H1(C,OC)→ H1(Ci,OCi

)
is surjective for every component Ci of Cred, which implies (2).
Write [C] =

∑
ai[Ci] as a 1-cycle where the Ci’s are irreducible

components of C, then degωC =
∑
ai deg(ωC |Ci

). Since ω−1
C is ample,

deg(ωC |Ci) < 0. Hence if (2) holds we have either C is reduced with at
most two components or [C] = 2[C1]. If C is reduced, the same Riemann–
Roch calculation as above yields h1(C,OC) = 0, hence either C ∼= P1 or C
is the union C1 ∪ C2 of two P1. In the latter case, by the exact sequence
0 → OC → OC1 ⊕ OC2 → OC1∩C2 → 0 we have h0(OC1∩C2) = 1 hence
C1 ∩ C2 (scheme-theoretic intersection) consists of only one point and C

is a reducible conic. If [C] = 2[C1], let I be the ideal sheaf of C1, then
I2 = 0 and we have an exact sequence 0 → I ⊗ ωC → ωC → ωC |C1 → 0.
As degωC = −2 and C1 ∼= P1, we get deg(ωC |C1) = −1 and χ(ωC |C1) = 0.
On the other hand, by Riemann–Roch we have χ(ωC) = 1

2 degωC = −1,
hence χ(I⊗ωC) = −1 and deg I = −1. It follows that C is an infinitesimal
extension (see [21, II, Ex. 8.7]) of C1 by OC1(−1), which is classified by
H1(C1, TC1(−1)) = 0 by [21, III, Ex. 4.10]. Since one such extension is
given by the planar double line, it is isomorphic to C and in particular C
is a plane conic. This proves (3). Finally it is clear that (3) implies (1). �
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Lemma 3.14. — Let f : X → Y be a Gorenstein conic bundle. Assume
that Y is smooth and X is smooth at the generic points of every fiber of
f , then f is a conic bundle.

Proof. — By dimension reason the singular locus of X cannot dominate
Y , hence the general fiber C of f is l.c.i and ω−1

C is ample by adjunction.
Since f∗OX = OY , f has connected fibers and we have h0(C,OC) = 1, thus
C is a plane conic by Lemma 3.13. Fix an arbitrary closed point y ∈ Y . By
assumption, X is smooth along the generic points of Cy := f−1(y), and f
is flat by [21, III, Ex. 10.9]. Since (D · C) = (−KX · C) = 2 (where D is
the Cartier divisor on X such that −KX ≡f D in the definition of Goren-
stein conic bundles), Cy has at most 2 irreducible components (counting
multiplicities). In particular, at a general point x of every component of Cy
we have dimk mCy,x/m

2
Cy,x

6 2 and the image of mY,y/m2
Y,y → mX,x/m

2
X,x

has dimension at least n − 2 (where n = dimX). It follows that for a
general curve B ⊆ Y passing through y, the scheme-theoretic preimage
S = f−1(B) is smooth at the generic points of Cy. Hence S is generically
reduced; it is also S2 since X is Cohen–Macaulay. Therefore S is reduced.
We divide into cases to show that Cy is a plane conic. If the general

fiber C is reduced, then it is a smooth rational curve, hence S is smooth in
codimension one (as it is smooth both outside Cy by Bertini’s theorem and
also at the generic points of Cy) and thus normal. By adjunction S → B is
also a Gorenstein conic bundle, so by [31, Lemma 15] (whose proof works
in any characteristic), Cy = f |−1

S (y) is a plane conic. If C is a double
line (which only happens in characteristic 2), then we have Cy = 2C1 as
a 1-cycle. Let S → S be the normalization of S, ∆ ⊆ S the conductor
and g : S → B the Stein factorization of S → B. Let C1 be the strict
transform of C1. Then the general fiber of g is a smooth rational curve,
therefore B → B is purely inseparable of degree 2 and indeed every fiber of
g is irreducible and reduced. By [25, II.2.8], g is a P1-bundle. It follows that
2 = (−KS̄ ·C1) = (−KS ·C1)+(∆·C1), but since (−KS ·C1) = (D ·C1) = 1,
we get (∆ · C1) = 1. Hence the conductor intersects C1 transversally at a
single point and C1 → C1 is an isomorphism. In particular, C1 ∼= P1. Note
that χ(OCy

(−D)) = χ(OC(−D)) = −1, by the exact sequence

0→ IC1(−D)→ OCy (−D)→ OC1(−1)→ 0

and the similar proof of (2)⇒ (3) in Lemma 3.13 we see that Cy is a planar
double line.
We therefore conclude that in all cases Cy is a plane conic. As Cy is

cut out by hypersurfaces, X has only hypersurface singularities and in
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particular is Gorenstein. The lemma now follows from standard argument
(i.e. E = f∗ω

−1
X is a vector bundle of rank 3 on Y and X embeds into P(E),

see e.g. [38]). �

The following corollary is well-known in characteristic zero by the work
of [1].

Corollary 3.15. — Let f : X → Y be a proper morphism. Assume
that every fiber of f has dimension 1, −KX is f -ample and f∗OX = OY .
Then f is a rational conic bundle. If in addition X and Y are both smooth,
then f is a conic bundle.

Proof. — This is an immediate consequence of the above lemma. �

The next lemma is essentially [31, Lemma 17], with strong F -regularity
in place of klt singularity.

Lemma 3.16. — Let f : X → Y be a Gorenstein conic bundle and
φ : Ỹ → Y a finite separable morphism. Let X̃ be the normalization of
X×Y Ỹ . Assume that X is smooth at the generic points of every fiber of f
and strongly F -regular at all points, and the branch divisor of φ is disjoint
from the singular locus of Ỹ and Y . Then f̃ : X̃ → Ỹ is also a Gorenstein
conic bundle.

Proof. — By shrinking Y we may assume either φ is étale in codimen-
sion one or both Y and Ỹ are smooth. In the first case X̃ is also strongly
F -regular by [45, Theorem 2.7] hence is Cohen–Macaulay by [44, Theo-
rem 1.18], and the other properties of Gorenstein conic bundles are pre-
served by a finite base change that is étale in codimension one. In the second
case f is a conic bundle by Lemma 3.14, hence the same holds for f̃ . �

3.3. Proof of Theorem 1.3, 1.5 and 1.6

Before proving these theorems, we make a few reductions and fix the
following notations. After a base change, we first assume that the base field
k is uncountable. Since the Seshadri constant of a line bundle L attains its
maximum at a very general point of X, we may also assume that x 6∈
Supp(∆). Let σ : Y → X be the blow up of X at x and let E be the
exceptional divisor. Let ∆ also denote its strict transform on Y .

Proof of Theorem 1.3(1). — As ε(L, x) > n, −(KY +∆+E) = σ∗L−nE
is ample. Clearly ρ(Y ) > 2 and ∆ ∩ E = ∅, thus by Lemma 3.11, Y is
isomorphic to a P1-bundle P(O⊕O(−d)) over Pn−1 for some d ∈ Z>0 and
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E is a section. But since NE/Y ∼= OE(−1), we have d = 1 and E is the
unique negative section. It follows that Y is the blowup of Pn at a point
and therefore X ∼= Pn. �

Proof of Theorem 1.5 when (Ln) > nn. — By assumption, D = −(KY +
∆ + E) = σ∗L − nE is nef and big and (Y,∆) is globally F -regular by
Corollary 2.4. We claim that D is semiample. Note that mD−E − (KY +
∆) = (m+ 1)D is nef and big, so by Lemma 2.6, H1(Y,OY (mD−E)) = 0
for all m > 0 and

(3.3) H0(Y,OY (mD))→ H0(E,OE(mD))

is surjective, hence E is disjoint from the stable base locus Bs(D) of D.
Now if y ∈ Bs(D), then by Lemma 3.5 there exists a curve C containing y
such that (D ·C) = 0, but then C ⊆ Bs(D) and since −(KY + ∆) is ample,
we have (E · C) > 0 and in particular E ∩ Bs(D) 6= ∅, a contradiction.
Hence Bs(D) = ∅.

Therefore,D is semiample and induces a birational morphism g : Y → Z.
Clearly ∆∩E = ∅. SinceD is not ample (otherwise ε(L, x) > n), g is not the
identity morphism. By the surjectivity of (3.3), g|E is a closed embedding
as D|E is ample. Note that −(KY + ∆ + E) ∼g.Q. 0, so by Lemma 3.10, g
is an isomorphism around ∆ and Z is smooth along G = g(E) ∼= Pn−1. It
follows that ∆ is also disjoint from G (here we identify ∆ with its image
in Z). By the construction of g, −(KZ + ∆ +G) is ample. By Lemmas 3.3
and 3.11, one of the following holds:

(1) Z ∼= P(1n, d) for some d ∈ Z>0 and G is the hyperplane defined by
the vanishing of the last coordinate;

(2) Z is isomorphic to a P1-bundle P(O ⊕O(−d)) over Pn−1 for some
d ∈ Z>0 and G is a section; or

(3) n = 2, Z ∼= P2 and G is a smooth conic.

We now show that Y is the blowup of Z along a hypersurface in G ∼=
Pn−1. This essentially follows from the argument of [31, Lemma 11], once
we have the vanishing

(3.4) R1g∗OY (−mW ) = 0

for all m > 0, where W = g∗G − E. But since −mW − (KY + ∆) ∼g.Q
(m + 1)E is g-ample, (3.4) follows from Corollary 2.7 and the global F -
regularity of (Y,∆). We also notice that G is nef by [31, Lemma 10]. We
can therefore apply the same argument of [31, Lemma 13] to conclude the
proof. �
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Proof of Theorems 1.5 and 1.6. — The proof of both theorems is in-
tertwined and a bit lengthy, so we divide it into several steps. Let D =
σ∗L − nE = −(KY + ∆ + E). Since the case (Dn) = (Ln) − nn > 0 of
Theorem 1.5 is already treated, we may assume (Dn) = 0.
Step 1: D is semiample. — By assumption −(KY + ∆) is ample, D is

nef and (Dn) = 0, hence by Riemann–Roch we have

h0(Y,mD) > h0(Y,mL)− h0(E,OmnE)

= (Dn)
n! mn + (−KY ·Dn−1)

2(n− 1)! mn−1 +O(mn−2)

= nn−1

2(n− 1)!m
n−1 +O(mn−2)

It follows that ν(Y,D) = κ(Y,D) = n−1 where ν(Y,D) = max{d |Dd 6≡
0} is the numerical dimension of D. By [23, Proposition 2.1], there exists
a diagram of normal varieties (the characteristic zero assumption in [23] is
only used to make the varieties in the diagram smooth)

Y0
µ
//

f

��

Y

Z0

and a nef and big divisor D0 on Z0 such that µ is birational, f is equi-
dimensional and µ∗D = f∗D0. It follows that for every closed point y ∈ Y
there exists a curve Cy ⊆ Y (coming from a fiber of f that intersects
µ−1(y)) such that (D · Cy) = 0 and Cy is unique if y is general. Since
κ(Y,D) = n− 1, for sufficiently divisible m the linear system |mD| gives a
rational map g : Y 99K Z with dimZ = n− 1. As (D ·Cy) = 0, g is defined
along Cy if y 6∈ Bs(D), hence Cy is the (at least set-theoretic) general fiber
of g and we get a proper morphism g1 : Y1 → Z1 with g1∗OY1 = OZ1

by shrinking Z and taking Stein factorization. Let Z1 99K Chow(Y ) be
the rational map induced by g1 (see [25, I.3-4] for the definition and basic
properties of Chow varieties) and let Z ′ be the normalization of the closure
of the image of Z1 in Chow(Y ). By Corollary 3.15, the general fiber Lz of
g1 is a plane conic.
Assume for the moment that Lz is a smooth conic (this is automatically

satisfied when p = char(k) 6= 2 or (∆ ·Cy) > 0: in the latter case, (D ·Cy) <
(−KY − E · Cy) 6 0 if Lz is nonreduced). In particular, g1 has reduced
general fiber and we get a universal family q : U → Z ′. Let u : U → Y be
the cycle map. We claim that u is an isomorphism.
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To this end let C ⊆ U be a curve that is contracted by u. Since u is
injective on every fiber of q, q(C) is not a point. Let S be the irreducible
component of q−1(q(C)) that contains C. By construction (u∗D · C) =
(u∗D ·F ) = 0 where F is any component in a fiber of q, thus by [3, Propo-
sition 2.5], u∗D|S is numerically trivial. Let T = u(S), then T is a surface
in Y such that D|T ≡ 0. As D = −KY −∆−E and −(KY + ∆) is ample,
T must intersect E and dim(T ∩ E) > 1, but then since D|E ∼ −nE|E
is ample, D|T∩E cannot be numerically trivial, a contradiction. Hence u is
quasi-finite and is indeed an isomorphism since it is also birational and Y
is normal.
Thus we get a rational conic bundle Y ∼= U → Z ′ with general fiber Cy.

As (D ·Cy) = 0, any G ∈ |mD| can not dominate Z ′, thus as every fiber of
q has pure dimension 1, G is in fact the pullback of an effective divisor on
Z ′. On the other hand by [27, Lemma 5.16] applied to the finite morphism
E ∼= Pn−1 → Z ′, we see that Z ′ is Q-factorial of Picard number one. Hence
D is semiample if Lz is reduced.

Step 2: Proof of Theorem 1.5 when ∆ 6= 0. — We claim that ∆ is Q-
Cartier. Using the notation and construction in Step 1, there are three cases
to consider.
Suppose first that (∆ ·Cy) > 0. Then |mD|(m� 0) defines a morphism

g : Y → Z by Step 1. Moreover (E · Cy) = (−(KY + ∆) · Cy) < 2, thus
(E · Cy) = 1 and E → Z is an isomorphism. Since E intersects every
component in the fiber of g (for otherwise this component would have zero
intersection number with the ample divisor −(KY + ∆)), we see that every
fiber of g is generically irreducible and reduced. By [31, Lemma 6], there
exists a codimension > 2 subsetW ⊆ Z such that Y \g−1(W ) is isomorphic
to a P1-bundle over Z\W . It follows that the class group of Y is generated
by E and g∗ Pic(Z) and in particular Y is Q-factorial. Thus ∆ is Q-Cartier
in this case.
Assume next that (∆·Cy) = 0 and Lz is a smooth conic. Again we have a

rational conic bundle g : Y → Z defined by |mD|(m� 0). Since (∆ ·Cy) =
0, ∆Z = g(∆) is a divisor in Z. As (E ·Cy) = (−(KY + ∆) ·Cy) = 2, every
fiber of g has at most 2 components (counting multiplicity), thus by the
same proof of [31, Lemma 16], g−1(u) is a plane conic where u is a generic
point of ∆Z . We claim that ∆ is proportional to g∗∆Z over u. Suppose not,
then g−1(u) is not irreducible and there exists a component F of g−1(u)
such that (∆ · F ) > 0. But we also have (−KY · F ) = 1 6 (E · F ), hence
(D · F ) = (−(KY + ∆ + E) · F ) < 0, a contradiction. Therefore, we can
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find a Q-divisor ∆1 supported on ∆Z such that ∆ = g∗∆1. Recall that Z
is Q-factorial, thus ∆ is also Q-Cartier in this case.
Finally suppose that (∆ · Cy) = 0 and Lz is a nonreduced conic. In

particular p = 2. Taking the base change of g1 : Y1 → Z1 by E1 → Z1
(where E1 is the preimage of Z1 in E), we get a family h1 : U1 → E1
of reduced curves in Y with general member Cy. As in Step 1 we may
extend h1 to a universal family h : U → V (where V is the closure of the
image of E1 in Chow(Y )) and the same argument there implies that the
cycle map u : U → Y is quasi-finite, thus is an inseparable double cover.
It follows that the Frobenius map of Y factors through u, hence u−1(E)
is Q-factorial and ∆ is Q-Cartier if and only if u∗∆ is Q-Cartier. But as
(E ·Cy) = (−KY ·Cy) = 1, every fiber of h is generically integral, thus u∗∆
is the pullback of a divisor from V . Since V is dominated by u−1(E), it is
Q-factorial by [27, Lemma 5.16]. Hence ∆ is Q-Cartier in this last case.
Now that ∆ 6= 0 is Q-Cartier, we may replace (X,∆) by (X, (1 − c)∆)

for 0 < c � 1 and reduce to the case (Ln) > nn using [15, Theorem B].
This finishes the proof of Theorem 1.5.
In the remaining part of the proof, we assume that ∆ = 0 and p > 2.

By Step 1, this implies that D is semiample and induces a morphism g :
Y → Z. We have −KY ∼g.Q. E, thus g is a Gorenstein conic bundle if Y is
Cohen–Macaulay. As Y is smooth along E and E is g-ample, Y is smooth
at the generic points of every fiber of g.
Step 3: Surface case. — If Y is a surface, then by [31, Lemma 15],

Y has only Du Val singularity. It follows that X is a Gorenstein log del
Pezzo surface of degree (K2

X) = 4. Hence from now on, we assume that
n = dimX > 3.

Step 4: Y is globally F -regular. — It is clear that E is a double section
of g. We may assume that E → Z is ramified (the quasi-étale case is
similar and even simpler), then Z ∼= P(1n−1, 2), g|E is ramified along the
hyperplane M ⊆ Z defined by the vanishing of the last coordinate and
KE = g∗(KZ + 1

2M). Since the general fiber of g is a smooth rational
curve, we can choose an ample Cartier divisor H on Z such that Y \g−1H

is smooth and globally F -regular. We then have a similar diagram as in the
proof of Lemma 2.3:

F e∗OX((1− pe)(KX + E)− g∗H)
j
//

Tre
X

��

F e∗OE((1− pe)KE − g|∗EH)

Tre
E

��

OX // OE
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Although H0(j) is not surjective, its image contains g∗H0(Z, (1−pe)(KZ+
1
2M)−H) for e� 0, hence by the same argument in Lemma 2.3, it suffices
to show that H0(TreZ) is surjective for e � 0 where TreZ : F e∗OZ((1 −
pe)(KZ + 1

2M)−H)→ OZ is the trace map. But it is clear that the toric
pair (Z, 1

2M) is globally F -regular, so we are done.
Step 5: Analysis of the Gorenstein conic bundles. — Since Y is glob-

ally F -regular, it is Cohen–Macaulay by [44, Theorem 1.18], thus g is a
Gorenstein conic bundle and is indeed a conic bundle over the smooth lo-
cus of Z by Lemma 3.14. Let W be the normalization of Y ×Z E, then
since E ∼= Pn−1 → Z is quasi-étale unless Z ∼= P(1n−1, 2) in which case the
branch divisor G is disjoint from Sing(Z), W → E ∼= Pn−1 is a also Goren-
stein conic bundle by Lemma 3.16, and is indeed a conic bundle away from
the preimage of Sing(Z). Away from the branch divisor G, the map E → Z

is quasi-étale and hence the preimage of E in W splits into two disjoint
components that remain Cartier and smooth. It follows that W is smooth
along the preimage of E (in particular, W is smooth at generic points of
every fiber of g outside G) and therefore by Lemma 3.14, g is a conic bun-
dle away from G. Hence g is a conic bundle everywhere. The theorem now
follows from the same calculation as in the proof of [31, Lemma 19]. �

Proof of Theorem 1.3(2). — The surface case is just [19, Example 5.5]
while the higher dimensional case follows from Corollary 2.4 and Step 4 of
the previous proof. �

4. Weak boundedness

We now turn to the proof of Theorem 1.9. Recall that by Lemma 2.17,
we may assume that the variety X admits a Mori fiber space structure.

4.1. Fiber type case

We first look at the case when the Mori fiber space f : X → Y is of fiber
type, which will be assumed for all Mori fiber spaces is this subsection.
Consider the following assumptions on a variety X of dimension n:

Assumption 4.1. — There exists a constant A = A(n, ε) > 0 that only
depends on n and ε such that every KX -positive extremal ray of X is
generated by a curve C with (KX · C) < A.

Assumption 4.2. — εm(−KX) > n− 1 + ε.
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Our plan in this section is to show that the set of Mori fiber spaces
f : X → Y that satisfy these two assumptions is weakly bounded. Using
suitable cone theorem for threefold pairs in positive characteristics, we find
that Assumption 4.1 is implied by Assumption 4.2 in dimension 3, thus
proving Theorem 1.9 in the case of Mori fiber spaces.

We first deduce some direct consequences of the Assumptions 4.1 and 4.2.

Lemma 4.3. — Let f : X → Y be a Mori fiber space such that X satis-
fies Assumption 4.2, then the general fiber F of f is reduced and isomorphic
to Pn−1, dimY = 1 and ρ(X) = 2.

Proof. — Let F̃ be the normalization of the reduced subscheme of F .
By [37, Theorem 1.1], there exists an effective Weil divisor D on F̃ such
that K

F̃
+ D ∼ KX |F̃ . Since f : X → Y is a Mori fiber space, −KX |F̃

is ample, hence by Assumption 4.2 and Lemma 2.12, we have ε(−K
F̃
−

D) > εm(−KX) > n − 1 > dim F̃ . By Theorem 1.3, this implies that
F̃ ∼= Pn−1, dimY = 1 and D = 0 (note that components of D have integral
coefficients). But then by [2, Theorem 7.1, Lemma 7.2], F itself is reduced
and we also have (KX+F )|

F̃
= K

F̃
. Since F̃ is smooth, F is normal by [11,

Theorem A], thus F ∼= F̃ ∼= Pn−1. Finally, since f is a Mori fiber space, we
get ρ(X) = ρ(X/Y ) + ρ(Y ) = 2. �

Lemma 4.4. — Let f : X → Y be a Mori fiber space with general
fiber F . Assume that X satisfies Assumption 4.2, then there exists D ∼Q
− 1

1−εKX such that (X,D) is strongly F -regular along F .

Proof. — This follows from Lemma 2.9 and the same proof of [46, Corol-
lary 5.2]. �

Lemma 4.5. — Let f : X → Y be a Mori fiber space with general fiber
F . Assume thatX satisfies both Assumptions 4.1 and 4.2. Then −KX+AF
is ample.

Proof. — We may assume that −KX is not nef. By Lemma 4.3, F is
smooth divisor in X, Y is a curve and ρ(X) = 2. It follows that the Mori
cone NE(X) is 2-dimensional, hence by Assumption 4.1, it is generated by
a curve C that dominates Y with 0 < (KX · C) < A and a line l in F . Let
L = −KX+AF , then since F is Cartier we have (L·C) > (−KX ·C)+A > 0
and it is clear that (L · l) > 0. Hence L lies in the interior of the nef cone
and is therefore ample. �

We will also need the following result:
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Lemma 4.6. — Let φ : X → Y be a projective morphism onto a curve
Y with general fiber F . Let L be a Q-Cartier big divisor on X and let
λ < volX(L)

n·volF (L|F ) be a rational number where n = dimX, then L − λF is
Q-effective.

Proof. — Let m be a sufficiently divisible positive integer and let k =
mλ. We may assume λ > 0 and k ∈ Z. By the exact sequence

0→ OX(mL− lF )→ OX(mL− (l − 1)F )→ OF (mL)→ 0

for l = 1, . . . , k we get

h0(X,OX(mL− kF )) > h0(X,OX(mL))− k · h0(F,OF (mL))

=
(

volX(L)
n! − λvolF (L|F )

(n− 1)!

)
·mn +O(mn−1) > 0,

where the middle equality is the asymptotic Riemann–Roch formula and
the last inequality follows from the assumption on λ. Since mL − kF =
m(L− λF ), the lemma follows. �

Remark 4.7. — When F is normal, the above lemma also holds even if
L is not Q-Cartier since in this case the restriction L|F is well defined (it is
determined by the restriction of L to the smooth locus of F ). Also note that
if in addition L has integral coefficients, then in the above argument m can
be taken as any sufficiently large integer such that mλ ∈ Z. Therefore, if
the denominator of λ is not divisible by p, then we can choose ∆ ∼Q L−λF
such thatm∆ has integral coefficient for some integerm that is not divisible
by p.

Recall that in characteristic zero, the weak boundedness of varieties with
large moving Seshadri constants [46] is proved using the connectedness
lemma of Kollár–Shokurov, which is not yet available in positive charac-
teristic. The following weaker version, however, suffices for the purpose of
this section.

Lemma 4.8. — Let (X,D) be a pair such that X is projective and
−(KX +D) is ample, then (X,D) has at most one good F -pure center.

Let us elaborate the meaning of good F -pure center here. Let (X,D) be
a pair and Y ⊆ X a normal subvariety such that the following conditions
hold in a neighbourhood of Y (we refer to [39] for the definition of center
of F -purity):

(1) The Cartier index of KX +D is not divisible by p;
(2) (X,D) is sharply F -pure along Y and Y is a center of sharp F -

purity for (X,D).
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Then by the main theorem of [39], there exists a canonically determined
effective divisor DY such that (KX + D)|Y ∼Q KY + DY . We say that Y
is a good F -pure center of (X,D) if (Y,DY ) is globally F -regular.
Proof. — Suppose there are two distinct good F -pure centers W1, W2 of

the pair (X,D) and we will derive a contradiction. By the main theorem
of [39], both Wi are minimal among centers of sharp F -purity for (X,D),
hence by [40, Lemma 3.5],W1 is disjoint fromW2. LetW = W1∪W2 and let
e > 0 be a sufficiently divisible integer. We have the following commutative
diagram

F e∗OX((1− pe)(KX +D))
ψ
//

Tre
X

��

F e∗OW ((1− pe)(KW +DW ))

Tre
W

��

OX
φ

// OW .

Since the Wi’s are globally F -regular, H0(TreW ) is surjective. On the other
hand, the cokernel ofH0(ψ) lies inH1(X, IW ((1−pe)(KX+D)), which van-
ishes for e� 0 since −(KX+D) is ample. Hence φ◦TreX = TreW ◦ψ induces
a surjection on H0. In particular, the natural restriction H0(X,OX) →
H0(W,OW ) is surjective. But as W contains two connected components,
this is a contradiction. �

We now prove that the Assumptions 4.1 and 4.2 together imply weak
boundedness for Mori fiber spaces.

Theorem 4.9. — Given v, α > 0, there exists a constant M =
M(n,A, v, α) depending only on n, A, v and α such that if f : X → Y is a
Mori fiber space such that X satisfies Assumption 4.1, Y is a curve and the
general fiber F is globally F -regular with vol(−KF ) < v and fpt(F ) > α,
then vol(−KX) < M .

Proof. — We may assume α < 1. Let 0 < λ < (nv)−1 vol(−KX), 0 < r <

α be rational numbers whose denominators are not divisible by p. Apply
Lemma 4.6 and its subsequent remark to L = −KX we see that there exists
an effective divisor ∆ ∼Q −KX−λF such that m∆ has integral coefficients
for some p - m. Let D = F1 + F2 + r∆ where F1 and F2 are two distinct
general fibers of f . We have −(KX + D) ∼Q −(1 − r)KX + (rλ − 2)F .
Suppose that rλ−2 > A(1−r) where A is the constant in Assumption 4.1,
then −(KX + D) is ample by Lemma 4.5. Perturbing r, we may assume
that (1− r)lKX is Cartier for some p - l. It follows that the Cartier index
of KX + D is not divisible by p. On the other hand, as (KX + D)|Fi

∼
KFi +DFi where DFi ∼Q −rKFi and r < fpt(F ), we see that (Fi, DFi) is
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globally F -regular. By [11, Theorem A], (X,D) is purely F -regular along
Fi and it follows that both Fi are good F -pure centers for (X,D), which
contradicts Lemma 4.8. Hence we always have rλ − 2 < A(1 − r) and
since λ (resp. r) can be arbitrarily close to (nv)−1 vol(−KX) (resp. α), it
follows immediately that vol(−KX) is bounded from above by a constant
M(n,A, v, α) depending only on n, A, v and α. �

Corollary 4.10. — There exists a constant M = M(n, ε) depending
only on n and ε such that if f : X → Y is a Mori fiber space such that X
satisfies Assumptions 4.1 and 4.2, then vol(−KX) < M .

Proof. — Let F be the general fiber of f . By Lemma 4.3, F ∼= Pn−1 and
Y is a curve. By Corollary 2.10, the existence of M follows from Theo-
rem 4.9 by taking any v > nn−1 and α < 1. �

In the remaining part of the section, we assume that p > 5. We proceed
to show that Assumption 4.2 implies Assumption 4.1 for Mori fiber spaces
in dimension at most 3.

Lemma 4.11. — Let (X,D) be a pair with dimX 6 3 andR a (KX +D)-
negative extremal ray. Assume that

(1) R is generated by a curve;
(2) Every curve generating R is not contained in the non-klt locus of

(X,D).
Then R is generated by a rational curve C such that 0 < −(KX +D ·C) 6
2 dimX.

Proof. — By [5, Theorem 1.2], log minimal model exists for klt pairs
in dimension 3 when p > 5. Therefore by standard argument as in [6,
Corollary 1.4.4], there exists a birational morphism π : X → Y , where Y
is Q-factorial, such that we can write KY + Γ1 + Γ2 = π∗(KX +D) where
(Y,Γ1) is klt, KY + Γ1 is π-nef and every component of Γ2 has coefficient
at least one. In particular, π(Supp(Γ2)) = Nklt(X,D).
Since π∗ : NE(Y ) → NE(X) is surjective and R is an extremal ray of

NE(X), π−1
∗ (R) is an extremal face of NE(Y ). By our first assumption,

there exists a curve C0 ⊆ X generating R. Take a curve C ′0 ⊆ Y such
that π(C ′0) = C0. Then (KY + Γ1 + Γ2) · C ′0 < 0. On the other hand,
C ′0 6⊆ Supp(Γ2) by assumption (2), hence Γ2 · C ′0 > 0 and we have (KY +
Γ1) · C ′0 < 0. This implies that π−1

∗ (R) ∩ NE(Y )(KY +Γ1)<0 6= {0}. Since
π−1
∗ (R) is an extremal face, there exists a (KY + Γ1)-negative extremal

ray R′ ⊆ π−1
∗ (R). Since KY + Γ1 is nef over X, π∗R′ 6= {0}, and hence

π∗R
′ = R. By [7, Theorem 1.1], R′ is generated by a rational curve C ′ such
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that 0 < −(KY + Γ1) ·C ′ 6 2 dimX. Hence R is generated by the rational
curve C = π(C ′). By assumption (2) again, we have C ′ 6⊆ Supp(Γ2) and
Γ2 · C ′ > 0, therefore −(KX +D) · C 6 −(KY + Γ1) · C ′ 6 2 dimX. �

Lemma 4.12. — Let f : X → Y be a Mori fiber space such that
dimX 6 3. Assume that X satisfies Assumption 4.2. Then X also sat-
isfies Assumption 4.1.

Proof. — By Lemma 4.3, ρ(X) = 2. Let l be the class of a line in the
general fiber F of f and let R be the other extremal ray of NE(X). By
Lemma 4.4, there existsD ∼Q − 1

1−εKX such that (X,D) is klt along F . We
may assume thatX is not weak Fano, otherwise there is nothing to verify. In
particular, (−KX ·l) > 0 while (−KX ·R) < 0. SinceKX+D ∼Q − ε

1−εKX is
Q-effective and has negative intersection with R, we see that R is generated
by a curve on X by [24, Proposition 5.5.2]. By construction, the non-klt
locus of (X,D) is contained in some special fibers of f , hence since R has
positive intersection with F , it satisfies all the assumptions of Lemma 4.11.
It follows that R is generated by a curve C such that

0 < ε

1− ε (KX · C) = −(KX +D · C) 6 2 dimX 6 6

and thus X satisfies Assumption 4.1 by taking A = 6(1−ε)
ε . �

4.2. Picard number one case

Now we consider the case of terminal threefolds of Picard number one.
Of course in this case Theorem 1.9 is just a special case of the weak BAB
conjecture in positive characteristic. Unfortunately this conjecture is still
open even in dimension three, so we need a somewhat different approach.
Similar to the fiber type case, our strategy is to prove an appropriate version
of the Kollár–Shokurov connectedness principle in positive characteristic
and then, under the assumption that X has large anticanonical volume,
construct a boundary on X that violates this principle. We start by setting
up the framework.
Let (X,B) be a pair and x ∈ X a closed point such that (X,B) is

strongly F -regular at x. LetD1, . . . , Dr be divisors onX whose set theoretic
intersection ∩Di equals {x} in a neighbourhood of x. Let D = (D1, . . . , Dr)
and let ∆(D) ⊆ Rr be the closure of the set of all r-tuples (t1, . . . , tr) ∈ Qr>0
such that (X,B +

∑r
i=1 tiDi) is sharply F -pure at x. It can be viewed as

an analog of the log canonical threshold polytope (see e.g. [28]) in positive
characteristic. Clearly ∆(D) is convex. Let � be the lexicographic ordering
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on Rr, namely, t � t′ if and only if t 6= t′ and the first non-zero entry of
t − t′ is positive. We may then talk about the dominant vertex of ∆(D),
defined to be the unique point v = (a1, . . . , ar) ∈ ∆(D) such that for all
v′ ∈ ∆(D) we have v � v′. Let Γ(D) =

∑r
i=1 aiDi. Any divisor Γ of this

form (i.e. there exists D as above such that Γ = Γ(D)) will be called an
F -pure combination with an isolated center at x. Intuitively, one may view
(X,B+Γ) as an analog of a pair with an isolated log canonical center at x.
We can also define successive approximations of Γ(D) as follows (cf. [9,

Section 3]). Let (X,B) and D be as before and e > 0 a positive integer such
that (pe − 1)(KX + B) has integral coefficients, we define the associated
F -threshold functions ti(e) (i = 1, . . . , r) inductively by taking tl+1(e) to
be the largest integer m > 0 such that the trace map

Tre : F e∗ (OX((1− pe)(KX +B)−
l∑
i=1

ti(e)Di −mDl+1))→ OX

is locally surjective around x. It is then clear that 1
pe−1 (t1(e), . . . , tr(e)) ∈

∆(D) and their limit as e→∞ is exactly the dominant vertex of ∆(D). Let
W be the scheme-theoretic intersection of all the Di, then by construction
for all j = 1, . . . , r,

Tre : F e∗ (OX((1− pe)(KX +B)−
r∑
i=1

ti(e)Di −Dj))→ OX

is not surjective around x, thus

(4.1) Tre(F e∗ (OX((1− pe)(KX +B)−
r∑
i=1

ti(e)Di) · IW )) ⊆ mx.

We can now state the connectedness result we will use in this section:

Lemma 4.13. — Let (X,B) be a pair such that X is projective and Q-
factorial and there exists an integer e > 0 such that (pe − 1)B has integral
coefficients. Let x, y be general points on X and let Γx (resp. Γy) be an
F -pure combination with an isolated center at x (resp. y). Then the divisor
−(KX +B + Γx + Γy) is not ample.

Proof. — Since x, y are general we may assume that they’re smooth
points. Let Γx = Γ(Dx) where Dx = (D1,x, . . . , Dr,x) and let Wx =
∩ri=1Di,x. We have Supp(Wx) = {x}. For sufficiently divisible integer e >
0, let ti,x(e) be the F -threshold function associated to Dx at x and let
Γ(e)
x =

∑r
i=1 ti,x(e)Di,x. Similarly we have corresponding objects indexed

by y. Let W = Wx ∪Wy, then by (4.1), we have

Tre(F e∗ (OX((1− pe)(KX +B)− Γ(e)
x − Γ(e)

y ) · IW )) ⊆ mx ·my.
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Hence for L(e) = OX((1−pe)(KX +B)−Γ(e)
x −Γ(e)

y ) we have the following
commutative diagram

0 // F e∗ (IW · L(e))

Tre

��

// F e∗L
(e)

Tre

��

// F e∗ (L(e)|W )

Tre

��

// 0

0 // mx ·my // OX // kx ⊕ ky // 0.

By construction Tre : F e∗L(e) → OX is locally surjective around x and y,
thus the induced map Tre : F e∗ (L(e)|W ) → kx ⊕ ky is also surjective. As
dimW = 0, we get a surjection

H0(W,F e∗ (L(e)|W ))� kx ⊕ ky.

On the other hand as e goes to infinity 1
pe−1Γ(e)

x tends to Γx, thus if −(KX+
B + Γx + Γy) is ample then by Fujita type vanishing we have

H1(X,F e∗ (IW · L(e))) = H1(X, IW · L(e)) = 0,

which implies that H0(X,F e∗L(e))→ H0(W,F e∗ (L(e)|W )) is also surjective.
As in Lemma 4.8, we deduce that the natural restriction H0(X,OX) →
kx ⊕ ky is surjective, a contradiction. Hence −(KX +B + Γx + Γy) cannot
be ample. �

To apply Lemma 4.13, we need to find singular divisors whose associated
F -pure combination has an isolated center. A key technical tool is provided
by the next lemma, which allows us to construct new singular divisors out
of existing ones. To state the result let us first recall a definition.

Definition 4.14 (cf. [41]). — Let (X,D) be a pair. The test module of
(X,D) is defined to be

τ(KX , D) =
∑
e>0

TreX(F e∗ (ωX(−dpeDe))) ⊆ ωX .

It is clear from our discussion in Section 2.3 that over the smooth locus
of X, the test module coincides with τ(X,D) · ωX where τ(X,D) is the
test ideal of (X,D).

Lemma 4.15. — Let (X,D) be a pair and L a Weil divisor on X such
that L−D is ample. Let x ∈ X be a smooth point such that εF (L−D,x) >
1. Then the sheaf τ(KX , D) ⊗ OX(L) is globally generated at x, where
τ(KX , D) is the test module of the pair (X,D).

Here the notation εF (L, x) stands for the Frobenius–Seshadri constants
[33, 35] of the divisor L at the smooth point x.
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Proof. — Let e � 0 be a sufficiently divisible integer and consider the
following commutative diagram

0 // F e∗ (m[pe]
x · ωX(−dpeDe)) //

Tre

��

F e∗ (ωX(−dpeDe)) //

Tre

��

F e∗ (ωX(−dpeDe)⊗OX/m[pe]
x ) //

Tre

��

0

0 // mx · τ(KX , D) // τ(KX , D) // τ(KX , D)⊗ kx // 0.

Since x is a smooth point and e�0, the trace map Tre :F e∗ (ωX(−dpeDe))→
τ(X,D)ωX is locally surjective around x, hence after tensoring with L, we
get another commutative diagram

(4.2)

F e∗ (ωX(peL− dpeDe)) //

��

F e∗ (ωX(peL− dpeDe)⊗OX/m[pe]
x )

φ

��

τ(KX , D)⊗OX(L) // τ(KX , D)⊗OX(L)⊗ kx

whose vertical maps are surjective around x. In particular, φ induces a
surjection on global sections since both sheaves in question have zero-
dimensional support. On the other hand, since L − D is ample and
εF (L − D,x) > 1, there exists m ∈ Z>0 such that (pe − m)(L − D) is
Cartier, ωX(mL− dmDe) is globally generated and

H0(X,OX((pe−m)(L−D)))→ H0(X,OX((pe−m)(L−D))⊗OX/m[pe]
x )

is surjective. Tracing through the diagram, it follows that the two horizon-
tal maps in (4.2) also induce surjection on global sections. In particular,
τ(KX , D)⊗OX(L) is globally generated at x. �

In the remaining part of this section, let X be a Q-factorial terminal
Fano threefold of Picard number 1 such that ε(−KX) > 2+ε. Suppose that
vol(−KX) can be arbitrarily large. Our goal is to derive a contradiction to
Lemma 4.13. For this it suffices to find an F -pure combination Γ with an
isolated center at a very general point x ∈ X such that Γ ∼Q −λKX for
some λ < 1

2 . Roughly speaking, we will construct three divisors D1, D2, D3
that are very singular at x (so as to make Γ small), and the main technical
point is to cut down the dimension (at x) of their intersection (in general,
singular divisors can be quite rigid and hard to deform).
The situation is very much like constructing isolated lc center in char-

acteristic zero and it is always straightforward to come up with the first
singular divisor. Let x ∈ X be a very general point and let N ∈ Z>0 be
a sufficiently large constant that will be determined later. Suppose that
vol(−KX) > N6, then there exists an effective Q-divisor D1 ∼Q −KX such
that multxD1 > N2. Since X has Picard number one, we may assume that
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D1 is irreducible and write D1 = t∆1 where ∆1 = Supp(D1). A priori the
multiple t can be large. Our first claim is that t can be bounded in terms of
ε. More generally, we have the following (note that a variety with terminal
singularities is smooth in codimension two).

Lemma 4.16. — Let X be a Q-factorial Fano variety of Picard number
one and dimension n. Assume that X is smooth in codimension two and
ε(−KX) > n − 1 + ε. Then there exists a constant a = a(n, ε) depending
only on n and ε such that for all prime divisor D ⊆ X passing through a
general point we have −KX ∼Q tD for some t < a.

Proof. — Let ν : D̃ → D be the normalization of D and let ∆ be the
conductor divisor on D̃. Since X is smooth in codimension two, by ad-
junction we have K

D̃
+ ∆ = ν∗KD = ν∗(KX + D). Let x be a general

point on D. By Theorem 1.3, we have ε(−KX − D,x) 6 n + 1; on the
other hand, for any curve C ⊆ X through x that’s not contained in D,
we have multx C 6 (C · D), thus if t > n + 2, then (−KX − D · C) >
(t− 1) multx C > (n+ 1) multx C for any such curve C. Therefore, by the
definition of Seshadri constant it is not hard to see that

(4.3) ε(−K
D̃
−∆, x) = ε(−KX −D,x) >

(
1− 1

t

)
(n− 1 + ε).

So if (1− 1
t )(n−1+ε) > n−1, then by Theorem 1.3 again we get D̃ ∼= Pn−1,

∆ = 0 and ε(−K
D̃
− ∆, x) = n. Substituting back to (4.3) we see that

ε(−KX , x) > ε(−KX − D,x) = n, which forces X ∼= Pn and contradicts
t > n+2. It follows that we have either t 6 n+2 or (1− 1

t )(n−1+ε) 6 n−1.
In either case the existence of the constant a(n, ε) is clear. �

The following example shows that the assumptions in the lemma are
necessary.

Example 4.17. — Let X = P(12, dn−1) and let H be the ample generator
of Cl(X). Then for any point x ∈ X there exists a divisorD ∼ H containing
x but −KX ∼ (2 + d(n− 1))D. Note that ε(−KX) = n− 1 + 2

d .

In the sequel, fix a constant a = a(3, ε) that satisfies the conclusion of the
previous lemma. If N � a, then by the previous lemma the singularities
of D1 mainly come from the singularity of ∆1, which has codimension at
least two. Our next claim is that if N is sufficiently large, then we can find
another divisor D2 ∼Q −KX , whose support does not contain ∆1 (so in
particular, dim(D1 ∩D2) 6 1), such that multxD2 > bN for some (fixed)
constant b > 0. To construct the required divisor D2 (and sometimes even
D3), we separate into two cases.
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First suppose that multyD1 < N for all y 6= x around x. Then by
Lemma 2.9, the test ideal τ(X, 1

ND1) ⊆ mN−2
x and is trivial in a punctured

neighbourhood of x. By [35, Proposition 2.12],

εF (−KX , x) > 1
3ε(−KX , x) > 2

3 .

Thus if N � 0 and L = −2KX then εF (L − 1
ND1, x) > 1. Therefore by

Lemma 4.15, τ(KX ,
1
ND1)⊗OX(L) is globally generated at x. In particular,

as τ(KX ,
1
ND1) ⊗ OX(L) = τ(X, 1

ND1)OX(−KX) over the smooth locus
of X, we get divisors Di ∼ −KX (i = 1, 2, 3) such that locally D1 ∩D2 ∩
D3 is supported at x and multxDi > N − 2. Let D = (D1, D2, D3). By
Lemma 2.9, for any t ∈ ∆(D) we have ti 6 3

N−2 , which gives Γ(D) 6
− 6
N−2KX < − 1

2KX as desired.
Next assume that there is a curve C ⊆ X containing x such that

multyD1 > N for all y ∈ C and by Lemma 4.16, multzD1 < a if z 6∈ C
(all statements are local around x). Replacing x by a general point of C
we may also assume that C is smooth at x. Let 0 < c < min{ 1

2 ,
1
a}. By

Lemma 2.9 again, the test ideal τ(X, cD1) ⊆ m
bcNc−2
y for all y ∈ C and

is trivial outside of C. Let L = −3KX , then as in the previous case we
have εF (L − cD1, x) > εF (−2KX , x) > 1, thus τ(KX , cD1) ⊗ OX(−3KX)
is globally generated at x. In particular, we see that there exists a constant
b > 0 depending only on ε and a divisor D2 ∼Q −KX whose support does
not contain Supp(D1) such that multy(Di) > bN for all y ∈ C ⊆ D1 ∩D2.
Let 0 < δ < 1

2 be any rational number such that δ(2+ε) > 1. In particular
we get ε(−δKX , x) > 1. By the definition of Seshadri constants, we have
(−δKX · C) > multx C > 1, hence there exists an effective divisor D3 ∼Q
−KX whose support doesn’t contain C such that multx(D3|C) > δ−1. As
before we may assume that D3 is irreducible. Let D = (D1, D2, D3). Our
last claim is

Lemma 4.18. — Γ(D) ∼Q −λKX where λ 6 6
N + δ.

Proof. — Let ∆i be the support of Di and write Di = bi∆i (i = 1, 2, 3).
Let v = (a1, a2, a3) be the dominant vertex of ∆(D) and νi(e) the F -
threshold function at x for the divisors ∆i as before. By Lemma 2.9 it is
clear that a1, a2 6 3

N . We claim that a3 6 δ. LetW be the scheme-theoretic
intersection of ∆1 and ∆2. Since W is supported at C (at least locally
around x), there exists an integer r > 0 such that I [pr]

C ⊆ IW . For each
e ∈ Z>0, letm(e) be the smallest integer such thatm(e)·multx(∆3|C) > pe.
If (f = 0) is the local defining equation of ∆3, then we have

fm(e) ⊆ mp
e

x + IC = m[pe]
x + IC
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where the second equality holds since mpC,x = m
[p]
C,x on the smooth curve

C. It follows that

(4.4) fp
rm(e) ⊆ (m[pe]

x )[pr] + I [pr]
C ⊆ m[pe+r]

x + IW .

It is clear that

Tre(F e∗ (OX((1− pe)(KX +B)−
2∑
i=1

ti(e)∆i) ·m[pe]
x )) ⊆ mx,

hence combining with (4.1) and (4.4) we get

Tre+r(F e+r∗ (OX((1−pe+r)(KX +B)−
2∑
i=1

ti(e+r)∆i−prm(e))∆3)) ⊆ mx.

Therefore, ν3(e + r) 6 prm(e) and as a3 = lime→∞
ν3(e+r)

b3(pe+r−1) , we deduce
that

a3 6
1

multx(D3|C) < δ

as claimed. The lemma now follows as by our construction Di ∼Q −KX

for each i. �

Summing up, we eventually have

Theorem 4.19. — The set of Q-factorial terminal Fano threefolds X
of Picard number one such that ε(−KX , x) > 2 + ε for some x is weakly
bounded.

Proof. — Let 0 < δ < 1
2 be chosen as before, then by the previous

lemma, as N � 0 there exists D = (D1, D2, D3) such that ∩Di is locally
supported at a very general point x and Γ(D) ∼Q −λKX for some λ < 1

2 .
This contradicts Lemma 4.13. �

Finally we finish the proof of Theorem 1.9 and its corollaries.

Proof of Theorem 1.9. — This follows from Lemma 2.17, Corollary 4.10,
Lemma 4.12 and Theorem 4.19. �

Proof of Theorem 1.7. — By [12, Theorem 6.4] we have ε(−KX , x) =
εm(−KX , x) for all smooth point x ∈ X, so the result follows immediately
from Theorem 1.9. �

Proof of Corollary 1.8. — By [35, Theorem 1.1], |−2KX | induces a
birational map, so the corollary follows from Theorem 1.7 and [17, Lem-
ma 2.4.2]. �

ANNALES DE L’INSTITUT FOURIER



FANO VARIETIES WITH LARGE SESHADRI CONSTANTS 723

BIBLIOGRAPHY

[1] T. Ando, “On extremal rays of the higher-dimensional varieties”, Invent. Math. 81
(1985), no. 2, p. 347-357.

[2] L. Bădescu, Algebraic surfaces, Universitext, Springer, 2001, translated from
the 1981 Romanian original by Vladimir Maşek and revised by the author,
xii+258 pages.

[3] T. Bauer, F. Campana, T. Eckl, S. Kebekus, T. Peternell, S. Rams, T. Szem-
berg & L. Wotzlaw, “A reduction map for nef line bundles”, in Complex geometry
(Göttingen, 2000), Springer, 2002, p. 27-36.

[4] T. Bauer & T. Szemberg, “Seshadri constants and the generation of jets”, J. Pure
Appl. Algebra 213 (2009), no. 11, p. 2134-2140.

[5] C. Birkar, “Existence of flips and minimal models for 3-folds in char p”, Ann. Sci.
Éc. Norm. Supér. 49 (2016), no. 1, p. 169-212.

[6] C. Birkar, P. Cascini, C. D. Hacon & J. McKernan, “Existence of minimal
models for varieties of log general type”, J. Am. Math. Soc. 23 (2010), no. 2,
p. 405-468.

[7] C. Birkar & J. Waldron, “Existence of Mori fibre spaces for 3-folds in char p”,
Adv. Math. 313 (2017), p. 62-101.

[8] M. Blickle, M. Mustaţă & K. E. Smith, “Discreteness and rationality of F -
thresholds”, Mich. Math. J. 57 (2008), p. 43-61.

[9] P. Cascini, H. Tanaka & C. Xu, “On base point freeness in positive characteristic”,
Ann. Sci. Éc. Norm. Supér. 48 (2015), no. 5, p. 1239-1272.

[10] I. A. Chel′tsov, “Del Pezzo surfaces with nonrational singularities”, Mat. Zametki
62 (1997), no. 3, p. 451-467.

[11] O. Das, “On strongly F -regular inversion of adjunction”, J. Algebra 434 (2015),
p. 207-226.

[12] J.-P. Demailly, “Singular Hermitian metrics on positive line bundles”, in Com-
plex algebraic varieties (Bayreuth, 1990), Lecture Notes in Mathematics, vol. 1507,
Springer, 1992, p. 87-104.

[13] L. Ein, R. Lazarsfeld, M. Mustaţă, M. Nakamaye & M. Popa, “Restricted
volumes and base loci of linear series”, Am. J. Math. 131 (2009), no. 3, p. 607-651.

[14] T. Fujita, “Vanishing theorems for semipositive line bundles”, in Algebraic geome-
try (Tokyo/Kyoto, 1982), Lecture Notes in Mathematics, vol. 1016, Springer, 1983,
p. 519-528.

[15] M. Fulger, J. Kollár & B. Lehmann, “Volume and Hilbert functions of R-
divisors”, Mich. Math. J. 65 (2016), no. 2, p. 371-387.

[16] A. Grothendieck, Cohomologie locale des faisceaux cohérents et théorèmes de
Lefschetz locaux et globaux (SGA 2), Documents Mathématiques, vol. 4, Société
Mathématique de France, 2005, x+208 pages.

[17] C. D. Hacon, J. McKernan & C. Xu, “On the birational automorphisms of vari-
eties of general type”, Ann. Math. 177 (2013), no. 3, p. 1077-1111.

[18] C. D. Hacon & C. Xu, “On the three dimensional minimal model program in
positive characteristic”, J. Am. Math. Soc. 28 (2015), no. 3, p. 711-744.

[19] N. Hara, “A characterization of rational singularities in terms of injectivity of
Frobenius maps”, Am. J. Math. 120 (1998), no. 5, p. 981-996.

[20] N. Hara & K.-I. Watanabe, “F-regular and F-pure rings vs. log terminal and log
canonical singularities”, J. Algebr. Geom. 11 (2002), no. 2, p. 363-392.

[21] R. Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, vol. 52,
Springer, 1977, xvi+496 pages.

TOME 72 (2022), FASCICULE 2



724 Ziquan ZHUANG

[22] C. Jiang, “On birational boundedness of Fano fibrations”, Am. J. Math. 140 (2018),
no. 5, p. 1253-1276.

[23] Y. Kawamata, “Pluricanonical systems on minimal algebraic varieties”, Invent.
Math. 79 (1985), no. 3, p. 567-588.

[24] S. Keel, “Basepoint freeness for nef and big line bundles in positive characteristic”,
Ann. Math. 149 (1999), no. 1, p. 253-286.

[25] J. Kollár, Rational curves on algebraic varieties, Ergebnisse der Mathematik und
ihrer Grenzgebiete. 3. Folge., vol. 32, Springer, 1996, viii+320 pages.

[26] ———, Singularities of the minimal model program, Cambridge Tracts in Mathe-
matics, vol. 200, Cambridge University Press, 2013, with a collaboration of Sándor
Kovács, x+370 pages.

[27] J. Kollár & S. Mori, Birational geometry of algebraic varieties, Cambridge Tracts
in Mathematics, vol. 134, Cambridge University Press, 1998, with the collabora-
tion of C. H. Clemens and A. Corti, translated from the 1998 Japanese original,
viii+254 pages.

[28] A. Libgober & M. Mustaţă, “Sequences of LCT-polytopes”, Math. Res. Lett. 18
(2011), no. 4, p. 733-746.

[29] J. Lipman, “Rational singularities, with applications to algebraic surfaces and
unique factorization”, Publ. Math., Inst. Hautes Étud. Sci. 36 (1969), p. 195-279.

[30] Q. Liu, Algebraic geometry and arithmetic curves, Oxford Graduate Texts in Math-
ematics, vol. 6, Oxford University Press, 2002, translated from the French by Reinie
Erné, Oxford Science Publications, xvi+576 pages.

[31] Y. Liu & Z. Zhuang, “Characterization of projective spaces by Seshadri constants”,
Math. Z. 289 (2018), no. 1-2, p. 25-38.

[32] A. F. Lopez, “Noether-Lefschetz theory and the Picard group of projective sur-
faces”, Mem. Am. Math. Soc. 89 (1991), no. 438, p. x+100.

[33] T. Murayama, “Frobenius-Seshadri constants and characterizations of projective
space”, Math. Res. Lett. 25 (2018), no. 3, p. 905-936.

[34] M. Mustaţă, “The non-nef locus in positive characteristic”, in A celebration of al-
gebraic geometry, Clay Mathematics Proceedings, vol. 18, American Mathematical
Society, 2013, p. 535-551.

[35] M. Mustaţă & K. Schwede, “A Frobenius variant of Seshadri constants”, Math.
Ann. 358 (2014), no. 3-4, p. 861-878.

[36] M. Nakamaye, “Base loci of linear series are numerically determined”, Trans. Am.
Math. Soc. 355 (2003), no. 2, p. 551-566.

[37] Z. Patakfalvi & J. Waldron, “Singularities of General Fibers and the LMMP”,
https://arxiv.org/abs/1708.04268, to appear in Amer. J. Math., 2017.

[38] V. G. Sarkisov, “On conic bundle structures”, Izv. Akad. Nauk SSSR, Ser. Mat.
46 (1982), no. 2, p. 371-408.

[39] K. Schwede, “F -adjunction”, Algebra Number Theory 3 (2009), no. 8, p. 907-950.
[40] ———, “Centers of F -purity”, Math. Z. 265 (2010), no. 3, p. 687-714.
[41] ———, “A canonical linear system associated to adjoint divisors in characteristic

p > 0”, J. Reine Angew. Math. 696 (2014), p. 69-87.
[42] K. Schwede & K. E. Smith, “Globally F -regular and log Fano varieties”, Adv.

Math. 224 (2010), no. 3, p. 863-894.
[43] K. Schwede & K. Tucker, “A survey of test ideals”, in Progress in commutative

algebra 2, Walter de Gruyter, 2012, p. 39-99.
[44] K. E. Smith & W. Zhang, “Frobenius splitting in commutative algebra”, in Com-

mutative algebra and noncommutative algebraic geometry. Vol. I, Mathematical
Sciences Research Institute Publications, vol. 67, Cambridge University Press, 2015,
p. 291-345.

ANNALES DE L’INSTITUT FOURIER

https://arxiv.org/abs/1708.04268


FANO VARIETIES WITH LARGE SESHADRI CONSTANTS 725

[45] K.-I. Watanabe, “F -regular and F -pure normal graded rings”, J. Pure Appl. Al-
gebra 71 (1991), no. 2-3, p. 341-350.

[46] Z. Zhuang, “Fano varieties with large Seshadri constants”, Adv. Math. 340 (2018),
p. 883-913.

Manuscrit reçu le 19 mai 2019,
révisé le 15 mai 2020,
accepté le 3 août 2020.

Ziquan ZHUANG
Department of Mathematics, MIT
Cambridge, MA, 02139, USA
ziquan@mit.edu

TOME 72 (2022), FASCICULE 2

mailto:ziquan@mit.edu

	1. Introduction
	Organisation
	Acknowledgement

	2. Preliminary
	2.1. Notation and conventions
	2.2. F-singularities
	2.3. Test ideals
	2.4. Moving Seshadri constants

	3. Fano varieties with Seshadri constants at least n
	3.1. Varieties containing projective space as a divisor
	3.2. Conic bundles
	3.3. Proof of Theorem 1.3, 1.5 and 1.6

	4. Weak boundedness
	4.1. Fiber type case
	4.2. Picard number one case

	References

