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NEW PRODUCTS AND Z,-EXTENSIONS OF
COMPACT MATRIX QUANTUM GROUPS

by Daniel GROMADA & Moritz WEBER (*)

ABSTRACT. — There are two very natural products of compact matrix quantum
groups: the tensor product G x H and the free product G x H. We define a number
of further products interpolating these two. We focus more in detail to the case

where G is an easy quantum group and H = ig, the dual of the cyclic group of

order two. We study subgroups of G * Z2 using categories of partitions with extra
singletons. Closely related are many examples of non-easy bistochastic quantum
groups.

RESUME. — Il y a deux produits naturels sur des groupes quantiques compacts
matriciels: le produit tensoriel G X H et le produit libre G x H. On définit plusieurs
autres produits interpolant ces deux. On étudie en détail le cas out G est un groupe

“easy” et H = Zs2, le dual du groupe cyclique d’ordre deux. On examine des

sous-groupes de G xZz en utilisant des catégories des partitions avec des singletons
supplémentaires. De nombreux groupes quantiques bistochastiques “non-easy” sont
en lien avec avec ces sous-groupes.

Introduction

Quantum groups are a generalization of the concept of a group in non-
commutative geometry. In this work, we deal with compact quantum groups
as defined by Woronowicz in [29]. One of the main motivations of Woronow-
icz was to describe the quantum deformation of the special unitary groups.
Nevertheless, a lot of effort was put recently in study of quantum groups
arising not by deforming commutation relations, but rather by removing or
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liberating them. First examples in this direction were the free orthogonal,
free unitary and free symmetric groups defined by Wang [25, 27]. A new
approach for the construction of such quantum groups was introduced by
Banica and Speicher in [3] inventing the so-called easy quantum groups.
We extend their work in the following sense.

A classical problem in many fields of algebra is the one of constructing
extensions. In group theory, for example, the simplest construction consid-
ering two groups G and H is to construct their direct product G x H. In
the theory of quantum groups, we can repeat this construction and con-
sider the so-called tensor product G x H [26], which is basically the same
as the direct product of groups. Another possibility, however, is to liberate
the C*-algebra multiplication and consider the free product G * H [25].
A natural question now is:

Are there any quantum groups between the tensor product
and the free product?

The difference between the quantum case and classical case is that we
“couple” the quantum groups G and H not only using the group multipli-
cation (here Woronowicz C*-algebra comultiplication) but also using the
C*-algebra multiplication. In our work, we focus purely on non-commuta-
tive generalizations of the direct product. That is, we study products of
quantum groups G and H, where the factors C(G) and C(H) mutually
cocommute, but not necessarily commute. So far the only results in this
direction, which are known to us, are the above mentioned tensor and free
products defined by Wang [25, 26]. Note that there are many results con-
cerning generalizations of the group semidirect product [1, 12, 13, 17, 24]
and wreath product [4, 8]. Let us also mention here the glued product
construction [5, 21].

We focus in particular on extensions of orthogonal quantum groups
G C O% by the group Zs. Our main tool for studying such extensions
are categories of colored partitions. In the work of Banica and Speicher [3],
certain combinatorial structures called categories of partitions are used
to model the representation theory of a subclass of orthogonal quantum
groups Sy € G C OZJ{,7 the so-called easy quantum groups. Using Woronow-
icz’s Tannaka—Krein duality for compact quantum groups [30], one is able
to recover the compact matrix quantum group given the representation
category of its fundamental representation. Thus, constructing examples
of categories of partitions leads to examples of quantum groups. This
approach was generalized by Freslon [6], who introduced colored parti-
tions to be able to describe more than one representation using partitions.
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We adapt this approach to the situation, where one of the representa-
tions is the one-dimensional representation of Zy. The structure we define
in this way is called category of partitions with extra singletons. Exam-
ples of such structures induce examples of quantum groups G such that
Sy xECGC O;{, * Zg, where F is the trivial group.

In Section 4, we reveal a correspondence between categories of partitions
with extra singletons and two-colored categories of partitions that were
used to describe unitary quantum groups [21].

THEOREM A (Theorem 4.10). — The functor F' from Definition 4.4 pro-
vides a one-to-one correspondence between categories of partitions with ex-
tra singletons of even length and categories of “unitary” two-colored parti-
tions that are invariant with respect to the color inversions.

There are several classification results available for unitary two-colored
partitions [10, 14, 15, 16, 22]. Thanks to this correspondence, those clas-
sification results transfer to the case of partitions with extra singletons
and hence provide many examples of Zs-extensions of orthogonal quantum
groups. We summarize those classification results in Section 6. Closely re-
lated to our classification result is the work of Freslon [7], see also
Remark 4.1.

In Section 5, we return to the general question on the existence of quan-
tum groups interpolating the free and tensor product. We bring a very gen-
eral construction in Definition 5.4. Given quantum groups G = (C(G), u)
and H = (C(H),v), we define the following quantum subgroups of G x H.
The product GX H is defined by the relations

ab*x = rab®, a*br = ra*b
the product Gx H by the relation
ax™y = z¥ya, axy® = xy*a

the product G xg H by the combination of the both relations and finally,
given k € N, the product G X9, H by the relation

a1ry - QT = 101 * - Tk,
where a,b, a1, ..., ap € {u;;} and z,y, 21, ..., 1 € {vs}.

The following theorem then proves that we indeed construct something
new lying strictly between the free and the tensor product.
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THEOREM B (Theorem 5.5). — Consider quantum groups G, H. We
have the following inclusions

2 GxXH D
G*HS Gx H DGXOHDGX%GDGX%HDGXZH G x H,

where we assume k,l € N such that | divides k. The last three inclusions
are strict if and only if the degree of reflection of both G and H is different
from one.

The rest of Section 5 is devoted to studying those products in the special
case when G is an orthogonal easy quantum group and H = 22 linking it
to the previously developed theory of partitions with extra singletons.

Finally, let us mention the special case of quantum groups G between
On x E and O *Zs, which is studied in Subsection 6.3. Note that the group
On x FE is similar to the bistochastic group By 41 and the quantum group
O;{, * Zo is similar to Bﬁil. Thus, such instances G with Oy x E C G C
O]J(, * Zo are similar to quantum groups G with Bni1 C G - Bﬁil The
quantum groups By 41 and Bﬁil are easy quantum groups and correspond
to the categories (T, X, rebp (T ® T). However, not every quantum group
lying between Bp41 and BN 41 is described by a category of partitions,
i.e. not all of them are easy quantum groups. To describe also non-easy
quantum groups, we have to deal with linear combinations of partitions
as explained in [11]. In particular, to interpret the examples of quantum
groups Oy X E C G C O * Lo arising from partitions with extra single-
tons as quantum groups By C G C BY. N +1 using classical partitions, we
need to use the linear combination approach. The correspondence between
partitions with extra singletons and linear combinations of ordinary parti-
tions is described explicitly by the following theorem; see Definition 7.5 for
a definition of the functor Uy, 4.

THEOREM C (Proposition 7.6, Theorem 7.7). — The map Uiy +) is a
monoidal unitary functor £y, — z@(N 1)-i . It holds that

®1 *
TU(N,i)p - U(N i)T U(N +)

for any p € Pnai(k,1), k,1 € Ng. Thus, considering a linear category of
partitions & C PN, containing T ® T and the corresponding quantum
group G, it holds that the linear category with extra singletons Uy, +)- %

corresponds to the quantum group G = U(N’i)GU(*N e

This explains the isomorphism between the quantum groups Oy x E C
G C OX, * ZQ and By41 C G C BN+1 As an application of Theorems A
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and C, we can take the classification result [14, 15, 16], apply Theorem A
to obtain many examples of quantum groups Oy x E C G C O;{, x iy
and then apply Theorem C to obtain many examples of non-easy quantum

groups By4+1 C G C Bﬁil.
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1. Preliminaries

In this section we recall the basic notions of compact matrix quantum
groups and Tannaka—Krein duality. For a more detailed introduction, we
refer to the monographs [18, 23].

1.1. Compact matrix quantum groups

Let A be a C*-algebra, u;; € A, where4,j =1, ..., N for some N € N.
Denote u := (uij)%:l € My(A). The pair (A4,u) is called a compact
matrix quantum group if

(1) the elements w;; 4,5 =1, ..., N generate A,

(2) the matrices u and u' = (uj;) are invertible,

(3) the map A: A — A Quin A defined as A(u;;) := Zszl Uik @ Ukj
extends to a *-homomorphism.

Compact matrix quantum groups are generalizations of compact matrix
groups in the following sense. For G C My (C) we can take the algebra of
continuous functions A := C(G). This algebra is generated by the functions
u;; € C(G) assigning to each matrix g € G its (i,7)t" element gij- The so-
called comultiplication A: C(G) — C(G)®C(G) ~ C(G x G) is connected
with the matrix multiplication on G by A(f)(g,h) = f(gh) for f € C(G)
and g, h € G.

Therefore, for a general compact matrix quantum group G = (A4,u),
the algebra A should be seen as an algebra of non-commutative functions
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392 Daniel GROMADA & Moritz WEBER

defined on some non-commutative compact underlying space. For this rea-
son, we often denote A = C(G) even if A is not commutative. The ma-
trix u is called the fundamental representation of G. Let us note that com-
pact matrix quantum groups are special cases of compact quantum groups,
see [18, 23] for details.

A compact matrix quantum group H = (C(H),v) is a quantum subgroup
of G = (C(G),u), denoted as H C G, if u and v have the same size and
there is a surjective *-homomorphism ¢: C(G) — C(H) sending u;; — v;;.
We say that G and H are identical if there exists such *-isomorphism (i.e.
if G C Hand H C Q).

One of the most important examples is the quantum generalization of
the orthogonal group. The orthogonal group can be described as

Oy ={U € My(C)|U;; = Uy, UU" =U'U = 1cn }
So, it can be treated also as a compact matrix quantum group (C(Oy), u),

where C'(Oy) can be described as a universal C*-algebra

o= k. t = t =
C(On)=C" (“z‘j, Bj=1,..., N|W T it = e 1(CN’) '
’ Uij Ukl = UklUj

Such algebra can be quantized by dropping the commutativity relation.

This was done by Wang in [25] and the resulting algebra
c (O}I\}) =C" (U”L]? Z?.] = 17 [ERE) N‘U/Z] = u;j7uut = Ut’U, = 1CN)

defines the free orthogonal quantum group. In [25] Wang also defined the
free unitary quantum group using the C*-algebra

C’(UIJ\;) =C" (uij, h,j=1,..., N|uu* =vu*u =t =ulu = 1(CN).

For a compact matrix quantum group G = (C(G),u), we say that v €
M, (C(G)) is a representation of G if A(v;;) = >, vir @ vy;, where A is the
comultiplication. The representation v is called unitary if it is unitary as a
matrix, i.e. ), ViRV, = >k ViiVkj = 0i;5. The fundamental representation
is indeed a representation.

1.2. The tensor and free product and their glued versions
PRrOPOSITION 1.1 ([26]). — Let G = (C(G),u) and H = (C(H),v) be

compact matrix quantum groups. Then G X H := (C(G) @max C(H),u®v)
is a compact matrix quantum group. For the comultiplication we have that

AX (uij@)l) :A(;;(uij>7 AX (1®'Ukl) :AH (Ukl)~
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The algebra C(G) ®max C(H) can be described as a universal C*-algebra
generated by elements u;; and v such that every u;; commutes with every
vk, the elements u;; satisfy the same relations as u;; € C(G) and the
elements vy; satisfy the same relations as vg; € C(H). Thus, the matrix

u 0

wov= (5 ) € My (C(6) @ CL1)

indeed consists of generators of the algebra C(G) ®@max C(H). From now

on, we will use such interpretation of the maximal tensor product and we

will write just u;jvx; instead of u;; ® vy without the explicit tensor sign.
A similar construction can be defined using the free product.

PROPOSITION 1.2 ([25]). — Let G = (C(G),u) and H = (C(H),v) be
compact matrix quantum groups. Then G x H := (C(G) ¢ C(H),u ®v) is
a compact matrix quantum group. For the comultiplication we have that

Ay (ui) = Ag (uij),  Ax(vr) = Apn (vir) -

We will call the quantum groups G x H and G * H the tensor product
and the free product of G and H respectively.

ProposITION 1.3 ([21]). — Let G = (C(G),u) and H = (C(H),v) be
compact matrix quantum groups. Let A be the C*-subalgebra of the max-
imal tensor product C(G) ®max C(H) generated by the elements of the
matrix v ® v, i.e. by the products u;jvy;. Then the glued tensor product
G X H := (A, u®v) is a compact matrix quantum group. For the comulti-
plication we have that

Ag (uijvr) = Ag (uij) Am (vki)

Similarly, one can define the glued free product G* H, which we will not
use in this article.

1.3. Monoidal involutive categories and Tannaka—Krein duality

Let R be a set of objects. For every r,s € R, let Mor(r,s) be a set
of morphisms between r and s. Let us have associative binary operations
®: R x R = R and ®: Mor(r,s) x Mor(r',s") — Mor(r ® r',s ® s).
Let - : Mor(r,s) ® Mor(p,r) — Mor(p, s) be another associative binary
operation. Finally, let x be an involution mapping Mor(r, s) — Mor(s, r).
Then the tuple (R, {Mor(r, s)}, se r, ®, -, *) forms a (small strict) monoidal
involutive category if the following additional conditions hold

TOME 72 (2022), FASCICULE 1
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e For every r € R, there is an identity 1, € Mor(r,r) satisfying
1-Ty =Ty and Ty - 1 = T for every 71 € Mor(p,r) and every
Ty € Mor(r, s).

e There is 1 € R such that, foreveryr e R, 1®@r=r1=r.

If the sets of morphisms have the structure of a vector space and the cor-
responding maps of morphisms are linear (or antilinear in the case of invo-
lution), we call the structure a monoidal x-category.

A monoidal *-category is called concrete if the morphisms are realized
by matrices. That is, there is a map n: R — Ny such that Mor(r,s) C
Z(C™") ™)) and the operations are defined the standard way (the
composition is realized by matrix multiplication, the tensor product by
the Kronecker product, the involution by conjugate transpose, the identity
morphism is the identity matrix).

For given two objects r, s of a monoidal category, we will say that they
are dual to each other (denoted s = 7 or r = 5) if there are morphisms
T € Mor(1,r®s) and Ty € Mor(1, s®r) such that (7} ®1,)(1, 1) = 1,
and (T5 ® 15)(1, ® T1) = 15. A monoidal category, where all objects have
their dual is called a monoidal category with duals.

An important example of a monoidal *-category with duals is the set
of all unitary representations Rep G of a given compact matrix quantum
group G, where the set of morphisms between two representations u and v
is the space of intertwiners Mor(u, v). A dual of a representation v = (u;;)
is simply its complex conjugate u = (u;“]) Such a category is, in addition,
complete in the sense that it is closed under taking equivalent objects,
subobjects and direct sums of objects.

For every compact matrix quantum group G = (C(G), u), it was shown
[29] that all representations are direct sums of irreducible ones and that any
irreducible representation v is contained as a subrepresentation in a tensor
product of sufficiently many copies of the fundamental representation
and its complex conjugate w. Thus, to describe the representation theory
of a given quantum group G, it is enough to consider the category ﬁ\eE)G
of representations that are made as a tensor product of copies of v and wu.
The complete category Rep G can be computed as the natural completion
of Rep G.

One of the most important results for compact quantum groups is the
Tannaka—Krein duality that was proven by Woronowicz in [30]. It says
that conversely given a concrete monoidal x-category R generated by some
object r and its dual 7, there exists a compact matrix quantum group G
such that Rep G is the completion of R.

ANNALES DE L’INSTITUT FOURIER
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1.4. Partitions

Let k,1 € Ny, by a partition of k upper and [ lower points we mean a
partition of the set {1, ..., k} U {1, ..., 1} ~ {1,..., k+1}. That is, a
decomposition of the set of k + [ points into non-empty disjoint subsets
called blocks. The first k points are called upper and the last [ points are
called lower. The set of all partitions on k upper and [ lower points is
denoted (k,1). We denote the union & :=J, ; c, Z(k, ). The number
|p| ;== k+1 for p € P(k,l) is called the length of p.

We illustrate partitions graphically by putting k points in one row and [
points in another row below and connecting by lines those points that are
grouped in one block. All lines are drawn between those two rows.

Below, we give an example of two partitions p € £(3,4) and ¢ € ¥ (4,4)
including their graphical representation. The first set of points is decom-
posed into three blocks, whereas the second one into four blocks. In addi-
tion, the first one is an example of a non-crossing partition, i.e. a partition
that can be drawn in a way that lines connecting different blocks do not in-
tersect (following the rule that all lines are between the two rows of points).
On the other hand, the second partition has one crossing.

o e e

A block containing a single point is called a singleton. In particular, the
partitions containing only one point are called singletons and for the sake
of clarity denoted by an arrow T € £2(0,1) and | € £(1,0).

1.5. Categories of partitions

We define the following operations on &2.
e The tensor product of two partitions p € £ (k,l) and ¢ € L(k',1')
is the partition p ® ¢ € Z(k + k’,1 + ') obtained by writing the
graphical representations of p and ¢ “side by side”

LD S S

e For p € P(k,l), ¢ € P(l,m) we define their composition ¢p €
P (k,m) by putting the graphical representation of ¢ bellow p iden-
tifying the lower row of p with the upper row of q. The upper row
of p now represents the upper row of the composition and the lower
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396 Daniel GROMADA & Moritz WEBER

row of ¢ represents the lower row of the composition. By the vertical
concatenation, there may appear certain strings that are connected
neither to one of the upper or the lower points of the result. Those
are removed and the number of such loops is denoted by rl(p, q).

T

e For p € P(k,l) we define its involution p* € (I, k) by reversing
its graphical representation with respect to the horizontal axis.

(L) -t

These operations are called the category operations on partitions.

The set of all natural numbers with zero Ny as a set of objects together
with the sets of partitions &?(k,l) as sets of morphisms between k € Ny
and [ € Ny with respect to those operations form a monoidal involutive
category. All objects in the category are self-dual.

Any collection of subspaces ¢ = U, ,cn, €¢(k,1), where € (k,l) C &
(k,1), containing the identity partition | € ¢(1,1) and the pair partition
M € €(0,2) and closed under the category operations is a monoidal involu-
tive category with duals. We call it a category of partitions. (In subsequent
sections, we will sometimes refer to this object as an ordinary or one-colored
category of partitions to distinguish it from some generalizations.)

For given p1, ..., pp € Pnain we denote by (pi, ..., p,) the small-
est category of partitions containing pi, ..., p,. We say that pi, ..., p,
generate (p1, ..., pn). Note that the pair partitions are contained in the

category by definition and hence will not be explicitly listed as generators.

1.6. Linear maps associated to partitions

Now, consider a fixed natural number N € N. Given a partition p €
P(k,1), we can define a linear map Tp: (CV)®* — (CV)®! via

N
(1.2) Ty(ei @ ®ey) = > i) (e, ® - @ey),
Ji, - g1=1
where i = (i1, ..., i), j = (j1, - .-, Ji) and the symbol J,(i, ) is defined as

follows. Let us assign to the k points in the upper row of p the numbers
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i1, ..., i (from left to right) and to the [ points in the lower row ji, ..., 5
(again from left to right). Then §(i,j) = 1 if the points belonging to the
same block are assigned the same numbers. Otherwise §(i,j) = 0.

As an example, we can express ¢, and d,, where p and ¢ come from
Equation (1.1), using the multivariate ¢ function as follows

5P(i7j) = 5i1i2i3j2j37 5q(i7j) = 5i2j3j45i3j2'
Given a partition p € Z(k,l), we can interpret the map 7, as an in-

tertwiner Tpu®k = u®lTp for some compact matrix quantum group G.
Substituting the definition of T}, this implies the following relations

N N
(1.3) Z 6p(t,s)ut1i1 C Ugg, = Z (5p(i,j)uslj1 ccUsygy
t, ..., tp=1 J1seed1=1
for every 41, ..., ik, 51, ..., s € {1, ..., N}.

For example, considering p = M € #(0,2), we have the relation

N
53152 = E UsyjUsyyj-
Jj=1

Thus, for any quantum group G C OJ‘\’}, we have that T € Mor(1,u ® u).
Similarly, we also have T, € Mor(u ® u, 1) for any G C O%,.

The map p — T}, is almost a monoidal unitary functor in the sense that
we have

L] Tp* = T;,
° Tp@q = Tp X Tq and
o T,,= NI, T,

Note that we can make the map T, an honest monoidal unitary functor
if we define a linear structure on the sets of partitions and modify the
multiplication by incorporating the factor N*'(»»9) . See Section 7.

As a consequence, given a category of partitions %, the collection of sets
span{T, | p € €(k,1)} for k,l € Ny forms a concrete monoidal *-category.
According to Tannaka—Krein duality, this means that it can be considered
as a category of representations of some compact matrix quantum group G.
A quantum group that arise by such a construction is called an (orthogonal)
easy quantum group [3].

TOME 72 (2022), FASCICULE 1
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We can express the corresponding compact matrix quantum group G
very concretely using universal C*-algebras as

C(G) =

Wi = wr.
C* luyy t,7=1,..., N N B .
(“ i b ‘ Tu®* = u®'T, ¥ pe € k1), k,ic N0>
Suppose that a set S generates . Then, thanks to the functorial property
of T', we have

C(G) =

u=1u, vut = ulu = lev, )

“(uy, ij=1,...,N
C(“”’” e ‘Tpum:u@lTp VpeSkl), kleN

Recall that T,u®* = u®'T,, amounts to very concrete relations on the
generators u;;, see Equation (1.3).

2. Colored categories of partitions

In [6], Freslon introduced a formalism of colored partitions to describe
more general quantum groups. In the following subsection, we briefly sum-
marize the general formalism. Then we describe concrete applications. Note
that colored partitions were already used to describe unitary quantum
groups [21] or wreath product of quantum groups [8]. However, we will
use it in a bit more primitive way to describe quantum groups with funda-
mental representation in the form of a direct sum.

2.1. Colored partitions

Let &/ be a finite alphabet equipped with an involution z — Z. An
g7 -colored partition is a triple (p, wy, ws), where p € P (k, 1), wy is a word
of length k and ws is a word of length [ over the alphabet 7. The word w;
is called the upper color pattern and ws is called the lower color pattern of
the partition. We denote P (w1, ws) the set of all «7-colored partitions
with color patterns w; and ws. Again, we denote

29k0)= ) 27w,w) and 27 = |) 27k1).

[w1|=k, k,leNp
[wa|=l
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We define the operations of tensor product, composition and involution
the same way as for ordinary partitions (Subsection 1.5) except for the
following. The composition gp of p € P (w1, ws) and q € P2 (w), wh) is
defined only if w] = ws.

A subset ¥ C P is called a category of a/-colored partitions if it
is closed under those operations and contains all the identity partitions
(],2,2) and all the pair partitions (7,0, zZ) for all x € «7. Any category
of @7-colored partitions indeed forms a monoidal involutive category with
duals.

2.2. Two-colored “unitary” partitions

We get an important instance of colored categories of partitions if &/ =
{o,e} and 6 = e. The set of all such two-colored partitions will be denoted
Z°°. Categories of such two-colored partitions correspond to unitary quan-
tum groups in the following way.

Let us take a category ¥ C £7°® and a natural number N € N. We
construct a quantum group G = (C(G),u), where Sy C G C Uy as
follows. The color o corresponds to the fundamental representation u. The
color e cooresponds to its complex conjugate u. Thus any object in €, i.e.
a word w = ay - - - aj, over the alphabet {o, @} corresponds to a k-fold tensor
product u®¥ := 4% @ --- @ u*, where u° := u and u® := @. Any partition
p € € (w1, ws) is assigned a linear map Tj,: (CN)®lwil — (CN)®lw2l given
by Equation (1.2). Such a map should be interpreted as an intertwiner
between u®%t and u®w2.

To be more precise, any category € C £2°® induces a concrete monoidal
x-category, where objects are words over the alphabet {o, e} and the mor-
phism spaces are given by Mor(wq,ws) = span{T},, | p € € (w1, w2)}. Ac-
cording to Tannaka—Krein duality, there exists a compact matrix quantum
group G = (C(G),u), where the intertwiner spaces are given by this cate-
gory Mor(u®¥1 4®%2) = Mor(wy,ws). Such a quantum group G is called
a (unitary) easy quantum group [21] and can be constructed as a universal
C*-algebra

C(G) =C* (Uij, ,7=1,..., N}Tpu®“’1 = u®w2Tp Vpe %(wl,wg)) .

For more information about this correspondence, see [6, 21]. Note also
some classification results of the unitary partition categories [10, 14, 15,
16, 22].
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2.3. Two independent colors

Consider an alphabet .7 and a partition p € 2. We say that two colors
of & are independent in p if no block of p contains both of these colors.

Consider for simplicity two self-dual colors & = {o,{} and fix two nat-
ural numbers N,, Ny, € N. Then any category 4 C 2 containing only
partitions where the two colors are independent can be assigned a quantum
group G = (C(G),u), where Sy, x Sy, € G C 014\_70 * OEQ.

The color o corresponds to some representation u° and the color ¢ cor-
responds to some representation u°. Thus, the words w over <7 correspond
to tensor products u®¥. A partition p € € (w1, ws), where w1 = ay - --ag
and we = by ---b; then corresponds to a map T,: CNe1 @ - ® CNax —
CNer @ -+ ® CNai given again by Equation 1.2 (where the summation for
each j, goes from 1 to N,, ). Then, we can construct a quantum group
G = (C(G),u), where u = u° ®u® and

o
i Ui

C(G) = C* (u

uw® =u°, u® =uP,
Tou®t = u®w2T, Vpe €(wy,we))

To assure that such quantum group indeed exists, we again use the
Tannaka—Krein theorem for quantum groups. Let us denote N := N, + No.
Note that using the canonical projections CV — CNe, CN — CN¢ and the
corresponding embeddings, we can interpret the maps T, as a mapping
(CN)®F — (CN)®! and hence as intertwiners for u = 4.

Note that we have G = OX,O * OJJ(,O for € consisting of all non-crossing
pair partitions with o and ¢ being independent. Likewise, G = Sy, x Sy,
for ¥ consisting of all partitions with o and ¢ independent.

Remark 2.1. — In the special case N := N, = N, we can consider
really all partitions over &/ without assuming that the colors are indepen-
dent. This allows us to somehow amalgamate the two factors. The resulting
quantum group G will then sit between Sy C G C OX, * O]J\r,7 where Sy is
taken as a subgroup of Sy x Sy by identifying the two factors. This is the
approach originally formulated by Freslon in [6]. Non-crossing categories
on two self-dual colors were classified in [7].
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3. Partition quantum groups with one-dimensional factor
3.1. Partitions with extra singletons

In this article, we are interested in describing quantum groups G, whose
fundamental representation u decomposes as a direct sum v @ r of an
N-dimensional representation v € My(A) and a one-dimensional repre-
sentation r € A. So, let us consider a two-letter alphabet &/ = {a,1}. The
triangle A corresponds to the representation 7 and the line | corresponds to
the representation v.

Since the representation r is one-dimensional, one can see that the block
structure of the color a is irrelevant, because it does not affect the corre-
sponding map 7T}, at all. This motivates the following definition.

DEFINITION 3.1. — Consider the alphabet o/ = {a,1} with the trivial
involution a +— 4, 1+ 1. A partition with extra singletons is an o/-colored
partition p, where all points of the color » are singletons. Any set € of
partitions with extra singletons that is closed under the category opera-
tions and contains the partitions |, |, r and , ® , is called a category of
partitions with extra singletons. The category of all partitions with extra
singletons is denoted &?*. The points with color ~ are called extra single-
tons. The smallest category of partitions with extra singletons containing
given p1,...,p, € P* is denoted by (p1, ..., pn)*.

Recall from Subsection 2.1 that the composition ¢p of two partitions p, ¢
with extra singletons is defined only if the upper color pattern of ¢ matches
the lower color pattern of p, that is, extra singletons can be composed only
with extra singletons.

A typical example of partition with extra singletons looks as follows

(3.1) p=l ﬁ

3.2. The corresponding quantum groups

Let us summarize here the meaning of such categories by applying the
general considerations mentioned in Sections 1 and 2. A category of parti-
tions with extra singletons, being a colored category with independent col-
ors, corresponds to some quantum group G with Sy xSy C G C O]f, *O]J\r,,.
As we mentioned above, we will always assume N’ = 1, so actually we have

Sy x EC G COf, + Z,
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where E = (C, 1) is the trivial (compact matrix) quantum group. So, G is
a matrix quantum group with matrix of size (N + 1) x (N + 1) having a
block structure with one block of size N and second block of size one. We
will usually denote the fundamental representation of G by u =v @ r.

To define this quantum group, we have to first describe the 7}, maps. In
our case, they can be defined as follows. Consider a partition with extra
singletons p € £22*. Denote by &’ resp. I’ the number of upper resp. lower
points of the color I (i.e. not being extra singletons). Then we define T),:
(CN)& 5 (CN)® by Equation (1.2) ignoring all the extra singletons in
p. The extra singletons become important when we interpret the partition
p as an intertwiner T,u®"' = u®"¥2T),, where wy and wy are the upper and
the lower color pattern of p, respectively.

Example 3.2. — Given a partition \, it is associated a map IBNE cN -
CN, which coincides with the map associated to the identity partition |. It
is the identity CN — CY. However, the interpretation of those partitions
are different. While the identity partition gives us just the trivial relation

v=vl} =Tv=v,
the relation associated to the partition ,\\ reads
r=v@r=Ty@er)=(reuv)Ty =reuv=rv.

See Example 4.7 for another example of a T, map and a relation associ-
ated to a partition with extra singletons.

Now a quantum group G = (C(G),v @ r) corresponding to a given cate-
gory of partitions with extra singletons 4 C &% can be defined by
C(G)=cC* (vij,ﬂvij = v:‘j, r=r" Tpu®w1 = u®w2Tp Vpe ‘ﬁ(wl,wg)) ,

= and u® =r.

where u
As we mentioned at the end of Subsection 1.6, we do not have to consider
the relations corresponding to all the partitions in %, but only to some

generating set of €. So, suppose ¥ = (S5)*, then we have

v==u, vt =vtv = len,r=71*, r? = 1)

cG)=cC (Uijar Tyu®w = u®2T,  p € S(wy,ws)

t =ty =1 and r? = 1 correspond

Note that the orthogonality relations vv
to the partitions [ and , ®

definition, but they are usually not explicitly listed as generators.

which are contained in any category by

A
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3.3. The quantum group relations

Let us now give a few examples of partitions with extra singletons and
the corresponding quantum group relations. Recall that we must assume
that all the generators v;; and r are self-adjoint — this does not follow from
any partition relation. We have the following correspondences:

M v =1
2 _
A0, ro=1
A r=1
v
A\ Vit = T4
v
AN ViU = Tk

The first two partitions correspond to orthogonality of v and r and are
by definition present in all categories with extra singletons. The following
partitions allow us to construct the most basic instances of extra-singleton
categories and the corresponding quantum groups.

PROPOSITION 3.3. — Let € C £ be an ordinary category of partitions
corresponding to a quantum group H C O?{,. Then

(1) (€)* corresponds to H Zo,
(2) (¢, \)* corresponds to H X Zs,
(3) (¥, ,)* corresponds to H x E,

where E = (C, 1) is the trivial (quantum) group.

Proof. — We just need to look at the relations implied by the generators
of the categories and find out which quantum subgroup G C OJJ(, * Zg
they determine. In the first case, we only have partitions without extra
singletons, so in the corresponding relations only the elements v;; appear
(not the subrepresentation r). In particular, those relations correspond to
the subgroup H C OX,, so, taken as generators of a category with extra
singletons, they define the subgroup H * Zg C OJJ{, * Zg. Indeed, since we
do not add any new relations on r, the r remains free from v;; and keeps
representing the factor ig.

In the second case, we have, in addition, the generator \, which corre-
sponds to the relation v;;r = rv;;. Thus, the category corresponds to the
quantum subgroup of H Zs given by this relation. The relation is sim-
ply commutativity of the factors C(H) and C*(Zs), so the corresponding
quantum group is the tensor product H X 22.
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Finally, the last instance corresponds to the subgroup of H x ZQ with
respect to the relation r = 1. This relation corresponds to taking just the
trivial subgroup of Z,. a

The example \\ corresponding to some weaker kind of commutativity
can be seen as a motivating example for our article. We are going to show
(see Proposition 5.16) that for any category of partitions € C £ we have
that

()" (¢, \\)" ¢ (¢, N)".

Such a category hence corresponds to a quantum group G with
H*zQQ_G_’D‘_szg,

which can be seen as a new kind of quantum group product of H with Zg.
A similar result can be formulated with many other partitions with extra
singletons (see Section 5.4).

3.4. Induced one-colored categories

In the preceding subsection we studied the most simple constructions of
how to get an extra-singleton category from an ordinary category. Here, we
are going to study the converse. Given a category of partitions with extra
singletons € C £* corresponding to a quantum group G, we are going
to define two natural ordinary categories associated to %. The first one
corresponds to the smallest quantum group H C OJJ(, such that G C H *Zg.
The second one corresponds to the largest quantum subgroup HC O]J\r,
contained in G (in the sense HxEC G, where E is the trivial group).
Note that we may have H # H in contrast with the simple examples of the
previous subsection.

Firstly, the set of all one-colored partitions & can be viewed as a subset
of &2*. In this sense, every category of partitions with extra singletons ¢
induces a category of one-colored partitions by restriction:

%' := {p € €|p does not contain any extra singleton} .

It is easy to check that %' is a category of partitions for any category of
partitions with extra singletons % .

LEMMA 3.4. — Let € be a category of partitions with extra singletons
corresponding to a quantum group G = (C(G),v®r). Then the one-colored
category €' corresponds to the quantum group H = (A,v), where A C

C(G) is the subalgebra generated by {vi;}1\;_,.
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Proof. — We are looking for a compact matrix quantum group H whose
intertwiner spaces are given by the partitions in ¢". Defining H as in the
statement of the lemma, we first need to prove that it is a compact matrix
quantum group. This is easy to check:(1) A is generated by v;; by defini-
tion, (2) if a block diagonal matrix has an inverse, then the blocks must also
be invertible, (3) the comultiplication is given simply by restriction to A.
Finally, by definition of G, the elements of €' precisely describe the inter-
twiners of v as a subrepresentation of u. We defined H in such a way that
v is its fundamental representation, so its intertwiners are indeed described
by €. O

Secondly, given a category of partitions with extra singletons %, we can
somehow ignore the extra singletons. Let us define the following

et = (7).
where € = (€, ,)*. Obviously, we have €' C €*=".

LEMMA 3.5. — Let € be a category of partitions with extra singletons
corresponding to a quantum group G = (C(G),v®r). Then the one-colored
category €*=! corresponds to the quantum group H= (A, ), where A is
the quotient of C(G) by the relation r = 1 and v,; are the images of v;;

under the natural homomorphism.

Proof. — The partition . correspons to the relation r = 1, so € is the

category corresponding to the quantum subgroup G C G defined by impos-

A

ing the relation » = 1. That is, G = (A,v® 1). Using the preceding lemma,
we get that €*=! corresponds to the quantum group H. O

PROPOSITION 3.6. — Let € be a category of partitions with extra sin-
gletons. Denote by G the quantum group corresponding to ¢ and by H
the quantum group corresponding to €.

(1) If , €%, then € = (¢, ,)* and G = H x E.
) If, ¢ ¢, 1@, €€, but N € €, then ¥ = (€', \V)* and
G=H x 22.

Proof. — Suppose , € € and take any p € €. Then since , € €, we can
remove all extra singletons in p by composition and obtain some ¢ € €.
The partition p can be obtained by reversing this process, i.e. taking ¢ € %"
and tensoring it with extra singletons
by €' and -

Similarly for the second case. The conditions , ¢ € and T® , & € are
equivalent to assuming that any partition p € € contains an even number of

which proves that % is generated

A

extra singletons. This allows to reconstruct any partition p € € from some
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non-colored version ¢ € €' using N\ (using composition with partitions of

the form |---| \V|---| we can move any extra singleton to any position).
The quantum group picture follows from Proposition 3.3. d
PROPOSITION 3.7. — Let € be a category of partitions with extra sin-

gletons. Denote by G the quantum group corresponding to €, by H the
quantum group corresponding to €' and by H the quantum group corre-
sponding to €*='. Then

HxECGC H xZs.

Proof. — According to Lemma 3.4 and Proposition 3.3, the quantum
group H x 22 corresponds to the category (%')A. According to Lemma 3.5
and Proposition 3.3, the quantum group H x E corresponds to the category
(€571, 8)% = (€, 2)*. We indeed have

(©,8)° D% D <%'>A. O

Example 3.8. — Consider the category ¢ := (7)*. It holds that ¢ =
(1®1). Indeed, one can easily see that T ® T is generated by | (compose
(V®7) - (, ®,)), which proves the inclusion D. Conversely, one can see
that all partitions in % have blocks of size at most two and we can also
prove that \! € € (otherwise we would have ' € ¢ and hence \\! € €,
which is not the case according to the classification in Proposition 6.3).
Hence, we have the inclusion C. Similarly, one can prove that ¢*=! = (7).

The category (] ® T) corresponds to the quantum group Bﬁ+, which
is a subgroup of O]"{, given by the relation s := Y, vy = Y, vg; for all
i, =1, ..., N (originally defined in [28]). The category (]) corresponds
to the quantum group B;{,, which is a quantum subgroup of Bﬁ+ given by
s =1 (originally defined in [3]). According to Proposition 3.7 we have that
% corresponds to a quantum group G with

B x ECGC B +Zs.

In fact, as a subgroup of Bfﬁ * Zg, it is given by the relation r = s arising
from the partition 7.

Note that G is in fact, as a quantum group, isomorphic to Bﬁﬁ (just
take the #-isomorphism C(G) — C’(Bff) mapping v;; — v;; and r — s).
Nevertheless, B]J\r, is the maximal compact matrix quantum group H that
can be embedded in G in the form H x E C G (that is, having a surjective
*-homomorphism C(G) — C(H) mapping r — 1).

For those considerations, note the important distinction between two
quantum groups being isomorphic (existence of a C*-algebra isomorphism
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that preserves the comultiplication) and being equal as matrix quantum
groups (the fundamental representations must coincide as well; in particu-
lar, they must have the same size).

4. Classification of categories with extra singletons

We are not going to solve the classification problem for categories of
partitions with extra singletons explicitly. In the following subsection, we
are going to treat some special cases. Then we are going to transform the
rest to another problem for which we already have partial classification
results.

Remark 4.1. — As we already mentioned, our classification problem is
closely related to the classification of partition categories with two self-
dual colors, which was solved in the non-crossing case by Freslon in [7].
Let us state here explicitly the relation to our work. Strictly speaking we
are solving two different problems as Freslon looks for quantum groups G’
with Sy C G’ C OJ"{, * O]"{[ while we are looking for quantum groups G
with Sy x E C G C O} * Zo. Nevertheless, any category of partitions with
extra singletons can be also considered as a category with two self-dual col-
ors. Hence, the classification of non-crossing categories of extra-singletons
(summarized in Section 6.2) was already intrinsically contained in [7] as
well as many quantum group relations that are discussed in Section 5. On
the other hand, in our work, we do not restrict to the non-crossing case and
even here we state the results in much more explicit way (see Tables 6.1,
6.2) than in [7].

Also, note that the classification of categories with extra singletons is
only a side aspect of our present article. The new products, as defined in
our article, or results such as our Theorems A, B, and C have not been
considered in [7].

4.1. Partitions of odd length

We first show that the case of partitions of odd length can be reduced
to the case of partitions of even length.

LEMMA 4.2. — Let € be a category of partitions with extra singletons.

Suppose € contains a partition of odd length. Then , € € orT € %.

A
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Proof. — Suppose p € € has odd length [ > 1. Without loss of generality,
suppose that p has lower points only, i.e. p € €(0,1). Then there must be
two neighboring points in p (alternatively the first and the last point) of
the same color, so they can be contracted. By induction, we can contract
any partition of odd length to a partition of length one, i.e. a singleton or
an extra singleton. O

For the case , € €, recall Proposition 3.6 saying that the category ¥ is
determined by the one-colored category €' and the corresponding quantum
group is of the form G = H x E. Thus, the classification of such categories
reduces to the one-colored case which is done [20].

The case, when the singleton ] is contained in the category can be trans-
formed to the case when it is not.

LEMMA 4.3. — Let € be a category of partitions with extra singletons
such that | € €. Then € = (¢,1)*, where

€ = {p € €| |plis even} .

Proof. — The inclusion 2O is obvious. For the converse, consider p € 3
with odd length. Then we have p®T€ %, sope (pT,1)* C(%,)*. O

4.2. Connection between extra-singleton categories and
two-colored categories

DEFINITION 4.4. — We define a functor F: 2* — £2°° as follows.

e Consider an object in &7*, that is, a word w over /. Then F(w) is
obtained by coloring all the points in w with alternating white and
black color starting with white and then deleting all extra single-
tons. In particular, two neighboring points in F(w) have the same
color if and only if the corresponding points in w are separated by
an odd number of a.

e Consider a partition p € P*(wy,w2). Then F(p) is a two-colored
partition with upper color pattern F(wy) and lower color pattern
F(ws) with the same block structure as p (ignoring the extra sin-
gletons).

Example 4.5. — As a typical example, take the partition from Equa-
tion (3.1). We map it as follows

I LYY f
— :
a al .
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That is, we color the odd points (i.e. first, third and fifth on both rows) with
white color and the even points (the second and fourth on both rows) with
black. Then we erase all the triangles. Further examples are the following

=] lel=], N~ \N~lel

Note, in particular, that we have F'(] ® p) = F'(p), where the bar denotes
the color inversion o <> e. Note also that the image of a partition p € &* is
invariant with respect to adding a pair of consecutive extra singletons to p
and adding arbitrary amount of extra singletons to the end of the upper or
lower row. Conversely, for any p € &2°°, its preimages differ only by such
changes. In particular, any word w over {o, e} and any partition p € £°*
has a unique shortest preimage.

Remark 4.6. — Since the partition structure is not changed by the func-
tor F, it follows that the maps T}, and Tr(y) for a given p € P*(wyi,wy)
are exactly the same maps (CV)®* — (CN)® where k&’ and I’ are the
lengths of the words F'(w;) and F(ws). The only thing that changes is the
interpretation of those maps. The map 7}, is considered as an intertwiner
in Mor(u®%1 4®%2) with u' = v and u* = r for some quantum group
G = (CG),v@r) COf * Zs. In contrast, the map Tr(p) is interpreted
as an intertwiner in Mor(v®F (1) 7®F(w2)) where 7° = ¥ and v® = v, for
some quantum group G = (C(G),7) C Uy

Example 4.7. — As an example, let us again take the partition
I v v
p= .
A A I
We associate to it a map Tj,: C¥ @ CYN @ CN — CN @ CN ® CV by Equa-
tion (1.2) ignoring the extra singletons. That is, we have
N

TP (eil ® e, @ eis) = 62223 €i, ® €j, ® Z Ck-
k=1
As we just mentioned, it coincides with the T, map associated to the par-
tition ;& and hence also with the map associated to F(p) = ;%. The

I
meaning of the partition p is the relation

T,(v@ve@rerev)=reueuvereuv)i,,

which can also be written as
N N

E 2 — 5. . E . )
5i1i2 Uiy Viggo T Vigjz = 5]2]3 TVi1§2 Vi ja TVigk-
=1 k=1
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The meaning of the partition F'(p) is the relation
T, (5@5@5) = (5@6@5) T,

which can also be written as
N N
Oiyi Z aljlfﬁrljg:ljilji?» = 0jujs Z 5:1j25i2j25i3k'
=1 k=1
We can say that the functor F' changes the corresponding relations by
mapping v;;7 + U5 and rv;; — UJ;. See also Proposition 4.15.

PROPOSITION 4.8. — The map F satisfies:
(1) F(w1 ® we) = F(wy) @ F(ws) or Fw; ® wy) = Flwy) ® F(wa2).
(2) For p, q of even length, we have F(p®q) = F(p)®F(q) or F(p®q) =
F(p) ® F(q).
(3) Ifp and q are composable, then F(p) and F(q) are composable and
F(gp) = F(q)F(p),
(4) F(p*) = F(p)"
Thus, F is a unitary functor (by (3) and (4)), but not a monoidal functor
(by (1) and (2)).

Proof. — The proof is straightforward. Note that in (1) we apply the
color inversion if and only if the length of w; is odd. In (2) we use the fact
that, for p € £*(k,l) of even length, we have that either both k and [ are
even and we do not have to apply the color inversion for F(q) or both k

and [ are odd and then we apply the color inversion for both the upper and
the lower row of F'(q). O

DEFINITION 4.9. — We denote by Z22,

even

the set of all partitions with
extra singletons having even length. From now on we will consider F' to be
defined only on &5, .. In particular, given a category € C °®, we denote

even-*
A
even’

by F~1(%) its preimage inside 2

THEOREM 4.10. — The map F' defines the following one-to-one corre-
spondence.

(1) Let € be a category of partitions with extra singletons of even
length. Then F (%) is a category of two-colored partitions, which is
invariant with respect to color inversions.

(2) Let % bea category of two-colored partitions invariant with respect
to color inversions. Then F _1(%7) is a category of partitions with
extra singletons of even length.

It holds that F~Y(F(%)) = € and F(F~Y(%€)) = €.
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Proof. — Consider a category ¢ C Z5,.,,. As mentioned in Example 4.5,
we have that F'(] ®p) is the color inversion of F'(p), so F(%) is indeed closed
under color inversions. From Proposition 4.8 it directly follows that F'(%)
is closed under involution. It is also closed under tensor products since we
have that either F(p) ® F(q) = F(p® q) or F(p) @ F(q) = F(p ® | ® q).
To check that F(%) is closed under compositions, it is enough to prove
that for any composable pair p,q € F(%) there exist p,q € ¥ composable
such that p = F(p) and ¢ = F(q). It suffices to take p with the shortest
possible lower row (with no extra singletons at the end and neighboring
extra singletons anywhere) and ¢ with the shortest possible upper row.

The part (2) is proven similarly.

The equality F(F~(%)) = € is surely satisfied since it holds for any
map F'.

Since , ® , € € for any category %, we have that any category is closed
under adding or removing pairs of neighboring extra singletons. Since also
7 € ¢, we can also add arbitrary amount of extra singletons to the end
of lower and upper row. Consequently, any category % contains with any
element p € ¢ the whole preimage F~1(F(p)). Therefore, we also have
F~1(F(%¥)) = €. This also proves that the described relationship is indeed

a one-to-one correspondence. O

PrOPOSITION 4.11. — Let S C &* be a set of partitions with extra
singletons. Then F({S)*) = (F(95)).

Proof. — The assertion follows from Theorem 4.10, namely from the fact
that both F' and F~! map a category to a category. We surely have the
inclusion D since obviously F(S) C F((S)*) and F'({S)*) is a category, so
it must contain the category generated by F'(S). For the converse inclusion,
we surely have S C F~1((F(9))). Since we have a category on the right-
hand side, it must contain (S)* and then we just apply F' to both sides. O

DEFINITION 4.12. — Consider a quantum group G C Oj\', * 22 with
fundamental representation v @ r. Denote v;; := v;;r and let A be the
C*-subalgebra of C(G) generated by v;;. Then G = (A,u) is called the
glued version of G.

Remark 4.13. — It is easy to check that the comultiplication on G sat-
isfies A(Vs5) = D) Vi ® Ugj, S0 its restriction provides a comultiplication
on G. Thus, G is a compact matrix quantum group.

Remark 4.14. — The definition generalizes the glued product construc-

tion from Subsection 1.2. It is easy to see that G 122 is the glued version
of G % Zy and G X Zs is the glued version of G x Zs.
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PROPOSITION 4.15. — Consider a category € C 5,.,,. Denote by G =
(C(G),v®r) the quantum group corresponding to ¢ and by G = (C(G),7)
the quantum group corresponding to the category ¢ =F (€). Then there
is an injective *-homomorphism v: C(G) — C(G) mapping Vij — vi;r. In
other words, G is the glued version of G.

Proof. — To prove the existence of a *-homomorphism ¢: C(G) — C(G)
mapping v;; ~ v;;7, we need to show that the elements v}; = v;;r €
C(G) satisfy all the relations of the generators v;; € C (G). We essentially
did this already in Remark 4.6. Indeed, all relations in C(é) are of the
form T;0®%1 = 5®2T; for some p € % (@, ). Take any preimage p €
¢ (w1, ws), p € F~1(p). We showed in Remark 4.6 that T, = T;. One
can also check that v/®%1 = y®¥1 and v'®%2 = y®¥2 (as usual, we take

u=1v®r). So, we have
QW1 __ Rwi _ ,,Qws __ QW
Tsv =Tyu =u T,=v T5.

To prove the injectivity, we are going to use a similar trick as in [21]. We
will show that there is a *-homomorphism §: C(G) — My (C(G)) mapping

resr = 01 Vi UL = 0 vy
o) TG o)

If we prove that such a homomorphism exists, then it is easy to check that

oo == (3 3 )
S0 [ o is obviously injective, which implies the injectivity of ¢.

The proof of existence of such a homomorphism £ is similar to the proof
of existence of t. We have to prove that the elements 7" and vj; satisfy
the same relations as the generators r and v;;. Again, we have that all the
relations for r and v;; are of the form T,u®*t = u®*2T), for p € € (w1, ws).
Since we assume € C 5 o0,
loss of generality, we can assume that both w; and ws have even length

we have that p is of even length. Without

(otherwise, consider p® }, which induces obviously an equivalent relation).
Any monomial in vj;’s and 1’ of even length can be expressed in terms of

vy v, Indeed notice that vj;r" = v}, so r'v;; = (vi;7')* = v}
and UV = v T v = YT Consequently, one can see that u/®wi =

~”®F(w1) and also u'®%2 = p""®F(w2) (denoting v’ = v’ @ 7). Thus, using

s and v

also the equality T), = Tp(,) = TW’ we have
Tpul®w1 _ Tp5;/j®F(UJl) 6;;®F(w2)Tp — ul®w2Tp. D
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Example 4.16. — In [2], it was proven that Uy, = OF %7.In [21, Propo-
sition 6.20], it was proven that we can actually exchange Z for Zo, so we
have Uy = OF, %Zs. The latter is a simple consequence of Proposition 4.15.
Indeed, the quantum group O]J{, % Zo corresponds to the smallest category
with extra singletons ¢ := ()*. The quantum group U}; corresponds to the
smallest two-colored category % = ()°®, which is the image of ¢ under F.
So, U; is a glued version of OJJ(, * Zg.

4.3. An application to the theory of two-colored partitions

This correspondence not only brings classification results for categories
of partitions with extra singletons, but also conversely it brings new insight
to the theory of two-colored unitary partitions.

Recall the forgetful functor ¥: £°* — & acting on two-colored parti-
tions by forgetting the color patterns [22].

LEMMA 4.17. — Let € C & be a category of partitions such that T ¢ €.
Then

F((€, X)) =v7(%).

Proof. — The left-hand side equals to (F (%), I>A by Proposition 4.11.
The image F(%) contains some colorization of partitions in %. Thanks
to the partition I, the category (F(%), I)A actually contains all the col-
orizations of all partitions in 4" and therefore equals to W~1(%) (see [22,
Proposition 1.4]). Note that F(%) is defined only if € contains only parti-
tions of even length, which is equivalent to the assumption T ¢ €. O

DEFINITION 4.18. — We say that a two-colored partition p € &°® has
an alternating coloring if the color pattern of both upper and lower points
alternates (between white and black), the color of the first points of both
rows coincide, and the color of the last point of both rows coincide (con-
sequently, p is of even length). For a two-colored category € C 27°°, we
denote by Alt% the category generated by elements of ¢ that have an
alternating coloring. For an ordinary category € C & we denote Alt € :=
Alt U=1(%) the category generated by alternating colored partitions in € .

LEMMA 4.19. — Let € C & be a category such that | ¢ €. Then
F (%)) = Atz

Proof. — Follows directly from the definition of F' and Alt. O
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Remark 4.20. — The operation Alt for two-colored categories in general
corresponds to the operation € — <‘€'>A for categories with extra single-
tons. More precisely, we have Alt ¢ = F((F~1(%))")*.

PROPOSITION 4.21. — Let € C & be a category of partitions with
1 € % and denote by G C O;{, the corresponding quantum group. Then
Alt € corresponds to G * Zs.

Proof. — From Proposition 3.3, it follows that (¢)* corresponds to the
quantum group G * Zs. From Lemma 4.19 it follows that Alt % is its image
under F'. By Proposition 4.15 this implies that it corresponds to the glued
version of G x 22, which is G ¥ 22. O

Remark 4.22. — We will study glued and tensor complexifications in a
separate article in more detail. It is possible to show that, exchanging Zo
for Z, the proposition still holds true and one can then actually drop the
assumption T & €.

5. New interpolating products
5.1. Quantum group degree of reflection

Recall that given a quantum group G = (C(G),u), we can construct
a quantum subgroup of G — so-called diagonal subgroup — imposing the
relation u;; = 0 for all ¢ # j. If we, in addition, impose the relation u; = u;;
for all ¢ and j, we get a quantum group corresponding to a C*-algebra
generated by a single unitary. Therefore, it must be a dual of some cyclic
group.

DEFINITION 5.1. — Let G be a quantum group and denote by T the
quantum subgroup of G given by u;; = 0, uy;; = uj; for all i # j. The order
of the cyclic group I' is called the degree of reflection of G. If the order is
infinite, we set the degree of reflection to zero.

Denoting by k the degree of reflection of a quantum group G, the defi-
nition says that there is a *-homomorphism ¢: C(G) — C*(Zj) mapping
wi; + 0;;2, where z is the generator of C*(Zy). (We put Zj = Z for k = 0.)
Such a homomorphism also exists for k any divisor of the degree of reflec-
tion.

In [22], a definition of the degree of reflection was formulated in terms of
the associated representation category. We recall this definition here and
prove that it is actually equivalent to our definition.
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DEFINITION 5.2. — Let w be a word over the alphabet {o, ®}. We define
c(w) to be the difference between the number of o and the number of e in
w. For G = (C(G),u) a quantum group, and T" € Mor(u®*!,u®*?) an
intertwiner, we denote ¢(T') := c(wg) — c(wq).

PROPOSITION 5.3. — Let G = (C(G),u) be a quantum group and de-
note by k its degree of reflection. Then

{c(T)|T #0,T € Rep G} = kZ.

Proof. — It is easy to see that the considered set is a subgroup of 7Z
(this provides the categorical definition of the degree of reflection, see [22,
Lemma 2.6 and Proposition 2.7]), so let us denote it by kZ. We need to
prove that k=k.

First, we prove that kis a multiple of k. Take an intertwiner T' €
Mor(u®%1, u®%2) with | := ¢(T) = c(ws2) — ¢(wy), so we have Tu®¥1 =
u®2T. Applying the *-homomorphism C(G) — C*(Zy), wij + 65z, we
get Tz¢(w1) = 2e(w2)T g0 20T = T. Consequently, if T # 0, we must have
2t =1, that is, [ is a multiple of k.

Now, we prove that k is a multiple of k. To do this, it is enough to show
that there is a *-homomorphism C(G) — C*(Z;) mapping u;; — 0;;2.
By Tannaka—Krein duality, all relations in C'(G) can be deduced from the
relations of the form Tu®v* = u®“2T where T" € Mor(u®"*, u®"*2). Thus
the desired homomorphism exists since those relations hold in C*(Z;) after
applying u;; — §;;z2. O

5.2. The general case

In this subsection, we answer the question, whether there are some quan-
tum groups interpolating the free product G « H and the tensor product
G x H, for any given quantum groups G and H. In the following definition,
we give a very general definition of such interpolating products. Then we
discuss other possibilities. In the subsequent subsections, we will then focus
on the case when G is orthogonal easy quantum group and H = 22.

DEFINITION 5.4. — Let G and H be compact matrix quantum groups
and denote by u and v their respective fundamental representations. We
define the following quantum subgroups of G * H. The product G X H is
defined by taking the quotient of C(G x H) by the relations

(5.1) ab*x = zab®, a*br = xa*b
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the product G x H is defined by the relations
(5.2) ax*y = z¥ya, axy® = zy*a

the product G xo H by the combination of the both pairs of relations and,
finally, given k € N, the product G X9 H is defined by the relations

(5.3) A1T1 - ApTg = T101 -+ Tk,
where a,b, a1, ..., ay € {u;;} and z,y,x1, ..., o € {v;j}. (Equivalently,
we can assume a,b,ai, ..., ap € span{u;;} and x,y,x1, ..., T € span

{vij}-)
THEOREM 5.5. — Consider quantum groups G, H. Then the products

from Definition 5.4 are indeed well-defined quantum groups. We have the
following inclusions

2 GXH DO
G*H\S Gx H 5/GXOHQGXZkGQGXQZHQGXQH:G)(H,

where we assume k,l € N such that | divides k. The last three inclusions
are strict if and only if the degree of reflection of both G and H is different
from one.

Proof. — It is a direct verification that in all cases the comultiplaction
passes to the quotient, so the relations provide a good definition of new
quantum groups.

Denote by u the fundamental representation of G and by v the fun-
damental representation of H. Without loss of generality, we can assume
that both u and v are unitary representations since any representation of a
quantum group is similar to a unitary one. Let us use the white circle o as
a symbol for the representation u, black circle e for u, white square o for v
and black square m for v. Then the relations are actually partition relations
corresponding respectively to the partitions }K7 }%{, X, ?g{, and
(X)(M'

We can use the partition calculus to show that Relations (5.3) imply
both (5.1) and (5.2) for any k € N. Indeed, rotating ()", we get (X )®*.
Then, using compositions with the pair partitions, one can contract the
tensor product (X )®* @ ()®* to the partition (], which can then
be rotated to X The other partitions can be obtained similarly. All the
remaining inclusions are clear. Note that all the arguments here can be
translated into direct manipulations with the relations themselves (using
the unitarity relations as well). The partition calculus provides here nothing
more but a shorthand for those manipulations and makes them, hopefully,
more clear.
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It remains to prove the statement about strictness. Denote by m the
degree of reflection of G and by n the degree of reflection of H. First,
suppose that m and n are both different from one. Then it is sufficient to
prove the strictness for the corresponding subgroups Zm and in So, we
need to prove the strictness of the following inclusions

Zm X0 Zn 2 Zm X2k Zn :_) Zm, X2l Zna

Directly from the definition, we have Zn X0 2n = Zn * 2". Indeed,
the matrices u and v in this case have only one entry, say a and x. The
Relations (5.1) then become trivial:

aad*r = v = zaa”, a‘ar = =xa*a

and likewise the relations (5.2).

For m = n = 2, we have that 22 X ok 22 is the dual of the dihedral
group of order 4k, so we indeed have the strictness here. For general m
and n, let us  just briefly sketch the proof. From the definition, we have
that Z X ok Zn is the dual of the finitely presented group (a,b | a™ =1 =
b, (ab)® = (ba)*). We need to prove that (ab)! # (ba)!. To do so, let
us further divide the relation (ab)* = 1. We obtain the so-called von Dyck
group D(m,n, k), which has an action on a (possibly non-Euclidean) plane.
From this action, we can see that (ab)! and (ba)! are indeed different for
I <k (unless m =n =2).

Now, assuming m = 1, we are going to show that G X H = G x H.
Consider a Z-grading on the polynomials (C(xij,x*j>i ; assigning the de-
gree one to the variables z;; and degree minus one to the variables z7;.
Then Relations (5.1) are equivalent to f(uij,u;;)z = zf(uij,u;;) for any
x € {v;;} and f a homogeneous polynomial of degree zero. From Proposi-
tion 5.3, we have that there exists a non-zero intertwiner 7' € Mor(u®", 1)
with ¢(w) = 1. This means that there is a polynomial g of degree minus
one such that g(u;;,u;;) = 1. Taking any a € {u;;} and x € {v;;}, we have
that ag(u;j, uj;) is a polynomlal in w;;’s of degree zero. Hence, we have

ar = a g(uij, uj;) x = va g(uij, u;;) = ra. O

Remark 5.6. — For an easy quantum group G corresponding to a cate-
gory € C &°°, we have that its degree of reflection is equal to one if and
only if € contains the singleton .

We could continue inventing other relations coupling somehow the fac-
tors C(G) and C'(H) using partitions. We believe however, that the above
mentioned definition is the most natural. Nevertheless, as an example of a
different possibility, let us define the following.
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DEFINITION 5.7. — Let G and H be quantum groups. Suppose G has a
one-dimensional representation s and H has a one-dimensional representa-
tion r. Then we define G *x), H to be a quantum subgroup of G x H given
by the relation (sr)* = 1.

It is easy to check that this relation indeed defines a quantum subgroup.
One way to see that this subgroup should not coincide with the tensor
product (at least if G and H are “non-trivial enough”) is to notice that the
relation is non-crossing in the following sense. Consider 77 € Mor(u®*1, s)
and Ty € Mor(u®*2, 7). Then imposing the relation means adding the in-
tertwiner (77 ® T»)®* to Mor((u @ v)®2*, 1), which is a tensor product of
intertwiners acting non-trivially either just on u or just on v (compare with
the definition of non-crossing partitions). In particular, if G C BY N , SO We
can consider s := Zk uir, and H C Bﬁ:, so we can consider r := Zk Viks
then the relation (s7)* = 1 corresponds to (I® I)®k.

This particular construction and many other relations that couple some
one-dimensional subrepresentations of the factors G and H were already
described in [7, Section 5.

5.3. The case of G orthogonal and H = ZQ

From now on, let us get back to the case, where the quantum group G =
(C(G),v) is an orthogonal quantum group and H = Zo with fundamental
representation denoted by 7.

The product G X 22 =G Xy Zg is the subgroup of G * 22 given by the
relations

(5.4) VijURIT = TV Uk,
which are the relations corresponding to the partition \\

The quantum group G Xgp Zg is the subgroup of G * Zg given by the
relations
(5.5) Vi, Tin T~ * Vig i T = TVin iy TVinga * ** Vi s
which correspond to the partition ( \)®*.

DEFINITION 5.8. — Assume G has a one-dimensional representation s.
Recall also the definition of the product G ®x, Zo := G °x}, Zg given by

the relation (sr)* = 1. We also define the product G *x,, Zy combining the
relation (sr)* = 1 with Relations (5.4).
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Remark 5.9. — Since both s and r are representations, we have that
(s7)* is a representation and hence the relation (sr)¥ = 1 indeed defines
a quantum subgroup. If G is an easy quantum group corresponding to a
category ¢ C & containing the element T®T, we can choose s := ), v, =
>4 vk;. Then the relation (sr)¥ = 1 corresponds to the partition (® a)®*.

Remark 5.10. — Again, one can compare this construction with [7, Sec-
tion 5]. The difference is that instead of studying quantum subgroups of
G * H determined by relations involving some one-dimensional subrepre-
sentation r of H, we set H := 22 and work with its one-dimensional fun-
damental representation. As a particular example, note that the quantum
group BOX}# C Of = Bj\',# from [7, Definition 5.2] is essentially defined
by Relations (5.4) if we interpret r as the one-dimensional representation
of BX[# given by r = Y, w;r (w being the fundamental representation of
BJ'\",#). Hence, O7; x Zs is a quantum subgroup of BO?{,# given by w;; =0
unless ¢ = j and w;; = wy;. In fact, we have

0% x Zy C 0f x Bi# € BOL# C 0f; « B #.
ProprOSITION 5.11. — Let G C O]‘f, be a compact matrix quantum
group having a one-dimensional representation s. Then
G*ZQZ_)GS*kZQQGSXkZQZ_)GXZQ for any k € N,
G °xy, 22 D G ¥ Zg if | divides k,
G°x}, 7y D G*x, Lo if I divides k.
Proof. — Straightforward from the definition of the products. O

PROPOSITION 5.12. — Let G C O;{[ and suppose that G has a repre-
sentation s := Y, Vit = »_, Vkj. Then G *Xy Ly = G Xo, Ls.

Proof. — We need to prove that the set of relations (3, vip)® = 1,
(sr)?* =1, and Relations (5.4) is equivalent to the relation (3, vij)2 =1
together with (5.5). We can do this in terms of partition calculus. That is,
we need to prove the following

(el AN, )% = (11,00

The two-colored version of this equality reads as

(Tellel1®=0el]el.[*).

This can be proven using [10, Lemma 3.6]. O
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5.4. The easy case

Recall that a two-colored category € C &7°° is called globally-colorized
if it contains the partition I ® I [22, Definition 2.3], which is equivalent to
saying that ¢ is invariant with respect to arbitrary color permutations of
partitions with lower points only.

Given a two-colored category of partitions € C £2°°, we denote by g
the category containing partitions p € € (w1, ws) with zero color sum, that
is, ¢(p) := ¢(wz) — c(wy) = 0 [10, Definition 3.1] (see [10, 22] for details).

LEMMA 5.13. — Let € C & be a category of partitions. Then
(O=4%)), = (AltE,[®]).

Proof. — The category Alt %€ contains some particular zero-sum color-
ings of partitions in 4. Adding the globally-colorizing partition I ® l we
have that (Alt %, I ® I) contains all the zero-sum colorings and hence the
category coincides with (¥ =1(%))o. O

DEFINITION 5.14. — Let € C & be a category of partitions such that
1 & €. We define the following categories of partitions with extra singletons.

G o= (6 N\ G (6, (D))
for any k e N. If T® 1 € €, then we also define

6= (%, NV, (1o )%)".

Recall the proof of Proposition 5.12, where we showed that, for T®T € €,
the two above mentioned definitions of %7, coincide.

LEMMA 5.15. — Let ¥ C & be a category of partitions such that T € €.
Then

VH(E)o = F (%5),
(UTH(@)o, %) = F(3),
(T80, 1%%) = F(Ey),
where k € N and the last equality makes sense only if QT € €.

Proof. — The proof is similar in all three cases using Proposition 4.11,
Lemma 5.13. Take, for example, the middle one. We have

F(%5) = (F©),F ((\N)®")) = (A1t [¥%) = (87(9),, [ %) . D
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To summarize the results and constructions presented here, we formulate
the following proposition.

PROPOSITION 5.16. — Let ¥ C & be a category of partitions such that
1 & € corresponding to a quantum group G C OJJ{,. Then Table 5.1 shows
the quantum groups corresponding to the various categories constructed
from €. All the categories are mutually distinct (and hence also the quan-
tum groups for large enough N ).

Table 5.1. Categories of partitions corresponding to various glued
products and their “Zs-unglued” versions.

two-col. cat. € Alte  UYE)o (UTYE)o, [®F)  UTHE)

corresp. QG GIZQ GX7Z G X ng G=Gx ZQ
preimage F1(€) | (6)° (6. \V)*  (6.(N)P) (6, N)°
corresp. QG G * 7o G X 7oy G Xop Lo G X Zs

Proof. — First, let us check that the first row indeed maps to the third
row under F~!. For the first column it follows from Lemma 4.19. For
the last column, it follows from Lemma 4.17. For the rest, it follows from
Lemma 5.15.

Now, let us check the quantum group picture. Let us start with the upper
part of the table. The first column was proven in Proposition 4.21. The rest
follows from [10, Theorem 5.1] (see also [10, Section 5.3]). For the lower
part of the table, the first and last column follow from Proposition 3.3 and
the rest follows directly from the definitions of the products.

The mutual inequality of the categories in the last three columns follows
from [10, Lemma 3.7]. Thanks to the obvious inclusions, it remains only to
prove inequality between the first two columns. It can be seen that (€)*
contains only those partitions with extra singletons where we can find a
pairing of the extra singletons that does not cross the blocks of color I. Since
N\ does not satisfy this property, we have (¢)* C (¢, \\)*. O

6. Concrete classification results

In this section, we use Theorem 4.10 to transfer the available classifica-
tion results for unitary two-colored partitions to the case of categories of
partitions with extra singletons.
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6.1. Globally-colorized categories

Recall [22, Definition 2.3] that a category of two-colored partitions € €
°° is globally-colorized if ] ® [ € ¢ or, equivalently, I ® I € ¢. This
holds if and only if the category F~1 (%) C 92 contains the partition \\
(see Example 4.5).

All globally-colorized categories were classified in [10]. This result in-
duces a classification of all categories of partitions with extra singletons
containing the element \\X . The classification result can be phrased as
follows.

THEOREM 6.1. — Every category of partitions with extra singletons
containing only partitions of even length is of the form ¢, where ¢ C &
is some category of partitions such that T € € and k € Ny is even unless
T ®1 € €. Distinct pairs (¢,k) define distinct categories ¢;; with the
exception that

(Ton0e.)%)=(\N,08.)™)

(K11 ANV, (0e )%) = (X181, AN (e %)
for all k odd.

Proof. — As already mentioned, we just apply Theorem 4.10 to the
classification [10]. The statement is then just reformulation of [10, The-
orem 3.1]. Using Lemma 5.15 we find the preimage of the categories men-
tioned in [10, Lemma 3.6, Lemma 3.7] by the functor F' (all of the categories
are invariant with respect to the color inversions). The mutual inequality
is discussed in the proof of [10, Theorem 3.1]. O

So, if we want to obtain a list of all categories with partitions with ex-
tra singletons, we just need to take the classification of all categories of
partitions € [20] and construct the categories €. We already did similar
work in the unitary two-colored case, so we can just copy the result apply-
ing the functor F' on [10, Table 1]. The result is listed in Table 6.1. The
corresponding quantum groups were described in Section 5.

Finally, let us mention the case when the category with extra singletons
% contains also partitions of odd length. Recall from Subsection 4.1 that
this can happen only if T € € or , € €. In the latter case the classification
is equivalent to the classification of ordinary categories.

PROPOSITION 6.2. — Let € be a category of partitions with extra sin-
gletons such that T € €, , ¢ €, and \\ € €. Denote by G the corre-
sponding quantum group. Then
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Table 6.1. Classification of categories with extra singletons containing
\\ . Categories in the rows marked by the asterisk (x) are special
cases of the group-theoretical categories. See [10] for details on the
notation.

Non-crossing:  { \\, (A\V)®k/2>, k € 2N
RRRIN (\V)®k/2>ak€2No
1@T ANV, (1® ,)), k€ 2N
/o NS (1@ ), ke N
L Te T AN (1 )%), ke No
X €% X0 AN (N)P2), ke 28
X 10T AV (1@ )™), keNo
Xl @ AN (1@ )™ ), ke Ny
X AN (N)P2), ke 2N (+)
Ked: (K NLON)P), ke oo
MTOT NN (19 )% ), ke 2Ny

DK AN (NP2, ke 2N (*)
DK e AN (NDP2), k€ 2Noss 23 (%)
The rest: LN\ ®k/2>,522, k € 2Ny

1, NN (N )®’“/2(z EN), k€ 2N,
ANV (NP2, Az, ke oy

(1) € is one of the following categories

<T7A\V>A7 <|_|_|_|7TﬂA\V>Aﬂ <T’><7A\V>A7 <,_|_|_|7T’><7A\V>A'

(2) G=Hx 22, where H corresponds to the category €', so it equals
to BY, S, Bn, or Sy respectively.

Proof. — According to Lemma 4.3, we have that € = (¢,1)*, where €
is some category of partitions with extra singletons with elements of even
length. Thus, we get all possible categories ¥ by adding the singleton T to
the categories listed in Table 6.1. We find out that there are only the above
mentioned four distinct instances. The quantum group picture then follows
from Proposition 3.3. O
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6.2. Non-crossing extra-singleton categories

In this section, we summarize the classification of categories of partitions
with extra singletons induced by the classification of non-crossing categories
of two-colored partitions obtained in [22]. We mention only the locally
colorized categories since the globally colorized ones were handled in the
previous subsection.

It could be interesting to compare the results with [7, Sections 5, 7].

PROPOSITION 6.3. — Let € C &°° be a category of non-crossing par-
titions with extra singletons such that \\ & €. Then ¢ equals to one of
the categories in Table 6.2.

In the table, we denote

bh = TaTaTa 14 € 2°0,2k)
the partition consisting of a block of length k and k extra singletons.

Proof. — The classification of locally colorized two-colored categories
was obtained in [22, Theorem 7.2]. All of the categories are invariant with
respect to the color inversions. According to Theorem 4.10, we obtain all
non-crossing categories of partitions with extra singletons of even length
by applying F'~! to this classification. Categories containing the extra sin-
gleton , contain also the partition \\, so they are not listed. Categories
containing the singleton | are obtained by adding the singleton to the cat-
egories with partitions of even length. O

6.3. Categories of pair partitions with extra singletons

Pair partitions with extra singletons are those, where all blocks of the
color | are of size two. Those categories correspond to quantum groups G
such that Oy x E C G C O;{[ * Zo. The classification of such categories
can be solved by classifying unitary categories of pair partitions. For this
problem, some results are already available. In [14, 15], Mang and the
second author classified all categories of pair partitions with neutral blocks,
that is, those categories ¢’ such that () C ¢ C (X ). Complete classification
is a work in progress. Some preliminary results are available in [16].
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Table 6.2. Classification of non-crossing categories with extra single-
tons not containing \\ .

(e IR (o 5 R R )
<k7bA®b§*,|T|—|T|,,—|—|—|> k,deNo\{1,2}, d|k
(to )% (e )™ ele (" @)™ mm.1el) hdeN\ {1}, d|k
< (1@ ,) d®|®(v®1)®d,T®T> k,deNo, d| &
< (1@ ,) d®|®(v®1)®d,'/,> k.deNo\ {1}, d|k
(1o )™ 00 )™ e le( e )™

(te A)d”“@ Iele (e,
]CGN()\{].}, dGZNO\{Oa2}a d|k

7. Correspondence with non-colored linear categories

As was already mentioned in Section 1, the concept of a category of
partitions can be generalized by introducing a linear structure for parti-
tions. In this section, we summarize the definition of such a structure and
recall some results obtained in [11]. Then we are going to show, how quan-
tum groups corresponding to pair partitions with extra singletons can be
described by linear combinations of non-colored partitions.

7.1. Linear categories of partitions
Let us fix a natural number N € N. We denote by Zn_jin(k, ) the vector
space of formal linear combinations of partitions in & (k,[). For partitions

p € P(k,1) and g € Z(I,m), we define in FPn_jin(k, m) their composition
gp as in Subsection 1.5, but in addition multiplied by a factor N*(# ),

Thus, for example
|
RNy AR
[ [ [
[

We extend this operation bilinearly to the whole vector space. The ten-
sor product is defined the same way as in Subsection 1.5 and extended
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bilinearly. The involution is also defined the same way and extended anti-
linearly.

In this formalism, the mapping p — T, assigning each partition p €
Pnain(k, 1) a linear map Tj,: (CV)®* — (CN)®! can also be extended
linearly and then it is a monoidal unitary functor.

A collection of linear subspaces £ (k,l) C Pn.in(k,l) containing the
identity partition | and pair partition  that is closed under the category
operations is called a linear category of partitions. Any linear category of
partitions is according to the Tannaka—Krein duality assigned a compact
quantum group. Moreover, in this generalization the converse also holds:
For any compact quantum group G such that Sy € G C O]f,, its intertwiner
spaces are described by some linear category of partitions & C &y _jin.

For more details, see [11].

Of course it possible to introduce such a linear structure for any colored
partitions. One just has to fix a number N € N for each color representing
the dimension of the corresponding representation. Then this number has
to appear as a factor in the composition for each loop of this color.

In particular, in the case of categories of partitions with extra singletons,
we fix a number N € N as a dimension of the representation v corresponding
to the color I. The extra singletons always correspond to a one-dimensional
representation r, so we can ignore loops of extra singletons completely. So
we can, for example, write the following.

§a IeIT e

We denote by &4 ;,, (w1, w2) the vector space of formal linear combinations
of partitions with extra singletons in &?*(wq,w2) and extend the category
operations to those vector spaces.

7.2. The projections | and 7

I
A linear combination of partitions p is called projective if p* = p and
p-p = p [9, Definition 2.7]. Thanks to the functorial property of the mapping
T,, we have that the projectivity of a partition implies that the correspond-
ing linear map T}, is an orthogonal projection.

Let us denote & := T} = Zf\il e; € CV. Given a quantum group G =
(C(G),u) corresponding to some linear category of partitions %", we have
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that the fundamental representation w is reducible if and only if T® T €
2 [19, Proposition 2.5 (iii)]. In this case, the subspace span{{} and its
orthogonal complement are the only invariant subspaces of u.

Note that the partition %: is projective and the corresponding linear
map %T: is an orthogonal projection onto span{¢}. Consequently, we can
define a projective partition m(y) := | — +| [11, Definition 5.3], which is
assigned the map Tr , =1— %T:, which is an orthogonal projection onto

the orthogonal complement span{¢}+.

7.3. Separating linear combinations of partitions

Consider the alphabet Z = {;,1}. Put 7 := m(), 7 := &, and similarly
define the orthogonal projections P’ := T, pPl.=T . Denote by PB* the
set of all words over % of length k. For w = a;---a;, € %" we denote
78 = 71 @ ... ® 1% and similarly P®¥ = P @ ... @ P%*,

For any k € Ny, the set of all 7%, w € %* forms a complete set of
mutually orthogonal projections in the sense that

7_‘,®wﬂ,®w — ﬂ,®w’ (ﬂ_®w)* — 7T®w,
g g®W2 = (0 for wy # we, |wi| = |wal,
3 o= o,
w € Bk

Thus, any p € Zn.in(k,1) can be uniquely decomposed as

(7.1) p= > i
wle%k
’IUQEQBL

QW2 pr®@wi

where pijl = m9¥2pm
We will say that p € Pn.n(k,1) is separated if there is w; € %* and
wy € A such that p = pwt. For example, for any p € Pni(k,1), all

summands pj! in the decomposition p = )~ pi! are separated.
DEFINITION 7.1. — Let J# be a linear category of partitions such that
T®@1€ . Take k,l € Ny, w; € B* and wy € B'. We denote H (wy,ws) =
{ped(k)|p=pu}
LEMMA 7.2. — Let %" be a linear category of partitions such that T®] €
J . For any k,l € Ny we have the vector space decomposition

H (k1) = @ H (w1, w2).

w1 E%k
UJQG.%Z
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Thus, J¢ is generated by separated elements.

Proof. — Since T® | € ', we have also 7®% € J for any any word
w. Hence also plpt = n®"2pr®* € % for any p € J# (k,l). Therefore
all the summand in the decomposition (7.1) of any p € £ are contained

in . O

7.4. Basis for separated partitions

Take a partition p € 2 (k,l). Define a word w; € %* in such a way
that on the i*! position there is the letter ] if p has a singleton on the

h position in the upper row. Otherwise, we put the letter :. Similarly we
define the word wo € %' corresponding to the lower row of p. Then we
define p := pyl. We depict the linear combination p pictorially using the
graphical representation of p and replacing all the non-singleton blocks by
dotted lines. The linear combinations p for any p € & are called dotted
partitions.

For example, taking p := \\!, we denote

pi= = (76 ®T® wT) N\ (ﬂ'T VT ® 775)
=NV SN N

LEMMA 7.3. — The set {p | p € P(k,l)} forms a basis of the vector
space Ppn_in(k, 1) for any k,l € Ny.

Proof. — If we order the dotted partition with respect to the number
of blocks, then the matrix of coefficients of p with respect to the basis of
standard partitions is triangular with non-zero entries on the diagonal. [J

Take a linear category of partitions 2 C Zn._ji, containing T® 1. From
Lemma 7.2 it follows that this structure can be alternatively described
as follows. As a set of objects, take all words over the alphabet Z. As
morphism spaces take the vector spaces J (w1, ws). Those spaces can be
conveniently described using the basis of dotted partitions, which are sep-
arated.

Note that from this point of view, the linear categories %" with T®7 look
similar to the categories with extra singletons. However, the composition
rule for dotted partitions is in general quite different from the composition
rule for categories with extra singletons. Nevertheless, in Subsection 7.6 we
are going to describe a category isomorphism between those structures.
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7.5. Relations corresponding to separated partitions

The meaning of separated partitions can be seen when looking on the
relations they imply. Take a linear combination p € P n.in(k,1) and con-
sider words wy € &%, wy € Z'. Recall the definition of the projections P
and P’ from Subsection 7.2. Then the relation corresponding to Duos 18

PERT @ = POT, PO &% = T wy "
w2
= u®' T juy = u® PO, PO = &2 T, PO,
w2

where ' := PuP and u' := PTuP!. Expressing this in terms of matrix
elements, we can write [u];; = u;; — &7 and [ul];; = %r. If p consists
only of singletons and “through pairs” (pair blocks with one upper and one
lower point), then we have pr®¥t = 7®%2p g0 T,,P¥Wt = P®w2T, Thus,
the relation corresponding to p;! is of the form

Qw1 _ , Qw
Tou®"t = u®"?T,,

so it has exactly the same form as the relation for p except that we have
to exchange the copies of u by the corresponding subrepresentations.

Example 7.4. — As an example, consider the half-liberating partition
p:= K. Its C*-algebraic relation is

(7'2) Wiy jy Uigjp Wigjs = UigjsWigjo Uugjys
which can be also written as abc = cba, where a,b, ¢ € span{u;; }.

Consider the category £ := (K, T® T)N-lin- Since T® T € 7, we can

separate the generator p = >K and write
H = <T®T,p$;’w1,w2 € '%3>N—lin’

In fact, ', "=, and [
except for those three and
write

are rotations of each other and all the py!
~are generated by T® . So, we can actually

H = < | ) T ® T>N—lin'

Now, according to what was written above, we get the relation for
simply as Relation (7.2), where we replace all u;; by [PuP;; = wij — w7
So, we can write it also as abc = cba, where a, b, ¢ € span{u;; — %r}

The relation for '+

o can be written as Relation (7.2), where the wu;, ;,
(i.e. the first variable in the polynomial on the left hand side and the third
variable in the polynomial on the right hand side) should be replaced by %r
and all the other w;; are replaced by u;; — %r. So, we can write rbc = cbr,
where b, ¢ € {u;; — 1}
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Note that the dotted partition ',

actually generates K (the proof is
essentially same as in [28, Lemma 3.8]), so we have

() nain = O TO D) v -

7.6. Correspondence with categories with extra singletons

Consider a linear category of partitions .# such that T ® | € JZ, so
it corresponds to a quantum group G = (C(G),u), Sy € G C BJJ{,#,
where the fundamental representation is reducible having a one-dimensional
invariant subspace span{¢}. In [11], an orthogonal matrix Uy, +) € My(C)
was defined such that Uy, i)uU(*M 4 has a block structure v r separating
the two subrepresentations of w.

In [11], it was studied, which quantum group is generated by the (N —1)-
dimensional subrepresentation of u. This can be done in two ways: either
we consider the projection P': CV — CV onto span{¢}+ and study u =
PuP or we first apply the map U(n,+) and then project onto the subspace
generated by the first N — 1 basis vectors and study v = Vi 1yu (4}V7i)’
where Vi, +) is the coisometry formed by the first N — 1 rows of Uy, +).
To summarize, we have the following maps.

CN —— span{¢}+ U ——— U
(v, £
vebr v

(CN - CN_l

In [11], representation categories of u, « and v were studied using linear
categories of partitions. Introducing categories with extra singletons allows
us to study the representation category of v & r. In the remainder of this
article, we will define and study the category isomorphism Uy, +) that
completes the following commutative diagram.

P

T
PN -lin D) Pny P N-lin

Un,+) |~ \ N%(N,i)
Vv, 5
PN —1)lin 2 P(N-1)-lin

For the definition of Uy, +), Vin, +), Vv, +), P(n), see [11].
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DEFINITION 7.5. — Consider the alphabets & = {I,a} and # = {,1}.
Consider &Ny, as a category with objects formed by words over the al-
phabet % as was described in Subsection 7.4. We define a functor Uy, +):
PN lin — ﬂfN_l)_hn as follows. On objects, Uy, +) acts as a word isomor-
phism mapping i — | and |+ a. For morphisms, we describe the action on
the basis of dotted partitions. Taking a dotted partition p € Py _jin (w1, w2),
Un, +) acts blockwise. All singletons | are mapped to \/NA. Any dotted
block is mapped using the map V(y, +) (see [11, Definition 4.10]), so

Un, :i:)i)l =V, :i:)i)l =V(n,+)bi-

PROPOSITION 7.6. — U(n,+) is indeed a monoidal unitary functor. That
is, we have

(1) Un, £yp @UN, +)¢ = U, +)(p ® q),
(2) Un,+)q - U, +)p = Un, +)(gp) if p and q are composable,

(3) (U, +)p)* =Un, +)p*
for any p,q € ZN-iin-

Proof. — Since Uy, +) acts blockwise, it is clear that it behaves well
with respect to the tensor product and involution. It is enough to show the
functorial property (2) for dotted partitions. Here, we have to check that it
behaves well in case of singletons and dotted blocks. For singletons, it is easy
to see it directly. For dotted blocks it follows from [11, Proposition 5.16]. O

THEOREM 7.7. — It holds that

_ 779l * Rk
Tuw, o0 = Uiy, 1)U (w1
for any p € Pn.in (w1, ws), wy € B, wy € A'. Thus, considering a linear
category of partitions ¥ C PNy containing T ® T and the corresponding
quantum group G, it holds that the linear category with extra singletons
U(n,+) K corresponds to the quantum group U(N,i)GU(*N_’i).

Proof. — Compare with [11, Theorem 4.13] and its proof. Again, it is
enough to show the equality for block partitions. To be more precise, in
this case we check it for the singleton p = | and for the dotted blocks
i)l S gzN_hn(@,il).

For the singleton, we have

TM(N,i)T == \/NTA = \/NGN = U(N,i)f = U(N,i)TT'

For the dotted blocks it follows directly from [11, Theorem 4.13]. O
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7.7. Categories with dotted pairings

In this subsection we present the main application of Theorem 7.7. Note
that the dotted pair block is mapped by Uy, +) to an ordinary pair block.
Thus a category % with T ® T € ¢, where all blocks are of size at most
two, i.e. (1@ Pwvaim € # C (], X)noain is mapped to a category ()* C
U, 1) S (, X)*

In this case, we can easily see, what is the inverse of Uy, +): we simply
map all pair blocks to dotted pair blocks and all extra singletons to ordinary
singletons. Since we have a partial classification of the extra singleton pair
categories in the easy case, this induces a large class of new examples of
non-easy linear categories of partitions corresponding to quantum groups
By CGC Bﬁﬁ. We can take the classification result [14, 15, 16], apply
the functor F' from Section 4, obtain categories with extra singletons and
apply the functor U to them.

As an example, we are going to apply the functor U to the categories
(N\\)* and (N )®*)* corresponding to the quantum groups O X Zy and
O]J\r, X ok 22. By this, we obtain non-easy categories corresponding to new
non-easy quantum groups that are isomorphic to the original ones.

PROPOSITION 7.8. — The following are non-easy and mutually distinct
linear categories of partitions

1 1 1
\\Iii PN 4 |> ,
<| N'M! N'' N2 Nolin

<( Y )®>N EeN\{1).

Proof. — The first generator actually equals to

-1 v wo !
M(N-H, +) AN =

whereas the second one to

u(l\}+1,i) (N)FF = ()"

Strict inclusions for the categories with extra singletons induce correspond-
ing inclusions in our case. In particular, this proves the mutual inequal-
ity of the categories and their non-easiness. For the latter, note that the
smallest easy category containing any of those above must be (\')n.1in =
(=) Nain- O
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It is easy to write down the relations corresponding to those categories.
Recall the relations for the partitions with extra singletons

v
ARN YRS TV Uk, = Vi UIT,
v\ Rk _
() - TV 3 Ty * * * Ti i = Uiy js TVinja T+ Vi i T

where v @ r is the fundamental representation of the quantum group. The
quantum groups corresponding to the above mentioned categories, i.e. de-
fined by the dotted partitions ' resp. (')®*¥ are quantum subgroups
of Bﬁ,*’ = (C(Bfﬁ),u) defined by precisely the same relations if we in-
terpret r as the one-dimensional subrepresentation 7 := 3", ujr, = >, Uk;

i1
andv:i=u =u N7
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