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TATE CLASSES ON SELF-PRODUCTS OF ABELIAN
VARIETIES OVER FINITE FIELDS

by Yuri G. ZARHIN (*)

Abstract. — We deal with g-dimensional abelian varieties X over finite fields.
We prove that there is a universal constant (positive integer) N = N(g) that
depends only on g that enjoys the following property. If a certain self-product of X
carries an exotic Tate class then the self-product X2N of X also carries an exotic
Tate class. This gives a positive answer to a question of Kiran Kedlaya.
Résumé. — Nous étudions des variétés abéliennes X de dimension g sur des

corps finis. Nous prouvons l’existence d’une constante universelle (entière positive)
N = N(g), qui ne dépend que de g et a la propriété suivante: si une certaine
puissance de X admet une classe de Tate exotique, la puissance X2N de X admet
une classe de Tate exotique aussi. Cela donne une réponse positive à une question
de Kiran Kedlaya.

1. Introduction

Let X be an abelian variety of positive dimension g over a finite field
k = Fq of characteristic p (where q is a power of p), FrX the Frobenius
endomorphism of X, and PX [t] ∈ Z[t] the characteristic polynomial of FrX ,
which is a degree 2g monic polynomial with integer coefficients. [8, 15]. Let
L = LX be the splitting field of PX [t] over the field Q of rational numbers
and therefore is a number field. Since deg(PX) = 2g, the degree [LX : Q]
divides (2g)!. (In fact, one may prove that [LX : Q] divides 2gg!, see below).
We write RX for the set of eigenvalues of FrX ; clearly, RX coincides with
the set of roots of PX [t] ∈ Z[t] and is viewed as a certain finite subset of L∗X .
Clearly, RX consists of algebraic integers and #(RX) 6 2g. (The equality
holds if and only if PX [t] has no repeated roots.) By a classical theorem
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2340 Yuri G. ZARHIN

of A.Weil [8], all algebraic numbers α ∈ RX have the same archimedean
value √q. In addition, α 7→ q/α is a permutation of RX . If α is a root of
PX [t] (i.e., α ∈ RX) then we write multX(α) for its multiplicity. It is well
known that if α ∈ RX then

(1.1) multX(α) = multX(q/α); if α = q/α then multX(α) is even.

In particular, the constant term
∏
α∈RX α

multX(α) of PX [t] is qg.
The Galois group Gal(LX/Q) of LX/Q permutes elements of RX and

(1.2) multX(σ(α)) = multX(α) ∀ σ ∈ Gal (LX/Q) , α ∈ RX .

In this paper we continue our study of multiplicative relations between
elements of RX that was started in [6, 20, 21, 22]. (In [6, 20] we concentrated
on abelian varieties with rather special type of Newton polygons; in [21, 22]
we studied abelian varieties of small dimension). In order to state results
of the present paper, we need the following definitions.

Definition 1.1. — An integer-valued function e : RX → Z is called
(i) admissible if there exists an integer d such that

(1.3)
∏

α∈RX

αe(α) = qd;

Such a d is called the degree of e and is denoted deg(e).
The nonnegative integer

∑
α∈RX |e(α)| is called the weight of e

and denoted wt(e).
(ii) trivial if

(1.4) e(α) = e(q/α) ∀ α ∈ RX ; e(β) ∈ 2Z ∀ β ∈ RX with β2 = q.

Definition 1.2. — An admissible integer-valued function e : RX → Z
is called reduced if it enjoys the following properties:

(i) deg(e) > 1 and all e(α) > 0.
(ii) If α ∈ RX and α 6= q/α then either e(α) = 0 or e(q/α) = 0.
(iii) e(β) = 0 or 1 ∀ β ∈ RX with β2 = q.

Remarks 1.3.
(i) It follows from (1.1) that α 7→ multX(α) is a trivial admissible

function of degree g and weight 2g.
(ii) Every trivial function is admissible.
(iii) If e : RX → Z is admissible then it follows from Weil’s theorem that

(1.5) 2 deg(e) =
∑

α∈RX

e(α).
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TATE CLASSES ON ABELIAN VARIETIES 2341

(iv) If e : RX → Z is reduced admissible then it follows from (1.5) that

(1.6) wt(e) = 2 deg(e).

Our first main result is the following assertion.

Theorem 1.4. — Let g be a positive integer. There exists a positive
integerN = N(g) that depends only on g and enjoys the following property.
Let X be a g-dimensional abelian variety over a finite field k such that

there exists a nontrivial admissible function RX → Z. Then there exists a
reduced admissible function of degree 6 N(g).

Our main tool in the proof of Theorem 1.4 is the multiplicative (sub)-
group Γ(X, k) ⊂ L∗X generated by RX , which was first introduced in [17, 18]
(see also [6, 20, 21, 22]).

Definition 1.5.
(i) We say that k = Fq is small with respect to X if there exist distinct

α1, α2 ∈ RX such that α1/α2 is a root of unity.
(ii) We say that k is sufficiently large with respect to X if Γ(X, k) does

not contain roots of unity except 1 (see [21, 22]).

Remarks 1.6.
(i) If k is not small with respect to X then there is at most one β ∈ RX

with β2 = q.
(ii) If k is sufficiently large with respect to X then it is not small.

The role of Γ(X, k) is explained by the following statement.

Lemma 1.7. — Suppose that k is not small with respect to X. Then
the following three conditions are equivalent.

(i) There exists a nontrivial admissible function RX → Z.
(ii) There exists a reduced admissible function RX → Z.
(iii) The rank of Γ(X, k) does not exceed b#(RX)/2c.

Our second main result deals with Tate classes on abelian varieties
(see [13, 14, 15, 19, 21] and Section 7.4 below for the definition of these
classes and their basic properties). Recall that a Tate class is called exotic
if it cannot be presented as a linear combination of products of divisor
classes.

Theorem 1.8. — Let g be a positive integer and let N = N(g) be as
in Theorem 1.4.
Let X be a g-dimensional abelian variety over a finite field k of character-

istic p. Assume that there exist a positive integer n and a prime ` 6= p such

TOME 72 (2022), FASCICULE 6



2342 Yuri G. ZARHIN

that the self-product Xn of X carries an exotic `-adic Tate cohomology
class.
Then the self-product X2N of X carries an exotic l-adic cohomology Tate

class for all primes l 6= p.

Remark 1.9. — Theorem 1.8 gives a positive answer to a question of
Kiran Kedlaya, who pointed out that this result is related to the algorithmic
problem of deciding whether or not a given abelian variety (specified by its
Weil polynomial) is neat in a sense of [21, Section 3], [22]).

Is it possible to get all Tate classes on all self-products of X, using only
Tate classses of bounded dimension? In order to answer this question, we
need the following result about nonnegative admissible functions.

Theorem 1.10. — Let g be a positive integer. Then there exists a pos-
itive even integer H = H(g) that enjoys the following property.

Let X be a g-dimensional abelian variety over a finite field k. Then
there exist a positive integer d and d nonnegative admissible functions
ei : RX → Z+ such that:

(i) the weight of each ei does not exceed H(g);
(ii) each nonnegative admissible function e : RX → Z+ may be pre-

sented as a linear combination of e1, . . . , ed with nonnegative inte-
ger coefficients.

Theorem 1.10 implies the following assertion.

Theorem 1.11. — Let g be a positive integer. Let H = H(g) be as in
Theorem 1.10.
Let X be a g-dimensional abelian variety over a finite field k. Assume

that k is sufficiently large w.r.t X. Let ` be a prime different from char(k)
and n be a positive integer. Then every `-adic Tate cohomology class on
Xn may be presented as a linear conbination of products of `-adic Tate
cohomology classes of dimension 6 H(g).

The paper is organized as follows. In Section 2 we discuss basic useful
results about RX and related objects, including the Newton polygons. In
addition, we discuss roots of unity in Γ(X, k) (Lemma 2.2) and the structure
and degree of LX (Lemma 2.5). In Section 3 we study multiplicative rela-
tions between Weil numbers (i.e., admissible functions) and their weights;
in particular, we prove Lemma 1.7 (see Lemma 3.7). In Sections 4 and 5
we prove Theorems 1.4 and 1.10 respectively. Section 6 contains certain
constructions from multilinear algebra that we use in Section 7 in order to
prove Theorems 1.8 and 1.11.

ANNALES DE L’INSTITUT FOURIER
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As usual, ` and l are primes different from p, and N,Z,Z`,Q,R,C,Q`
stand for the set of positive integers, the rings of integers and `-adic integers,
the fields of rational, real, complex, and `-adic numbers respectively. We
write Z+ and R+ for the additive semigroups of nonnegative integers and
of nonnegative real numbers respectively. If z is a complex number then
we write z̄ for its complex-conjugate. Similarly, if φ : E ↪→ C is a field
embedding then we write φ̄ for the corresponding complex-conjugate field
embedding

φ̄ : E ↪→ C, x 7→ φ(x).
If M is a positive integer and v and w are two vectors in RM then we write
v ·w for their scalar product. If A is a finite set then we write #(A) for the
number of its elements. We write rk(∆) for the rank of a finitely generated
commutative group ∆.
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2. Preliminaries

In this section we discuss basic properties of L = LX , RX ,Γ(X, k). Let
us start with the formal definition of PX(t).
Throughout this paper k is a finite field of characteristic p that consists

of q elements, k̄ an algebraic closure of k and Gal(k) = Gal(k̄/k) the
absolute Galois group of k. It is well known that the profinite group Gal(k)
is procyclic and the Frobenius automorphism

σk : k̄ → k̄, x 7→ xq

is a topological generator of Gal(k). If ` 6= p is a prime then we write

χ` : Gal(k)→ Z∗`
for the `-adic cyclotomic character that defines the Galois action on all
`-power roots of unity in k̄. By definition,

χ`(σk) = q ∈ Z∗` .

TOME 72 (2022), FASCICULE 6
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Let X be an abelian variety of positive dimension over k. We write
End(X) for the ring of its k-endomorphisms and End0(X) for the corre-
sponding (finite-dimensional semisimple) Q-algebra End(X)⊗Q. We write
FrX = FrX,k for the Frobenius endomorphism of X. We have

FrX ∈ End(X) ⊂ End0(X).

It is well known that

(2.1) σk(x) = FrX(x) ∀ x ∈ X(k̄).

By a theorem of Tate [15, Section 3, Theorem 2 on p. 140], the Q-subalgebra
Q[FrX ] of End0(X) generated by FrX coincides with the center of End0(X).
In particular, if End0(X) is a field then End0(X) = Q[FrX ].
If ` is a prime different from p then we write T`(X) for the Z`-Tate

module of X and V`(X) for the corresponding Q`-vector space

V`(X) = T`(X)⊗Z` Q`.

It is well known [8, Section 18] that T`(X) is a free Z`-module of rank
2dim(X) that may be viewed as a Z`-lattice in the Q`-vector space V`(X)
of dimension 2dim(X). The Galois action on X(k̄) induces the continuous
group homomorphism [10, 11]

ρ` = ρ`,X : Gal(K)→ AutZ` (T`(X)) ⊂ AutQ` (V`(X)) .

In addition, there is a canonical isomorphism of Gal(k)-modules X[`] ∼=
T`(X)/` where X[`] is the kernel of multiplication by ` in X(k̄).
By functoriality, End(X) and FrX acts on (T`(X) and) V`(X); it is well

known that the action of FrX coincides with the action of ρ`(σk). By a
theorem of A. Weil [8, Section 19 and Section 21], FrX acts on V`(X) as a
semisimple linear operator, its characteristic polynomial

PX(t) = PX,k(t) = det (t Id− FrX , V`(X)) ∈ Z`[t]

lies in Z[t] and does not depend on a choice of `. In addition, all eigenvalues
of FrX (which are algebraic integers) have archimedean absolute value equal
to q1/2, and if an eigenvalue of FrX is a square root of q then its multiplicity
is even (see [20, p. 267]). This implies that the constant term of PX,k(t) is
qdim(X). In particular, FrX acts as an automorphism of the free Z`-module
T`(X).

This means that if
L = LX ⊂ C

is the splitting field of PX(t) and

RX = RX,k ⊂ L

ANNALES DE L’INSTITUT FOURIER
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is the set of roots of P (t) then L is a finite Galois extension of Q such that
for every field embedding L ↪→ C we have | α |= q1/2 for all α ∈ RX . Let
Gal(L/Q) be the Galois group of L/Q. Clearly, RX is a Gal(L/Q)-invariant
(finite) subset of L∗. It follows easily that if α ∈ RX then q/α ∈ RX . Indeed,
q/α is the complex-conjugate ᾱ of α. We have

q−1α2 = α

q/α
.

Definition 2.1. — Let ` be a prime and n a positive integer. We write
e`(n) for the largest order of elements of the general linear group GL(n,F`).
We write exp`(n) for the exponent of GL(n,F`).

Recall that Γ(X, k) is the multiplicative subgroup of L generated by RX .

Lemma 2.2. — If γ ∈ Γ(X, k) is a root of unity then there is a positive
integer m 6 max(2e2(2g), e3(2g)) such that γm = 1. In addition, γD(g) = 1
where

D(g) := LCM (2 exp2(2g), exp3(2g)) , and m|D(g).

Proof. — In what follows we choose a prime ` 6= p and view FrX as the
automorphism of free Z`-module T`(X) of rank 2g. Then FrX induces the
automorphism FrX mod ` of the 2g-dimensional F`-vector space

T`(X)/` = X[`].

Let r be the order of

FrX mod ` ∈ AutF` (X[`]) ∼= GL (2g,F`) .

Clearly,
r 6 e`(2g) and r | exp`(2g).

In addition,
FrrX ∈ Id + ` EndZ` (T`(X)) .

Let ∆ be the multiplicative group generated by all the eigenvalues of FrrX .
Clearly, δ = γr ∈ ∆. Applying a variant of Minkowski’s Lemma [12,
Lemma 2.4], we obtain that δ = 1 if ` > 2 and δ2 = 1 if ` = 2. This
implies that γr = 1 if ` > 2 and γ2r = 1 if ` = 2. Now let us put ` = 2 if
p 6= 2 and ` = 3 if p = 2. The rest is clear. �

Let OL be the ring of integers in L. Clearly, RX ⊂ OL. By a classical
theorem of A. Weil (Riemann’s hypothesis) [8], if j : LX = L ↪→ C is a
field embedding then j(α)j(α) = q. This implies that if B is a maximal
ideal in OL such that char(OL/B) 6= p then all elements of RX are B-adic
units. The p-adic behaviour of RX is described in terms of the set SlpX of
slopes of the Newton polygon of X [9] (see also [22, Section 4]). Recall that

TOME 72 (2022), FASCICULE 6



2346 Yuri G. ZARHIN

SlpX is a finite nonempty set of rational numbers that enjoys the following
properties.

(i) 0 6 c 6 1 for all c ∈ SlpX .
(ii) c ∈ SlpX if and only if 1− c ∈ SlpX .
(iii) If c ∈ SlpX then either c = 1/2 or there is a positive integer h 6

g = dim(X) such that c ∈ 1
hZ.

(iv) Let P be any maximal ideal in OL such that char(OL/P) = p and
let

ordP : L∗ → Q
be the discrete valuation map attached to P that is normalized by
the condition

ordP(q) = 1.
Then

ordP(RX) = SlpX .
(v) If α ∈ RX then

ordP(q/α) = 1− ordP(α).

(vi) Let µL the multiplicative group of all roots of unity in L. Then its
image ordP(µL) = {0}.

Properties (i)-(vi) imply readily the following assertion.

Lemma 2.3. — Let g be a positive integer. Let us consider the set Slp(g)
of all rational numbers c that enjoy the following properties.

(1) 0 6 c 6 1.
(2) Either c = 1/2 or there exists a positive integer h 6 g such that

c ∈ 1
hZ.

Then Slp(g) is a finite nonempty set that enjoys the following property.
If X is a g-dimensional abelian variety over a finite field then SlpX lies

in Slp(g).

Remarks 2.4. — Let S(p) be the set of all maximal ideals in OL such
that char(OL/P) = p. Since L/Q is Galois, #(S(p)) divides [L : Q]; in
particular, #(S(p)) divides g!2g (see Lemma 2.5(ii) below). Let us define
a group homomorphism

wX : Γ(X,K)→ QS(p), γ 7→ {ordP(γ)}P∈S(p) .

(a) Clearly, wX(q) is the vector 1 ∈ QS(p), all whose coordinates equal
1, hence

wX

( q
α

)
= 1− wX(α) ∀ α ∈ RX .

ANNALES DE L’INSTITUT FOURIER
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(b) By Property (iv) and Lemma 2.3,

wX(RX) ⊂ SlpS(p)
X ⊂ Slp(g)S(p) ⊂ QS(p).

(c) It follows from Property (v) that a vector c̃ ∈ QS(p) lies in wX(RX)
if and only if 1− c̃ ∈ wX(RX).

(d) In light of Property (vi), wX(γ) = 0 if γ is a root of unity. The
converse is also true: it is proven in [19, Proposition 2.1 on p. 249]
(see also [17, Proposition 3.1.5]) that ker(wX) consists of roots of
unity.

(e) It follows readily from (d) that:
(1) none of elements in RX lies in ker(wX);
(2) if k is not small w.r.t X and α1, α2 are distinct elements of

RX then
wX(α1) 6= wX(α2).

Lemma 2.5.
(i) The field LX is either Q or Q(√p) or a CM field.
(ii) The field LX is a finite Galois extension of Q and its degree [LX : Q]

divides g!2g.
(iii) #(S(p)) divides g!2g.

Proof. — Let us prove ((i),(ii)). By definition of the splitting field, LX/Q
is Galois.
Suppose that X is simple. According to [15, 16], PX(t) is a power Pirr(t)a

of a Q-irreducible monic polynomial Pirr(t) where a is a positive integer
dividing 2g and

deg(Pirr) = 2g
a
.

Clearly, LX is the normal closure of the degree 2g/a number field EX :=
Q[t]/Pirr(t). According to [16, Exemples], EX is either Q or Q(√p) or a
CM field.
In the first two cases LX = Q or Q(√p); in particular, it is a totally real

number field, whose degree divides 2g = 2dim(X).
In the third case let E+

X be the maximal totally real subfield of EX ; [E+
X :

Q] = g/a and EX is a purely imaginary quadratic extension E+
X(
√
−δ) of

E+
X . Here δ is a totally positive element of E+

X . Let L+
X be the normal

closure of E+
X . Since E+

X is totally real, L+
X is totally real as well, and its

degree [L+
X : Q] divides [E+

X : Q]! = (g/a)!. Since −δ ∈ E+
X ⊂ L

+
X , its Galois

orbit in L+
X consists at most of [E+

X : Q] = g/a elements. This implies that
[LX : L+

X ] divides 2g/a, since LX is obtained from L+
X by adjoining square

roots of all the (totally negative) Galois conjugates −δ. This implies that

TOME 72 (2022), FASCICULE 6
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LX is a CM field and [LX : Q] divides (g/a)! · 2g/a, which in turn, divides
g! · 2g.

Now let us consider the general case when X is isogenous to a product∏m
i=1 Xi of m nonzero simple abelian varieties Xi. It is well known that if

we put
gi := dim(Xi), and Li := LXi

then

g = dim(X) =
m∑
i=1

gi, PX(t) =
m∏
i=1
PXi(t).

Let Q̄ be an algebraic closure of Q. We may and will view all Li as subfields
of Q̄. Then LX is the compositum of m number fields LXi = Li in Q̄.
Applying ((i),(ii)) to simple Xi’s, we obtain that LX is either Q or Q(√p)
or a CM field, which proves (i).
In order to prove (ii), recall that all Li/Q and LX/Q are finite Galois

extensions. Let Gal(Li/Q) and Gal(LX/Q) be the corresponding (finite)
Galois groups. Clearly, each Li is a Gal(LX/Q)-invariant subfield of LX ,
and the corresponding restriction map

Gal (LX/Q)→ Gal (Li/Q) , s 7→ si

is a surjective group homomorphism. On the other hand, since all the Li’s
generate LX as a field, the product-map

Gal (LX/Q)→
m∏
i=1

Gal (Li/Q) , s 7→ {si}mi=1

is a group embedding. By Lagrange’s theorem, #(Gal(LX/Q)) divides∏m
i=1 #(Gal(Li/Q)). In other words, [LX : Q] divides

∏m
i=1[Li : Q], which,

in turn, divides
m∏
i=1

gi!2gi = 2g
m∏
i=1

gi!.

Since
∑m
i=1 gi = g, the product

∏m
i=1 gi! divides g!. This implies that [LX :

Q] divides 2gg!, which ends the proof of (ii).
Let us prove (iii). Since LX/Q is Galois, #(S(p)) divides [LX : Q].

Now (iii) follows readily from (ii). �

3. Multiplicative relations between Weil numbers

This section contains auxiliary results that will be used in Section 4 in
the proof of Theorem 1.4.

ANNALES DE L’INSTITUT FOURIER
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3.1. The involution

Recall that there is an involution map

(3.1) ι : RX → RX , α 7→
q

α
= ᾱ.

Let RιX be the subset of fixed points of ι. Its elements (if there are any)
are square roots of q; hence,

(3.2) #(RιX) 6 2.

In addition, if k is not small with respect to X then at most one square
root of q lies in RX , hence,

(3.3) #(RιX) 6 1.

Remark 3.1. — Suppose that k is not small w.r.t X. If β is an element
of RX such that β2/q is a root of unity then q/β ∈ RX and the ratio

β

q/β
= q

β2

is a root of unity. This implies that β = q/β, i.e., β ∈ RιX .

Let us consider the free abelian group ZRX of functions e : RX → Z.
The involution ι induces an automorphism (also an involution)

ι∗ : ZRX → ZRX , ι∗e(α) := e(ια) = e(q/α).

Let us consider the group homomorphism

Π: ZRX → Γ(X, k) ⊂ L∗X , e 7→
∏

α∈RX

αe(α).

We have
Π(ι∗e) = Π(e).

Remarks 3.2.
(i) If ι∗e = e then Π(e) = Π(e) is (totally) real; it follows from

Weil’s theorem that Π(e)2 is an integral power of q. In particu-
lar, if

∑
α∈RX e(α) is even then it follows from Weil’s theorem that

Π(e) is ± integral power of q.
(ii) If f is a function RX → Z then the function e := f+ι∗f is obviously

trivial.
Conversely, one may easily check that a function e : RX → Z is

trivial if and only if there exists f : RX → Z such that e = f + ι∗f .
(iii) Clearly, e is admissible if and only if Π(e) lies in the cyclic multi-

plicative subgroup qZ generated by q.

TOME 72 (2022), FASCICULE 6
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3.2. Ranks and Orbits

The complement RX \RιX splits (if it is not empty) into a disjoint union
of 2-element orbits of ι say {α, q/α}. Let rX be the number of such orbits,
which is a nonnegative integer that vanishes if and only if RX = RιX . We
have

(3.4) # (RX \RιX) = 2rX ; rX 6
#(RX)

2 6
2g
2 = g.

If rX > 1 (i.e., RX 6= RιX) then we have rX 2-elements ι-orbits O1, . . . , OrX
in RX \ RιX . By choosing arbitrarily an element αi ∈ Oi for all i =
1, . . . , rX , we get

Oi = {αi, q/αi} ∀ i = 1, . . . , rX ;
RX \RιX = {α1, q/α1, . . . , αrX , q/αrX} .

(3.5)

Recall [21], that Γ(X, k) always contains q. Since β2 = q for all β ∈ RιX ,
the subgroup Γ1(X, k) of Γ(X, k) generated by q and all elements ofRX\RιX
has finite index in Γ(X, k). In particular,

(3.6) rk (Γ1(X, k)) = rk (Γ(X, k)) .

Clearly, if rX = 0 then Γ1(X, k) = qZ has rank 1, hence rk(Γ(X, k))
= 1. It follows from (3.5) that if rX > 1 then Γ1(X, k) is generated by
{α1, . . . , αrX ; q}. In particular,

(3.7) rk (Γ1(X, k)) 6 rX + 1.

Remark 3.3. — Suppose that k is not small w.r.t X. Then #(RιX) = 0
or 1 and therefore #(RX) = 2rX or 2rX + 1 respectively. In both cases

(3.8) rX =
⌊

#(RX)
2

⌋
.

Combining (3.8) with (3.7) and (3.6), we obtain that

(3.9) rk (Γ(X, k)) = rk (Γ1(X, k)) 6 rX + 1 =
⌊

#(RX)
2

⌋
+ 1.

3.3. Nontrivial and reduced admissible functions

The existence of a nontrivial admissible function implies certain restric-
tions on RX .

Lemma 3.4. — Suppose that there exists a nontrivial admissible func-
tion e : RX → Z of degree, say, d.

Then the following conditions hold.
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(i) RX 6= RιX , i.e., RX \RιX is a nonempty subset of RX .
(ii) For each nonzero integer m the function

m · e : RX → Z, α 7→ m · e(α)

is also nontrivial admissible.
(iii) Let us consider the function e0 : RX → Z that vanishes identically

on RιX (if this subset is nonempty) and coincides with e on RX \RιX .
Then e0 is nontrivial. In addition, for each nonzero even integer m
the function

m · e0 : RX → Z, α 7→ m · e0(α)

is nontrivial admissible, and its weight

(3.10) wt(m · e0) = |m|wt(e0) 6 |m|wt(e).

Proof. — If RιX = ∅ then all three assertions of Lemma are obviously
true. So, let us assume that RιX 6= ∅.

(i) Suppose that RX = RιX . Then∏
α∈Rι

X

αe(α) = qd and
∑

α∈Rι
X

e(α) = 2d

is an even integer. Since RιX consists of one or two elements and e is non-
trivial, there is β ∈ RιX such the e(β) is odd. This implies that RιX consists
of two elements, say, β and −β,

e(β) + e(−β) = 2d

and both integers e(β) and e(−β) are odd. This implies that (recall that
β2 = q)

qd = βe(β) · (−β)e(−β) = βe(β) · (−1) · βe(−β)

= −βe(β)+e(−β) = −β2d = −qd.

So, qd = −qd, which is absurd. The obtained contradiction proves (i).
(ii) The admissibility of m · e is obvious. The nontriviality is also clear if

there exists α ∈ RX \RιX with

e(α) 6= e(q/α).

So, we may assume that m · e is trivial (we are going to arrive to a contra-
diction), and

(3.11) e(α) = e(q/α) ∀ α ∈ RX \RιX .
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This implies that there is an integer n such that∏
α∈Rι

X

αe(α) = qn.

It follows that the sum

(3.12)
∑

α∈Rι
X

e(α) = 2n ∈ 2Z

is an even integer. On the other hand, the nontriviality of e combined
with (3.11) implies that there is β ∈ RιX with odd e(β). Since #(RιX) 6 2,
it follows from (3.12) that integer e(α) is odd for all α ∈ RιX . It follows that∏
α∈Rι

X
α = qd for some integer d. Therefore #(RιX) = 2d is a positive even

integer, i.e., RιX consists of two elements β,−β with β2 = q; in addition,
both integers e(β) and e(−β) are odd. The same computations as in the
proof of (i) give us that

qd = βe(β)(−β)e(−β) = −qd,

hence, qd = −qd. The obtained contradiction proves the nontriviality of
m · e.
(iii) Suppose that e0 is trivial, i.e.,

e(α) = e(q/α) ∀ α ∈ RX \RιX .

Then it is admissible and therefore there is an integer h such that∏
α∈RX\RιX

αe0(α) =
∏

α∈RX\RιX

αe(α) = qh.

Since e is admissible of degree d,∏
β ∈Rι

X

βe(β) = qd−h.

The nontriviality of e implies that there is β ∈ RιX such that integer e(β)
is odd. Now the same computations as in the proof of (i) give us that RιX
consists of two elements β and −β, both integers e(β) and e(−β) are odd
and eventually, qd−h = −qd−h. The obtained contradiction proves that e is
nontrivial, which is the first assertion of (iii).
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Let us prove the second asssertion of (iii). Since m is even, there is an
integer n such that m = 2n.We have

qmd =
( ∏
α∈RX

αe(α)

)m
=

 ∏
α∈RX\RιX

αe(α)

m

×

 ∏
β ∈Rι

X

βe(β)

m

=
( ∏
α∈RX

αm·e0(α)

)
×

 ∏
β ∈Rι

X

β2n·e(β)


=
( ∏
α∈RX

αm·e0(α)

)
×

 ∏
β ∈Rι

X

qn·e(β)

 .

This implies that
∏
α∈RX α

m·e0(α) is an integral power of q, i.e., m · e0 is
admissible. The nontriviality of m · e0 follows from the nontriviality of e0,
because e0 vanishes identically on RιX . This ends the proof of (iii). The
last assertion of (iii) about weights follows readily from obvious inequality
wt(e0) 6 wt(e). �

It turns out that one may easily construct a reduced admissible function
when k is small w.r.t X.

Lemma 3.5. — Assume that there are distinct α1, α2 ∈ RX such that
γ := α2/α1 is a root of unity. Then there is a reduced admissible function
e : RX → Z, whose weight w enjoys the following properties.

w 6 4e2(2g) if p 6= 2; w 6 2e3(2g)) if p = 2.

Proof. — Clearly, γ ∈ Γ(X, k). By Lemma 2.2, there is a positive integer
m such that

γm = 1; m 6 2e2(2g) if p 6= 2; m 6 e3(2g)) if p = 2.

Hence, it suffices to produce a reduced multiplicative relation of weight 2m.
To this end, notice that q/α1 ∈ RX and

αm2 (q/α1)m = qm.

If α2 6= q/α1 then we may define

e : RX → Z, e(α2) := m, e(q/α1) := m; e(α) := 0 for all other α.

Clearly, e is a reduced admissible function of weight 2m.
Suppose that α2 = q/α1. Since α1 6= α2,

α1 6= q/α1, α
2
1 6= q.
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Then we have

qm = (α1α2)m = α2m
1 , i.e., α2m

1 = qm.

Now let us consider

e : RX → Z, e(α1) := 2m; e(α) := 0 for all other α.

Clearly, e is a reduced admissible function of weight 2m. �

The next Lemma 3.6 asserts that the existence of a nontrivial admissi-
ble function implies the existence of a reduced admissible function, whose
weight we can control.

Lemma 3.6. — Let w be a positive integer. Suppose that k is not small
w.r.t X and there exists a nontrivial admissible function of weight 6 w.
Then there exist a nonempty subset A1 ⊂ RX , an integer-valued function

ẽ : A1 → Z, and a positive integer s 6 w that enjoy the following properties.
(1) ∀ α ∈ A1 we have q

α 6∈ A1, ẽ(α) > 0.
(2)

(3.13)
∏
α∈A1

αẽ(α) = qs.

In particular, if we define

f : RX → Z, f(α) := ẽ(α) ∀ α ∈ A1; f(α) := 0 ∀ α 6∈ A1

then f is a reduced admissible function of weight 2s 6 2w that
vanishes identically on RιX .

Proof. — By Lemma 3.4, RX \ RιX is not empty. Let e : RX → Z be
a nontrivial admissible function e of weight 6 w. Let us consider (in the
notation of Lemma 3.4) the function

h2 = 2 · e0 : RX → Z.

It follows from Lemma 3.4 that h2 is nontrivial admissible, it vanishes
identically on RιX and its weight does not exceed 2w. This implies that

(3.14)
∏

α∈RX\RιX

αh2(α) = qd, 2w >
∑

α∈RX

|h2(α)|

where d is an integer such that

|d| 6 wt(h2) 6 2w.

The nontriviality and vanishing everywhere at RιX of h2 imply that the
subset A of RX defined by

A := {α ∈ RX |h2(α) 6= h2(q/α)}
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is nonempty. It follows from the very definition that A is ι-invariant and
does not meet RιX . Let us define the subset A1 of A by

A1 := {α ∈ A |h2(α) > h2(q/α)} ⊂ A ⊂ RX .

Clearly, if α ∈ A then α ∈ A1 if and only if ᾱ = q/α 6∈ A1. This implies that
A1 is nonempty and A is the disjoint union of A1 and ι(A1). In particular,
#(A) = 2#(A1).
On the other hand, if

B := {β ∈ RX \RιX |h2(β) = h2(q/β)} ⊂ {RX \RιX}

then B is ι-invariant, RX \RιX is a disjoint union of A and B, and∏
β ∈B

βh2(β) = qn

for some integer n with

|n| 6 wt(h2) 6 2w.

Since RX \RιX is a disjoint union of A and B, it follows from (3.14) that∏
α∈A

αh2(α) = qd

qn
= qd−n.

Since A is a disjoint union of A1 and ι(A1), we get

qd−n =
( ∏
α∈A1

αh2(α)

)
×

( ∏
α∈A1

ι(α)h2(ια)

)

=
( ∏
α∈A1

αh2(α)

)
×

( ∏
α∈A1

(q/α)h2(q/α)

)

=
( ∏
α∈A1

αh2(α)−h2(q/α))

)
× qm

where m :=
∑
α∈A1

h2(q/α) ∈ Z. If we define the function

ẽ : A1 → Z, α 7→ h2(α)− h2(q/α)

then ẽ(α) > 0 ∀ α ∈ A1,

∑
α∈A1

ẽ(α) 6
∑
α∈A1

(|h2(α)|+ |h2(q/α)|) =
∑
α∈A

|h2(α)| 6 wt(h2) 6 2w,

and

qd−n =
( ∏
α∈A1

αẽ(α)

)
× qm,
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i.e., ∏
α∈A1

αẽ(α) = qd−n−m.

It remains to put s := d− n−m. This ends the proof of Lemma 3.6. �

The following assertion contains Lemma 1.7. (Recall that Γ1(X, k) is
defined in Subsection 3.2.)

Lemma 3.7. — Suppose that k is not small w.r.t X.
Then the following conditions are equivalent.
(1a) There is a nontrivial admissible function on RX .
(1b) There is a nontrivial admissible function on RX that vanishes at

RιX .
(2a) There is a reduced admissible function on RX .
(2b) There is a reduced admissible function on RX that vanishes at RιX .
(3a) rk(Γ(X, k)) 6 b#(RX)/2c.
(3b) rk(Γ1(X, k)) 6 b#(RX)/2c.

Proof. — Obviously, (1b) implies (1a), (2b) implies (2a) , (2a) implies
(1a), and (2b) implies (1b). By Lemma 3.6, (1a) implies (2b). This implies
that (1a), (1b), (2a), (2b) are equivalent.

In light of (3.6), conditions (3a) and (3b) are equivalent.
In order to handle conditions (3), let us discuss the parity of #(RX),

using the observations and notation of Subsection 3.1.
In order to check the equivalence of (1) and (3), let us start with the

“degenerate” case rX = 0, i.e., RX = RιX = {β}. Then Γ(X, k) is an infinite
cyclic group generated by β containing the index 2 subgroup generated by
β2 = q. Therefore rk(Γ(X, k)) = 1 > 0, i.e., (3a) does not hold. On the
other hand, we have already seen (Lemma 3.4) that if RX = {β} = RιX
then (1a) does not hold.
So, we may assume that RX 6= RιX . Then the positive integer rX =

b#(RX)/2c is the number of all ι-orbits O1, . . . , OrX in RX \ RιX , see
Subsection 3.2. If we choose any element αi of Oi for all i then the 2rX -
element set

RX \RιX = {α1, q/α1, . . . , αrX , q/αrX}
and Γ1(X, k) is generated by q and {α1, . . . , αrX}, see Subsection 3.2.
Suppose that (3b) holds. This means that rk(Γ1(X, k)) 6 rX . Hence,

there are (rX + 1) integers f1, . . . , frX ; d not all zeros, such that

(3.15)
rX∏
i=1

αfii = qd.

ANNALES DE L’INSTITUT FOURIER



TATE CLASSES ON ABELIAN VARIETIES 2357

Clearly, not all f1, . . . , frX are zeros. Let us define the function

(3.16) e : RX → Z, e(αi) = fi ∀ i = 1, . . . , rX ; f(α) = 0 for all other α.

In light of (3.15) and (3.16), e is a nontrivial admissible function. Hence,
(1a) holds.
Now assume that (1a) holds. Then (2b) holds, i.e., there are a nonempty

subset A1 ⊂ RX , a function ẽ : A1 → Z and a positive integer s that enjoy
the following properties.

(i) A1 and ι(A1) do not meet each other;
(ii) ẽ(α) > 0 ∀ α ∈ A1;
(iii)

∏
α∈A1

αẽ(α) = qs.
Let us put n := #(A1) and let A1 = {α1, . . . αn}. Then all Oi = {αi, q/αi}
are disjoint 2-element orbits in RX \RιX . In particular, n 6 rX .

If n = rX then {α1, . . . , αrX ; q} generate Γ1(X, k). The property (iii)
implies that the rank of this group does not exceed rX , i.e., (3b) holds.
Now assume that n < rX . Then there are precisely (rX − n) other

two-element ι-orbits Oj in RX (j = n + 1, . . . rX). If we pick for all
j an element δj ∈ Oj then Oj = {δj , q/δj} (n + 1 6 j 6 rX). Then
{α1, . . . , αn; δn+1, . . . , δrX ; q} generate a subgroup of finite index in
Γ1(X, k). The property (iii) implies that the rank of this group does not
exceed rX , i.e., (3b) holds. This ends the proof of Lemma 3.7. �

4. Frames and Skeletons of Abelian Varieties over Finite
Fields

In the course of our proof of Theorem 1.4 we will need the following
notion.

Definition 4.1. — Let g be a positive integer. A g-frame is a triple
(M, r, U) that consists of positive integers M and r, and a finite subset

U ⊂ QM

of nonzero vectors that enjoy the following properties.
(i) M divides 2gg!, r 6 g, and #(U) = 2r.
(ii) U ⊂ Slp(g)M ⊂ QM (see Lemma 2.3 for the definition of the finite

subset Slp(g) ⊂ Q).
(iii) A vector u ∈ QM lies in U if and only if 1 − u lies in U . Here

1 = (1, . . . , 1) ∈ QM is the vector, all whose coordinates are 1.
(iv) Let ∆(U) be the additive subgroup of QM generated by 1 and all

elements of U . Then the rank of ∆(U) does not exceed r.
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Remark 4.2. — The finiteness of Slp(g) implies that the set of all frames
(for a given g) is finite.

4.1. Properties of frames

The map

(4.1) ιF : QM → QM , u 7→ 1− u

is an involution, whose only fixed point is

1
2 · 1 = (1/2, . . . , 1/2).

Notice that

ιF (U) = U.

Since #(U) is even, U does not contain the fixed point 1
2 · 1 and therefore

splits into a disjoint union of 2-element ιF -orbits O1, . . . , Or. If we choose
in each Oi a vector ui ∈ Oi then

Oi = {ui,1− ui} ∀ i = 1, . . . , r;
U = {u1, 1− u1, . . . , ui,1− ui, . . . , 1− ur}

(4.2)

Definition 4.1(iv) combined with (4.2) implies that there exist integers
a1, . . . , ar not all zeros and an integer d such that

(4.3)
r∑
i=1

aiui = d · 1 = (d, . . . , d) .

Lemma 4.3. — Let g be a positive integer. Then there is a positive
integer C(g) that depends only on g and enjoys the following property.
Let (M, r, U) be a g-frame. Then there are exist r integers a1, . . . , ar not

all zeros, an integer d, and r distinct vectors u1, . . . , ur in U such that:

(i) the 2r-element set U = {u1,1− u1, . . . , ui,1− ur};
(ii)

∑r
i=1 aiui = d · 1 = (d, . . . , d);

(iii)
∑r
i=1 |ai| 6 C(g).

Proof. — The assertions follow readily from the construction of Subsec-
tion 4.1 combined with Remark 4.2. �
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4.2. Skeletons of abelian varieties

Let X be a g-dimensional abelian variety over a finite field k of charac-
teristic p. Suppose that k is not small with respect to X and there exists
a nontrivial admissible function RX → Z. The aim of this subsection is to
assign to X a certain g-frame that we call the skeleton of X.

First, let us put r := rX and M := MX := #(S(p)) where S(p) is the
set of maximal ideals in OLX that lie above p (see Remark 2.4). It follows
from Lemma 2.5 that M divides 2g · g!. By Lemma 3.4, the existence of
a nontrivial admissible function implies that RX 6= RιX and r = rX is a
positive integer. In addition (see (3.4)),

r 6 g, 2r = # (RX \RιX) .

Let us choose an order on theM -element set S(p). This allows us to identify
S(p) with {1, . . . ,M} and QS(p) with QM . Let us put

U = UX := wX (RX \RιX) ⊂ QS(p) = QM

(where homomorphism wX is defined in Remark 2.4). It follows from Re-
mark 2.4(d) that the map

(4.4) RX \RιX → UX , α 7→ wX(α)

is injective; in particular,

2r = 2rX = # (RX \RιX) = #(UX).

Since ker(wX) consists of roots of unity (see Remark 2.4(d)), the rank
of ∆(UX) coincides with the rank of multiplicative Γ1(X, k) generated by
RX \RιX . The existence of a nontrivial admissible function implies (thanks
to Lemma 3.7) that

(4.5) rk (∆(UX)) = rk (Γ1(X, k)) 6 rX .

I claim that (MX , rX , UX) is a g-frame. Indeed, it follows from Re-
marks 2.4 that

(4.6) wX(q) = 1;wX(α) 6= 0, wX(q/α) = 1− wx(α) ∀ α ∈ RX \RιX .

This implies that (MX , rX , UX) enjoys the properties (i)-(iii). As for (iv),
its validity follows from (4.5).
Proof of Theorem 1.4. — Let g be a positive integer. In light of Lem-

ma 3.5, we may and will assume that k is not small w.r.t. X. In light of
Lemma 3.6, it suffices to prove the following assertion.
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Claim 4.4. — There exists a positive integer E(g) that depends only
on g and enjoys the following property. Suppose that X is a g-dimensional
abelian variety over a finite field k such that k is not small w.r.t. X and
there exists a nontrivial admissible function RX → Z.

Then there exists a nontrivial admissible function RX → Z of weight
6 E(g).

Proof of Claim. — Let X be an g-dimensional abelian variety over a
finite field k such that k is not small w.r.t. X and there exists a nontrivial
admissible function RX → Z. Let us consider the corresponding g-frame
(MX , rX , UX). It follows from the injectiveness of the map (4.4) combined
with Lemma 4.3 that there exist rX distinct elements α1, . . . , αrX ∈ RX \
RιX , rX integers a1, . . . , arX , and an integer d that enjoys the following
properties.

(1) RX \RιX = {α1, q/α1 . . . , αrX , q/αrX}.
(2) Not all a1, . . . arX are zero.
(3)

∑rX
i=1 aiwX(αi) = d · 1 = (d, . . . , d).

(4)
∑r
i=1 |ai| 6 C(g). (Here C(g) is as in Lemma 4.3.)

It follows from Remark 2.4(d) that there exists a root of unity γ ∈
Γ(X, k) such that

rX∏
i=1

αaii = qdγ.

According to Lemma 2.2, there exists a positive integerm 6 D(g) such that
γm = 1. (See Lemma 2.2 for the explicit formula of D(g).) This implies
that

rX∏
i=1

αmaii = qmd.

This implies that the function

e : RX → Z, e(αi) = m · ai ∀ αi, e(α) = 0 forall other α

is admissible. On the other hand, it follows from properties (1) and (2) that
e is nontrivial. In order to finish the proof of Claim, one has only to notice
that

wt(e) =
rX∑
i=1
|ai| = m

rX∑
i=1
|ai| 6 D(g) · C(g) =: E(g). �

This ends the proof of Theorem 1.4. �
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5. Applications of Gordan’s Lemma

In order to prove Theorem 1.10, we need the following variant of a clas-
sical result of P. Gordan.

Lemma 5.1. — Let m and s be positive integers and v1, . . . vs be ele-
ments of Qm. Let us consider the addditive semigroup

W =
{
u ∈ Zm+

∣∣u · vj = 0 ∀ j = 1, . . . , s
}
⊂ Zm+ .

Then W is a finitely generated semigroup of Zm+ .

Proof. — Replacing all vj by Nvj , where N is a sufficiently divisible
positive integer, we may and will assume that vj ∈ Zm for all j = 1, . . . , s.
Let us consider the rational polyhedral cone σ ⊂ Rm that is generated

by the standard basis of Rm and all the vectors {v1, . . . vs}. Then the dual
cone is

σ∨ =
{
u ∈ Rm+

∣∣u · vj > 0 ∀ j = 1, . . . , s
}
.

By Gordan’s Lemma [3, Chapter 1, Proposition 1.2.17], σ∨∩Zm is a finitely
generated additive semigroup. Let G be a finite subset of σ∨ ∩ Zm that
contains 0 and generates σ∨ ∩ Zm. Then the intersection G ∩W is a finite
subset ofW that contains 0. I claim thatG∩W generatesW as a semigroup.
Indeed, if w ∈ W then w ∈ σ∨ ∩ Zm and therefore there exists a positive
integer r and (not necessarily distinct) r elements g1, . . . gr ∈ G such that
w =

∑r
i=1 gi. We have for all j = 1, . . . , s

0 = w · vj =
r∑
i=1

gi · vj , gi · vj > 0 ∀ i = 1, . . . , s.

This implies that all gi · vj = 0 and therefore all gi ∈ W , i.e., gi ∈ G ∩W .
It follows that G ∩W generates W as a semigroup. �

We also need the following elementary observation.

Lemma 5.2. — Suppose that X is an abelian variety of positive dimen-
sion g over a finite field k with q elements. Suppose that k is sufficiently
large w.r.t. X. Then a nonnegative integer-valued function e : RX → Z+ of
even weight is admissible if and only if

(5.1) wX

( ∏
α∈RX

(
α2/q

)e(α)
)

= 0 ∈ QS(p).

Remark 5.3. — Let e : RX → Z+ be an admissible nonnegative integer-
valued function. Then its weight is twice its degree and therefore is even.
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Proof of Lemma 5.2. — Since e is nonnegative, its weight coincides with∑
α∈RX

e(α) =: n.

Since this weight is even, there is a nonnegative integer d such that n = 2d.
Now notice that in light of Remark 2.4(d), (5.1) holds if and only if∏
α∈RX (α2/q)e(α) is a root of unity. This means that

∏
α∈RX (α2/q)e(α) =

1, because k is sufficiently large w.r.t. X. Hence, (5.1) means that( ∏
α∈RX

αe(α)

)2

= qn with n =
∑

α∈RX

e(α) = 2d.

This means that

(5.2)
∏

α∈RX

αe(α) = ±qd.

Since torsion-free Γ(X, k) does not contain −1, (5.2) is equivalent to∏
α∈RX

αe(α) = qd,

i.e, e is admissible. �

Proof of Theorem 1.10. — LetX be an abelian variety of positive dimen-
sion g over a finite field k of characteristic p. Suppose that k is sufficiently
large w.r.t. X. Let us put s := #(S(p)). By Lemma 2.5, s divides 2g ·g!. Let
us choose an order in S(p). This allows us to identify S(p) with {1, . . . , s}
and QS(p) with Qs. Let us choose an order on RX : it allows us to list ele-
ments of RX as {α1, . . . , αm} with m = #(RX). We have m 6 2g. Let us
consider an additive group homomorpism

w̃X : Zm → QS(p) = Qs,

u = (a1, . . . am) 7→ wX

(
m∏
i=1

(
α2
i /q
)ai)

= 2
m∑
i=1

aiwX(αi)−
(

m∑
i=1

ai

)
· 1.

Clearly, there is a unique collection of s vectors v1, . . . vs ∈ Qm such that

w̃X(u) = (u · v1, . . . , u · vs) ∀ u ∈ Zm.

It is also clear that all the coordinates of all vj ’s lie in the same finite set

2 · S(g)− 1 := {2c− 1|c ∈ S(g)} ⊂ Q
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that depends only on g. This implies that all the vj ’s lie in the same finite
subset

(2 · S(g)− 1)m ⊂ Qm

of Qm that depends only on g and m. Combining this assertion with
Lemma 5.1, we obtain that for each positive integers m 6 2g and s di-
viding 2g · g! there is a finite subset F0(g,m, s) ∈ Zm+ that depends only on
g, m, s and enjoys the following property.
If #(RX) = m and #(S(p)) = s then the additive semigroup ker(w̃X) ∩

Zm+ of Zm+ is generated by a certain subset of F0(g,m, s).
Now let as define the weight wt(u) of any u = (a1, . . . , am) ∈ Zm+ as∑m
i=1 ai. It follows from Remark 5.3 combined with Lemma 5.2 that an

integer-valued nonnegative function

bu : RX → Z+, αi 7→ ai

is admissible if and only if u ∈ ker(w̃X)∩Zm+ and wt(u) is even. (It is also
clear that each admissible nonnegative function e : RX → Z+ coincides
with bu for exactly one vector u ∈ Zm+ .) Then such u may be presented as a
sum of (not necessarily distinct) elements of F0(g,m, s). It may happen that
some elements of F0(g,m, s) in this sum have odd weight. Since the weight
of u is even, the number of such summands is even. By grouping them in
pairs, we obtain that u is a finite sum of some even weight elements from
F0(g,m, s) and even weight elements from F0(g,m, s) + F0(g,m, s) ⊂ Zm+ .
Now let F (g,m, s) ⊂ Zm+ be the (finite) set of all even weight vectors from
F0(g,m, s) and from F0(g,m, s) + F0(g,m, s). Clearly, each u ∈ F (g,m, s)
gives rise to nonnegative admissible bu : RX → Z+ and each nonnegative
admissible e : RX → Z+ may be presented as a linear combination of such
bu’s with nonnegative integer coefficients. Now one only has to choose as
H(g) the largest of the weights of b among all u (with even weight) in the
union of all F (g,m, s) where 1 6 m 6 2g and s | 2g · g!. �

Theorem 1.10 implies readily the following assertion.

Corollary 5.4. — Let g be a positive integer and H(g) be as in The-
orem 1.10.
Let X an abelian variety of positive dimension g over a finite field k. Let

e : RX → Z+ be a nonnegative admissible function. If wt(e) > H(g) then
e may be presented as a sum e = f1 + f2 of two nonnegative admissible
functions

f1 : RX → Z+, f2 : RX → Z+

such that 2 6 wt(f2) 6 H(g).
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6. Linear Algebra

Throughout this section, V is a nonzero vector space of finite dimension
n over a field K of characteristic 0, and E is an overfield of K. We write
VE for the E-vector space V ⊗K E of the E-dimension n. Let us put

V ∗ = HomK(V,K), V ∗E = HomE (VE , E) .

Let A : V → V be a K-linear operator and

A∗ : V ∗ → V ∗, φ 7→ φ ◦A ∀ φ ∈ V ∗.

As usual, let us define

AE ∈ End(VE), AE(v ⊗ e) = Av ⊗ e ∀ v ∈ V, e ∈ E.

Clearly,

(AE)∗ = (A∗)E : V ∗E → V ∗E .

Remark 6.1. — Let a ∈ K ⊂ E and V (a) (resp. VE(a)) be the eigenspace
of A (resp. of AE) attached to eigenvalue a. It is well known that the natural
E-linear map

V (a)⊗K E → VE(a)

is an isomorphism of E-vector spaces; in particular,

dimK(V (a)) = dimE (VE(a)) ∀ a ∈ K ⊂ E.

There are well known natural isomorphisms [2, Chapter III, Section 7,
Proposition 7] of graded K-algebras

∧ (V ∗) = ⊕nj=0 ∧
j
K (V ∗) = ⊕nj=0HomK

(
∧jK(V ),K

)
and of graded E-algebras [2, Chapter III, Section 7, Proposition 8]

∧ (V ∗E) = ⊕nj=0 ∧
j
E (V ∗E) = ⊕nj=0HomE

(
∧jE(VE), E

)
= ⊕nj=0HomK

(
∧jK(V ),K

)
⊗K E,

which give rise to the natural isomorphisms of E-vector spaces

(6.1) ∧jK (V ∗)E ∼= ∧
j
E (V ∗E) .
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6.1. Wedge products

Let i and j be nonnegative integers. The multiplication in ∧(V ∗) (resp.
in ∧(V ∗E)) gives rise to the surjective K-linear map

(6.2) Λi,j,K : ∧iK (V ∗)⊗K ∧jK (V ∗)� ∧i+jK (V ∗) , ψi ⊗ ψj 7→ ψi ∧ ψj
and to the surjective E-linear map

(6.3) Λi,j,E : ∧iE (V ∗E)⊗E ∧jE (V ∗E)� ∧i+jE (V ∗E) , ψi ⊗ ψj 7→ ψi ∧ ψj .

Let U be a K-vector subspace in ∧iK(V ∗) and W be a K-vector subspace
in ∧jK(V ∗). Then obviously the images Λi,j,K(U ⊗K W ) ⊂ ∧i+jK (V ∗) and
Λi,j,E(UE ⊗E WE) ⊂ ∧i+jE (V ∗E) are related by

(6.4) Λi,j,E (UE ⊗E WE) = Λi,j,K (U ⊗K W )E .

Here we identify UE (resp. WE) with its isomorphic image in ∧iK(V ∗)E =
∧iE(V ∗E) (resp. in ∧jK(V ∗)E = ∧jE(V ∗E)).
The equality (6.4) implies readily its own generalization. Namely, let n

be a positive integer and suppose that for each positive integer r 6 n we
are given K-vector subspaces

Ur ⊂ ∧iK (V ∗) , Wr ⊂ ∧jK (V ∗) .

Then

(6.5)
n∑
r=1

Λi,j,E (Ur,E ⊗E Wr,E) =
(

n∑
r=1

Λi,j,K (Ur ⊗K Wr)
)
E

.

Here
Ur,E = Ur ⊗K E, Wr,E = Wr ⊗K E.

6.2. Wedge products of eigenspaces

The operators A∗ and A∗E give rise to the graded K-algebra and graded
E-algebra endomorphisms

∧ (A∗) : ∧ (V ∗)→ ∧ (V ∗) , ∧ (A∗E) : ∧ (V ∗E)→ ∧ (V ∗E)

[2, Chapter III, Section 7, Proposition 2], whose homogeneous components
are K-linear and E-linear operators

∧j (A∗) : ∧jK (V ∗)→ ∧jK (V ∗) , ∧jE (A∗E) : ∧jE (V ∗E)→ ∧jE (V ∗E)

respectively, such that

(6.6) ∧j (A∗E) = ∧j (A∗)E .
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Since ∧(A) and ∧(A∗E) respect the multiplication in ∧(V ∗) and ∧(V ∗E) re-
spectively,

(6.7) ∧i (A∗) (ψi) ∧ ∧j (A∗) (ψj)

= ∧i+j (A∗) (ψi ∧ ψj) ∈ ∧i+j (V ∗) ∀ ψi ∈ ∧i (V ∗) , ψj ∈ ∧j (V ∗) ;

∧i (A∗E) (ψi,E) ∧ ∧j (A∗E) (ψj,E)

= ∧i+j (A∗E) (ψi,E ∧ ψj,E) ∈ ∧i+j (V ∗E)

∀ ψi,E ∈ ∧i (V ∗E) , ψj,E ∈ ∧j (V ∗E) .

The following assertion is an immediate corollary of (6.7) and (6.6).

Lemma 6.2. — Let j1, j2 be positive integers such that j1+j2 6 dim(V ).
Let λ1, λ2 be elements of K. Let ∧jrK(V ∗)(λr) ⊂ ∧jrK(V ∗) be the eigenspace
of ∧jr(A∗) attached to λr (r = 1, 2). Then the image of the K-linear map

∧j1
K (V ∗) (λ1)⊗K ∧j2

K (V ∗) (λ2)→ ∧j1+j2
K (V ∗) , ψj1 ⊗ ψj2 7→ ψj1 ∧ ψj2

lies in the eigenspace ∧j1+j2
K (V ∗)(λ1λ2) of ∧j1+j2(A∗) attached to λ1λ2.

Remark 6.3. — The K-linear map in Lemma 6.2 is the restriction of
Λj1,j2,K defined in Subsection 6.1.

Remark 6.4. — Applying Remark 6.1 to ∧j(A∗) : ∧jK (V ∗) → ∧jK(V ∗)
(instead of A : V → V ), we obtain that if λ ∈ K ⊂ E and ∧jK(V ∗)(λ) (resp.
∧j(V ∗E)(λ)) is the attached to λ eigenspace of ∧j(V ∗) (resp. of ∧j(V ∗E)) then
the natural E-linear map

∧jK (V ∗) (λ)⊗K E → ∧j (V ∗E) (λ)

induced by (6.1) is an isomorphism. Combining this assertion with Lem-
ma 6.2 applied twice (overK and over E), we get immediately the following
assertion.

Lemma 6.5. — Let j1, j2 be positive integers such that j1+j2 6 dim(V ).
Let λ1, λ2 ∈ K ⊂ E. We keep the notation and assumptions of Lemma 6.2.
The E-linear map

∧j1
E (V ∗E) (λ1)⊗E ∧j2

E (V ∗E) (λ2)→ ∧j1+j2
E (V ∗) (λ1λ2), ψ1 ⊗ ψ1 7→ ψ1 ∧ ψ2

is not surjective if and only if the K-linear map

∧j1
K (V ∗) (λ1)⊗K ∧j2

K (V ∗) (λ2)→ ∧j1+j2
K (V ∗) (λ1λ2) , ψ1 ⊗ ψ1 7→ ψ1 ∧ ψ2

is not surjective. Here ∧jE(V ∗E)(λ) ⊂ ∧jE(V ∗E) is the eigensubspace of ∧j(A∗E)
attached to λ.
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6.3. Main construction

We keep the notation of Remark 6.4. Suppose that AE : VE → VE is
diagonalizable, spec(A) ⊂ E is the set of its eigenvalues, and multA :
spec(A)→ Z+ is the integer-valued function that assigns to each eigenvalue
of AE its multiplicity.

Let λ ∈ K and j 6 dim(V ) be a positive integer. Let us consider an
integer-valued function e : spec(A)→ Z+ that enjoys the following proper-
ties.

(i) e(α) 6 multA(α) ∀ α ∈ spec(A);
(ii)

∑
α∈ spec(A) e(α) = j;

(iii)
∏
α∈ spec(A) α

e(α) = λ.
Let us choose an eigenbasis B of E-vector space VE w.r.t. AE and let

π : B � spec(A)

be the surjective map that assigns to each eigenvector x ∈ B the corre-
sponding eigenvalue of AE . Clearly, for every eigenvalue α ∈ spec(A) the
preimage π−1(α) consists of multA(α) elements of B. Let

B∗ = {x∗ |x ∈ B}

be the basis of V ∗E that is dual to B. Let us choose an order on B and define
for each j-element subset C ⊂ B an element

yC := ∧x∈Cx∗ ∈ ∧j (V ∗E) .

Clearly, all yC ’s constitute an eigenbasis of ∧j(V ∗E) w.r.t. ∧j(A∗). Actually,

∧j (A∗) (yC) =
(∏
x∈C

π(x)
)
yC .

Let us assign to C the integer-valued function

(6.8) eC : spec(A)→ Z+, α 7→ #
(
{x ∈ C |π(x) = α}

)
.

Clearly, yC is an eigenvector of ∧j(A∗) with eigenvalue λ if and only if
e = eC enjoys the properties (i)-(iii). This implies that the set of yC ’s such
that eC satisfies (i)-(iii) is a E-basis of the eigenspace ∧j(V ∗E)(λ).

Conversely, suppose that e : spec(A)→ Z+ is an integer-valued function
that enjoys the properties (i)-(iii). I claim that there exists a j-element
subset C ⊂ B such that e = eC . Indeed, let us choose a e(α)-element subset
Cα ⊂ π−1(α) ⊂ B for all α ∈ spec(A) with e(α) > 0. The property (i)
guarantees that such a choice is possible (but not necessarily unique). Now
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define C as the (disjoint) union of all these Cα’s. Property (ii) implies that
B is a j-element subset of B. It follows from (iii) that yC ∈ ∧j(V ∗E)(λ).

The following assertion will be used in the proof of Theorem 1.8 (with
K = Q`, V = V`(Xn), A = FrXn).

Proposition 6.6. — We keep the notation and assumptions of Sub-
section 6.3, Remark 6.1 and Lemma 6.5. In particular, AE : VE → VE is
diagonalizable. Assume additionally that A : V → V is invertible, j1 = j−2
and j2 = 2. Suppose that λ1 and λ2 are nonzero elements of K and j > 2,
i.e., j1 > 1. Then the following conditions are equivalent.

(a) The K-linear map

(6.9) ∧j−2
K (V ∗) (λ1)⊗K ∧2

K (V ∗) (λ2)→ ∧jK (V ∗) (λ1λ2) , ψ ⊗ φ 7→ ψ ∧ φ

is not surjective.
(b) There exists a function e : spec(A)→ Z+ that enjoys the following

properties.
(i) e(α) 6 multA(α) ∀ α ∈ spec(A);
(ii)

∑
α∈ spec(A) e(α) = j;

(iii)
∏
α∈ spec(A) α

e(α) = λ1λ2.
(iv) If α ∈ spec(A) and e(α) 6= 0 then e(α) > 1 and one of the

following conditions holds.
(1) λ2/α 6∈ spec(A);
(2) λ2/α ∈ spec(A) but e(λ2/α) = 0.
(3) α = λ2/α (i.e., α2 = λ2) and e(α) = 1.

Remark 6.7. — The invertibility of A means that 0 6∈ spec(A).

Remark 6.8. — In light of Lemma 6.5, it suffices to check that condi-
tion (b) is equivalent (in the obvious notation) to the non-surjectiveness of
the E-linear map

(6.10) ∧j−2
E (V ∗E) (λ1)⊗E ∧2

E (V ∗E) (λ2)→ ∧j (V ∗) (λ1λ2), ψ⊗ φ 7→ ψ ∧ φ.

Proof of Proposition 6.6. — We start with the following lemma that
describes the image of map (6.10).

Lemma 6.9. — The image of map (6.10) is generated by all yC ’s where
C is any j-element subset of B that enjoys the following properties.
The set C is a disjoint union of a (j−2)-element subset S and a 2-element

subset T such that the corresponding functions

eS : spec(A)→ Z+, eT : spec(A)→ Z+
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defined by(6.8) enjoy the following properties.

(6.11)
∏

α∈ spec(A)

αeS(α) = λ1,
∏

α∈ spec(A)

αeT (α) = λ2.

Proof of Lemma 6.9. — It follows from arguments of Subsection 6.3 that
all the yS ’s (resp. all the yT ’s) where S is any (j − 2)-element subset of B
(resp. where T is any 2-element subset of B) that satisfies (6.11) constitute
a basis of ∧j−2

E (V ∗E)(λ1) (resp. a basis of ∧2
E(V ∗E)(λ2). This implies that

the image of map (6.10) is generated by all yS ∧ yT . If S meets T then it
follows from the very definition of yS and yT and basic properties of wedge
products that yS ∧ yT = 0. On the other hand, if S does not meet T then
C := S ∪ T = S t T is a j-element subset of B and yS ∧ yT = ±yC . This
ends the proof. �

Now let us start to prove Proposition 6.6. Suppose that condition (b)
holds. In light of Remark 6.8, it suffices to check that map (6.10) is not
surjective. To this end, choose an eigenbasis B of VE w.r.t. AE , and choose
an order on B. Using arguments of Subsection 6.3, choose a j-element
subset C̃ ⊂ B such that the function

eC̃ : spec(A)→ Z+

coincides with e and therefore enjoys properties (bi)-(biv). Then

yC̃ ∈ ∧
j (V ∗) (λ1λ2).

I claim that yC̃ does not lie in the image of map (6.10). Indeed, ∧j−2
E (V ∗E)

(λ1) is generated as the E-vector space by elements of the form yS , where
S are (j−2)-element subsets of B such that

∏
b∈S π(b) = λ1. On the other

hand, ∧2
E(V ∗E)(λ2) is generated as the E-vector space by elements of the

form yT , where T are 2-element subsets of B such that
∏
b∈T π(b) = λ2.

This implies that the image of map (6.10) is generated as the E-vector space
by all yB ∧ yT . If S meets T then (as we have already seen) yS ∧ yT = 0.
If S does not meet T then S ∪ T = S t T is a j-element subset of B and
yS ∧ yT = ±yS ∪T .

Lemma 6.10. — The j-element C̃ does not coincide with any of S ∪ T .

Proof of Lemma 6.10. — Suppose C̃ = S ∪ T . This implies that C̃
contains a subset T that consists of two distinct elements say x1, x2 ⊂ B

with π(x1)π(x2) = λ2. So, C̃ contains these x1, x2. It follows from the
definition of eC̃ (6.8) that if we put

α1 = π(x1), α2 = π(x2)
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then α1, α2 ∈ spec(A) and

α1α2 = λ2, e(α1) > 1, e(α2) > 1, e(α1) + e(α2) > 2.

If α1 6= α2 = λ2/α1 then e(α1) > 1, e(λ2/α1) > 1, which violates prop-
erty (biv). If α1 = α2 then α2 = λ2/α1. It follows that α1 = π(x1) = π(x2)
and therefore e(α1) > 2, which also contradicts property (biv). This ends
the proof. �

End of Proof of Proposition 6.6. — Taking into account that the set of
all yC ’s where C runs through all j-element subsets of B is linearly indepen-
dent, we conclude that yC̃ cannot be presented as a E-linear combination
of yS∪T ’s and therefore does not lie in the image of map (6.10). Hence, (a)
holds. We proved that (b) implies (a).
Suppose that map (6.10) is surjective, i.e., (a) does not hold. We need to

prove that (b) does not hold as well. Let e : spec(A) → Z+ be a function
that enjoys the properties (i)-(iii) of Subsection 6.3. We need to check that
e does not enjoy property 6.6(biv). Using arguments of Subsection 6.3,
choose a j-element subset C̃ ⊂ B such that the function

eC̃ : spec(A)→ Z+

coincides with e and therefore enjoys properties (bi)-(biii). This implies
that

yC̃ ∈ ∧
j(V ∗)(λ1λ2).

Let us check that e = eC̃ does not enjoy property (biv). Indeed, we know
that yC̃ lies in the image of map (6.10). It follows from Lemma 6.9 that
there is a positive integer m, m pairs of subsets (S1, T1), . . . , (Sm, Tm) in
B, and m elements a1, . . . , am ∈ E such that each S = Sr and T = Tr are
disjoint (j − 2)-element and 2-element subsets of B that satisfy (6.11) for
all r = 1, . . . , m, and such that

yC̃ =
m∑
r=1

arySr tTr .

Let us choose such a presentation for yC̃ with smallest possible m. In this
case all the j-element subsets Sr tTr are distinct. Now the linear indepen-
dence of all yC (where C ⊂ B is a j-element subset) implies that m = 1
and C̃ coincides with S1 t T1.
So, T1 consists of two distinct elements say, x1, x2. Let us put

α1 := π(x1) ∈ spec(A), α2 = π(x2) ∈ spec(A).

It follows from (6.11) that α1α2 = λ2. This implies that

e(α1) = eC̃(α1) > 1, e(α2) = eC̃(α2) > 1.
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If α1 6= α2 then property (biv) does not hold for e. If α1 = α2 then

π(x1) = α1 = λ/α1 = α2 = π(x2)

and therefore e(α1) > 2, hence, property (biv) does not hold for e. This
ends the proof of Proposition 6.6. �

The following assertion will be used in the proof of Theorem 1.11 (with
K = Q`, V = V`(Xn), A = FrXn).

Proposition 6.11. — We keep the notation and assumption of Sub-
section 6.3. Assume additionally that char(K) = 0, dimK(V ) is even, and
A : V → V is invertible. Let q be a nonzero element of K that is not a
root of unity. Let h and m be positive integers that enjoy the following
properties.

(i) h < m 6 dimK(V )/2.
(ii) If e : spec(A)→ Z+ is any nonnegative integer-valued function such

that ∑
α∈ spec(A)

e(α) = 2m,
∏

α∈ spec(A)

αe(α) = qm

then there exist positive integers j1, j2 and nonnegative integer-
valued functions

f1 : spec(A)→ Z+, f2 : spec(A)→ Z+

such that

m = j1 + j2, j2 6 h;
e(α) = f1(α) + f2(α) ∀ α ∈ spec(A);

∑
α∈ spec(A)

f1(α) = 2j1,
∏

α∈ spec(A)

αf1(α) = qj1 ,

∑
α∈ spec(A)

f2(α) = 2j2,
∏

α∈ spec(A)

αf2(α) = qj2 .

Then

(6.12)
h∑
j=1

Λ2(m−j),2j,K

(
∧2(m−j)
K (V ∗)

(
qm−j

)
⊗K ∧2j

K (V ∗)
(
qj
))

= ∧2m
K (V ∗) (qm) .
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Proof. — In light of Remark 6.3 and arguments of Subsection 6.1, it
suffices to check that

(6.13)
h∑
j=1

Λ2(m−j),2j,E

(
∧2(m−j)
E (V ∗E)

(
qm−j

)
⊗E ∧2j

E (V ∗E)
(
qj
))

= ∧2m
E (V ∗E) (qm) .

Recall that (in the notation of Subsection 6.3) that B is an (ordered) eigen-
basis of VE and all the 2m-element subsets C ⊂ spec(A) with

∏
α∈C α =

qm give rise to the base {yC = ∧x∈Cx∗} of ∧2m
E (V ∗E)(qm). So, it suffices to

prove that each such yC lies in one of the summands in LHS of (6.13). To
this end, let us consider the nonnegative integer-valued function

eC : spec(A)→ Z+, e(α) = #(C(α))
where C(α) := {x ∈ C ⊂ B|π(x) = α} .

(see (6.8)). Clearly,∑
α∈ spec(A)

eC(α) = #(C) = 2m,
∏

α∈ spec(A)

αeC(α) =
∏
α∈C

α = qm.

By property (ii), there exist positive integers j1, j2 and nonnegative integer-
valued functions

f1 : spec(A)→ Z+, f2 : spec(A)→ Z+

such that

m = j1 + j2, j2 6 h;
e(α) = f1(α) + f2(α) ∀ α ∈ spec(A);∑

α∈ spec(A)

f1(α) = 2j1,
∏

α∈ spec(A)

αf1(α) = qj1 ,

∑
α∈ spec(A)

f2(α) = 2j2,
∏

α∈ spec(A)

αf2(α) = qj2 .

Let us partition each C(α) into a disjoint union of two sets

C(α) = C(α)1 ∪ C(α)2 with C(α)1 ∩ C(α)2 = ∅,
#(C(α)1) = f1(α), #(C(α)2) = f2(α)

and define C1 (resp. C2) as the (disjoint) union of all C(α1) (resp. of all
C(α2)). Then C becomes a disjoint union of C1 and C2, and

f1 = eC1 , f2 = eC2 .
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It follows that ∑
α∈ spec(A)

eC1(α) = 2j1,
∏

α∈ spec(A)

αeC1 (α) = qj1 ,

∑
α∈ spec(A)

eC2(α) = 2j2,
∏

α∈ spec(A)

αeC2 (α) = qj2 .

This implies that

yC1 ∈ ∧
2(j1)
E (V ∗E)

(
qj1
)

= ∧2(m−j2)
E (V ∗E)

(
qm−j2

)
, yC2 ∈ ∧

2(j2)
E (V ∗E)

(
qj2
)
.

Since C is a disjoint union of C1 and C2,

yC =

±yC1∧yC2 ∈ Λ2(m−j2),2j2,E

(
∧2(m−j2)
E (V ∗E)

(
qm−j2

)
⊗E ∧2j2

E (V ∗E)
(
qj2
))
.

In order to finish the proof, one has only to recall that j 6 h2. �

7. Tate forms

7.1. Tate modules and Frobenius

Recall that X is an abelian variety of positive dimension g over a finite
field k with char(k) = p and #(k) = q. Let ` 6= p be a prime and T`(X)
the `-adic Tate module of X. Let us consider the corresponding Q`-vector
space

V`(X) = T`(X)⊗Z` Q`,
which is a 2g-dimensional vector space over Q`. The action of FrX extends
byQ`-linearity to V`(X). So, we may view FrX as aQ`-linear automorphism
of V`(X), whose characteristic polynomial coincides with PX(t). A theorem
of Weil [8, 15] asserts that FrX acts as a semisimple linear operator in
V`(X). Let Q̄` be an algebraic closure of Q`. Let us choose a field embedding

LX = Q(RX) ↪→ Q̄`.

Further we will identify LX with its image in Q̄`. We have

RX ⊂ LX ⊂ Q̄`.

Let us consider the 2dim(X)-dimensional Q̄`-vector space

V̄`(X) := V`(X)⊗Q` Q̄`.

Extending the action of FrX by Q̄`-linearity, we get a Q̄`-linear operator

FrX : V̄`(X)→ V̄`(X), v ⊗ λ 7→ FrX(v)⊗ λ ∀ v ∈ V`(X), λ ∈ Q̄`.
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In the notation of Section 6, let us put

(7.1) K = Q`, V = V`(X), A = FrX : V`(X)→ V`(X), E = Q̄`.

Then

(7.2) VE = V̄`(X), AE = FrX ;
spec(A) = RX ,multA = multX : RX → Z+.

Remark 7.1. — If m is a positive integer and Y = Xm then it is well
known that there is a canonical isomorphism of Q`-vector spaces

V`(Y ) = ⊕mi=1V`(X)

such that FrY acts on V`(Y ) as

FrY (x1, . . . xm)
= (FrXx1, . . . , FrXxm) ∀ (x1, . . . xm) ∈ ⊕mi=1V`(X) = V`(Y ).

This implies that

PY (t) = PX(t)m, RY = RX , LX = LY ,

multY (α) = m ·multX(α) ∀ α ∈ RX = RY .
(7.3)

In particular,

(7.4) multY (α) > m ∀ α ∈ RY = RX .

Any invertible sheaf/divisor class L on X gives rise to (defined up to
multiplication by an element of Q∗` ) a Q`-bilinear alternating Riemann
form (the first `-adic Chern class of L) [8]

φ = φL : V`(X)× V`(X)→ Q`

such that

(7.5) φ
(
FrX(x),FrX(y)

)
= q · φ(x, y) ∀ x, y ∈ V`(X).

7.2. Tate forms

A theorem of Tate [15] asserts that every alternating Q`-bilinear form
φ on V`(X) that satisfies (7.5) is a Q`-linear combination of forms of type
φL. We call such a form an `-adic Tate form of degree 2 and denote by
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tate2(X, `) the subspace of all such forms in HomQ`(Λ2V`(X),Q`). In other
words,

tate2(X, `) :

=
{
φ ∈ HomQ`

(
Λ2V`(X),Q`

) ∣∣φ (FrX(x),FrX(y))
= q · φ(x, y) ∀ x, y ∈ V`(X)

}
.

More generally, let us define for each nonnegative integer d 6 dim(X) = g

the subspace tate2d(X, `) of all alternating 2d-forms ψ ∈ HomQ`(Λ2dV`(X),
Q`) such that

ψ
(
FrX(v1), . . . , FrX(v2d)

)
= qd · ψ (v1, . . . , v2d) ∀ x1, . . . , x2d ∈ V`(X).

We call elements of tate2d(X, `) Tate forms of degree 2d (1) .

Remark 7.2. — Clearly, tate2d(X, `) consists of all ψ ∈ HomQ`(Λ2dV`(X),
Q`) such that

ψ
(
Fr−1
X (v1), . . . , Fr−1

X (v2d)
)

= q−d·ψ (v1, . . . , v2d) ∀ v1, . . . , v2d ∈ V`(X).

Since FrX acts on V`(X) as ρ`(σk), the subspace tate2d(X, l) consists of all
ψ ∈ HomQ`(Λ2dV`(X),Q`) such that

ψ
(
ρ`(σk)−1(v1), . . . , ρ`(σk)−1(v2d)

)
= χ`(σk)−d · ψ (v1, . . . , v2d) ∀ v1, . . . , v2d ∈ V`(X).

Since σk is a topological generator of Gal(k), the subspace tate2d(X, l)
consists of all ψ ∈ HomQ`(Λ2dV`(X),Q`) such that

ψ
(
ρ`(σ)−1(v1), . . . , ρ`(σ)−1 (v2d)

)
= χ`(σ)−d · ψ (v1, . . . , v2d) ∀ σ ∈ Gal(k), v1, . . . , v2d ∈ V`(X).

Remark 7.3. — In the notation of Section 6, (7.1) and (7.2),

tate2d(X, `) = ∧2d
K (V ∗)

(
qd
)

is the eigenspace of K-linear operator ∧2d(A∗) : ∧2d
K (V ∗) → ∧2d

K (V ∗) at-
tached to the eigenvalue qd.

(1) In [21] we called them admissible forms.
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7.3. Wedge products of Tate forms

For each integer d > 3 the exterior product map

HomQ`

(
Λ2(d−1)V`(X),Q`

)
⊗Q` HomQ`

(
Λ2V`(X),Q`

)
→ HomQ`

(
Λ2dV`(X),Q`

)
,

φ⊗ ψ 7→ φ ∧ ψ

induces the Q`-linear map

(7.6) tate2(d−1)(X, `)⊗Q` tate2(X, `)→ tate2d(X, `), φ⊗ ψ 7→ φ ∧ ψ.

Definition 7.4. — Let d > 1 be an integer. An `-adic Tate form of
degree 2d is called exceptional if it does not lie in the image of map (7.6).

Lemma 7.5. — Let d be a positive integer such that

2 6 d 6 dim(X).

Let ` 6= p be a prime. Then the following conditions are equivalent.
(a) There exists an exceptional `-adic Tate form on X of degree 2d.
(b) There exists an admissible reduced function e : RX → Z of weight

2d such that

0 6 e(α) 6 multX(α) ∀ α ∈ RX .

Proof. — In the notation of (6.9), (7.1) and (7.2), it follows from Re-
mark 7.3 that property (b) is equivalent to the non-surjectiveness of

∧j−2
K (V ∗) (λ1)⊗K ∧2

K (V ∗) (λ2)→ ∧jK (V ∗) (λ1λ2), ψ ⊗ φ 7→ ψ ∧ φ

with
j = 2d, λ1 = qd−1, λ2 = q, λ1λ2 = qd.

By Proposition 6.6, the non-surjectiveness of this map is equivalent to the
existence of a function e : spec(A)→ Z+ that enjoys properties (bi)-(biv) of
Proposition 6.6. Since spec(A) = RX , we may view e as a function e : RX →
Z+. Now property (bii) means that e has weight 2d, property (biii) that e
is admisible, and property (biv) that e is reduced. As for property (bi), it
means that

e(α) 6 multA(α) = multX(α) ∀ α ∈ spec(A) = RX .

This implies that properties (bi)-(biv) of Proposition 6.6 are equivalent
to property (b) of Lemma 7.5. It follows that properties (a) and (b) of
Lemma 7.5 are equivalent. �
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7.4. Twists and Tate classes

7.4.1. Twists and Tate classes

Consider an abelian variety X̄ = X ×k k̄ over the algebraic closure k̄ of
k and its étale `-adic cohomology groups Hj(X̄,Q`) [1, 4, 5, 14]. Here ` is
any prime different from char(k), j any nonnegative integer, and Hj(X̄,Q`)
is a certain finite-dimensional Q`-vector space endowed with a continuous
linear action of the absolute Galois group Gal(k) := Gal(k̄/k) of k. We
write

χ` : Gal(k)→ Z∗` ⊂ Q∗`

for the `-adic cyclotomic character (see Section 2 above). There exists a
certain “naturally defined” one-dimensional Q`-vector space Q`(1) (that
was denoted by W in [14, Section 2]) endowed with the natural continuous
linear action of Gal(k) defined by the cyclotomic character

χ` : Gal(k)→ Q∗` = AutQ` (Q`(1))

(see [4, 5, 7, 14]). Namely,Q`(1) = Z`(1)⊗Z`Q` where Z`(1) is the projective
limit of multiplicative groups (finite Galois modules) µ`n of `n th roots of
unity in k̄.
Let us fix once and for all an `-adic orientation, i.e., an isomorphism of

Q`-vector spaces

Q`(1) ∼= Q`,

which allows us to identify Q` not only with Q`(1) but also with all tensor
powers Q`(i) [1, 4, 5, 13, 14] of Q`(1).
Let i be an integer. Let us consider the twist Hj(X̄,Q`)(i) of the Galois

module Hj(X̄,Q`) by character χi` of Gal(k) [4, 5, 13, 14]. In other words,
Hj(X̄,Q`)(i) coincides with Hj(X̄,Q`) as the Q`-vector space but if

σ, c 7→ σ(c) ∀ σ ∈ Gal(k), c ∈ Hj
(
X̄,Q`

)
is the Galois action on Hj(X̄,Q`) then in Hj(X̄,Q`)(i) a Galois automor-
phism σ sends c to χ`(σ)iσ(c).
IfW is a Galois-invariant Q`-vector subspace in Hj(X̄,Q`) then we write

W (i) for the same Q`-vector subspace in Hj(X̄,Q`)(i). Clearly, W (i) is a
Galois-invariant subspace of Hj(X̄,Q`)(i) but not necessarily isomorphic
to W as Galois module.
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Remarks 7.6.
(i) If j1, j2 are any nonnegative integers then the Galois-equivariant

Q`-bilinear cup product in the cohomology of X̄ leads to a Galois-
equivariant Q`-linear map

(7.7) Hj1
(
X̄,Q`

)
⊗Q` Hj2

(
X̄,Q`

)
→ Hj1+j2

(
X̄,Q`

)
, c1 ⊗ c2 7→ c1 ∪ c2,

which, in turn, gives rise to the natural Galois-equivariant Q`-linear
map [5, 14]

(7.8) Hj1
(
X̄,Q`

)
(i1)⊗Q` Hj2

(
X̄,Q`

)
(i2)

→ Hj1+j2
(
X̄,Q`

)
(i1 + i2) , c1 ⊗ c2 7→ c1 ∪ c2.

(ii) Let W1 (resp. W2) is s a Galois-invariant Q`-vector subspace in
Hj1(X̄,Q`) (resp. in Hj2(X̄,Q`)) and W ⊂ Hj1+j2(X̄,Q`) be the
image of subspace

W1 ⊗Q` W2 ⊂ Hj1
(
X̄,Q`

)
⊗Q` Hj2

(
X̄,Q`

)
under the map (7.7). It follows readily that the twist

W (i1 + i2) ⊂ Hj1+j2
(
X̄,Q`

)
(i1 + i2)

coincides with the image of subspace

W1(i1)⊗Q` W2(i2) ⊂ Hj1
(
X̄,Q`

)
(i1)⊗Q` Hj2

(
X̄,Q`

)
(i2)

under the map (7.8).

Definition 7.7. — Let d be a nonnegative integer. Let us consider the
Q`-vector subspace

T`,d(X) := H2d (X̄,Q`) (d)Gal(k)

of Galois invariants in H2d(X̄,Q`)(d) and a weight Q`-vector subspace

W`,d(X) :=
{
c ∈ H2d(X̄,Q`)

∣∣σ(x) = χ`(σ)−dc ∀ σ ∈ Gal(k)
}

in H2d(X̄,Q`). It follows from the very definitions that

(7.9) T`,d(X) = W`,d(X)(d).

Remark 7.8. — Let d1 and d2 be nonnegative integers. It follows from the
Galois equivariance of maps (7.7) and (7.8) combined with Remark 7.6(ii)
that the image W`,d1,d2(X) of

W`,d1(X)⊗W`,d2(X)→ H2(d1+d2) (X̄,Q`) , c1 ⊗ c2 → c1 ∪ c2

lies in W`,d1+d2(X). Similarly, the image T`,d1,d2(X) of

T`,d1(X)⊗ T`,d2(X)→ H2(d1+d2) (X̄,Q`) (d1 + d2) , c1 ⊗ c2 → c1 ∪ c2

ANNALES DE L’INSTITUT FOURIER



TATE CLASSES ON ABELIAN VARIETIES 2379

lies in T`,d1+d2(X). In addition, it follows from (7.9) that

T`,d1,d2(X) = W`,d1,d2(X) (d1 + d2) .

Definition 7.9. — Let ` 6= char(k) be a prime and d a nonnegative
integer.

(i) Elements of T`,d(X) are called `-adic Tate classes of dimension 2d
on X.

(ii) A nonzero 2d-dimensional Tate class c is called exotic if d > 1 and
c cannot be presented as a linear combination of products of d Tate
classes of dimension 2 with coefficients in Q`.

(iii) A Tate class c of dimension 2d is called very exotic if d > 1 and c
cannot be presented as a linear combination with coefficients in Q`
of products of Tate classes of dimension 2d − 2 and 2, i.e., c does
not belong to T`,d−1,1(X).

Remarks 7.10.

(i) Let Z be a closed irreducible subvariety of codimension d in X.
The choice of the `-adic orientation allows us to define the `-adic
class cl(Z) ∈ T`,d(X) ⊂ H2d(X̄,Q`)(d) of Z [13, 14]. Tate [13, 14]
conjectured that for all nonnegative integer d the subspace T`,d(X)
is spanned by all cl(Z) and proved it for d = 1 [15].

(ii) If d is a nonnegative integer and d 6 g then it is known [13, 14]
that T`,d(X) 6= {0}.

(iii) Clearly, all 2-dimensional Tate classes are neither exotic nor very
exotic. Hence, the existence of an exotic (or very exotic) Tate class
of dimension 2d implies readily that

2 6 d 6 g = dim(X),

because H2d(X̄,Q`) = {0} for all d > g, and, therefore, all 2d-
dimensional Tate classes are just zero. (Actually, it is known that
H2g(X̄,Q`)(g) is a one-dimensional Q`-vector space generated by
the gth self-product of the class of a hyperplane section of X [14].
Therefore, there are no non-exotic Tate classes of dimension 2g.)

(iv) Clearly, every very exotic Tate class is exotic.
Conversely, suppose that there exists an exotic 2d-dimensional `-

adic Tate class on X. I claim that there is a positive integer d′ 6 d
such that there exists a very exotic 2d′-dimensional `-adic Tate class
on X. Indeed, decreasing d if necessary, we may and will assume
that d is the smallest positive integer such that there is an exotic

TOME 72 (2022), FASCICULE 6



2380 Yuri G. ZARHIN

`-adic 2d-dimensional Tate class on X. Let c be such a class. Then
d > 1.
Assume that c is not very exotic. Then c is a linear combination

of cup products hi ∪ ci where all ci are nonzero Tate classes of
dimension 2 and all hi are nonzero Tate classes of dimension 2(d−1).
Since c is exotic, there is an index i such that hi is exotic. But exotic
hi is 2(d − 1)-dimensional, which contradicts the minimality of d.
The obtained contradiction implies that c itself is very exotic, which
ends the proof.
It follows that X carries an `-adic exotic Tate class if and only

if it carries a very exotic `-adic Tate class (may be, of different
dimension).

7.5. Étale cohomology of abelian varieties

7.5.1. Étale cohomology of abelian varieties

Let us consider the abelian variety X̄ = X ×k k̄ over k̄. Let j be a
nonnegative integer and let Hj(X̄,Q`) be the jth étale `-adic cohomology
group of X̄, which is a finite-dimensional Q`-vector space endowed with the
canonical continuous linear action of Gal(k) [5, 7, 14]. There is a canon-
ical Gal(k)-equivariant isomorphism of graded Q`-algebras ([1, 5, 14], [7,
Section 12])

(7.10) ⊕2dim(X)
j=0 Hj

(
X̄,Q`

) ∼= ⊕2dim(X)
j=0 HomQ`

(
ΛjQ`V`(X),Q`

)
.

Its Galois equivariance combined with Remark 7.2 imply that (in the no-
tation of Definition 7.7) map (7.10) induces for all nonnegative integers
d 6 dim(X) a Q`-linear isomorphism between

W`,d(X) =
{
c ∈ H2d (X̄,Q`) ∣∣σ(c) = χ`(σ)−dc ∀ σ ∈ Gal(k)

}
=
{
c ∈ H2d (X̄,Q`) ∣∣∣σk(c) = χ` (σk)−d c

}
⊂ H2d (X̄,Q`)

and the subspace

tate2d(X, `) ⊂ HomQ`
(
Λ2d
Q`V`(X),Q`

)
of `-adic Tate forms of degree 2d on X. Recall (see Definitions 7.7 and 7.9)
that the twist W`,d(X)(d) ⊂ H2d(X̄,Q`)(d) coincides with the subspace
T`,d(X) of 2d-dimensional `-adic Tate classes on X. Recall that map (7.10)
is a Q`-algebra isomorphism. Applying Remark 7.8 to d1 = d − 1 and
d2 = 1, we obtain that the existence of a very exotic a `-adic Tate class of
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dimension 2d on X is equivalent to the existence of an exceptional `-adic
Tate form of degree 2d on X.

We will need to state explicitly the following useful assertion.

Lemma 7.11. — Let X be an abelian variety over k. Let ` 6= char(k) be
a prime. Then the following three conditions are equivalent.

(i) X carries an exotic `-adic Tate class.
(ii) X carries a very exotic `-adic Tate class.
(iii) There exists an exceptional `-adic Tate form on X.
In addition, the validity of equivalent conditions (i)-(iii) does not depend

on a choice of `.

Proof of Lemma 7.11. — The equivalence of (ii) and (iii) follows readily
from the arguments at the end of Subsection 7.5. The equivalence of (i)
and (ii) was already proven in Remark 7.10(iv).
Notice that property (b) of Lemma 7.5 does not depend on the choice

of `. Now Lemma 7.5 implies that the validity of (iii) does not depend on
the choice of `. �

Proof of Theorem 1.8. — By a theorem of Tate [15], if Y is any abelian
variety over k (e.g., Y = Xn) then every element of T`,1(Y ) is a linear
combination of divisor classes on Y with coefficients in Q`.
Suppose that there is an exotic `-adic Tate class on Xn for some positive

integer n. It follows from Lemma 7.11 (applied to Y = Xn instead of X)
that there is an exceptional `-adic Tate form on Xn. In light of Lemma 7.5
(applied to Y instead of X), there exists an admissible reduced function
RX = RY → Z+. In light of Theorem 1.4, there exists an admissible
reduced function e : RX → Z+ of weight 6 N(g). This means that

wt(e) =
∑

α∈RX

e(α) 6 2N(g);

in particular,
0 6 e(α) 6 2N(g) ∀ α ∈ RX .

Let us put Z = X2N(g) and consider e as the reduced admissible function

RZ = RX → Z+, α 7→ e(α).

In light of Remark 7.1 applied to m = 2N(g),

e(α) 6 2N(g) 6 multZ(α) ∀ α ∈ RZ = RX .

It follows from Lemma 7.5 that there is an exceptional `-adic Tate form on
X2N(g) = Z. Applying Lemma 7.11 to Z, we obtain that there is an exotic
`-adic Tate class on Z = X2N(g). Now the last assertion of Lemma 7.11
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implies that there is an exotic l-adic Tate class on Z = X2N(g) for all
primes l 6= char(k). This ends the proof. �

Proof of Theorem 1.11. — In light of arguments of Subsection 7.5 com-
bined with Remark 7.8, it suffices to check that each `-adic Tate form of
any even degree 2m on Xn can be presented as a linear combination of
exterior products of `-adic Tate forms of degree at most H(g). Let us prove
it, using induction by m.

The assertion is obviously true for all m 6 H(g)/2. Suppose that m >

H(g)/2. First, notice that

RXn = RX ∀ n.

Applying Theorem 1.10, we conclude that the conditions of Proposition 6.11
are fulfilled for

K = Q`, V = V` (Xn) , A = FrXn : V` (Xn)→ V` (Xn) ,
spec(A) = RXn = RX , h = H(g)/2.

Applying Proposition 6.11, we conclude that each `-adic Tate form of de-
gree 2m on Xn can be presented as a linear combination of wedge products

ψm−j ∧ φj (j = 1, . . . , H(g)/2))

where ψm−j is an `-adic Tate form of degree 2(m − j) on Xn and φj is
an `-adic Tate form of degree 2j 6 H(g) on Xn. Applying the induc-
tion assumption to all ψm−j ’s, we conclude that each `-adic Tate form of
degree 2m on Xn can be presented as a linear combination of exterior
products of Tate forms of degree at most H(g). This ends the proof. �
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