

ANNALES DE L'institut fourier

Shuhei MARUYAMA

The translation number and quasi-morphisms on groups of symplectomorphisms of the disk

Tome 72, nº 5 (2022), p. 1819-1830.

https://doi.org/10.5802/aif.3487

Article mis à disposition par son auteur selon les termes de la licence CREATIVE COMMONS ATTRIBUTION – PAS DE MODIFICATION 3.0 FRANCE CC BY-ND http://creativecommons.org/licenses/by-nd/3.0/fr/

Les Annales de l'Institut Fourier sont membres du Centre Mersenne pour l'édition scientifique ouverte www.centre-mersenne.org e-ISSN : 1777-5310 Ann. Inst. Fourier, Grenoble **72**, 5 (2022) 1819-1830

THE TRANSLATION NUMBER AND QUASI-MORPHISMS ON GROUPS OF SYMPLECTOMORPHISMS OF THE DISK

by Shuhei MARUYAMA

ABSTRACT. — On groups of symplectomorphisms of the disk, we construct two homogeneous quasi-morphisms which relate to the Calabi invariant and the flux homomorphism respectively. We also show the relation between the quasi-morphisms and the translation number introduced by Poincaré.

RÉSUMÉ. — Sur des groupes de symplectomorphismes du disque, nous construisons deux quasi-morphismes homogènes reliés à l'invariant de Calabi et l'homomorphisme du flux respectivement. Nous montrons également la relation entre les quasi-morphismes et le nombre de translation introduit par Poincaré.

1. Introduction

A quasi-morphism on a group Γ is a function $\phi:\Gamma\to\mathbb{R}$ such that the value

$$\sup_{\gamma_1, \gamma_2 \in \Gamma} |\phi(\gamma_1 \gamma_2) - \phi(\gamma_1) - \phi(\gamma_2)|$$

is bounded. A quasi-morphism ϕ is called homogeneous if the condition $\phi(\gamma^n) = n\phi(\gamma)$ holds for any $\gamma \in \Gamma$ and $n \in \mathbb{Z}$. Let $Q(\Gamma)$ denote the \mathbb{R} -vector space of homogeneous quasi-morphisms on the group Γ . Given a quasi-morphism ϕ , we obtain the homogeneous quasi-morphism $\overline{\phi}$ associated to ϕ by

$$\overline{\phi}(g) = \lim_{n \to \infty} \frac{\phi(g^n)}{n}.$$

This map $\overline{\phi}$ is called the homogenization of ϕ .

Let $D = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \leq 1\}$ be the unit disk in \mathbb{R}^2 and $\omega = dx \wedge dy$ be the standard symplectic form on D. Let G = Symp(D) be the group of

Keywords: quasi-morphism, bounded cohomology, symplectomorphism group.

²⁰²⁰ Mathematics Subject Classification: 20J06, 37E45, 37E30.

symplectomorphisms of D (which may not be the identity on the boundary ∂D). In the present paper, we construct a homogeneous quasi-morphism on G. Let η be a 1-form on D satisfying $d\eta = \omega$. The map $\tau_{\eta} : G \to \mathbb{R}$ is defined by

$$\tau_{\eta}(g) = \int_{D} g^* \eta \wedge \eta.$$

Let $G_{\rm rel}$ denote the kernel of the homomorphism $G \to {\rm Diff}_+(S^1)$, where Diff₊(S¹) denotes the group of orientation preserving diffeomorphisms of the circle. Then the map τ coincides with the Calabi invariant on $G_{\rm rel}$. Although the Calabi invariant Cal : $G_{\rm rel} \to \mathbb{R}$ is a homomorphism, the map $\tau_{\eta} : G \to \mathbb{R}$ is not a homomorphism. However, this map τ_{η} gives rise to a quasi-morphism. Thus, by the homogenization, we have the homogeneous quasi-morphism $\overline{\tau_{\eta}}$. Since $\overline{\tau_{\eta}}$ is independent of the choice of η , we simply denote it by $\overline{\tau}$. This $\overline{\tau}$ is the main object of the present paper.

It is known that the Calabi invariant Cal : $G_{\text{rel}} \to \mathbb{R}$ cannot be extended to a homomorphism $G \to \mathbb{R}$ (see Tsuboi [9]). However, the Calabi invariant can be extended to a homogeneous quasi-morphism on G. Indeed, we will show in Proposition 2.1 that the homogeneous quasi-morphism $\overline{\tau} : G \to \mathbb{R}$ gives rise to an extension of the Calabi invariant. There is another extension R of the Calabi invariant, which is introduced by Tsuboi [9] (see also Banyaga [1]). This extension R is defined as a homomorphism to \mathbb{R} from the universal covering group \tilde{G} of G by

$$R([g_t]) = \int_0^1 \left(\int_D f_{X_t} \omega \right) dt$$

Here g_t is a path in G and f_{X_t} is the Hamiltonian function associated to g_t (see Section 4). Then, it is natural to ask what the relation between two extensions τ and R of the Calabi invariant is. The following theorem answers this.

THEOREM 1.1 (Theorem 2.5). — Let $p: \widetilde{G} \to G$ be the projection. Then, we have

$$p^*\overline{\tau} + 2R = \pi^2 \widetilde{\mathrm{rot}} : \widetilde{G} \to \mathbb{R}.$$

Here the map $\operatorname{rot} : \widetilde{G} \to \mathbb{R}$ is the pullback of Poincaré's translation number by the surjection $\widetilde{G} \to \operatorname{Diff}_+(S^1)$.

Let $G_o = \{g \in G \mid g(o) = o\}$ be the subgroup of G consisting of symplectomorphisms which preserve the origin $o = (0,0) \in D$. On the group G_o , we also construct a homogeneous quasi-morphism $\overline{\sigma} = \overline{\sigma}_{\eta,\gamma} : G_o \to \mathbb{R}$, where $\sigma_{\eta,\gamma} : G_o \to \mathbb{R}$ is defined by

$$\sigma_{\eta,\gamma}(g) = \int_{\gamma} g^* \eta - \eta.$$

Here the symbol γ is a path from the origin to a point on the boundary. Let \widetilde{G}_o be the universal covering group of G_o . By using the homomorphism $S: \widetilde{G}_o \to \mathbb{R}$ introduced in Section 3, we describe the relation between $\overline{\sigma}$ and the translation number, which is similar to Theorem 1.1.

THEOREM 1.2 (Theorem 3.4). — Let $p: \widetilde{G}_o \to G_o$ be the projection. Then, we have

$$p^*\overline{\sigma} - S = \pi \widetilde{\mathrm{rot}} : \widetilde{G_o} \to \mathbb{R}.$$

Here the map $\operatorname{rot} : \widetilde{G_o} \to \mathbb{R}$ is the pullback of the translation number by the surjection $\widetilde{G_o} \to \operatorname{Diff}_+(S^1)$.

The coboundary of the translation number rot gives the canonical Euler cocycle (Matsumoto [5]). Similarly, the coboundary of homogeneous quasimorphisms $\overline{\tau}$ and $\overline{\sigma}$ also give cocycles which represents the bounded Euler class of Diff₊(S¹) (Propositions 2.2, 3.1).

By comparing the two homogeneous quasi-morphisms $\overline{\tau}$ and $\overline{\sigma}$, we obtain the following theorem.

THEOREM 1.3 (Theorem 4.1). — The difference $\overline{\tau} - \pi \overline{\sigma} : G_o \to \mathbb{R}$ is a continuous surjective homomorphism.

Note that, in this paper, we assume the notation of group cohomology and bounded cohomology in [2].

Acknowledgements

The author would like to thank Professor Hitoshi Moriyoshi for his helpful advice. He also thanks Morimichi Kawasaki, who told him that there is another extension R of the Calabi invariant and suggested to investigate a connection between R and the quasi-morphism $\overline{\tau}$ constructed in this paper. He also thanks Professor Masayuki Asaoka for his comments.

2. The Calabi invariant case

2.1. Calabi invariant and the quasi-morphism $\overline{\tau}$

Let $D = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \leq 1\}$ be the unit disk with the standard symplectic form $\omega = dx \wedge dy$. Let G = Symp(D) denote the symplectomorphism group of D and $\text{Diff}_+(S^1)$ the orientation preserving diffeomorphism group of the unit circle $S^1 = \partial D$. Then the homomorphism $\rho : G \to \text{Diff}_+(S^1)$ is surjective(see Tsuboi [9]). Thus we have an exact sequence

$$1 \longrightarrow G_{\mathrm{rel}} \longrightarrow G \stackrel{\rho}{\longrightarrow} \mathrm{Diff}_+(S^1) \longrightarrow 1,$$

where the group $G_{\rm rel}$ is the kernel of the map $\rho: G \to {\rm Diff}_+(S^1)$.

The Calabi invariant $\operatorname{Cal}: G_{\operatorname{rel}} \to \mathbb{R}$ is defined by

(2.1)
$$\operatorname{Cal}(h) = \int_D h^* \eta \wedge \eta$$

where η is a 1-form satisfying $d\eta = \omega$. The Calabi invariant Cal is a surjective homomorphism and is independent of the choice of η (see Banyaga [1]). On the group G, the map $\tau_{\eta} : G \to \mathbb{R}$ is defined in the same way as in (2.1), that is, we put

$$\tau_{\eta}(g) = \int_{D} g^* \eta \wedge \eta.$$

Note that the map τ_{η} is not a homomorphism and does depend on the choice of η . In [6], for $\lambda = (xdy-ydx)/2$, Moriyoshi proved the transgression formula

(2.2)
$$\operatorname{Cal}(h) = \tau_{\lambda}(h) \quad (h \in G_{\mathrm{rel}}) \\ -\delta \tau_{\lambda}(g,h) = \pi^{2} \chi \big(\rho(g), \rho(h) \big) + \pi^{2}/2 \quad (g,h \in G).$$

Here δ is the coboundary operator of group cohomology and the symbol χ is a bounded 2-cocycle defined in Moriyoshi [6], which represents the bounded Euler class $e_b \in H_b^2(\text{Diff}_+(S^1); \mathbb{R})$. Since the cocycle χ is bounded, the map $\tau_{\lambda} : G \to \mathbb{R}$ is a quasi-morphism. Moreover, since the function $\tau_{\eta} - \tau_{\lambda}$ is bounded for any 1-form η satisfying $d\eta = \omega$, the map τ_{η} is a quasi-morphism for any η and the homogenizations of τ_{η} and τ_{λ} coincide. Thus we simply denote by $\overline{\tau}$ the homogenization of τ_{η} .

PROPOSITION 2.1. — The homogenization $\overline{\tau} : G \to \mathbb{R}$ is an extension of the Calabi invariant, that is, $\overline{\tau}|_{G_{\text{rel}}} = \text{Cal.}$ In particular, the map $\overline{\tau}$ is a surjective homogeneous quasi-morphism.

Proof. — For $h \in G_{rel}$, we have

$$\overline{\tau}(h) = \lim_{n \to \infty} \frac{\tau_{\eta}(h^n)}{n} = \lim_{n \to \infty} \frac{\operatorname{Cal}(h^n)}{n} = \lim_{n \to \infty} \frac{n \operatorname{Cal}(h)}{n} = \operatorname{Cal}(h).$$

Since the Calabi invariant is surjective, the homogenization $\overline{\tau}$ is also surjective.

The homogeneous quasi-morphism $\overline{\tau}$ relates to the bounded Euler class as follows.

PROPOSITION 2.2. — The bounded cohomology class $[\delta \overline{\tau}] \in H^2_b(G; \mathbb{R})$ is equal to $-\pi^2$ times the pullback $\rho^* e_b$ of the bounded Euler class e_b .

Proof. — Recall that the difference between a quasi-morphism and its homogenization is a bounded function. Thus we have $\delta \tau_{\lambda} - \delta \overline{\tau} = \delta b$ where $b = \tau_{\lambda} - \overline{\tau}$ is a bounded function. This implies that the bounded cohomology class $[\delta \tau_{\eta}]$ coincides with $[\delta \overline{\tau}]$. Moreover, the class $[\delta \tau_{\lambda}]$ is equal to the pullback $\rho^* e_b$ up to non-zero constant multiple because of the transgression formula (2.2).

2.2. Two extensions $\overline{\tau}$ and R of the Calabi invariant

By Proposition 2.1, the homogeneous quasi-morphism $\overline{\tau} : G \to \mathbb{R}$ is considered as an extension of the Calabi invariant. There is another extension R of the Calabi invariant, which is introduced by Tsuboi [9] (see also Banyaga [1]). This extension is defined as a homomorphism $R : \widetilde{G} \to \mathbb{R}$, where the group \widetilde{G} is the universal covering group of G with respect to the C^{∞} -topology. In this section, we investigate the relation between these two extensions $\overline{\tau}$ and R.

We recall the definition of the homomorphism R. Let $\mathcal{L}_{\omega}(D)$ be the set of divergence free vector fields which are tangent to the boundary. For any vector field X in $\mathcal{L}_{\omega}(D)$, there is a unique function $f_X : D \to \mathbb{R}$ such that $i_X \omega = df_X$ and $f_X|_{\partial D} = 0$. For any path g_t in G, we define the time-dependent vector field X_t by $X_t = (\partial g_t/\partial t) \circ g_t^{-1}$. Since g_t is a symplectomorphism for any $t \in [0, 1]$, the vector field X_t is in $\mathcal{L}_{\omega}(D)$. Then the map $R : \tilde{G} \to \mathbb{R}$ is defined by

$$R([g_t]) = \int_0^1 \left(\int_D f_{X_t} \omega \right) dt.$$

This map R is a well-defined homomorphism (see Banyaga [1]).

We reproduce the following lemma, which is essentially proved in Tsuboi [9, Lemme 1.5].

LEMMA 2.3. — Let g_t be a path in G such that $g_0 = \text{id}$ and X_t the time-dependent vector field defined by $X_t = (\partial g_t / \partial t) \circ g_t^{-1}$, then

(2.3)
$$\tau_{\eta}(g_1) + 2R([g_t]) = \int_{\partial D} \left(\int_0^1 g_t^*(i_{X_t}\eta) \, dt \right) \eta.$$

TOME 72 (2022), FASCICULE 5

1823

In particular, for a path h_t in G_{rel} such that $h_0 = id$, we have $Cal(h_1) = -2R([h_t])$.

Let $\operatorname{Diff}_+(S^1)$ denote the universal covering of $\operatorname{Diff}_+(S^1)$. Note that, in this paper, we identify the circle S^1 with the quotient $\mathbb{R}/2\pi\mathbb{Z}$. We consider an element $\widetilde{\gamma} \in \operatorname{Diff}_+(S^1)$ as an orientation preserving diffeomorphism of \mathbb{R} satisfying $\widetilde{\gamma}(\theta + 2\pi) = \widetilde{\gamma}(\theta) + 2\pi$ for any $\theta \in \mathbb{R}$. Let φ_t be the path in $\operatorname{Diff}_+(S^1)$ defined by $\varphi_t = g_t|_{\partial D}$. Let ξ_t be the time-dependent vector field defined by $\xi_t = (\partial \varphi_t/\partial t) \circ \varphi_t^{-1}$. Let $\widetilde{\varphi_t} \in \operatorname{Diff}_+(S^1)$ be the lift of φ_t such that $\widetilde{\varphi_0} = \operatorname{id}$. Note that $\lambda = (xdy - ydx)/2 = (r^2d\theta)/2$ where $(r, \theta) \in D$ is the polar coordinates. Then the right-hand side of the equality (2.3) can be written as

(2.4)
$$\int_{\partial D} \left(\int_0^1 g_t^*(i_{X_t}\lambda) dt \right) \lambda = \frac{1}{4} \int_{S^1} \left(\int_0^1 \varphi_t^*(i_{\xi_t} d\theta) dt \right) d\theta$$
$$= \frac{1}{4} \int_0^{2\pi} \left(\int_0^1 \frac{\partial \widetilde{\varphi_t}}{\partial t} dt \right) d\theta$$
$$= \frac{1}{4} \int_0^{2\pi} \left(\widetilde{\varphi_1}(\theta) - \theta \right) d\theta.$$

Let us define a map $f : \widetilde{\text{Diff}}_+(S^1) \to \mathbb{R}$ by $f(\widetilde{\varphi}) = \frac{1}{4\pi^2} \int_0^{2\pi} (\widetilde{\varphi}(\theta) - \theta) d\theta$. Then we have

(2.5)
$$\tau_{\lambda}(g_1) + 2R([g_t]) = \pi^2 f\left(\widetilde{\varphi_1}\right).$$

Note that, for any $\tilde{\varphi}, \tilde{\psi}$ in $\operatorname{Diff}_+(S^1)$, the inequality $|\tilde{\varphi}\tilde{\psi}(\theta) - \tilde{\varphi}(\theta) - \tilde{\psi}(\theta) + \theta| < 4\pi$ holds. This implies that the map f is a quasi-morphism. Let \overline{f} be the homogenization of f. By taking the homogenizations of the both sides of the equality (2.5), we have

(2.6)
$$\overline{\tau}(g_1) + 2R([g_t]) = \pi^2 \overline{f}(\widetilde{\varphi_1}) \,.$$

To explain the map \overline{f} : $\operatorname{Diff}_+(S^1) \to \mathbb{R}$, we recall the translation number introduced by Poincaré [7]. The translation number is a homogeneous quasimorphism rot: $\operatorname{Diff}_+(S^1) \to \mathbb{R}$ defined by

$$\widetilde{\operatorname{rot}}(\widetilde{\varphi}) = \lim_{n \to \infty} \frac{\widetilde{\varphi}^n(0)}{2\pi n}.$$

Note that, in this paper, we identify the circle S^1 with the quotient $\mathbb{R}/2\pi\mathbb{Z}$.

PROPOSITION 2.4. — The homogeneous quasi-morphism \overline{f} : $\widetilde{\text{Diff}}_+(S^1) \to \mathbb{R}$ coincides with the translation number.

Proof. — Since the sequence $\{\frac{\widetilde{\varphi}^n(x)-x}{n}\}_n$ converges uniformly to the constant function $\lim_{n\to\infty}\widetilde{\varphi}^n(0)/n$ on the interval $[0,2\pi]$, we have

$$\overline{f}(\widetilde{\varphi}) = \frac{1}{4\pi^2} \lim_{n \to \infty} \int_0^{2\pi} \frac{\widetilde{\varphi}^n(x) - x}{n} dx = \frac{1}{4\pi^2} \int_0^{2\pi} \lim_{n \to \infty} \frac{\widetilde{\varphi}^n(0)}{n} dx = \widetilde{\operatorname{rot}}(\widetilde{\varphi}).$$

By Proposition 2.4 and equality (2.6), we obtain the following theorem.

THEOREM 2.5. — Let $p: \widetilde{G} \to G$ be the projection. Then we have $p^*\overline{\tau} + 2R = \pi^2 \widetilde{\text{rot}} : \widetilde{G} \to \mathbb{R}.$

Here the map $\widetilde{\text{rot}}: \widetilde{G} \to \mathbb{R}$ is the pullback of the translation number by the surjection $\widetilde{G} \to \text{Diff}_+(S^1)$.

Poincaré's translation number descends to the map rot : $\text{Diff}_+(S^1) \to \mathbb{R}/\mathbb{Z}$ and this is called Poincaré's rotation number. The homomorphism $2R/\pi^2 : \widetilde{G} \to \mathbb{R}$ also decends to the homomorphism $\underline{R} : G \to \mathbb{R}/\mathbb{Z}$ (see Tsuboi [9, Corollary 2.9]).

THEOREM 2.6. — Let $\underline{\tau} : G \to \mathbb{R}/\mathbb{Z}$ be the composition of the homogeneous quasi-morphism $\overline{\tau}/\pi^2 : G \to \mathbb{R}$ and the projection $\mathbb{R} \to \mathbb{R}/\mathbb{Z}$, then

$$\underline{\tau} + \underline{R} = \operatorname{rot.}$$

Here the rot : $G \to \mathbb{R}/\mathbb{Z}$ is the pullback of the rotation number by the projection $G \to \text{Diff}_+(S^1)$.

3. The flux homomorphism case

3.1. The flux homomorphism and the quasi-morphism $\overline{\sigma}$

Let us consider the subgroup

$$G_o = \{g \in G | g(o) = o \in D\}$$

of G. Put $G_{o, rel} = G_{rel} \cap G_o$. Then the following sequence of groups

$$1 \longrightarrow G_{o, \operatorname{rel}} \longrightarrow G_o \xrightarrow{\rho} \operatorname{Diff}_+ (S^1) \longrightarrow 1$$

is an exact sequence. On the group $G_{o, \text{rel}}$, the Calabi invariant is defined as the restriction $\text{Cal}|_{G_{o, \text{rel}}} : G_{o, \text{rel}} \to \mathbb{R}$. In [4] the author studied a version of flux homomorphism defined on $G_{o, rel}$ which is denoted by $Flux_{\mathbb{R}}$. This flux homomorphism $Flux_{\mathbb{R}}$ is defined by

$$\operatorname{Flux}_{\mathbb{R}}(h) = \int_{\gamma} h^* \eta - \eta$$

where γ is a path from the origin *o* to a point on the boundary ∂D . Note that the flux homomorphism is a surjective homomorphism and is independent of the choice of η and γ .

As in the case of Calabi invariant, the flux homomorphism can be extended to the group G_o , that is, we define the map $\sigma_{\eta,\gamma}: G_o \to \mathbb{R}$ by

$$\sigma_{\eta,\,\gamma}(g) = \int_{\gamma} g^* \eta - \eta$$

The following transgression formula

(3.1)
$$\operatorname{Flux}_{\mathbb{R}}(h) = \sigma_{\eta, \gamma}(h) \quad (h \in G_{o, \operatorname{rel}}) \\ -\delta\sigma_{\eta, \gamma}(g, h) = \pi\xi \big(\rho(g), \rho(h)\big) \quad (g, h \in G_o),$$

holds, where $\xi \in C^2(\text{Diff}_+(S^1); \mathbb{R})$ is an Euler cocycle (see [4], where, in [4], the map $\sigma_{\eta,\gamma}$ is denoted by τ and the Euler cocycle ξ is denoted by χ). Since ξ is bounded, the map $\sigma_{\eta,\gamma}$ is a quasi-morphism. Let $\overline{\sigma}$ denote the homogenization of $\sigma_{\eta,\gamma}$. By arguments similar to those in Section 2, we obtain the following proposition.

Proposition 3.1.

- (1) The homogenization $\overline{\sigma}: G_o \to \mathbb{R}$ is independent of the choice of η and γ .
- (2) The homogenization $\overline{\sigma} : G_o \to \mathbb{R}$ is an extension of the flux homomorphism. In particular, $\overline{\sigma}$ is a surjective homogeneous quasimorphism.
- (3) The bounded cohomology class $[\delta \overline{\sigma}]$ is equal to $-\pi$ times the class $\rho^* e_b$, where e_b is the bounded Euler class.

Remark 3.2. — For an inner point $a \in D$, put $G^a = \{g \in G \mid g(a) = a\}$. We can define the homogeneous quasi-morphism $\overline{\sigma}_a : G^a \to \mathbb{R}$ in the same way. We can also show that $[\delta \overline{\sigma}_a] = -\pi \rho^* e_b$. Thus, for inner points $a, b \in D$, we have a homomorphism

$$\overline{\sigma}_a - \overline{\sigma}_b : G^a \cap G^b \to \mathbb{R}$$

and this is equal to the action difference defined in Polterovich [8](see also [3]).

3.2. Two extensions $\overline{\sigma}$ and S of the flux homomorphism

Let \widetilde{G}_o be the universal covering group of G_o with respect to the C^{∞} topology. In this section, we introduce a homomorphism $S: \widetilde{G}_o \to \mathbb{R}$ and
show that the difference of $\overline{\sigma}$ and S is equal to the translation number.

For a path g_t in G_o such that $g_0 = id$, the time-dependent vector field X_t is defined as in Section 2. Then we put

(3.2)
$$S(g_t) = \int_0^1 \int_{\gamma} i_{X_t} \omega dt,$$

where $\gamma : [0,1] \to D$ is a path from the origin $o \in D$ to a point on the boundary ∂D . Take the time-dependent C^{∞} -function $f_t : D \to \mathbb{R}$ satisfying $i_{X_t} \omega = df_t$ and $f_t(o) = 0$. Then we have

$$S(g_t) = \int_0^1 \int_{\gamma} i_{X_t} \omega dt = \int_0^1 \int_{\gamma} df_t dt = \int_0^1 f_t(\gamma(1)) dt.$$

Note that, for any $t \in [0, 1]$, the restriction $f_t|_{\partial D} : \partial D \to \mathbb{R}$ is a constant function. This implies that the function S is independent of the choice of γ .

LEMMA 3.3. — Let g_t be a path in G_o such that $g_0 = \text{id}$ and X_t the time-dependent vector field defined by $X_t = (\partial g_t / \partial t) \circ g_t^{-1}$, then

(3.3)
$$\sigma_{\eta,\gamma}(g_1) - S(g_t) = \int_0^1 \left(g_t^* \left(i_{X_t} \eta \right) \right) (\gamma(1)) dt.$$

Proof. — Note that the identity

$$g_{1}^{*}\eta - \eta = d\left(\int_{0}^{1} g_{t}^{*}f_{t}dt + \int_{0}^{1} g_{t}^{*}(i_{X_{t}}\eta)dt\right)$$

holds. Thus we have

$$(3.4) \quad \sigma_{\eta,\gamma}(g_{1}) = \int_{\gamma} g_{1}^{*} \eta - \eta$$

$$= \int_{\gamma} d\left(\int_{0}^{1} g_{t}^{*} f_{t} dt + \int_{0}^{1} g_{t}^{*} (i_{X_{t}} \eta) dt\right)$$

$$= \left(\int_{0}^{1} (g_{t}^{*} f_{t}) (\gamma(1)) dt + \int_{0}^{1} (g_{t}^{*} (i_{X_{t}} \eta)) (\gamma(1)) dt\right)$$

$$- \left(\int_{0}^{1} (g_{t}^{*} f_{t}) (\gamma(0)) dt + \int_{0}^{1} (g_{t}^{*} (i_{X_{t}} \eta)) (\gamma(0)) dt\right).$$

Since $(g_t^* f_t)(\gamma(0)) = 0$ and $X_t(\gamma(0)) = 0$ for any $t \in [0, 1]$, the second term in (3.4) is equal to 0. Moreover, since the function $f_t|_{\partial D}$ is constant for any $t \in [0, 1]$, the first term in (3.4) is equal to $S(g_t) + \int_0^1 (g_t^*(i_{X_t}\eta))(\gamma(1)) dt$ and the lemma follows. Put $\eta = (r^2 d\theta)/2$ and $\varphi_t = g_t|_{\partial D}$ in $\operatorname{Diff}_+(S^1)$. Take a path $\gamma : [0, 1] \to D$ defined by $\gamma(t) = (t, 0)$. Let $\widetilde{\varphi_t} \in \operatorname{Diff}_+(S^1)$ be the lift of φ_t such that $\widetilde{\varphi_0} = \operatorname{id}$. As in the equation (2.4), we have

$$\int_0^1 g_t^*\left(i_{X_t}\eta\right)\left(\gamma(1)\right)dt = \frac{1}{2}\int_0^1 \frac{\partial\widetilde{\varphi_t}}{\partial t}(0)dt = \frac{1}{2}\widetilde{\varphi_1}(0)dt$$

where we identify $\gamma(1) \in \partial D$ with $0 \in \mathbb{R}/2\pi\mathbb{Z}$ by the identification $\partial D = S^1 = \mathbb{R}/2\pi\mathbb{Z}$. Thus we have

(3.5)
$$\sigma_{\eta,\gamma}(g_1) - S(g_t) = \frac{1}{2}\widetilde{\varphi_1}(0).$$

Equality (3.5) implies that the value $S(g_t)$ depends only on the homotopy class relatively to fixed ends of the path g_t in G_o . Henceforth, the map $S: \widetilde{G}_o \to \mathbb{R} : [g_t] \mapsto S(g_t)$ is well-defined. Moreover, the map S gives rise to a homomorphism. In fact, let g_t, h_t be paths in G_o , then

$$S(g_t h_t) - S(g_t) - S(h_t)$$

= $\sigma_{\eta,\gamma}(g_1 h_1) - \sigma_{\eta,\gamma}(g_1) - \sigma_{\eta,\gamma}(h_1) - \frac{1}{2} \left(\widetilde{\varphi_1} \widetilde{\psi_1}(0) - \widetilde{\varphi_1}(0) - \widetilde{\psi_1}(0) \right)$

and this is equal to 0 (see Maruyama [4]). Thus we have

(3.6)
$$\overline{\sigma}(g_1) - S([g_t]) = \lim_{n \to \infty} \frac{\sigma_{\eta, \gamma}(g_1^n) - S([g_t]^n)}{n} = \pi \lim_{n \to \infty} \frac{\widetilde{\varphi_1}^n(0)}{2\pi n} = \pi \operatorname{rot}(\widetilde{\varphi_1}).$$

By the above equality (3.6), we obtain the following theorem.

THEOREM 3.4. — Let $p: \widetilde{G_o} \to G_o$ be the projection. Then, we have

$$p^*\overline{\sigma} - S = \pi \widetilde{\mathrm{rot}} : \widetilde{G_o} \to \mathbb{R}.$$

Here the map $\operatorname{rot} : \widetilde{G_o} \to \mathbb{R}$ is the pullback of the translation number by the surjection $\widetilde{G_o} \to \operatorname{Diff}_+(S^1)$.

Remark 3.5. — By considering the map to \mathbb{R}/\mathbb{Z} , we obtain a theorem similar to Theorem 2.6 for $\overline{\sigma}$, S, and the rotation number.

Remark 3.6. — By (3.5), we obtain the formula similar to [9, Corollary (2.9)] and thus the formula similar to [9, Proposition (3.1)]. This implies that the homomorphism $\operatorname{Flux}_{\mathbb{R}}$ cannot be extended to a homomorphism on G_o .

1828

4. Relation between $\overline{\tau}$ and $\overline{\sigma}$

The restriction $\operatorname{Cal}|_{G_{o, \operatorname{rel}}} : G_{o, \operatorname{rel}} \to \mathbb{R}$ of the Calabi invariant remains surjective. So the restriction $\overline{\tau} : G_o \to \mathbb{R}$ is also surjective homogeneous quasi-morphism. Therefore we have two non-trivial homogeneous quasimorphisms $\overline{\tau}, \overline{\sigma} \in Q(G_o)$. By Proposition 2.2 and Proposition 3.1, the class $[\delta \overline{\tau}]$ coincides with $\pi[\delta \overline{\sigma}]$ in $H_b^2(G_o; \mathbb{R})$. Thus the difference $\overline{\tau} - \pi \overline{\sigma}$ is a homomorphism on G_o . This implies that, in contrast with Cal and Flux_R, the difference Cal $-\pi$ Flux_R can be extended to a homomorphism $\overline{\tau} - \pi \overline{\sigma} :$ $G_o \to \mathbb{R}$.

THEOREM 4.1. — The difference $\overline{\tau} - \pi \overline{\sigma} : G_o \to \mathbb{R}$ is a continuous surjective homomorphism.

Proof. — On the group $G_{o, \text{rel}}$, the homomorphism $\overline{\tau} - \pi \overline{\sigma}$ is equal to Cal $-\pi \text{Flux}_{\mathbb{R}}$. Put the non-increasing C^{∞} -function $f : [0, 1] \to \mathbb{R}$ which is equal to 1 near r = 0 and f(1) = 0. Then, for $s \in \mathbb{R}$, we define a diffeomorphism g_s in $G_{o, \text{rel}}$ by

$$g_s(r,\theta) = (r,\theta + sf(r))$$

where $(r, \theta) \in D$ is the polar coordinates. For

$$\eta = \left(r^2 d\theta\right)/2, \quad \gamma(r) = (r,0) \in D,$$

we have

$$\operatorname{Cal}(g_s) = \frac{s\pi}{2} \int_0^1 r^4 \frac{\partial f}{\partial r} dr, \quad \pi \operatorname{Flux}_{\mathbb{R}}(g_s) = \frac{s\pi}{2} \int_0^1 r^2 \frac{\partial f}{\partial r} dr.$$

This implies that the difference $\overline{\tau} - \pi \overline{\sigma}$ is surjective on $G_{o, \text{rel}}$, and so is on G_o .

BIBLIOGRAPHY

- A. BANYAGA, "Sur la structure du groupe des difféomorphismes qui préservent une forme symplectique", Comment. Math. Helv. 53 (1978), no. 2, p. 174-227.
- [2] D. CALEGARI, scl, MSJ Memoirs, vol. 20, Mathematical Society of Japan, 2009.
- [3] Ś. R. GAL & J. KĘDRA, "A cocycle on the group of symplectic diffeomorphisms", Adv. Geom. 11 (2011), no. 1, p. 73-88.
- [4] S. MARUYAMA, "The flux homomorphism and central extensions of diffeomorphism groups", Osaka J. Math. 58 (2021), no. 2, p. 319-329.
- [5] S. MATSUMOTO, "Numerical invariants for semiconjugacy of homeomorphisms of the circle", Proc. Am. Math. Soc. 98 (1986), no. 1, p. 163-168.

- [6] H. MORIYOSHI, "The Calabi invariant and central extensions of diffeomorphism groups", in *Geometry and topology of manifolds*, Springer Proceedings in Mathematics & Statistics, vol. 154, Springer, 2016, p. 283-297.
- [7] H. POINCARÉ, "Sur les courbes définies par une équation differentielle", Journal de Mathématiques 1 (1885), no. 2, p. 167-244.
- [8] L. POLTEROVICH, "Growth of maps, distortion in groups and symplectic geometry", Invent. Math. 150 (2002), no. 3, p. 655-686.
- [9] T. TSUBOI, "The Calabi invariant and the Euler class", Trans. Am. Math. Soc. 352 (2000), no. 2, p. 515-524.

Manuscrit reçu le 20 février 2020, révisé le 6 octobre 2020, accepté le 8 avril 2021.

Shuhei MARUYAMA Nagoya University, Graduate School of Mathematics, Furocho, Chikusaku, Nagoya (Japan) m17037h@math.nagoya-u.ac.jp