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ERGODIC INVARIANT MEASURES
ON THE SPACE OF GEODESIC CURRENTS

by Viveka ERLANDSSON & Gabriele MONDELLO (*)

Abstract. — Let S be a compact, connected, oriented surface, possibly with
boundary, of negative Euler characteristic. In this article we extend Lindenstrauss–
Mirzakhani’s and Hamenstädt’s classification of locally finite mapping class group
invariant ergodic measures on the space of measured laminations ML (S) to the
space of geodesic currents C (S), and we discuss the homogeneous case. Moreover,
we extend Lindenstrauss–Mirzakhani’s classification of orbit closures to C (S). Our
argument relies on their results and on the decomposition of a current into a sum of
three currents with isotopically disjoint supports: a measured lamination without
closed leaves, a simple multi-curve and a current that binds its hull.
Résumé. — Soit S une surface compacte, connexe, orientée, éventuellement à

bord, de caractéristique d’Euler négative. Dans cet article nous étendons la clas-
sification des mesures ergodiques, localement finies et invariantes sous l’action
du mapping class group, sur l’espace des laminations mesurées ML (S) obtenue
par Lindenstrauss–Mirzakhani et Hamenstädt, à l’espace des courants géodésiques
C (S), et nous discutons le cas homogène. De plus, nous étendons la classification
de la fermeture des orbites obtenue par Lindenstrauss–Mirzakhani à C (S). Notre
argument repose sur leurs résultats et sur le décomposition d’un courant en une
somme de trois courants avec supports isotopiquement disjoints: une lamnation
mesurée sans feuilles fermées, une multi-courbe simple et un courant qui remplit
son enveloppe.

1. Introduction
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1.1. Setting

Let S be a smooth, compact, connected, oriented surface of negative
Euler characteristic, possibly with boundary, and let Map(S) be its map-
ping class group, i.e. the group of isotopy classes of orientation-preserving
diffeomorphisms S → S that send each boundary curve of S to itself.
Consider an auxiliary hyperbolic metric on S such that ∂S is geodesic.

A geodesic current on S is a π1(S)-invariant Radon measure on the space
G(S̃) of bi-infinite geodesics in the universal cover S̃ of S. The space C (S) of
all geodesic currents, naturally endowed with the weak?-topology, can also
be viewed as the completion of the set of weighted closed curves on S in the
same way as the space ML (S) of measured laminations is the completion of
the set of weighted simple closed curves. Recall that a measured lamination
is a closed subset of S foliated by complete geodesics and endowed with a
transverse measure of full support. Hence a measured lamination can be
viewed as a current and ML (S) can be viewed as a subspace of C (S). The
geometric intersection number of closed curves has a unique continuous
extension to a symmetric, bi-homogenous intersection form

ι( · , · ) : C (S)× C (S)→ R>0

(see [3]). The subspace of measured laminations consists exactly of those
currents c for which ι(c, c) = 0.
The aim of this paper is to provide a classification of locally finite ergodic

measures on C (S) that are invariant under the natural action of Map(S)
and of closures of Map(S)-orbits on C (S).

1.2. Motivation

The impetus for the present paper – in addition to the classification the-
orem for ergodic invariant measures on ML (S) proven in Lindenstrauss–
Mirzakhani [15] (and almost completely in Hamenstädt [12]) was a series of
articles on counting problems of closed curves and of currents on surfaces,
originating with Mirzakhani [15, 18] in the hyperbolic case and generalized
to other settings by Erlandsson–Souto [9], Erlandsson–Parlier–Souto [8]
and Rafi–Souto [22]. Part of Mirzakhani’s argument was to study a se-
quence of measures on ML (S) converging to a multiple of the Thurston
measure mTh. The main ingredient in its generalizations was to analyze the
corresponding sequence of measures on C (S) and show that they in fact
limit to a homogeneous measure supported on ML (S). In fact, we recover
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the result in [9] as a consequence of our classification of invariant ergodic
homogeneous measures on C (S).

1.3. Notational conventions

All surfaces we consider are smooth, compact, oriented and possibly with
boundary; we also require that each component of a surface has negative
Euler characteristic. Moreover, a subsurface of a surface is always meant
to be closed and with smooth boundary.

As a rule, the surface S is connected, while a subsurface R of S may
be disconnected, unless differently specified. For such an R with connected
components {Ri} we define its space of geodesic currents as the product
C (R) :=

∏
i C (Ri) and its mapping class group as Map(R) :=

∏
i Map(Ri).

Many results we are going to state for connected surfaces can be easily
extended to disconnected ones in an obvious way. We will occasionally
stress in the hypothesis that S is connected when it is particularly relevant.
Throughout the paper, subsurfaces, simple closed curves, laminations

and supports of currents will often be considered up to isotopy. So, for
instance, we will say that the subsets {Xk} of S are isotopically disjoint if
there exist isotopies fk : S → S such that the subsets {fk(Xk)} are pairwise
disjoint. As another example, if c is a current and h is a hyperbolic metric
on S, then supph(c) is the union of all h-geodesics in S in the support
of c; but the support supp(c) is the isotopy class of supph(c), which is
independent of the choice of h.
Simple-closed-curve-free (scc-free) currents and a-laminational currents

defined below will be particularly important in the formulation of our re-
sults.

Definition 1.1 (Scc-free and a-laminational currents). — A geodesic
current c on S is scc-free if it cannot be written as a sum c = Γ + c′ of
two currents with isotopically disjoint supports, where Γ 6= 0 is a weighted
simple multi-curve. Such c is a-laminational if it is scc-free and no connected
component of supp(c) is a lamination.

Finally, we also introduce the hull of a current.

Definition 1.2 (Hull of a current). — The surface hull of an scc-free
current č ∈ C (S) is the isotopy class hull(č) of the smallest closed subsur-
face of S that contains the support of č.

In Section 3.3 we will see that the hull is well-defined and we will discuss
some of its properties.

TOME 72 (2022), FASCICULE 6
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1.4. Invariant measures and orbit closures in ML

Lindenstrauss–Mirzakhani [15] and (almost completely) Hamenstädt [12]
independently classified all Map(S)-invariant, locally finite, ergodic mea-
sures on ML (S). Here we describe such classification and we adopt the
terminology used in [15], since this is more in alignment with our result.
Their main theorem states that any such measurem is a positive multiple

of a measure associated to a so-called complete pair (R,Γ) (see Theorem 5.3
and [15, Theorem 1.1]). Here, a complete pair (R,Γ) consists of a simple
multi-curve Γ and a subsurface R ⊂ S such that R and supp(Γ) are iso-
topically disjoint, and each boundary curve of R is homotopic either to a
curve in the support of Γ or to a boundary curve on S. Viewing the space
ML 0(R) of measured laminations supported in the interior of R (i.e. with-
out simple closed leaves homotopic to boundary circles of R) as a subspace
of ML (S), the measure determined by the pair (R,Γ) is just the sum of
the Thurston measure on ML 0(R)+Γ and of all its Map(S)-translates (see
Section 5.2 of this paper and [15, Section 3] for more details). In particular,
the case R = ∅ corresponds to an atomic measure on ML (S) supported
on the translates of Γ.
We recall that each measured lamination admits a unique decomposition

λ+Γ, which we call “standard”, as a sum of two measured laminations with
isotopically disjoint supports, where Γ is a simple multi-curve and λ is scc-
free. A way to detect the nature of an Map(S)-invariant ergodic measure
m on ML (S) is to consider the standard decomposition λ+ Γ of a general
element in supp(m) and let R be the hull of λ. Such standard decomposition
of a measured lamination is also the key to understand the closure of its
Map(S)-orbit (see Theorem 4.8 in this paper and [15, Theorem 8.9]).

1.5. Main results

Viewing ML (S) as a subspace of C (S) it is natural to ask what the
possible Map(S)-invariant, locally finite, ergodic measures on C (S) are.
We will show that a classification of such measures very much analogous
to the above one holds.
As an example, consider a current c on S such that all connected compo-

nent of supp(c) which are measured laminations are in fact weighted simple
closed curves. Consider the counting measure supported on the Map(S)-
orbit of c, which is clearly Map(S)-invariant and ergodic. We will see in
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Lemma 4.7 that the orbit of such a current c cannot accumulate anywhere,
and hence the above measure is locally finite.
We will prove that any Map(S)-invariant, locally finite, ergodic measure

supported on C (S) is essentially a combination of the Thurston measure
and of a counting measure supported on a current c as in the above example.
We first need a canonical way to decompose a current into more elemen-

tary pieces.

Definition 1.3 (Standard decomposition). — A standard decomposi-
tion of a current c ∈ C (S) is a decomposition of c as a sum c = λ+Γ+α of
three currents with isotopically disjoint supports such that Γ is a weighted
simple multi-curve with support C, λ is an scc-free measured lamination
and α is an a-laminational current with hull A.

The following result will be very useful.

Proposition A (Standard decomposition of a current). — Every cur-
rent on S admits a unique standard decomposition.

Remark 1.4. — In Definition 1.3 we choose the name “standard” to sug-
gest that such decomposition is well-behaved, meaning that it is canonical
and it is compatible with the action of the mapping class group.

The previous statement allows us to formulate our first main result.

Theorem B (Orbit closure of a geodesic current). — Let c ∈ C (S) be
a non-zero geodesic current with standard decomposition c = λ + Γ + α.
Then

Map(S) · c = Map(S) · (ML R(S) + Γ + α)
where R is the union of the components of S \ (C ∪ A) that intersect the
support of λ. Moreover, the subgroup stab(R,C∪A) ⊂ Map(S) of mapping
classes that pointwise fix C ∪A and send R to itself is contained inside the
stabilizer stab(ML R(S) + Γ + α) of the locus ML R(S) + Γ + α as a
finite-index subgroup.

To state the classification of ergodic invariant measures on C (S), follow-
ing Lindenstrauss–Mirzakhani, we extend the notion of complete pair and
of the measure it defines to our setting.

Definition 1.5 (Pairs and complete pairs). — Let R ⊂ S be a subsur-
face and let c ∈ C (S) be a current that standardly decomposes as a sum
c = Γ + α of a simple multi-curve Γ and an a-laminational α. The couple
(R, c) is a pair if supp(c) and R are isotopically disjoint. Moreover, (R, c)
is a complete pair if it is a pair and each boundary curve of R is homotopic
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either to a boundary curve of S, or to a curve in the support of Γ, or to a
boundary curve of hull(α).

Note that Definition 1.5 reduces to Lindenstrauss–Mirzakhani’s defini-
tion of a complete pair for α = 0, and that the case c = 0 is not excluded.
We emphasize that the couple (R,Γ + α) that appears in Theorem B is
indeed a complete pair.
Given a pair (R, c), we define the corresponding measure on C (S) as

follows. If R = ∅, denote by m(∅,c) = δc the Dirac measure supported on
the current c. If R 6= ∅, denote by m(R,c) the push-forward of the Thurston
measure through the map ML 0(R)→ C (S) that sends λ 7→ λ+ c, where
ML 0(R) denotes the set of laminations supported on the interior of R (see
Section 2.7).

Definition 1.6 (Subsurface measures). — Given a pair (R, c), the sub-
surface measure of type [R, c] on C (S) is

m[R,c] :=
∑
ϕ

m(ϕ(R),ϕ(c))

where ϕ ranges over Map(S)/ stab(m(R,c)).

Again, these are the measures on ML (S) considered by Lindenstrauss–
Mirzakhani in the case α = 0.
The second main result of the paper is the following.

Theorem C (Classification of ergodic invariant measures on C ). —
The measure m[R,c] on C (S) is ergodic, Map(S)-invariant and locally finite
for every complete pair (R, c). Moreover, if m is a locally finite, Map(S)-
invariant, ergodic measure on C (S), then m is a positive multiple of m[R,c]

for some complete pair (R, c).

Remark 1.7. — The space C (S) is σ-locally compact and metrizable, and
so completely metrizable and separable (see Theorem 3.10 and [3]). We will
deal with spaces obtained from Borel subsets of spaces of geodesic currents
by taking images via continuous maps with finite fibers, products and dis-
joint unions. On such spaces every locally finite non-negative measure is a
Radon measure. We will only consider locally finite non-negative measures
without further mention.

We comment briefly on the ingredients in the proofs of the main results.
The proof of Theorem B basically relies on the following facts:

• the standard decomposition of a current exists and is unique (Propo-
sition A);
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• Map(S) acts properly discontinuously on the locus C bind(S) of
binding currents (Proposition 4.1);

• the Map(S)-orbit of a measured lamination with full hull is dense
in ML (S) (Theorem 4.8 and [15, Theorem 8.9]).

The proof of Theorem C relies on
• a Map(S)-invariant partition of C (S) provided by Corollary G (ex-

plained in Section 1.6);
• the discontinuity of the action of Map(S) on C bind(S) (Proposi-

tion 4.1);
• the classification of locally finite, ergodic, Map(S)-invariant mea-

sures on ML (S) obtained in [12] and [15].
As R+ acts on C (S) by multiplication, it makes sense to speak of d-

homogeneous measures, namely of measuresm such thatm(t·U) = td·m(U)
for all Borel subsets U ⊂ C (S). Notice that the Thurston measure mTh is
N(S)-homogeneous, with N(S) := −3χ(S)− n.

In [15, Proposition 8.2] it is shown that a locally finite d-homogeneous
Map(S)-invariant measure supported on ML (S) must satisfy d > N(S).

Because of the relevance of Map(S)-invariant homogeneous measures to
curve counting problems, we also provide a sharpening of [15, Proposi-
tion 8.2] and an almost complete classification of such measures.
For every d ∈ R consider the measure

m
(R,c)
d :=

{
m(S,0) if (R, c) = (S, 0) and d = N(S)∫ +∞

0 td−N(R)−1m(R,tc)dt if c 6= 0

on C (S), where (R, c) is understood to be a complete pair. Moreover, set

m
[R,c]
d :=

∑
ϕ

m(ϕ(R),ϕ(c))

as ϕ ranges over Map(S)/ stab(R, c).

Theorem D (Classification of ergodic invariant homogeneous measures
on C ). — Every locally finite Map(S)-invariant d-homogeneous ergodic
measure on C (S) is a positive multiple of one of the following:

(i) the Thurston measure m[S,0]
N(S) = mTh

(ii) the measure m[R,c]
d with c 6= 0 and d > N(S) large enough.

In part (ii) every d > N(S) +N(R) works.

In particular, the Thurston measure mTh is the d-homogeneous measure
with smallest d, and actually the only one (up to multiples) with d = N(S).
This explains its frequent occurrence in problems analogous to Mirzakhani’s

TOME 72 (2022), FASCICULE 6
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simple closed curve counting theorem [17, Theorem 1.1]. In fact, using
Theorem D we recover one of the main results of [9] (Proposition 4.1).
However, we emphasize that there are quite natural counting problems

that give rise to homogeneous measures of degree higher than N(S), and
which thus cannot be governed by Thurston measure: see, for instance,
Example 7.10.
The proof of Theorem D relies on Theorem C, on an estimate of the

volume of unit balls in ML R(S) for a wandering subsurface R of S (Lem-
ma 7.5) and on the following result that will be proven in Appendix A.

Lemma E (Asymptotic growth of bch). — Let (S, h) be a hyperbolic
surface and let c be a current of type c = Γ +α. Denote by bch([L1, L2]) the
number of points in the Map(S)-orbit of c with h-length in [L1, L2]. Then
there exists q > 1 such that

1
v
· LN(S) < bch([0, L]), bch([L, qL]) < v · LN(S) for all L,

for a suitable constant v > 1 (that depends only on S, h, c and q).

The above statement is much weaker than Mirzakhani’s Theorem 1.1
in [18], which gives the exact asymptotics of bch. We mention that the upper
bound contained in Lemma E was also proven in [24, Lemma 2.4] (for closed
surfaces) and [18, Lemma 5.6] (for binding currents).

1.6. An invariant partition of C (S)

The existence and uniqueness of the standard decomposition (Proposi-
tion A) and the classification of locally finite, ergodic, Map(S)-invariant
measures (Theorem C) rely on a partition of C (S) into Map(S)-invariant
Borel subsets. The key step in the construction of such partition is the anal-
ysis of the locus C fh(S) of currents of full hull (namely, of hull equal to S)
which contains two special subsets: the locus ML fh(S) of laminations of
full hull and the locus C bind(S) of binding currents, i.e. of currents c that
intersect every geodesic which is not asymptotic to ∂S (see Definition 3.1).
The proof of the following result is also contained in Burger–Iozzi–

Parreau–Pozzetti [4, 5].

Theorem F (Partition of C fh). — A current of full hull on the con-
nected surface S is either a measured lamination or a binding current. In
other words,

C fh(S) = ML fh(S) ∪̇ C bind(S)

ANNALES DE L’INSTITUT FOURIER
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in the set-theoretical sense. Moreover, both ML fh(S) and C bind(S) are
Map(S)-invariant Borel subsets.

Notation. — Given topological subspaces {Xk} of X, we will denote by
the dotted symbol

⋃̇
k{Xk} the subspace of X obtained as the union of all

Xk’s if such Xk’s are pairwise disjoint.

As a consequence of Theorem F, we get the following partition of the
full space of geodesic currents (see Corollary 3.23). For a subsurface R of
S, let ML fh

R (S) denote the subset of measured laminations supported in
the interior of R and with hull R and similarly define C bind

R (S) to be the
subset of currents supported in the interior of R and that bind R. Then

C (S) =
⋃̇

(R,C,A)

C fh
(R,C,A)(S)

with
C fh

(R,C,A)(S) := ML fh
R (S)⊕ C fh

C (S)⊕ C bind
A (S)

where R,A ⊆ S are disjoint subsurfaces and C fh
C is the subspace of simple

multi-curves whose support is the unweighted simple multi-curve C ⊂ S

disjoint from R ∪A.
The existence of the above decomposition quickly leads to the proof of

Proposition A. In fact, a current c must belong to a unique C fh
(R,C,A)(S),

and so c = λ+ Γ +α with λ being a lamination of full hull in R, Γ a simple
multi-curve with support C and α an a-laminational current with hull A.
Finally, denoting by [R,C,A] a type, that is an equivalence class of triples

(R,C,A) under the action of Map(S), and by

C fh
[R,C,A](S) :=

⋃
ϕ∈Map(S)

C fh
(ϕ(R),ϕ(C),ϕ(A))(S),

we also obtain the following invariant partition of the space of currents.

Corollary G (Map(S)-invariant partition of C ). — The space C (S)
can be decomposed into a union over all types [R,C,A] in S

C (S) =
⋃̇

[R,C,A]

C fh
[R,C,A](S)

of the Map(S)-invariant, pairwise-disjoint, Borel subsets C fh
[R,C,A](S).

1.7. Outline of the paper

In Section 2 we give the necessary background on geodesic currents. In
Section 3 we construct the partition described above and prove Theorem F
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as well as Corollaries 3.23 and G. In Section 4 we study the action of
the mapping class group on subsets of C (S) and prove Proposition 4.1 and
Theorem B. In Section 5 we recall the classification of invariant measures on
ML (S) by Lindenstrauss–Mirzakhani and Hamenstädt, we construct the
ergodic Map(S)-invariant subsurface measuresm[R,c] on C (S) and we show
that m[R,c] is locally finite if and only if the pair (R, c) is complete. Finally,
in Section 6 we prove Theorem C and Theorem D is proven in Section 7.
Appendix A contains some estimates that are used in Theorem D and the
proof of Lemma E.
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2. The space C of geodesic currents

Let S be a smooth, compact, connected, oriented surface, possibly with
boundary ∂S consisting of the closed curves β1, . . . , βn. Assume that χ(S) <
0 and let π := π1(S) be its fundamental group and S̃ → S its universal
cover.
Throughout the paper we will call h a hyperbolic metric on S if h is a

metric of curvature −1 on S and the boundary ∂S is h-geodesic.

2.1. The space of bi-infinite geodesics in S̃

Fix an auxiliary hyperbolic metric h on S and let h̃ be its lift to S̃.
Then S̃ can be identified with a subset of D2 and we define the finite
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boundary ∂f S̃ to be the locus of points in S̃ that project to ∂S. The
ideal boundary ∂∞S̃ is the locus of points of ∂D2 in the closure of S̃.
The boundary ∂S̃ = ∂f S̃ ∪ ∂∞S̃ is homeomorphic to S1 and it inherits
an orientation from S̃. Given three distinct points x, y, z ∈ S1 we write
x ≺ z ≺ y if a path travelling from x to y in the positive direction meets z.
If ∂S is non-empty, then ∂f S̃ is the union of countably many open intervals
and ∂∞S̃ is a closed subset of ∂S̃ with no internal part. If y1, y2 ∈ ∂∞S̃, then
we denote by [y1, y2]∞ the subset of points y ∈ ∂∞S̃ such that y1 � y � y2,
and by (y1, y2)∞ the subset [y1, y2]∞ \ {y1, y2}.

Definition 2.1. — The space of bi-infinite geodesics on S̃ is the space
G(S̃) of unordered pairs of distinct points in ∂∞S̃.

Remark 2.2. — If S has non-empty boundary, then we can view S as a
subsurface of its double DS. Thus, a bi-infinite geodesic in S gives rise to
a bi-infinite geodesic in DS that does not hit ∂S. Hence, we can view G(S̃)
as a closed subset of G(D̃S).

Given a compact subset M of S and a hyperbolic metric h on S, we
denote by Gh,M (S̃) the subset of G(S̃) representing h̃-geodesics whose pro-
jection to S is contained inM . We also denote by G61(S̃) ⊂ G(S̃) the subset
of all geodesics of S̃ such that their (parametrized) projection γ : R → S

is reduced, meaning that γ does not contain a closed subcurve γ|[t1,t2] ho-
motopic to βj ∗ βj for any j = 1, . . . , n.

We omit the proof of the following simple observation.

Lemma 2.3. — Fix a hyperbolic metric h on S. Then
(a) there exists a compact subset M of the interior of S such that
G61(S̃) ⊂ Gh,M (S̃);

(b) for every s > 0 there exists a compact M in the interior of S such
that every lift of an h-geodesic with at most s self-intersections is
contained inside Gh,M (S).

The following observation will be useful in Section 3.1.

Lemma 2.4. — Let h be a hyperbolic metric on S and let γ ⊂ S be
a bi-infinite geodesic. Then there exists a reduced bi-infinite geodesic γred
whose support is isotopic to a subset of the support of γ. Moreover, if no
end of γ spirals about a boundary component of S, the same is true of γred.

Proof. — Construct a curve γ̂red starting from γ by replacing every
closed subcurve homotopic to β∗lj with l > 2 by βj (resp. replacing β∗(−l)j

with l > 2 by β−1
j ). The geodesic representative γred of γ̂red is easily seen

to satisfy all the requirements. �

TOME 72 (2022), FASCICULE 6



2460 Viveka ERLANDSSON & Gabriele MONDELLO

For a disconnected surface R =
∐
iRi we define R̃ :=

∐
i R̃i and G(R̃) :=∐

i G(R̃i). We also define Gh,M (R̃) and G61(R̃) analogously.

2.2. Geodesic currents

Note that the group π naturally acts on G(S̃) via the diagonal action on
(∂∞S̃)2.

Definition 2.5 (Geodesic current on a closed surface). — A geodesic
current on a surface S without boundary is a π-invariant locally finite
measure c on G(S̃).

Given a surface S with non-empty boundary, we view G(S̃) as a closed
subset of G(D̃S) by Remark 2.2. As a consequence, π1(DS)-invariant locally
finite measures on G(D̃S) can be restricted to π1(S)-invariant locally finite
measures on G(S̃).

Definition 2.6 (Geodesic current on a surface with non-empty bound-
ary). — A geodesic current on a surface S with non-empty boundary is a
π-invariant, locally finite measure on G(S̃) obtained as the restriction of a
current in C (DS), which is invariant under the natural involution of DS
and whose support does not transversely intersect ∂S.

We denote by s̃upp(c) ⊂ G(S̃) the support a the geodesic current c ∈
C (S). Given a hyperbolic metric h on S, we denote by s̃upph(c) ⊆ S̃ the
union of all h̃-geodesics in s̃upp(c) and by supph(c) ⊆ S the projection of
s̃upph(c) to S.

Remark 2.7. — Let Ξ ⊂ T 1S be the unit tangent vectors to geodesics
that do not transversally hit ∂S (or, equivalently, whose lifts to S̃ have
endpoints in ∂∞S̃). The datum of a geodesic current is equivalent to a
locally finite measure on Ξ which is invariant under the geodesic flow. If
∂S = ∅, then Ξ = T 1S and so a geodesic current can be seen as a locally
finite measure on T 1S which is invariant under the geodesic flow.

The space of geodesic currents C (S) on the surface S is endowed with
the weak?-topology, meaning that

ck −→ c ∈ C (S) ⇐⇒
∫
G(S̃)

f · ck −→
∫
G(S̃)

f · c

for all continuous functions f : G(S̃)→ R with compact support.
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Example 2.8 (Weighted sums of closed curves). — Let γ be a homotopi-
cally nontrivial closed curve on S. Each of its lifts γ̃i to S̃ determines a
point in G(S̃). Thus,

∑
i δγ̃i

is a π-invariant measure on G(S̃), and so a geo-
desic current which is denoted by γ with little abuse. We can thus view the
set of homotopy classes of closed curves on S as a subset of C (S). Clearly,
given homotopically nontrivial closed curves γ1, . . . , γk and real numbers
w1, . . . , wk > 0, the linear combination

∑k
j wjγj is again a geodesic current,

which we call a (weighted) multi-curve and its support is the unweighted
multi-curve

⋃k
j=1 γj . When the curves γj are simple and pairwise disjoint,

we call such a current a (weighted) simple multi-curve, and similarly, its
support an unweighted simple multi-curve.

Example 2.9 (Current attached to a measured foliation). — Let F be
a foliation on S (possibly with singularities of type Re(zkdz2) = 0 with
k > −1) such that no leaf of F is transverse to ∂S or spirals about some
component of ∂S. If F is endowed with a transverse measure, then it de-
termines a geodesic current on S (see [2, 3, 10, 14, 25]).

Remark 2.10 (Non-spiralling behavior of atomic leaves). — Since geo-
desic currents are locally finite measures, leaves with an end that spirals
about a simple closed curve cannot carry an atomic measure.

A geodesic current c ∈ C (S) is supported on the boundary of S if it can
be written as a linear combination c =

∑n
j=1 ujβj of the boundary curves

with all uj > 0. The current c is internal in S if c(β̃j) = 0 for all lifts β̃j of
βj and all j.

Remark 2.11 (Support on internal current can reach the boundary). —
The support of an internal current c need not be disjoint from ∂S. Consider,
for example c =

∑
j wjγj a weighted sum of all closed non-peripheral curves

{γj} in S (with rapidly decaying weights wj > 0 so that the sum makes
sense).

We denote by C∂S(S) the subset of currents supported on the boundary
of S and by C0(S) the subset of currents which are internal in S. Moreover,
we call C61(S) the subset of internal currents that are supported on the
closure of G61(S̃).
Given a hyperbolic metric h on S and a compact subsetM of the interior

of S, we denote by Ch,M (S) the subset of currents c such that supph(c) ⊆
M . Note that C61(S) is contained in Ch,M (S), for some compact subset
M that depends on h.

All of the above definitions immediately extend to disconnected surfaces.
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We will often use the following decomposition.

Lemma 2.12 (Interior+boundary decomposition of a current). — For
every surface S with boundary ∂S =

⋃n
j=1 βj we have the algebraic de-

composition
C (S) = C∂S(S)⊕ C0(S)

meaning that each c ∈ C (S) can be uniquely written as a sum of a current
supported on the boundary and an internal current. Moreover, C∂S(S) is
a closed subset and C0(S) is a dense Borel subset of C (S).

Proof. — Let c ∈ C (S). We want to find u1, . . . , un > 0 such that c =
c0 +

(∑
j ujβj

)
with c0 ∈ C0(S). If β̃j is a lift of βj with endpoints xj ≺ yj ,

then it is enough to set uj := c({xj , yj}). The uniqueness of such choice
is immediate. To show that C0(S) is dense, it is enough to show that each
βj belongs to the closure of C0(S). Now, fix a closed curve η based at a
point of βj , which is not homotopic to a power of βj , and let γk be the
concatenation of k · βj and η. Such a γk is non-simple for k > 2 and so
non-peripheral: it follows that 1

kγk belongs to C0(S). Clearly, 1
kγk → βj .

Since C∂S(S) is clearly closed, we are left to show that C0(S) is Borel.
Fix a lift β̃j ∈ G(S̃) of βj and let (Uk) and (Vk) be countable fundamental
systems of neighbourhoods of β̃j such that Uk ⊂ Vk and V k is compact.
Moreover let fk : G(S̃) → [0, 1] be a continuous function with support in
Vk and such that fk|Ūk

≡ 1. The subset of currents c whose mass fades to
zero near β̃j is given by⋂

l>1

⋃
k>1

{
c ∈ C (S)

∣∣∣∣∣
∫
G(S̃)

fk · c < 1/l
}

which is then a Borel subset of C (S). We conclude by observing that C0(S)
is obtained by intersecting countably many similar subsets for all lifts of
β1, . . . , βn. �

2.3. The mapping class group

Let Diff+(S) be the topological group of orientation-preserving diffeo-
morphisms of S that send every boundary component to itself, and let
Diff0(S) be the subgroup of diffeomorphisms isotopic to the identity, which
is a connected component of Diff+(S). For a disconnected surface

∐
iRi we

moreover require the diffeomorphisms to send every component to itself, so
that Diff+(

∐
iRi) ∼=

∏
i Diff+(Ri).
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The mapping class group is the discrete group Map(S) = Diff+(S)/
Diff0(S). If R is a subsurface of S such that all components Ri of R have
negative Euler characteristic, we denote by Map(S,R) the subgroup of
elements in Map(S) that can be represented by diffeomorphisms which are
the identity on R, and we define similarly Map(S,C) if C is an unweighted
simple multi-curve.
We also denote by stab(R) ⊂ Map(S) the subgroup of mapping classes

that send R to itself up to isotopy, and by stab(R, ∂R) the finite-index
subgroup of stab(R) consisting of elements that send each boundary com-
ponent of R to itself. If C is an unweighted simple multi-curve in S, then
Map(S,C) is a finite-index subgroup of stab(C).

Notation. — Suppose that R,A are disjoint subsurfaces of S and that
C ⊂ S is an unweighted simple multi-curve disjoint from R and A. By
slight abuse, we will denote by stab(R,C ∪A) the subgroup of elements of
Map(S) which send R to itself and which restrict to the identity on C and
on A. We incidentally remark that Dehn twists along simple closed curves
supported on C belong to stab(R,C ∪A).

Finally, we note that the mapping class group Map(S) acts on G(S̃)
and hence on C (S) by self-homeomorphisms. We denote by stab(c) the
stabilizer of a current c ∈ C (S). Similarly, Map(S) also acts on the space
of measures on C (S) by push-forward and stab(m) denotes the stabilizer
of a measure m on C (S).

2.4. Push-foward of currents

Let R be a subsurface of S, possibly disconnected and with boundary,
such that every connected component of R has negative Euler characteris-
tic.
Fix an auxiliary hyperbolic metric on S. A geodesic realization of R

inside S is a map I : R ↪→ S that sends the interior of R homemorphically
onto its image and each boundary curve of ∂R homeomorphically onto a
closed geodesic of S.
Note that two boundary curves of R can be mapped to the same geodesic

of S.

Lemma 2.13 (Geodesics in a subsurface). — The map I induces a closed
continuous map Ĩ : G(R̃)→ G(S̃). If R is connected, then

• Ĩ is injective;
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• given lifts γ̃1, γ̃2 of two distinct geodesics γ1, γ2 ⊂ R, the image
Ĩ(γ̃1) is π1(S)-conjugate to Ĩ(γ̃2) if and only if γ1, γ2 ⊂ ∂R and
I(γ1) = I(γ2).

Proof. — Clearly, it is enough to prove the statement for R connected.
As before, let h be a hyperbolic metric on S and let I map every boundary
component of R to a geodesic on S. Endow R with the pull-back metric.

The induced map R̃ → S̃ is a local isometry onto its image. Thus we
obtain a proper continuous map R̃∪ ∂R̃→ S̃ ∪ ∂S̃, which restricts then to
a closed map ∂∞R̃→ ∂∞S̃.
The injectivity of Ĩ follows from the injectivity of I∗ : π1(R) → π1(S)

and the last claim from the identification of conjugacy classes in π1(S) with
free homotopy classes of loops in S. �

The above lemma allows us to define a push-forward map

I : C (R) −→ C (S)

which we denote still by I with little abuse of notation. If R is connected,
we set I(c) :=

∑
[g] g · Ĩ(c), where [g] ranges over π1(S)/I∗π1(R) and Ĩ(c)

is the push-forward of the measure c via the map Ĩ. If R =
∐
iRi and

ci ∈ C (Ri), then we simply let I(
∑
i ci) :=

∑
i I(ci). The second claim of

Lemma 2.13 guarantees that the restriction of the above push-forward map
to C0(R) is injective.

Definition 2.14. — The subset CR(S) of currents on S internal in R
is the image of C0(R) via the push-forward map I.

Corollary 2.15. — The locus CR(S) is a Borel subset of C (S).

Proof. — Let h be an auxiliary hyperbolic metric on S and let R be
the h-realization of R inside S (which is not homeomorphic to R if two
boundary circles of R are isotopic two each other inside S). Clearly, CR(S)
is contained in the closed locus of currents c ∈ C (S) that have support
inside R and that do not transversally intersect any boundary circle of R.
Adapting the proof of Lemma 2.12, one can easily show that CR(S) is a
Borel subset inside such closed locus. �

2.5. Intersection pairing

Two geodesics η, η′ ∈ G(S̃) with endpoints x1, x2 and x′1, x
′
2 in ∂∞S̃

intersect transversely if x1 ≺ x′1 ≺ x2 ≺ x′2 or x1 ≺ x′2 ≺ x2 ≺ x′1.
We denote by IG(S̃) the open subset of G(S̃)× G(S̃) consisting of pairs of
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transversely intersecting geodesics. The diagonal action of π on G(S̃)×G(S̃)
preserves IG(S̃) and we denote by ĨG(S) ⊂ IG(S̃) a fundamental domain.

Definition 2.16 (Geometric intersection of currents). — Given two ge-
odesic currents c1, c2 ∈ C (S), their geometric intersection number is

ι(c1, c2) :=
∫
ĨG(S)

c1 × c2.

Given two distinct closed curves γ1, γ2, the intersection number ι(γ1, γ2)
counts the minimal number of intersection points between homotopic rep-
resentatives of γ1 and γ2 in general position. If γ1 and γ2 are non-isotopic to
each other, such minimal number is actually attained by choosing geodesic
representatives with respect to an auxiliary hyperbolic metric on S.

Note that if γ is an open geodesic arc in the hypebolic surface (S, h),
then it makes sense to speak of the intersection of γ with a current c,
namely ι(γ, c) := c(ĨGγ) where ĨGγ is the subset of geodesics in G(S̃) that
transversely intersect a fixed lift of γ.
We recall the following result by Bonahon [3].

Theorem 2.17 (Continuity of geometric intersection). — The intersec-
tion pairing

ι : C (S)× C (S) −→ R>0

is continuous. In particular, the function `c = ι(c, · ) : C (S)→ R>0 associ-
ated to any c ∈ C (S) is continuous.

Though the restriction of ι to C0(S) is non-degenerate, ι itself is degen-
erate if C (S) has boundary. In fact, for every boundary curve βj of S we
have ι(βj , c) = 0 for all c ∈ C (S). Such ι can be modified in order to make
it non-degenerate by considering arcs that meet the finite boundary of S̃.
We will not need such a construction here and so we refer to [7] for further
details.
Let c be a non-simple closed curve on S that intersects every closed curve

in S (or more generally, let c be a binding current as defined in Section 3.1).
We will see in Section 3.1 that the function `c = ι(c, · ) is strictly positive
on Ch,M (S) \ {0} for every hyperbolic metric h and every compact subset
M contained in the interior of S. In particular, `c will be strictly positive
on C61(S) \ {0}.

2.6. Liouville current attached to a metric

Let S be a closed surface and let h be a hyperbolic metric on S. Let Ωg be
the natural volume form on the unit tangent bundle T 1S of S (that pushes
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down to 2π times the area form dAg on S). Since Ωg is invariant under the
geodesic flow, it defines a geodesic current Lh ∈ C (S) by Remark 2.7.

Definition 2.18 (Liouville current). — The current Lh on S is called
the Liouville current associated to the hyperbolic metric h.

Here we recall an important property of Liouville currents.

Proposition 2.19 (Liouville current and length of closed geodesics).
Let h be a hyperbolic metric on the closed surface S. Then

ι(Lh, γ) = `h(γ)

for every closed geodesic γ in S.

The above construction is due to many authors, building on the work
of Bonahon [3] in the hyperbolic case. For example, Otal [20] treated the
case of a smooth metric of negative curvature, Duchin–Leininger–Rafi [7]
and Bankovic–Leininger [1] dealt with flat surfaces with conical points and
Constantine [6] with non-positively curved metric with conical points.

Consider now a surface S with non-empty boundary. It is possible to
define the length function `h attached to a hyperbolic metric h as follows.

Remark 2.20 (Length function attached to a hyperbolic metric with ge-
odesic boundary). — Let S be a surface with non-empty boundary and
consider S as embedded in its double DS. Given a hyperbolic metric h on
S such that ∂S is geodesic, we can endow DS with the metric Dh induced
by h which is invariant under the natural involution. Identify C (S) to the
closed subset of C (DS) supported inside S ⊂ DS and let `h : C (S) → R
be the restriction of continuous function `Dh : C (DS) → R to C (S), so
that `h(γ) is in fact the h-length of γ for every closed geodesic γ in S. It
will follow from Proposition 3.9 that `Dh is proper. As a consequence, `h
is proper too.

By contrast with Proposition 2.19, note that the length function `h asso-
ciated to a hyperbolic metric h on a surface S with boundary ∂S =

⋃
j βj

as in the above remark is not induced from a Liouville-type current Lh
on S that fits our definitions, since Lh must satisfy ι(Lh, βj) = 0 whereas
`h(βj) 6= 0 for all j.

Example 2.21 (Hyperbolic metrics with cusps). — Let S′ be a punctured
surface and let h′ be a hyperbolic metric with cuspidal ends on S′. A
Liouville current Lh′ can be defined quite in the same way as above, but it
is not locally finite since S′ has cusps. Fix a homeomorphism f : S → S′

of the surface with boundary S onto its image, which is also a homotopy
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equivalence. Such maps lifts to f̃ : S̃ → S̃′ which extends to the respective
boundaries. In particular, if x′ ∈ ∂S̃′ corresponds to a cusp, then f̃−1(x′)
consists of two points in ∂∞S̃ that bound an interval of ∂f S̃; otherwise
f̃−1(x′) consists of one point. Since the subset of geodesics in G(S̃′) with
any fixed common endpoint in ∂S̃′ has Lh′ -measure 0, one can easily define
a pull-back measure f̃∗Lh′ . Such a measure is not locally finite though.

2.7. Measured laminations

An important subspace of C (S) is given by measured laminations. Here
we recall a few facts about this space.

Definition 2.22 (Measured geodesic laminations). — A geodesic lam-
ination on the hyperbolic surface (S, h) is a closed subset Λ ⊂ S that is
foliated by complete geodesics. A measured geodesic lamination is a geo-
desic lamination Λ endowed with a measure λ on the space A(Λ) of arcs
that are transverse to Λ and with endpoints in S \ Λ such that

(i) λ is non-negative and λ(η) > 0 if and only if η ∩ Λ 6= ∅;
(ii) if η, η′ ∈ A(Λ) and the endpoint of η agrees with the starting point

of η′, then λ(η ∗ η′) = λ(η) + λ(η′);
(iii) if (ηt)t∈[0,1] is a continuous family of arcs in A(Λ), then λ(η0) =

λ(η1).

Example 2.23 (Simple multi-curves). — Let γ1, . . . , γl ⊂ S be pairwise
disjoint simple closed geodesics which are homotopically nontrivial and let
w1, . . . , wl > 0. Let Λ =

⋃l
i=1 γi and λ be the transverse measure defined

by λ(η) =
∑l
i=1 wi · |η ∩ γi| for every η ∈ A(Λ). Then (Λ, λ) is a measured

lamination of special type, namely a (weighted) simple multi-curve. As in
Example 2.8, we often denote it by w1γ1 + · · ·+wlγl and its support is the
unweighted simple multi-curve

⋃l
i=1 γl.

A geodesic lamination determines a π-invariant closed subset Λ̃ of G(S̃)
and a measured geodesic lamination (Λ, λ) determines a geodesic current in
C (S) supported on Λ̃. By abuse of notation, we will denote such a current
just by λ.
Given two hyperbolic metrics h, h′, there is a canonical correspondence

between h-geodesic laminations and h′-geodesic laminations, and hence it
makes sense just to speak of “laminations” on S. Similarly, the concept of
“measured laminations” is independent of the chosen hyperbolic metric.
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The space of measured laminations ML (S) is the locus of currents
in C (S) induced by a measured geodesic lamination on S. We denote
by ML 0(S) the subset of measured laminations internal in S, so that
ML (S) = ML 0(S)⊕ C∂S(S).

Remark 2.24. — For every auxiliary hyperbolic metric h on S, there is
a compact subset of the internal part of S (that depends on h only) which
contains the support of every measured geodesic lamination in ML 0(S).
Hence, ML 0(S) is a closed subset of C (S).

Since measured geodesic laminations are currents supported on a set of
pairwise non-intersecting simple geodesics, the following characterization
holds (Bonahon [3]).

Lemma 2.25 (ML as a quadratic cone in C ). — The locus of geodesic
measured laminations ML (S) can be characterized inside C (S) as the
closed quadratic R+-cone ML (S) = {c ∈ C (S) | ι(c, c) = 0}.

Lastly, recall that the space ML 0(S) can be described using charts given
by train tracks. This allowed Thurston to prove that ML 0(S) can be given
the structure of a manifold, piecewise-linearly homeomorphic to a Euclidean
space of dimension −3χ(S)− n (where n is the number of boundary com-
ponents).

2.8. Currents and spikes

Here we recall a basic well-known property of geodesic currents, namely
the fact that no mass can be supported on a subset of geodesics which enter
a spike.

Definition 2.26. — Let η̃, η̃′ ⊂ D2 be two distinct geodesics which
are asymptotic to the same point x ∈ ∂D2, and let σ̃ ⊂ D2 be the region
bounded by η̃, η̃′. A spike is a hyperbolic surface isometric to the end of σ̃
that is asymptotic to x.

Endow the surface S with a hyperbolic metric h and consider two semi-
infinite oriented geodesic rays η, η′ : [0,∞) → S that are asymptotic to
each other. Two lifts η̃, η̃′ ⊂ S̃ which are asymptotic to the same point in
∂S̃ determine a spike σ̃.
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Lemma 2.27 (Geodesics constrained inside a spike have measure zero).
Let x be a point in ∂∞S̃ and let y1, y2 ∈ ∂∞S̃ such that x /∈ [y1, y2]∞.
Suppose that the geodesic ηy in S determined by {x, y} ∈ G(S̃) is not
closed for any y ∈ [y1, y2]∞. Then every current c ∈ C (S) satisfies c({x} ×
(y1, y2)∞) = 0.

Proof. — Let γ be an open geodesic arc of bounded length in S. If each
ηy transversely intersects γ at least M times, then ι(c, γ) > M · c({x} ×
(y1, y2)∞). In order to prove the statement, it is thus enough to show that
there exists an arc γ which is transversely intersected infinitely many times
by each ηy.
Now fix y0 ∈ (y1, y2)∞ and let ηy0 : R → T 1S be the projection of the

geodesic that runs from y0 to x. Consider an accumulation point v ∈ T 1S

for η0(t) as t → +∞ and let γ be a small geodesic arc transverse to v.
For every y ∈ (y1, y2)∞ the geodesic ηy is non-closed and bi-infinite and it
accumulates at v, and so ηy transversely crosses γ infinitely many times. �

We then have a criterion to determine whether the support of a current
c is disjoint from a spike.

Corollary 2.28 (Currents with support disjoint from a spike). — In
the hypotheses of Lemma 2.27, suppose moreover that the support of c
does not transversally cross ηy1 and ηy2 . Then {x} × (y1, y2)∞ is disjoint
from the support of c.

Proof. — Let X ⊂ ∂∞S̃ be an open neighborhood of x that does not
intersect [y1, y2]∞. It is easy to see that, for every x′ ∈ X different from
x and for every y ∈ (y1, y2)∞, there exists an i ∈ {1, 2} such that the
geodesics {x′, y} and {x, yi} transversely intersect. By our hypotheses, the
geodesic {x′, y} is not in the support of c. It follows that the open subset
X × (y1, y2)∞ of G(S̃) does not meet the support of c and the conclusion
follows. �

An easy consequence of the above lemma is the existence of geodesics
not asymptotic to the boundary in the support of any non-zero current.

Corollary 2.29. — Let 0 6= c0 ∈ C0(S). Then there exists a geodesic
in supph(c0), different from a boundary curve, which is not asymptotic to
a boundary curve.

Proof. — By contradiction, suppose that all geodesics in supph(c0) are
either boundary curves or asymptotic to them, and so in particular they
are either boundary curves or they are bi-infinite geodesics. Then s̃upp(c0)
is contained in a countable union of sets of type {x} × [y1, y2]∞, with
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x ∈ ∂∞S̃ and x /∈ [y1, y2]∞ ⊂ ∂∞S̃. Note that ηy is not a closed geodesic
for all y ∈ (y1, y2)∞. Hence, we can apply Lemma 2.27 and conclude that
the whole {x} × (y1, y2)∞ has c0-measure 0. Since c0 is internal in S, it
follows that {x}× [y1, y2]∞ has c0-measure 0 too. As a consequence, c0 = 0
and we have achieved a contradiction. �

3. An invariant partition of C

In this section we will discuss the key ingredients in the proof of Theo-
rem C: a partition of the space of currents into Borel invariant subsets and
the action of the mapping class group on subsets of C (S).

3.1. Binding currents

We start by discussing a class of very general currents.

Definition 3.1 (Binding currents). — A current c ∈ C (S) binds if ev-
ery geodesic in G(S̃) with no endpoint in the closure of ∂f S̃ is transversely
intersected by a geodesic in the support of c. Denote by C bind(S) the sub-
space of binding currents in C (S).

We observe that a binding current may well belong to C0(S) and that
elements of C∂S(S) are never binding. On the other hand, if b is binding
and c is any current, then b+ c is clearly binding.

Example 3.2 (Liouville currents on closed surfaces). — If S is closed and
h is a hyperbolic metric on S, then the associated Liouville current Lh is
binding since it has full support in G(S̃).

Example 3.3 (Binding currents supported on closed geodesics). — A
binding geodesic current can be obtained by considering the current as-
sociated to the multi-curve b = w1γ1 + · · ·+wlγl where all wi > 0 and each
γi is a closed curve in S, such that their geodesic representatives (with re-
spect to an auxiliary hyperbolic metric) cut S into a disjoint union of disks
and cylinders homotopic to a boundary curve of S. Actually, it is possible
to have l = 1.

The following example was proposed by Marc Burger.
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Example 3.4 (Binding sums of countably many weighted closed curves).
Fix an auxiliary hyperbolic metric on S and let (γk) be the set of non-
peripheral closed curves in S, ordered so that `h(γk) 6 `h(γk+1). Let b =∑
k wkγk where (wk) is a quickly decreasing sequence of positive numbers,

for example wk = 2−k. Then b is certainly binding. In fact, there exists k
such that S \ γk is a disjoint union of disks and cylinders homotopic to a
boundary curve of S. An analogous binding current can be manufactured
by only adding up simple closed curves.

We begin the analysis of the binding locus by the following simple ob-
servation.

Lemma 3.5 (Density of binding currents inside C ). — The subset
C bind(S) is non-empty and dense inside C (S).

Proof. — Example 3.3 shows that C bind(S) is not empty. Concerning the
density, just note that, if b is binding and c ∈ C (S), then ck = c+ 1

k b is a
sequence of binding currents that converge to c as k →∞. �

Binding currents can be characterized using the intersection pairing: the
following statement was essentially proven in [11], up to minor variations.

Proposition 3.6 (Positivity of binding currents). — Let c be a current
on S and fix a hyperbolic metric h on S. The following are equivalent.

(a) c binds;
(b) ι(c, c′) > 0 for every 0 6= c′ ∈ C0(S);
(c) for any given compact subsetM ⊂ S̊, the current c satisfies ι(c, c′) >

0 for all 0 6= c′ ∈ Ch,M (S);
(d) ι(c, c′) > 0 for every 0 6= c′ ∈ C61(S).

Proof. — Suppose first that (a) holds and let 0 6= c′ ∈ C0(S). By Corol-
lary 2.29, there exists a geodesic γ′ in supph(c′) which is neither a boundary
curve nor asymptotic to a boundary curve. Then c intersects γ′ transver-
sally and so ι(c, c′) > 0. Hence, (a) implies (b).

Clearly, (b) implies (c) because Ch,M (S) ⊂ C0(S), and (c) implies (d)
because C61(S) ⊂ Ch,M (S) for a suitable M . Thus, we only need to show
that (d) implies (a).
Suppose that c is not binding and so there exists a complete geodesic

γ′ which is neither a boundary curve nor asymptotic to a boundary curve,
and which is not transversally intersected by supph(c). Then Lemma 3.7
below guarantees the existence of a current 0 6= c′ ∈ C61(S) which satisfies
ι(c, c′) = 0. �
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The following lemma was essentially proven by Glorieux in [11]. A proof
taylored to our need is included for completeness.

Lemma 3.7 ([11]). — Let h be a hyperbolic metric on S and let γ′ ⊂ S
be a non-peripheral geodesic with no end hitting or spiralling about a
boundary component of S. If the support of c ∈ C (S) does not transversely
intersect γ′, then there exists 0 6= c′ ∈ C61(S) supported on the closure of
(γ′)red such that ι(c, c′) = 0.

Proof. — Let (γ′)red be a reduced geodesic obtained from γ′ as in Lem-
ma 2.4. Since the support of (γ′)red is isotopic to a subset (γ̂′)red of the sup-
port of γ′, it follows that (γ′)red does not transversely intersect supph(c).
In fact, if a curve γ′′ in supph(c) is disjoint from γ′, then it is also disjoint
from (γ̂′)red. On the other hand, if γ′′ = γ′, then γ′ must be simple and so
(γ′)red = γ′.
Since transversality is an open condition, every geodesic contained in the

closure of (γ′)red is either disjoint from supph(c) or completely contained
inside supph(c). Thus, a geodesic current c′ with supph(c′) contained in the
closure of (γ′)red satisfies c′ ∈ C61(S) and ι(c, c′) = 0.

In order to construct such non-zero c′, we produce a measure on Ξ ⊂ T 1S

supported on the closure of (γ′)red which is invariant under the geodesic
flow.
More explicitly, consider an arc-length parametrization of (γ′)red, which

we denote by little abuse still by (γ′)red : Rt → Ξ ⊂ T 1S. For every r > 0,
denote by c′r the probability measure (γ′)red∗ ( 1

2rχ[−r,r]|dt|) on Ξ, which is
supported on (γ′)red([−r, r]). Then a weak?-limit c of the measures c′r as
r →∞ satisfies the requirements. �

The following will be an immediate consequence of Proposition 3.6 and
Proposition 3.9 and it will be proven in the next section.

Corollary 3.8 (Openness of the binding locus). — The locus C bind(S)
is open inside C (S).

3.2. Topological properties of C (S)

The following compactness result is well-known. In the present form we
will directly derive it from Bonahon’s work [3] on closed surfaces.

Proposition 3.9 (Compactness of sublevels of a binding current). —
The projectivization PC (S) is compact and so are the closed subspaces
PC61(S) and PCh,M (S). Moreover, if b is a binding current, then the re-
striction of `b : C (S)→ R>0 to C61(S) and to Ch,M (S) is proper.
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Proof. — For S closed, the first claim was proven by Bonahon in [3].
Suppose now that ∂S 6= ∅. By embedding S inside its double DS, which
comes endowed with a natural involution σ, we can identify C (S) to the
closed subset of C (DS) consisting of currents on DS which are σ-invariant
and which do not intersect ∂S. Since PC (DS) is compact, it follows that
PC (S) is too.
As for the second claim, consider a diverging sequence (ck) inside C61(S).

Since PC61(S) is compact, there exists 0 6= c ∈ C61(S) such that, up to
extracting a subsequence, [ck] → [c], namely there exist wk ∈ R+ such
that wkck → c. Since (ck) is divergent, wk → 0. Moreover, wk`b(ck) =
`b(wkck)→ `b(c) > 0, which implies that `b(ck)→∞. This shows that the
restriction of `b to C61(S) is proper.
Note that the only properties of C61(S) we used to prove the second

claim are that C61(S) is closed inside C (S) and that a binding current
positively intersects every element of C61(S). Thus, an analogous proof
works for Ch,M (S). �

The below result was also proven by Bonahon in [3] for closed surfaces.

Theorem 3.10 (Topological properties of C ). — The space C (S) is
locally compact, σ-compact and metrizable. As a consequence, it is also
completely metrizable and second countable.

Proof. — Local compactness and σ-compactness follow from Proposi-
tion 3.9. Moreover, Bonahon [3] showed that C (S) is metrizable if S is a
closed surface.
Suppose now that S has non-empty boundary, consisting of components

β1, . . . , βn. Let DS be the double of S so that we can view S as natu-
rally embedded inside DS, and let σ be the natural involution of DS that
fixes ∂S. The space of currents C (S) can be identified to the locus of all
c ∈ C (DS) which are invariant under σ and such that ι(c, β1+· · ·+βn) = 0.
Since σ acts as a self-homeomorphism of C (DS) and the intersection pair-
ing is continuous, C (S) is a closed subset of C (DS) and so the conclusion
follows from Bonahon’s work. �

We will deal with disjoint unions, products and countable-to-one images
of Borel subsets of some spaces of currents inside some C (S). As mentioned
in the introduction, any locally finite measure on such spaces is a Radon
measure.
To conclude this section, we show how the openness of the binding locus

follows from the above results.
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Proof of Corollary 3.8. — Consider a sequence (ck) in the complement
of C bind(S) inside C (S) that converges to c ∈ C (S). We want to show that
c is not binding.

Fix an auxiliary binding current b on S. By Proposition 3.6, for every
ck there exists a current 0 6= c′k ∈ C61(S) such that ι(ck, c′k) = 0. Also,
since b is binding, we have ι(b, c′k) > 0 for all k. Up to rescaling c′k, we can
then assume that ι(b, c′k) = 1 for all k. Now, `−1

b (1) ∩ C61(S) is compact
by Proposition 3.9 and so, up to subsequences, (c′k) converges to some
c′ ∈ C61(S) such that ι(b, c′) = 1. In particular, c′ 6= 0. By continuity of
the intersection pairing, ι(c, c′) = 0. This shows that c is not binding. �

3.3. Hull of a current

Before defining the hull, let us first recall the following notion.

Definition 3.11 (Simple closed curve components of a current). —
A simple closed curve γ ⊂ S is a connected component of c ∈ C (S) if
ι(γ, c) = 0 and there exists ε > 0 such that c − εγ is a (non-negative)
current.

If no simple closed curve is a connected component of c, then clearly c
is scc-free in the sense of Definition 1.1. Thus a measured lamination λ is
scc-free if and only if it has no closed leaf. On the other hand, an internal
binding current is always scc-free.

Remark 3.12. — Let γ be a simple closed curve which is a connected
component of c and let w = c(γ̃) for some lift γ̃ of γ to S̃. Then c − tγ
is a current (i.e. it is non-negative) if and only if t 6 w. In this case, the
supports of c − tγ and of γ are isotopically disjoint. Moreover, γ is not a
connected component of c− tγ if and only if t = w.

Fix now an scc-free current č 6= 0 on S.
Let R1, R2 be two closed subsurfaces inside S and denote by I1 : R1 → S

and I2 : R2 → S their geodesic realizations with respect to some auxiliary
hyperbolic metric h on S. Suppose that supph(č) is contained inside both
I1(R̊1) and I2(R̊2). Then supph(č) is contained inside their intersection,
which is an open subsurface with piecewise smooth boundary. We denote by
R1 ∩R2 the isotopy class of subsurfaces with smooth boundary homotopic
to I1(R̊1)∩I2(R̊2) inside S. We say that (the isotopy class of) R1 is smaller
than (the isotopy class of) R2 if I1(R̊1) ⊆ I2(R̊2), and so R1∩R2 is isotopic
to R1.

Now recall the following from Section 1.3.
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Definition 1.2 (Hull of a current). — The surface hull of an scc-free
current č ∈ C (S) is the isotopy class hull(č) of the smallest closed subsur-
face of S that contains the support of č.

Note that hull(č) is not necessarily connected. We denote by hullh(č) a
surface homeomorphic to hull(č) endowed with an h-geodesic realization
hullh(č) → S and we remind the reader that the interior of hullh(č) is
embedded inside S, whereas the realization map can identify couples of
boundary components of hullh(č).

A general current c can have connected components which are weighted
simple closed curves. A first step toward a standard decomposition of c is
the following.

Lemma 3.13 (Γ-summand of a current). — Every c ∈ C (S) can be
uniquely written as c = č+ Γ, where

(a) Γ is a weighted simple multi-curve, for which supph(Γ) can be iso-
toped to be disjoint from supph(č) (for some hyperbolic metric h)

(b) č is scc-free
(c) č is internal in hull(č).

Proof. — Consider the set {γi} of all simple closed curves γi in S that are
connected components of c. Since the γi must be disjoint, there exist finitely
many of such. For each i, let γ̃i ⊂ S̃ be a lift of γi and let wi := c(γi) > 0.
Define the weighted multi-curve Γ as Γ :=

∑
i wiγi and the non-negative

current č as č := c− Γ. Clearly, ι(Γ, č) = 0 and so (a) holds. Property (b)
is a consequence of Remark 3.12 and (c) follows from (b).
The uniqueness of Γ and č follows from the above construction. �

Definition 3.14. — A current c = č+Γ ∈ C (S) has full hull if hull(č) =
S and Γ is supported on ∂S. The subset of currents on S with full hull is
denoted by C fh(S) and the subset of measured laminations on S with full
hull is denoted by ML fh(S).

Remark 3.15. — A measured lamination λ on S has full hull if and only
if it transversely intersects every non-peripheral simple closed curve. Such
laminations are sometimes called “filling”. In the literature the term “filling
current” is sometimes used to denote what we call a binding current. These
two notion of filling are really different: for example, a measured lamination
λ cannot be binding since ι(λ, λ) = 0. For this reason, we choose not use
the word “filling” at all.

Consider now the case of a simple multi-curve and let C =
⋃l
j=1 γj

be a union of l pairwise disjoint simple closed curves in S. By analogy
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with Defintion 3.14, we say that a multi-curve Γ is supported on C if
Γ =

∑l
j=1 wjγj with all wj > 0, and that it has support equal to C if

all wj > 0. We will denote by C fh
C (S) the subsets of all multi-curves with

support equal to C.

3.4. Complement of the support of a current in its hull

Fix a hyperbolic metric h on S. If λ ∈ ML (S) is a measured lamina-
tion without isolated closed geodesics in its support, then the complement
h̊ullh(λ) \ supph(λ) consists of a finite union of

• geodesic polygons with ideal vertices (and so ends isometric to
spikes)

• crowns, i.e. open annuli such that one end is a boundary component
of hullh(λ) and the other end has finitely many infinite geodesics;
such infinite geodesics come with a cyclic ordering and any two
adjacent ones bound a spike.

Clearly, every boundary circle of hullh(λ) necessarily bounds a crown con-
tained in hullh(λ).

For a current which is not necessarily a lamination, polygons must be
replaced by topological disks with locally convex (not necessarily smooth)
boundary and possibly spikes, and crowns must be allowed to have locally
convex non-peripheral end (and possibly spikes).

Lemma 3.16 (Complement of the support of current in its hull). —
Let 0 6= č be an scc-free current on S. Then h̊ullh(č) \ supph(č) consists of
convex disks and locally convex crowns, possibly with spikes.

Proof. — Up to looking at the preimage of supph(č) through the geo-
metric realization map hullh(č) → S, we can reduce to the case of a č of
full hull.
Assuming then that č has full hull, let Sč be the open subsurface S \

supph(č) and let S č be its metric completion.
We claim that S č has locally convex boundary. In fact, consider a point

x ∈ ∂S č and let Dč(x) be a small closed disk of radius r in S č centered at
x; such Dč(x) is the metric completion of a connected component Dč(x)
of D(x) ∩ Sč, where D(x) is the closed disk of radius r centered at x in S.
Realize D(x) as a disk inside D2 and fix a point y ∈ Dč(x). Every portion of
a geodesic in the support of č that meets D(x) can be realized as a portion
of a geodesic γ in D2, and we denote by Hγ the closed half-plane in D2
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bounded by such γ and that contains y. It follows that Dč(x) is isometric
to the intersection of D(x) with all such Hγ , and so it is convex.
Now, let S′č be a component of S č. A possible homotopically nontrivial

simple closed curve γ inside S′č must be homotopic to some boundary circle
of S, because č has full hull. This shows that S′č must be either a topological
disk or a topological cylinder homotopic to a boundary component of S. It
is immediate to see that the only possible ends of S′č are spikes. �

Since the h-area of S is fixed, Gauss–Bonnet theorem ensures that
(a) every convex disk or locally convex crown in h̊ullh(č)\ supph(č) can

only have finitely many spikes;
(b) there are finitely many components of h̊ullh(č)\supph(č), and these

are disks with at least 3 spikes or crowns with at least 1 spike.
Since both ends of a bi-infinite geodesic entirely contained h̊ullh(č) \

supph(č) must enter a spike, each such bi-infinite geodesic must be com-
pletely contained in a component above mentioned in (b) and it must be
isolated. We thus have the following consequence.

Corollary 3.17 (Isolation of geodesics in the complement of a current
in its hull). — Let 0 6= č be an scc-free current on S. Then geodesics
completely contained in h̊ullh(č) whose image in S does not meet supph(č)
are bi-infinite and isolated.

3.5. A partition of the space of currents of full hull

We can now prove that currents of full hull are either laminations of full
hull or binding currents. In particular, Theorem F stated in the introduction
is a consequence of Proposition 3.18 and Lemma 3.22. Such result is a key
building block for the construction of a Map(S)-invariant partition of C (S).

Proposition 3.18 (Partition of C fh). — A current of full hull on the
connected surface S is either a measured lamination or a binding current.
In other words,

C fh(S) = ML fh(S) ∪̇ C bind(S)

in the set-theoretical sense. Moreover, both ML fh(S) and C bind(S) are
Map(S)-invariant.

In order to prove Proposition 3.18 we will need the following technical
result.
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Lemma 3.19 (Laminations not intersecting currents of full hull). —
Assume S is connected and let 0 6= λ′ ∈ML (S) and c ∈ C fh(S) such that
ι(λ′, c) = 0. Then λ′ is either supported on ∂S or has full hull.

Proof. — Suppose that λ′ is not supported on ∂S. Thus, up to subtract-
ing a multi-curve supported on ∂S, we can assume that 0 6= λ′ is internal.
Note that no component of λ′ is a non-peripheral simple closed curve, be-
cause ι(λ′, c) = 0 and c has full hull. Thus, λ′ is scc-free and it is enough
to prove that no geodesic in supp(c) transversely crosses ∂ hull(λ′), from
which it follows that ∂ hull(λ′) = ∂S.
By contradiction, suppose that a geodesic η ∈ supp(c) crosses ∂ hull(λ′)

and enters a crown in hull(λ′) \ supp(λ′), thus ending in a spike bounded
by the geodesics η1, η2. Let η̃, η̃1, η̃2 be lifts of η, η1, η2 on S̃ with endpoints
{x, y}, {x, y1} and {x, y2}. Up to reversing the roles of η1, η2, we can assume
that y ∈ (y1, y2)∞. Note that η̃1, η̃2 are not transversally intersected by
supp(c), because η1, η2 belong to supp(λ′) and ι(λ′, c) = 0.

If no geodesic in {x} × (y1, y2)∞ projects to a closed curve in S, then
{x}×(y1, y2)∞ is disjoint from supp(c) by Corollary 2.28, and we achieve a
contradiction. Suppose then that there exists y0 ∈ (y1, y2)∞ such that the
geodesic η̃0 with endpoints x, y0 projects to a closed curve η0. Since η1, η2
are both asymptotic to η0, the support of c cannot transversely intersect
η0. But this contradicts the fact that c has full hull. �

The above result can be amplified as follows.

Corollary 3.20 (Currents not intersecting currents of full hull). —
Assume S is connected and let c′ ∈ C (S) and c ∈ C fh(S) such that ι(c′, c) =
0. Then c′ = λ′ is a measured lamination. Moreover, if supp(λ′) is not
contained in ∂S, then λ′ has full hull.

Proof. — The second claim is exactly Lemma 3.19. Thus, it is enough to
show that c′ is a measured lamination.
If βj is the j-th boundary circle of S, we can write c′ = c′0 +

∑
j wjβj ,

with c′0 ∈ C0(S). If c′0 = 0, then c′ is a simple multi-curve. Thus, we now
consider the case c′0 6= 0.
By Corollary 3.17, non-peripheral geodesics in S disjoint from supph(c)

are bi-infinite and isolated. Hence, they cannot belong to the support of
c′0. It follows that supp(c′0) ⊆ supp(c) and so ι(c′0, c′0) = 0. Hence c′0 is a
measured lamination and so c′ is. �

Now we can complete the proof of the main statement in this subsection.
Proof of Proposition 3.18. — The last assertion is immediate, so we

concentrate on the partition of C fh(S).
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Let c ∈ C fh(S) and let h be a hyperbolic metric on S. Suppose that
c is not a binding current so that, by Proposition 3.6, there exists 0 6=
c′ ∈ C0(S) that satifies ι(c, c′) = 0. By Corollary 3.20, the current c′ is a
measured lamination of full hull. Thus, by reversing the roles of c and c′ in
Corollary 3.20, we get that c is a measured lamination too. �

3.6. A partition of the space of currents

Let R ⊂ S be a closed subsurface. If R is connected, we denote by
C fh
R (S) the image of C fh

0 (R) via the map C (R)→ C (S) quite analogously to
Section 2.4. If R =

∐
iRi is disconnected, we let C fh

R (S) :=
⊕

i C
fh
Ri

(S). We
will also use the symbols C bind

R (S) and ML fh
R (S) with analogous meanings.

Definition 3.21. — A disjoint triple in S is an isotopy class of
(R,C,A), where R,A are disjoint subsurfaces of S and C is an unweighted
simple multi-curve disjoint from R ∪ A. A type is an equivalence class of
triples (R,C,A) under the action of Map(S). The type of (R,C,A) will be
denoted by [R,C,A].

In order to construct a decomposition of the space of currents whose
parts are indexed by disjoint triples we first determine the nature of the
building blocks of such decomposition.

Lemma 3.22. — For every subsurface R ⊂ S, the loci C fh
R (S) and

ML fh
R (S) are Borel subsets of C (S).

Proof. — By Corollary 2.15 the set of currents supported in the interior
of R is a Borel subset of C (S). By Lemma 3.13, a current in R can be
written as c = Γ + č in such a way that Γ is a multi-curve and č is scc-
free. If c does not have full hull in R, then there exists a proper subsurface
R′ ⊂ R that contains the support of Γ and the hull of č. It follows that

C fh
R (S) = CR(S) \

⋃
R′(R

CR′(S).

Since CR′(S) is Borel, we deduce that C fh
R (S) is a Borel subset of CR(S),

and so of C (S).
Finally, ML fh

R (S) = ML (S) ∩ C fh
R (S) and so ML fh

R (S) is Borel too,
because ML (S) is closed. �

The above discussion gives rise to the desired decomposition of C (S) as
follows.
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Corollary 3.23 (Partition of C ). — The space of geodesic currents
on S can be partitioned into Borel subsets as follows

C (S) =
⋃̇

(R,C,A)

C fh
(R,C,A)(S)

with C fh
(R,C,A)(S) := ML fh

R (S)⊕ C fh
C (S)⊕ C bind

A (S)

where (R,C,A) ranges over all disjoint triples in S.

As a first consequence of the above corollary, we obtain the existence
of the standard decomposition of a current in the sense of Definition 1.3.
Recall from Definition 1.1 that we say a current is a-laminational if it is
scc-free and no connected component of its support is a lamination.

Proposition A (Standard decomposition of a geodesic current). —
Every geodesic current c ∈ C (S) admits the following unique standard
decomposition as a sum

c = λ+ Γ + α

of three currents with isotopically disjoint supports: an scc-free measured
lamination λ, a simple multi-curve Γ and an a-laminational current α.

We can rearrange the subsets appearing in Corollary 3.23 in order to
obtain a mapping class group invariant partition by considering

C fh
[R,C,A](S) :=

⋃
ϕ

C fh
(ϕ(R),ϕ(C),ϕ(A))(S)

of C (S), where the unions are taken over all ϕ ranging over Map(S)/
stab(R) ∩ stab(C) ∩ stab(A). Clearly, each C fh

[R,C,A](S) depends only on
the type [R,C,A] and it is Map(S)-invariant. We have thus shown the
following.

Corollary G (Map(S)-invariant partition of C ). — The space C (S)
can be decomposed into a union

C (S) =
⋃̇

[R,C,A]

C fh
[R,C,A](S)

over all types [R,C,A] in S of the Map(S)-invariant, disjoint Borel subsets
C fh

[R,C,A](S).
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4. The action of the mapping class group on C

The aim of this section is to study the action of the mapping class group
Map(S) on the space C (S) of geodesic currents on S. In particular, we will
determine which currents have finite stabilizers, an invariant locus in C (S)
on which the action is properly discontinuous, and we will use a result of
Lindenstrauss–Mirzakhani [15] to determine all orbit closures.

4.1. Action on the locus of binding currents

We recall that, for S closed, Map(S) acts properly discontinuously on
Teichmüller space, that is, on the space of Liouville currents associated to
hyperbolic metrics on S and that such Liouville currents bind S.

In this section we will show the following statement.

Proposition 4.1 (Proper discontinuous action on C bind). — The map-
ping class group Map(S) acts properly discontinuous on C bind(S) and the
orbits of elements of C bind(S) are closed subsets of C (S).

We begin by recalling the following two well-known Lemma 4.2 and
Lemma 4.4.

Lemma 4.2 (Binding currents bound each other). — Let h be a hyper-
bolic metric on S and M be a compact subset of the interior of S. Fix
K ⊂ C bind(S) compact. There exists a constant r > 0 (that depends on h,
M and K) such that

1
r
<
ι(b1, c)
ι(b2, c)

< r and 1
r
<
ι(b1, c)
`h(c) < r

for all 0 6= c ∈ Ch,M (S) and b1, b2 ∈ K.

Proof. — Since bi is binding, ι(bi, c) > 0 for i = 1, 2 and all c ∈
Ch,M (S) \ {0}. Hence, the function f : K × K × (Ch,M (S) \ {0}) → R
defined as

f(b1, b2, c) := ι(b1, c)
ι(b2, c)

is continuous and positive, since ι is continuous. Moreover, f is homogenous
in the third entry in the sense that f(b1, b2, t·c) = t·f(b1, b2, c) for all t > 0.
Hence f descends to a continuous function f : K × K × PCh,M (S) → R+.
By Proposition 3.9 the space K × K × PCh,M (S) is compact and hence f
is bounded from above and below by positive numbers. The same proof
works for the inequalities on the right, just replacing ι(b2, ·) by `h. �
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Remark 4.3 (Binding currents are comparable on T >s). — Inequalities
analogous to the left ones in Lemma 4.2 hold if we replace ι(c, · ) by some
length function `h. Namely, for every s > 0 and binding currents b1, b2 in
C (S) there exists a constant r > 0 that depends on s, b1, b2 such that

1
r
<
`h(b1)
`h(b2) < r

for every hyperbolic metric h on S with sys(h) > s.

Proof of Remark 4.3. — Consider S as embedded inside its double DS,
which is naturally equipped with an orientation-reversing involution σ, so
that hyperbolic metrics on S double to σ-invariant hyperbolic metrics on
DS. Thus, the space T >s(S) of hyperbolic metrics on S with systole at least
s can be seen as a subset of T (DS). The closure of T >s(S) inside Thurston
compactification of T (DS) is obtained by adding certain projective classes
[λ] of σ-invariant measured laminations in DS. We claim that, for every
point [λ] in such closure of T >s(S), we have ι(λ, b) > 0 for every current b ∈
C bind(S). The claim implies that the function h 7→ `h(b1)

`h(b2) continuously and
positively extends to the closure of T >s(S). Since such closure is compact,
the wished conclusion follows.
In order to prove the claim, let (hk) ⊂ T >s(S) be a sequence that con-

verges to [λ] and assume, by contradiction, that ι(b, λ) = 0 and so λ is
supported on ∂S. Fix a pair of pants in S that is adjacent to a boundary
component ∂jS in the support of λ, and which is obtained by doubling a
hexagon with edges β, η̌2, η1, β̌, η2, η̌1 (where β doubles to ∂jS). Call γ the
shortest arc inside such hexagon that connects β with β̌, and which thus
splits β (resp. β̌) into the union β′∪β′′ (resp. β̌′∪ β̌′′) of two sub-intervals.
Up to relabeling and extracting a subsequence of (hk), we can assume that
`hk

(β′′) > `hk
(β)/2 and that β′′, η̌2, η1, β̌

′′, γ form a pentagon P with five
right angles.
Note that γ doubles to an arc in S with endpoints in ∂jS, which thus

doubles to a simple closed curve in DS that meets ∂jS twice. On the other
hand, η1 doubles to a simple closed curve in S whose geometric intersection
with ∂S is zero. It follows that `hk

(γ) →∞ and that `hk
(η1)

`hk
(γ) → 0. On the

other hand,

cosh(`hk
(η1)) = sinh(`hk

(γ)) sinh(`hk
(β′′)) > sinh(`hk

(γ)) sinh(s/2)

by elementary trigonometry of the pentagon P . Since `hk
(γ) → ∞, it fol-

lows that lim supk
`hk

(η1)
`hk

(γ) > 1 and we have reached a contradiction. �
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Lemma 4.4 (Divergence of the orbit of a binding multi-curve). — Let b′
be a finite binding multi-curve in S. Then {ϕ ∈ Map(S) | ι(b′, ϕ(b′)) 6 L}
is a finite set for all L > 0.

The above lemma can be proved in a purely topological way. However,
we just include a proof that exploits the properties of the hyperbolic length
function of a current in a closed surface.

Proof of Lemma 4.4. — Fix a hyperbolic metric h on S and letDS be the
closed hyperbolic surface obtained by doubling S. Any current c ∈ C0(S)
can be viewed as a current on DS, invariant under the natural orientation-
reversing involution, and the length of c can be defined as half of the length
of such doubled current on DS. It follows that `h(c) > 0 for all 0 6= c ∈
C0(S).

Clearly, it is enough to prove the statement for a finite binding multi-
curve b′ ∈ C0(S). Recall that ϕ(b′) is supported inside some compact subset
M ⊂ S for all ϕ by Lemma 2.3(b). By Lemma 4.2 there exists r > 0 such
that

`h(c)
ι(b′, c) < r

for all c ∈ Ch,M (S). Thus, taking c = ϕ(b′), we obtain ι(b′, ϕ(b′)) >
1
r `h(ϕ(b′)) for all ϕ. The result now follows by noting that (S, h) contains
finitely many simple closed geodesics of length at most rL. �

We can now prove the main proposition of this section.
Proof of Proposition 4.1. — We have to show that, given K ⊂ C bind(S)

compact and given {ϕj} a sequence of distinct elements in Map(S), the
union

⋃
j ϕj(K) is closed and K ∩ ϕj(K) = ∅ for j large enough.

Fix b′ a finite binding multi-curve in S and define

mj = min ι(ϕj(K), b′) > 0.

Here, min ι(ϕj(K), b′) = minb∈K ι(ϕj(b), b′). Since K is compact, the func-
tion ι(·, b′) is bounded on the union K ∪ ϕ1(K) ∪ · · · ∪ ϕk(K) for all k > 1.
Hence, it is enough to show that mj →∞ as j →∞.
Note that, equivalently, mj = min ι(K, ϕ−1

j (b′)). Fix a hyperbolic metric
h and note that there exists a compact subset M in the interior of S that
contains the geodesic representatives of ϕ−1

j (b′) for all j by Lemma 2.3(b).
Hence, ϕ−1

j (b′) ∈ Ch,M (S) for all j.
By applying Lemma 4.2 to the compact subset K ∪ {b′}, there exists

r > 0 such that
ι(b′, ϕ−1

j (b′))
ι(b, ϕ−1

j (b′))
< r
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for all j and all b ∈ K. By taking the minimum over b ∈ K we obtain
mj >

1
r ι(ϕj(b

′), b′). We conclude that mj → ∞ because ι(ϕj(b′), b′) → ∞
as j →∞ by Lemma 4.4. �

In fact, C bind(S) is the maximal subset of C (S) on which Map(S) acts
properly discontinuously and with closed orbits (as subsets of C (S)).

Proposition 4.5. — Let c ∈ C (S) a current which is not binding. Then
either there are infinitely many ϕ ∈ Map(S) such that ϕ(c) = c, or the orbit
Map(S) · c is not a closed discrete subset of C (S).

Proof. — It follows from Lemma 4.6(a) and Theorem B proven in the
next section. �

4.2. Mapping class group orbits of currents

In this subsection we analyze orbits of currents under the action of
Map(S), or a quotient of it, and in particular we determine whether they
are closed and whether they have finite stabilizers.
We begin with a simple observation.

Lemma 4.6 (Stabilizer of a current). — Let c = Γ + č be the sum of
a simple multi-curve Γ and an scc-free current č with isotopically disjoint
supports. The stabilizer of c for the action of Map(S) on C (S) satisfies the
following properties.

(a) stab(c) is finite if and only if c has full hull in S.
(b) stab(c) contains Map(S,hull(č) ∪ C) as a finite-index subgroup,

where C is the support of Γ.

Proof. — Note first that Map(S, hull(č) ∪ C) is always contained inside
stab(c) and that stab(c) is contained inside stab(hull(č)∪C). Moreover, it
is enough to consider c ∈ C0(S).
Let us first prove (a). If hull(č) ( S, the group Map(S, hull(č)) is infinite

and so is stab(c). Suppose now that hull(č) = S. Then either c = λ is a
lamination or c = α is binding by Proposition 3.18. If c = α is binding
in S, then its stabilizer is finite by Proposition 4.1. Suppose then that
c = λ and realize its support by a geodesic lamination with respect to some
hyperbolic metric with geodesic boundary on S. The stabilizer stab(λ) acts
by permuting the components of S \ λ and its edges. Since λ has full hull,
the complement S \ λ consists of finitely many ideal polygons and crowns
homotopic to boundary circles of S: hence, the above action of stab(λ) is
faithful. It follows that stab(λ) is finite.
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In order to prove (b) we must show that stab(c)/Map(S,hull(č) ∪ C) is
finite. The finite-index subgroup of elements in stab(c)/Map(S, hull(č)∪C)
that send each component of C to itself and each component and each
boundary circle of hull(č) to itself identifies to stabMap(hull(č))(č). Since č
has full hull in hull(č), the group stabMap(hull(č))(č) is finite by part (a) and
so stab(c)/Map(S,hull(č) ∪ C) is finite too. �

As a consequence, we obtain the analogous of Lemma 4.4 for currents of
type Γ + α.

Lemma 4.7 (Orbits of currents Γ+α). — Let c = Γ+α ∈ C (S) the sum
of a simple multi-curve Γ with support C and an a-laminational current α
with support A such that A∩C = ∅. Given a finite binding multi-curve b′,
the set

{ϕ ∈ Map(S)/Map(S,A ∪ C) | ι(ϕ(c), b′) 6 L}
is finite for all L > 0. In particular, the orbit of c = Γ + α is closed.

Proof. — By Lemma 4.6(b), the quotient stab(c)/Map(S,A∪C) is finite
and so it is enough to analyze {ϕ ∈ Map(S)/ stab(c) | ι(ϕ(c), b′) 6 L}.
Similarly, if α0 is a finite multi-curve with hull A, stab(S,A∪C) has finite
index inside stab(Γ + α0).

Fix a hyperbolic metric h and M a compact subset of the interior of S
that contains the geodesic representative of b′. As in the proof of Lemma 4.2,
the map PCh,M (S)→ R+ defined as

[b′] 7→ ι(Γ + α,ϕ−1(b′))
ι(Γ + α0, ϕ−1(b′))

takes values in a closed bounded interval of R+. Hence, it is enough to
prove the statement for α a finite (non-simple) multi-curve.

For α a finite multi-curve, the current c can be written as c =
∑l
i=1 wlγl

and
⋂
l stab(γl) has finite index inside stab(c), so that we only need to

prove the finiteness of{
ϕ ∈ Map(S)/

⋂
l

stab(γl)

∣∣∣∣∣∑
l

wl · ι(ϕ(γl), b′) 6 L
}
.

Recall that, for every ` > 0, the set of closed curves γ in S with `h(γ) 6 `
is finite. As in the proof of Lemma 4.4, this implies that {γ | ι(γ, b′) 6 `} is
finite too and so it concludes the argument. �

We now discuss the closure of the orbits. The case of a measured lami-
nation was analyzed by Lindenstrauss–Mirzakhani [15, Theorem 8.9], and
we recall their result here.
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Theorem 4.8 (Orbit closure of a measured lamination). — Let λ +
Γ ∈ ML (S), where Γ is a simple multi-curve with support C and λ is
a measured lamination with no closed leaves. Then Map(S) · (λ+ Γ) =
Map(S) · (ML R(S) + Γ), where R is the union of the components of S \C
that intersect the support of λ.

By virtue of the above Theorem 4.8 we can complete our analysis of the
closure of Map(S)-orbits of currents.

Theorem B (Orbit closure of a geodesic current). — Let c ∈ C (S) be
a non-zero geodesic current with standard decomposition c = λ + Γ + α

into a measured lamination λ without closed leaves, a simple multi-curve
Γ with support C and an a-laminational current α with hull A. Then

Map(S) · c = Map(S) · (ML R(S) + Γ + α)

where R is the union of the components of S \ (C ∪ A) that intersect the
support of λ. Moreover, stab(ML R(S) + Γ + α) contains stab(R,C ∪ A)
as a finite-index subgroup.

Proof. — Consider the second claim and note that stab(ML R(S) + Γ +
α, ∂R) has finite index inside stab(ML R(S)+Γ+α) and stab(R,C∪A∪∂R)
has finite index inside stab(R,C∪A), and that stab(ML R(S)+Γ+α, ∂R)
contains stab(R,C ∪A ∪ ∂R). The conclusion follows, since the restriction
to S \R identifies stab(ML R(S) + Γ + α, ∂R)/ stab(R,C ∪A ∪ ∂R) with
stabMap(S\R)(Γ +α)/Map(S \R,C ∪A), which is finite by Lemma 4.6(b).

As for the first claim, recall that Map(R) ·λ is dense inside ML 0(R) by
Theorem 4.8. As a consequence, stab(R,C∪A) ·λ is dense inside ML R(S)
and so stab(R,C ∪A) · (λ+ Γ +α) is dense inside ML R(S) + Γ +α. Thus,
it is enough to show that Map(S) · (ML R(S) + Γ + α) is a closed subset
of C (S).
Let then ck = ϕk ·(λk+Γ+α) be sequence in Map(S)·(ML R(S) + Γ + α)

that converges to c ∈ C (S). We have to show that c ∈ ϕ(ML R(S)+Γ+α)
for some ϕ ∈ Map(S).
If α = 0, the result follows from Theorem 4.8; so we assume α 6= 0.

By Lemma 4.7, the convergence of ck implies that the subset {[ϕk]} ⊂
Map(S)/Map(S,A∪C) is finite and so, up to subsequence, we can assume
that it is constant. This implies that there exists ϕ ∈ Map(S) such that
ϕ−1ϕk ∈ Map(S,A∪C) for all k. Again up to subsequence, we can assume
that the permutation σ of the components of S \(A∪C) induced by ϕ−1ϕk
is independent of k.
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Suppose that such permutation σ is the identity. As a consequence,
ϕ−1ϕk(R) = R for all k and so ϕ−1ϕk(λk) ∈ ML R(S) is converging to
some λ ∈ML R(S). Finally, we conclude that ck → ϕ(λ+ Γ + α).

If σ is not the identity, then A is necessarily empty, S has no boundary,
S \ C consists of two components S′, S′′ and each circle in C belongs to
S′∩S′′. Thus σ must exchange S′ and S′′, which thus have the same genus.
Hence, there exists ψ ∈ Map(S,C) that flips S′ and S′′. Up to replacing ϕ
by ϕψ, we are reduced to the previous case in which σ is the identity, and
so we are done. �

5. Construction of invariant measures

In this section we construct a family of locally finite, ergodic, Map(S)-
invariant measures on the space of geodesic currents and recall the analo-
gous construction by Lindenstrauss–Mirzakhani on the space of measured
laminations.

5.1. Thurston measure and ergodicity

We start by giving a brief description of a natural Map(S)-invariant
measure on the space of measured laminations, the Thurston measure, and
refer the reader to [21] and [25] for more details. Recall that the space
of measured laminations ML 0(S) supported in the interior of S has the
structure of a piecewise linear manifold of dimension N(S) = −3χ(S)− n
(where, as usual, n is the number of boundary components of S). It is
also equipped with a Map(S)-invariant symplectic structure, giving rise to
a Map(S)-invariant measure in the Lebesgue class; this is the symplectic
Thurston measure msympl

Th . Such measure has infinite total mass, but it is
locally finite and it satisfies the following scaling relation

msympl
Th (L · U) = LN(S) ·msympl

Th (U)

for all Borel sets U ⊂ML 0(S) and all L > 0.
A bit more concretely, the symplectic Thurston measure can be viewed

the following way. Fix a maximal bi-recurrent train track τ on S. The so-
lution set E(τ) to the switch equations of τ is a N(S)-dimensional rational
cone in a Euclidean space and defines an open set in ML 0(S). The restric-
tion of the symplectic Thurston measure on this open set can be identified
to the natural volume form on E(τ). In fact, the integer points in E(τ) are
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in one-to-one correspondence with the set of simple multi-curves with inte-
gral weights on S and we can obtain a multiple of the symplectic Thurston
measure as the weak? limit

mTh := lim
L→∞

1
LN(S)

∑
γ

δ 1
Lγ

where the sum is taken over all measured laminations γ ∈ ML 0(S) cor-
responding to simple multi-curves with integral weights. In fact, the ratio
between mTh and msympl

Th is a constant factor that only depends on the
topology of S (see [19], for instance). In what follows, we refer to mTh as
the Thurston measure.

For us one of the most important features of the Thurston measure is
the following result due to Masur [16].

Theorem 5.1 (Ergodicity of the Thurston measure). — The Thurston
measure mTh is ergodic on ML 0(S) with respect to the action of Map(S).

Finally, viewing ML 0(S) as a (closed) subset of the space of currents
C (S), we can view mTh as a measure on C (S) as well, assigning measure
zero to any Borel set U ⊂ C0(S) for which U ∩ML 0(S) = ∅. Hence mTh is
an example of a locally finite Map(S)-invariant ergodic measure on C (S).
In Sections 5.2 and 5.3 below we will see further examples of such measures.

5.2. Classification of measures on ML

We briefly discuss the complete classification of locally finite Map(S)-
invariant ergodic measures on ML (S) in the terminology used in [15].

First, recall the definition of a complete pair from Section 1.5.

Definition 1.5 (Pairs and complete pairs). — Let R ⊂ S be a subsur-
face and let c ∈ C (S) be a current that standardly decomposes as a sum
c = Γ + α of a simple multi-curve Γ and an a-laminational α. The couple
(R, c) is a pair if supp(c) and R are isotopically disjoint; such pair (R, c)
is a complete pair if each boundary curve of R is homotopic either to a
boundary curve of S, or to a curve in the support of Γ, or to a boundary
curve of hull(α).

In the special case when c is a measured lamination, this definition agrees
with the notion of a complete pair introduced in [15]: if c ∈ ML (S) and
(R, c) is a complete pair, then c = Γ for some simple multi-curve Γ with
support C such that C ∩R = ∅ and every boundary curve of R is either a
boundary curve of S or a curve in C.
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Remark 5.2. — We underline that, in a standard pair (R,Γ + α), the
current Γ +α has no scc-free laminational part λ. The above Definition 1.5
is in fact tailored in such a way that the couples (R,Γ + α) that appear in
the orbit classification (Theorem B) are indeed the complete pairs.

Consider the map ML 0(R)→ML (S) defined by λ 7→ λ+ Γ. If R 6= ∅,
define m(R,Γ) to be the push-forward of the Thurston measure through this
map, which is then supported on ML R(S) + Γ. In the case when R = ∅,
we define m(∅,Γ) to be the Dirac measure δΓ in C (S) supported on Γ. Now,
define

m[R,Γ] :=
∑
ϕ

m(ϕ(R),ϕ(Γ))

where the sum is taken over all ϕ ∈ Map(S)/ stab(m(R,Γ)). We note that,
when Γ = 0, we have R = S and m(S,0) = m[S,0] = mTh. On the other
hand, m[∅,Γ] is the counting measure supported on the orbit of Γ.

Lindenstrauss–Mirzakhani [15] and Hamenstädt [12] showed that, for
any complete pair (R,Γ), the measures m[R,Γ] are locally-finite, Map(S)-
invariant and ergodic on ML (S). Moreover, the following classification
result is proven in [15] (the result in [12] is slightly weaker as the author
does not show that the pair (R,Γ) must be complete in order for m[R,Γ] to
be locally finite).

Theorem 5.3 (Classification of ergodic invariant measures on ML ).
Let m be a locally finite Map(S)-invariant ergodic measure on ML (S).
Then m is a multiple of m[R,Γ] for a complete pair (R,Γ).

We will later use the following consequence of Theorem 5.3, that also
follows from Proposition 8.5 in [15].

Corollary 5.4. — ForR ⊆ R̂ consider the measure on C (R̂) defined as∑
ψ

mψ(R),∅

where ψ ranges over Map(R̂, ∂R̂)/ stab(R). If such measure is locally finite,
then R = R̂.

Below we will see that any complete pair (R, c), where c has a standard
decomposition of type c = Γ + α, gives rise to a locally finite Map(S)-
invariant ergodic measure on C (S).
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5.3. Subsurface measures on C

Since every measure on ML (S) can be viewed as a measure on C (S), the
measures m[R,Γ] defined above are locally finite Map(S)-invariant ergodic
measures also on C (S). However, one can easily construct other similar
measures on C (S).
As a first example, consider a binding current b ∈ C bind(S) and consider

the counting measure centered at the Map(S)-orbit of b, i.e.
∑
ϕ δϕ(b) as ϕ

ranges over Map(S)/ stab(b). This defines a Map(S)-invariant measure by
construction and it is also clear that it is ergodic. By Lemma 4.4 it is also
locally finite.
As a second example, consider a (not necessarily binding) current c ∈

C (S) with standard decomposition c = Γ + α so that (∅, c) is a complete
pair. We define m(∅,c) := δc and m[∅,c] :=

∑
ϕm

(∅,ϕ(c)) as ϕ ranges over
all elements of Map(S)/ stab(c). Clearly, m[∅,c] agrees with the counting
measure on the orbit of c, which is closed and discrete by Theorem B. It
follows that m[∅,c] is a locally finite measure on C (S) for any current c for
which (∅, c) is a complete pair. We record this observation below.

Lemma 5.5 (Locally finite ergodic invariant counting measures). —
Let Γ be a simple multi-curve isotopically disjoint from the a-laminational
current α. Then the counting measure m[∅,c] centered at the Map(S)-orbit
of c = Γ + α is a locally finite, mapping class group invariant, ergodic
measure on C (S).

In the remainder of this section we consider the general case of a sub-
surface R of S and a current c ∈ C (S) and assume that (R, c) is a pair.
By definition, c admits a standard decomposition c = Γ + α, where Γ a
simple multi-curve, α is a-laminational and the loci R, C = supp(Γ) and
A = supp(α) are disjoint up to isotopy.

As in the introduction, and following the construction by Lindenstrauss–
Mirzakhani, we define measures m(R,c) in the following way. If R = ∅, we
let m(∅,c) = δc as above. If R 6= ∅, we let m(R,c) denote the push-forward
of the Thurston measure through the map ML 0(R) → C (S) defined by
λ 7→ λ+ c, which is then supported on ML R(S) + c. Finally, we define the
subsurface measure m[R,c] of type [R, c] as

m[R,c] :=
∑
ϕ

m(ϕ(R),ϕ(c))

as ϕ ranges over Map(S)/ stab(m(R,c)).
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We observe that stab(m(R,c)) = stab(R) ∩ stab(Γ) ∩ stab(α) and that
stab(Γ) ⊃ Map(S,C) and stab(α) ⊃ Map(S,A) are finite-index subgroups.
Thus, stab(m(R,c)) contains stab(R,C ∪A) as a finite-index subgroup. By
construction, m[R,c] is Map(S)-invariant.
Recall from the introduction that the pair (R, c) is complete if each

boundary curve of R is either a boundary curve of S or of A, or a component
of C. The following lemma highlights the importance of the completeness
property for a pair.

Lemma 5.6 (Local finiteness of translates of ML R). — Let (R, c) be a
pair in S. Then the following are equivalent:

(a) the pair (R, c) is complete;
(b) the quotient stab(c)/ stab(R) ∩ stab(c) is finite;
(c) the collection of subsets ML ϕ(R)(S) + ϕ(c) of C (S), as ϕ ranges

over Map(S)/ stab(R) ∩ stab(c), is locally finite.

Proof. — Since stab(c)/Map(S,C ∪ A) is finite by Lemma 4.6(b), it is
easy to see that (a) is equivalent to (b).
If stab(c)/ stab(R) ∩ stab(c) is infinite, then the collection of

ML ϕ(R)(S) + ϕ(c) as ϕ ranges over stab(c)/ stab(R) ∩ stab(c) is not
locally finite at c ∈ C (S). This shows that (c) implies (b).
Finally, suppose that (b) holds and let ϕi(λi) +ϕi(c)→ λ∞+ c∞, where

ϕi ∈ Map(S), λi ∈ ML R(S) and λ∞ + c∞ = λ∞ + Γ∞ + α∞ is the
standard decomposition of the limit current. It is enough to show that, up
to extracting a subsequence, all ϕi belong to stab(c) ∩ stab(R).
Fix b′ a binding multi-curve on S. Since ι(ϕi(λi + c), b′) → ι(λ∞ +

c∞, b
′), the quantity ι(ϕi(c), b′) is uniformly bounded. By Lemma 4.7, up

to subsequences, we can assume that [ϕi] ∈ Map(S)/Map(S,C ∪ A) is
constant. Up to applying ϕ−1

1 to all involved currents, we can assume that
all ϕi ∈ Map(S,C∪A) ⊆ stab(c). By (b) we can then extract a subsequence
such that all ϕi satisfy ϕi(R) = R. This shows that (b) implies (c). �

We will now show that the subsurface measures m[R,c] are locally finite
and ergodic, provided the pair (R, c) is complete.

Proposition 5.7 (Local finiteness of subsurface measures). — Let
(R, c) be a pair. Then m[R,c] is a Map(S)-invariant ergodic measure on
C (S). Moreover, m[R,c] is locally finite if and only if (R, c) is a complete
pair.

Proof. — Mapping class group invariance of m[R,c] follows from the
above discussion. As for the ergodicity, note that the support of m(R,c) is
ML R(S) + c and that the support of m[R,c] is the union of all translates
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ϕ ·(ML R(S)+c). Thus, m[S′,c] is ergodic if and only if stab(ML R(S)+c)
acts ergodically on ML R(S) + c with respect to the measure m(R,c).
Recall that Map(R) acts ergodically on ML 0(R) with respect to the

Thurston measure (Theorem 5.1) and so Map(S, S \R) acts ergodically on
ML R(S) + c. Since stab(ML R(S) + c) contains Map(S, S \R), it follows
that stab(ML R(S)+c) acts ergodically on ML R(S)+c too. We conclude
that m[R,c] is ergodic for the action of Map(S).
It remains to show that m[R,c] is locally finite if and only if (R, c) is a

complete pair.
Suppose first that (R, c) is complete. By Lemma 5.6(c), the union of all

translates ϕ · (ML R(S) + c) as ϕ ranges over Map(S)/ stab(R) ∩ stab(c)
is locally finite. Since the Thurston measure on ML 0(R) is locally finite,
so is m[R,c].
Suppose conversely that m[R,c] is locally finite. If R = ∅, the conclusion

follows from Lemma 4.7. Assume then R 6= ∅ and let R̂ be the union of the
components of S\(C∪A) that intersect R, so that (R̂, c) is a complete pair.
The pull-back of m[R,c] via the map ML 0(R̂) → ML R̂(S) + c is locally
finite and it is greater or equal than∑

ψ

mψ(R),∅

where ψ ranges over Map(R̂, ∂R̂)/ stab(R). By Corollary 5.4, it follows that
R = R̂ and so (R, c) is a complete pair. �

In the next section we will see that any locally finite, Map(S)-invariant,
ergodic measure on C (S) must be a positive multiple of m[R,c] for some
complete pair (R, c).

6. Classification of invariant measures

6.1. Measures on C fh

Suppose m is a locally finite, Map(S)-invariant, ergodic measure on
C (S). If m({0}) > 0, then m is a positive multiple of δ{0}, the Dirac
measure centered at 0. From now on, we therefore assume that m({0}) = 0
and so m is the push-forward of a measure on C (S) \ {0}.
Note that since C fh(S) is Map(S)-invariant, it follows by ergodicity that

if m(C fh(S)) > 0 then C fh(S) has in fact full m-measure and so we can in-
terpret m as (the push-forward of) a measure on C fh(S). The classification
of such measures is provided by the following proposition, which partially
relies on [15].
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Proposition 6.1 (Ergodic measures supported on C fh). — Suppose S
is connected and m is a locally finite, Map(S)-invariant, ergodic measure
on C (S) such that m(C fh(S)) > 0. Then exactly one of the following holds:

(i) ML fh(S) has full m-measure and m is a positive multiple of a
translate of the Thurston measure given by m[S,Γ] where Γ is any
simple multi-curve with support contained inside ∂S, or

(ii) C bind(S) has full m-measure and m is a positive multiple of the
Dirac measure m[∅,b] for some binding current b ∈ C bind(S).

Proof. — Recall that, by Theorem F, the space C fh(S) is the union of
ML fh(S) and C bind(S) and these sets are disjoint, Borel, and Map(S)-
invariant.
If ML fh(S) has full measure, then it follows from [15, Theorem 7.1]

that m is a multiple of the Thurston measure on a translate of ML 0(S)
and so we are in case (i). Otherwise, Lemma 6.2 below shows that we are
in case (ii), since G = Map(S) acts in a properly discontinuous way on
X = C bind(S) by Proposition 4.1. �

The following lemma is well-known; we include it for completeness.

Lemma 6.2. — Let X be a locally compact Hausdorff topological space
and let G be a discrete group that acts properly discontinuously on X via
self-homeomorphisms. Then a locally finite G-invariant ergodic measure m
on X is a positive multiple of the counting measure on a G-orbit.

Proof. — Let x ∈ X be a point in the support of the locally finite,
ergodic,G-invariant measurem onX. It is enough to show that, if x′ /∈ G·x,
then x′ does not belong to the support of m.
Note that, since G acts properly discontinuously and X is Hausdorff and

locally compact, the quotient X/G is Hausdorff. Moreover, [x] 6= [x′] as
points of X/G. Thus, there exist disjoint open neighbourhoods U,U ′ ⊂
X/G of [x] and [x′], respectively, and we denote by Ũ , Ũ ′ their preimages
in X, which are disjoint, open and G-invariant. Since x belongs to the
support of m, we must have m(Ũ) > 0 and so m(Ũ ′) = 0 by ergodicity.
As a consequence, the support of m is contained inside X \ Ũ ′ and so, in
particular, it does not contain x′. �

6.2. Classifying ergodic invariant measures on C

Before proving our main result, we recall the following useful lemma by
Lindenstrauss–Mirzakhani [15, Lemma 8.4].
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Lemma 6.3 (Ergodic action on a product). — Let X ′ and X ′′ be locally
compact, second countable, metric spaces and let G′ and G′′ be discrete,
countable groups, acting continuously on X ′ and X ′′ respectively. Then
any locally finite (G′ ×G′′)-invariant ergodic measure m on X ′ ×X ′′ is of
the form m = m′⊗m′′, where m′ (resp. m′′) is a locally finite G′-invariant
ergodic measure on X ′ (resp. G′′-invariant ergodic measure on X ′′).

Remark 6.4. — Let R,A ⊂ S be subsurfaces. By the work of Thurston,
ML 0(R) is homeomorphic to a finite-dimensional Euclidean space. As a
consequence, ML 0(R) is metrizable and it has a countable exhaustion by
compact subsets. Bonahon showed (Theorem 3.10) that the same proper-
ties hold for C0(A). Thus, both ML 0(R) and C0(A) are metrizable, lo-
cally compact and second countable. Note now that the locus ML 0(R)∗
of measured laminations whose support intersects all connected compo-
nents of R is open inside ML 0(R); in particular, if R is connected, then
ML 0(R)∗ = ML 0(R) \ {0}. Moreover, C bind

0 (A) is open inside C0(A) by
Corollary 3.8. It follows that ML 0(R)∗ and C bind

0 (A) are locally compact,
metrizable and second countable as well.

We can now restate Theorem C and finally complete the classification of
all Map(S)-invariant ergodic measures on C (S).

Theorem C (Classification of locally finite invariant measures on C ).
The measure m[R,c] on C (S) is ergodic, Map(S)-invariant and locally finite
for every complete pair (R, c). Moreover, if m is a locally finite, Map(S)-
invariant, ergodic measure on C (S), then m is a positive multiple of m[R,c]

for some complete pair (R, c).

Proof. — By Proposition 5.7 every m[R,c] associated to a complete pair
(R, c) is Map(S)-invariant, ergodic and locally finite: this is exactly the first
claim.
In order to prove the second claim, consider a Map(S)-invariant, locally

finite, ergodic measure m 6= 0 on C (S). We want to show that m is a
positive multiple of m[R,c], for some pair (R, c). By Proposition 5.7 it will
automatically follow that (R, c) is complete.
We recall that, by Corollary G, the space of currents can be decomposed

into a union of the Map(S)-invariant, disjoint Borel subsets C[R,C,A](S).
By ergodicity, there exists a unique triple (R,C,A) such that C[R,C,A](S)

has full m-measure. Thus, it is enough to analyze the restriction mG of m
to a single component C(R,C,A)(S) of C[R,C,A](S), which is ergodic with
respect to the stabilizer G = stab(R) ∩ stab(C) ∩ stab(A) of C(R,C,A)(S).
Indeed, the conclusion will follow by Map(S)-invariance.
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Let H ⊂ G be the finite-index subgroup of elements that send every
component of R,A,C and of ∂R, ∂A to itself. Then mG can be written as
mG = 1

|G/H|
∑
g∈G/H g∗mH , where mH is an H-invariant ergodic measure

on C(R,C,A)(S). Thus, it is enough to show that mH is a multiple of the
restriction of m[R,c] to C(R,C,A)(S) for some c = Γ + α, with supp(Γ) = C

and α an a-laminational current that binds A.
Recall that C(R,C,A)(S) is the product of the three factors ML fh

R (S),
C fh
C (S) and C bind

A (S) and that the push-forward maps identify ML fh
0 (R)

to ML fh
R (S) and C bind

0 (A) to C bind
A (S). Since H acts trivially on C, we can

write mH = m̌ ⊗ δΓ, where Γ is a simple multi-curve with support C and
m̌ can be viewed as a locally finite (Map(R)×Map(A))-invariant ergodic
measure on ML fh

0 (R) × C bind
0 (A) of full support, and so in particular on

ML 0(R)∗ × C bind
0 (A).

Applying Lemma 6.3 to X ′ = ML 0(R)∗ and X ′′ = C bind
0 (A) with

G′ = Map(R) and G′′ = Map(A), we obtain the decomposition m̌ = m̌R ⊗
m̌A, where m̌R is a Map(R)-invariant ergodic measure of full support on
ML 0(R)∗ and m̌A is a Map(A)-invariant ergodic measure of full support
on C bind

0 (A).
Since ML 0(R)∗ =

⊕
i ML 0(Ri)∗ is acted on by Map(R) =

∏
i Map(Ri)

and C bind
0 (A) =

⊕
j C bind

0 (Aj) is acted on by Map(A) =
∏
j Map(Aj), we

can iteratively apply Lemma 6.3 and we obtain that m̌R =
⊗

i m̌Ri
and

m̌A =
⊗

j m̌Aj
, where m̌Ri

is a locally finite Map(Ri)-invariant ergodic
measure of full support on ML 0(Ri)∗ and m̌Aj

is a locally finite Map(Aj)-
invariant ergodic measure of full support on C bind

0 (Aj).
It is also easy to see that each m̌Ri

is indeed the push-forward of a
measure on ML fh

0 (Ri) of full support. By Lemma 6.1, it follows that m̌Ri

is a multiple of the Thurston measure on ML 0(Ri)∗ and that m̌Aj
is

a multiple of the counting measure on the Map(Aj)-orbit of some αj ∈
C bind

0 (Aj). We have then obtained that mH is a multiple of m(R,c) with
c = Γ + α and α =

∑
j αj ∈ C bind

0 (A), and so the proof is complete. �

7. Homogeneous invariant measures

Consider the natural action of R+ on C (S) by multiplication.

Definition 7.1 (Homogeneous measures). — A measure m on C (S) is
d-homogeneous for some d ∈ R if m(t ·U) = td ·m(U) for all Borel subsets
U of C (S) and all t ∈ R+.
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A Map(S)-invariant, d-homogeneous measurem on C (S) is invariant and
ergodic (as a d-homogeneous measure) if it is invariant and ergodic for the
action of Map(S)×R+ on C (S) defined as ((ϕ, t)·m)(U) := td ·m(ϕ(t−1U)).

Lindenstrauss–Mirzakhani [15, Proposition 8.2] showed that, if a measure
m is locally finite, Map(S)-invariant, d-homogeneous and supported on
ML (S), then d > N(S).

The aim of this section is to give an almost complete classification of
d-homogeneous, Map(S)-invariant, ergodic measures on C (S).

7.1. Construction of the homogeneous measures

Let (R, c) be a complete pair in S, that is R ⊂ S is a (possibly empty)
subsurface and c = Γ+α is the sum of a multi-curve Γ and an a-laminational
current α such that R, C = supp(Γ) and A = hull(α) are disjoint. It will
be useful to decompose c as c = c∂R + c′, where c∂R is supported on ∂R
and supp(c′) ∩R = ∅.
If R 6= ∅ has genus g(R) and n(R) boundary components, we define by

N(R) := 6g(R)− 6 + 2n(R) and by N ′(R) := 6g(R)− 6 + 3n(R). If R = ∅,
we let N(∅) = N ′(∅) = 0.

For every d ∈ R consider the measure

m
(R,c)
d :=

{
m(S,0) if (R, c) = (S, 0) and d = N(S)∫ +∞

0 td−N(R)−1m(R,tc)dt if c 6= 0

on C (S). Notice that we do not define m(S,0)
d with d 6= N(S).

In order to study the local finiteness of the measures m(R,c)
d , we fix an

auxiliary hyperbolic metric h on S and we let `h : C (S)→ R be the proper
continuous length function attached to h as in Remark 2.20. Moreover,
we denote by mR

Th the Thurston measure on C (S) which is supported on
ML R(S), and by Bh the h-unit ball of currents

Bh := {c ∈ C (S) | `h(c) 6 1}.

Analogously to what is done in Section 5, let

m
[R,c]
d :=

∑
ϕ

m
(ϕ(R),ϕ(c))
d

as ϕ ranges over Map(S)/ stab(R, c), where we recall that stab(R, c) is a
finite-index subgroup of stab(c), because (R, c) is a complete pair.
The main result of this section is the following classification theorem.
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Theorem D (Locally finite invariant homogeneous measures). — Every
locally finite Map(S)-invariant d-homogeneous ergodic measure on C (S) is
a positive multiple of one of the following:

(i) the Thurston measure m[S,0]
N(S) = mS

Th

(ii) the measure m[R,c]
d with c 6= 0 and d > N(S) large enough.

In part (ii) every d > N(S) +N(R) works.

An immediate consequence of the above result, we have the following
useful observation.

Corollary 7.2 (Invariant measures of homogeneity N(S)). — A lo-
cally finite Map(S)-invariant N(S)-homogeneous measure on C (S) is a
multiple of the Thurston measure mS

Th.

We will prove Theorem D through a series of lemmas in the next sub-
section.

7.2. Local finiteness of the measures m[R,c]
d

Before studying the invariant measures m[R,c]
d , we analyze the (non-

invariant) homogeneous measures m(R,c)
d .

Lemma 7.3 (Local finiteness ofm(R,c)
d ). — The measurem(R,c)

d on C (S)
is d-homogeneous. Moreover, m(R,c)

d with c 6= 0 is locally finite if and only
if d > N(R), in which case

m
(R,c)
d (`h 6 L) = mR

Th(Bh) N(R)!
d(d− 1) · · · (d−N(R))

Ld

`h(c)d−N(R) .

Proof. — The d-homogeneity of m(R,c)
d is clear by construction, since

mR
Th is N(R)-homogeneous.
As for the second claim, we fix a hyperbolic metric h on S and an L > 0,

and we want to determine for which d the quantity m(R,c)
d (`h 6 L) is finite.

Clearly,

m(R,tc)(`h 6 L) = mR
Th(`h 6 L− t`h(c))

=
{
mR

Th(Bh) · (L− t`h(c))N(R) if L > t`h(c)
0 if L 6 t`h(c).

Thus,

m
(R,c)
d (`h 6 L) = mR

Th(Bh)
∫ L/`h(c)

0
td−N(R)−1(L− t`h(c))N(R)dt
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is finite if and only if d > N(R). In this case,

m
(R,c)
d (`h 6 L) = mR

Th(Bh) N(R)!
d(d− 1) · · · (d−N(R))

Ld

`h(c)d−N(R) .

is obtained just integrating by parts. �

In the following proposition we analyze local finiteness of homogeneous
measures of non-Thurston type.

Proposition 7.4 (Finiteness of invariant homogeneous measures of
non-Thurston type). — For a complete pair (R, c) 6= (S, 0) the following
holds:

(i) The measure m[R,c]
d is d-homogeneous, Map(S)-invariant and er-

godic.
(ii) For every d > N(S) +N(R), the measure m[R,c]

d is locally finite.
(iii) For every d 6 N(S), the measure m[R,c]

d is not locally finite.

Now we show how Theorem D follows from the above result.
Proof of Theorem D. — The measure mTh and the measures m[R,c]

d on
C (S) are homogeneous, ergodic and Map(S)-invariant. We wish to show
that these are the only ones.
Let md be a locally finite, d-homogeneous, Map(S)-invariant measure

on C (S). Using the ergodic decomposition of locally finite (not necessarily
homogeneous) Map(S)-invariant measures, we can write

md = r ·mTh +
∑
R(S

∫
CR

m[R,c] µR(c)

where CR is the space of currents c of type c = Γ + α such that (R, c) is a
complete pair, µR is a measure on CR and r ∈ R>0. Clearly, we must have
r = 0 unless d = N(S).
Fix an auxiliary hyperbolic metric h on S and let C1

R be the subset of
CR consisting of currents of h-length 1. The map R+ × C1

R → CR given
by (t, c) 7→ tc is clearly a homeomorphism. For every R ( S, define the
measure µ1

R on C1
R as µ1

R(U) := d · µR(Û) for all Borel subsets U ⊆ C1
R,

where Û := (0, 1) · U . Since md is d-homogeneous, it can be rewritten as

md = r ·mTh +
∑
R(S

∫
C1

R

(∫ +∞

0
m[R,tc]td−N(R)−1dt

)
µ1
R(c)

= r ·mTh +
∑
R(S

∫
C1

R

m
[R,c]
d µ1

R(c).
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Hence, locally finite, d-homogeneous, ergodic, Map(S)-invariant measures
are multiples either ofmTh (if d = N(S)), or of measures of typem[R,c]

d . The
result now follows from the analysis of the local finiteness of the measures
m

[R,c]
d in Proposition 7.4. �

Now we turn to Proposition 7.4, which relies on the following estimate,
which will be proven in Appendix A.

Lemma 7.5 (Volume of the unit ball in ML 0(R)). — Let (R, hR) be
a hyperbolic surface with geodesic boundary with systole sys(R) > s > 0.
Then

k̂

`hR
(∂R)N(R) < mR

Th(BhR
) < k̂′.

for suitable constants k̂, k̂′ > 0 that depend only on s and the topology
of R.

Proof of Proposition 7.4. — Part (i) is immediate by construction and
by the ergodicity of m[R,c] proven in Theorem C.
As for (ii) and (iii), fix an auxiliary hyperbolic metric h on S and an

L > 0. We want to determine for which d the quantity m[R,c]
d (`h 6 L) is

finite.
Let s := sys(S, h) > 0 and let ϕ ∈ Map(S). Observe preliminarily that

sys(ϕ(R)) > s and that the ratio `h(ϕ(∂R))/`h(ϕ(c∂R)) can be bounded
from above and from below by positive constants that are independent of
ϕ (they can be chosen to depend only on c∂R, on the boundary length of S
and on s). Moreover, applying Lemma E with L = qu, we obtain a constant
v > 0 that depend only on S, h and c such that

1
v
·quN(S) < #

{
ϕ ∈ Map(S)/ stab(R, c) | `h(ϕ(c)) ∈ [qu, qu+1)

}
< v ·quN(S)

for all u.
By Lemma 7.3, we need to study the finiteness of the following

m
[R,c]
d (`h 6 L) = N(R)!

d(d− 1) · · · (d−N(R))L
d
∑
ϕ

m
ϕ(R)
Th (Bh)

`h(ϕ(c))d−N(R)

By Lemma 7.5, the quantitym[R,c]
d (`h 6 L)/Ld can be bounded from below

as

m
[R,c]
d (`h 6 L)/Ld >

∑
ϕ

k1

`h(ϕ(c∂R))N(R)`h(ϕ(c))d−N(R) >
∑
ϕ

k2

`h(ϕ(c))d
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for suitable constants k1, k2 independent of ϕ. Hence,

m
[R,c]
d (`h 6 L)/Ld >

∑
l∈Z+

∑
ϕ∈Φu

k2

`h(ϕ(c))d > k
′
2
∑
u∈Z+

qu(N(S)−d)

for a suitable constant k′2, where Φu = {ϕ ∈ Map(S) | `h(ϕ(c))∈ [qu, qu+1)}.
It follows that, if m[R,c]

d (`h 6 L) is finite, then d > N(S) and so (iii) is
proven.
Analogously, using again Lemma 7.5, the quantity m

[R,c]
d (`h 6 L)/Ld

can be bounded from above as

m
[R,c]
d (`h 6 L)/Ld 6

∑
ϕ

k3

`h(ϕ(c))d−N(R)

for a suitable constant k3 independent of ϕ. Thus,

m
[R,c]
d (`h 6 L)/Ld 6

∑
u∈Z+

∑
ϕ∈Φu

k3

`h(ϕ(c))d−N(R) 6 k
′
3
∑
u∈Z+

qu(N(S)+N(R)−d)

for a suitable k′3. Since the last series is convergent for d > N(S) +N(R),
we obtain (ii). �

7.3. Counting curves

We conclude by exploring an application to Theorem D. For simplicity
of exposition, from here on we assume that S is a closed surface of genus
g > 2. As was mentioned in the introduction, one of the motivations to
studying invariant measures on C (S) is the use of certain such measures
as a tool for counting curves on surfaces. More precisely, let us fix γ to be
a closed curve on S and consider, for L > 0, the family of curve-counting
measures on C (S) defined by

m[γ/L] := 1
LN(S)m

[∅,γ/L] = 1
LN(S)

∑
γ′∈Map(S)·γ

δ 1
Lγ
′ .

Let f : C (S) → R>0 be any continuous, 1-homogeneous function (for
instance, a hyperbolic length function) and Bf := {c ∈ C (S) | f(c) 6 1}.
We include the following easy observation without proof.

Remark 7.6. — The ball Bf is closed. Moreover, every d-homogeneous
measure md (with d 6= 0) satisfies md(∂Bf ) = 0.

The reason for considering the ball Bf is that
1

LN(S) #{γ′ ∈ Map(S) · γ | f(γ′) 6 L} = m[γ/L](Bf ).
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Hence, counting curves in a Map(S)-orbit of bounded length reduces to
understanding the asymptotics of the curve-counting measures m[γ/L] as
L→∞.

Remark 7.7 (How to detect precompactness of curve-counting measures).
Note that Bh is compact and that probability measures on a compact
space (such as Bh) are weak?-compact. Hence, if lim supL→∞ 1

LN(S) #{γ′ ∈
Map(S) · γ | `h(γ′) 6 L} < ∞, then the set {m[γ/L]} is precompact in the
space of locally finite measures on C (S) with the weak?-topology. Moreover,
if lim infL→∞ 1

LN(S) #{γ′ ∈ Map(S) ·γ | `h(γ′) 6 L} > 0, then (m[γ/L]) does
not accumulate at the zero measure.

Theorem D results in a short proof of the following result from [9], which
is very different from the original one.

Theorem 7.8 (Curve-counting measures accumulate at positive multi-
ples of mTh). — Let γ be a closed curve on S and let (Li) be any sequence
of real numbers such that Li →∞. Then, up to passing to a subsequence,
the curve-counting measures m[γ/Li] associated to γ converge in the weak?-
topology to a positive multiple of the Thurston measure mTh.

Before giving the new proof, we point out the implications of the theorem.
First recall a celebrated result by Mirzakhani [17, 18] implies that, for any
hyperbolic metric h on S and any curve γ, the limit

lim
L→∞

1
LN(S) #{γ′ ∈ Map(S) · γ | `h(γ′) 6 L}

exists and is positive. This result together with Theorem 7.8 imply the
following.

Corollary 7.9 (Convergence of curve-counting measures). — Let γ be
a closed curve on S. Then there exists u = u(g, γ) > 0 such that

m[γ/L] → u ·mTh

as L→∞. In particular,

lim
L→∞

1
LN(S) #{γ′ ∈ Map(S) · γ | f(γ′) 6 L} = u ·mTh(Bf )

for any continuous, 1-homogeneous function f : C (S)→ R>0.

Note that if f denotes hyperbolic length, the last assertion of the corol-
lary is only repeating Mirzakhani’s result. However, there are many other
such functions, including any length coming from a metric on S which has
an associated Liouville current such as any negatively curved metric [20]
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or Euclidean cone metric [1, 7]. In fact, in [8] it was shown that f can be
replaced with any (possibly singular) Riemannian metric.
Here we include a proof of the corollary, and we refer to [8, 9] for more

details.
Proof of Corollary 7.9. — Let γ be a closed curve and let (Li) be a

sequence such that Li → ∞. By Theorem 7.8, up to passing to a subse-
quence, there exists u > 0 such that m[γ/Li] → u ·mTh. Such a u does a
priori depend on g, γ and the subsequence. Note that, if we can show that
u is independent of the subsequence, then m[γ/L] converges as L→∞, and
has limit u ·mTh. To that end, let f be as above and note that on the one
hand

lim
i→∞

m[γ/Li](Bf ) = u ·mTh(Bf )

because mTh(∂Bf ) = 0. On the other hand,

(7.1) lim
i→∞

m[γ/Li](Bf ) = lim
i→∞

1
L
N(S)
i

#{γ′ ∈ Map(S) · γ | f(γ′) 6 Li}.

If we consider the particular case when f = `h, the length function with re-
spect to a hyperbolic metric h on S, it follows by Mirzakhani’s result above
that the limit on the right hand side of (7.1) exists and it is independent of
the increasing sequence (Li). Hence, the constant u is independent of the
sequence (Li) too and we can conclude that

(7.2) lim
L→∞

m[γ/L] → u ·mTh

and in particular

lim
L→∞

1
LN(S) #{γ′ ∈ Map(S) · γ | f(γ′) 6 L} = u ·mTh(Bf )

as desired. �

We point out that Theorem 7.8 was used by Rafi–Souto [22] to prove
that Corollary 7.9 also holds in the case when γ is a current.

Proof of Theorem 7.8. — We first prove that the family (m[γ/L]) is
precompact, and note that this follows by similar logic as is used in [9, 22].
Fix a hyperbolic metric h on S and recall that {c ∈ C (S) | `h(c) 6 r} is
compact for all r > 0. By Remark 7.7, it is enough to show that

0 < lim inf
L→∞

m[γ/L](Bh) and lim sup
L→∞

m[γ/L](Bh) <∞.

To that end, note that

m[γ/L](Bh) = 1
LN(S) #{γ′ ∈ Map(S) · γ | `h(γ′) 6 L}
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and the quantity on the right is bounded from above and from below by
positive constants independent of L by Lemma E.
Now, let m 6= 0 be any accumulation point of (m[γ/L]). The above shows

that m is locally finite. Since each m[γ/L] is Map(S)-invariant, so is m.
Moreover, it is easy to check that m is N(S)-homogeneous. As a conse-
quence, m is a positive multiple of mTh by Corollary 7.2. �

Not all counting problems will lead to Map(S)-invariant d-homogeneous
measures with d = N(S), and so proportional to the Thurston measure.
Here is an example that came up after a discussion with François Labourie.

Example 7.10 (A counting problem with higher homogeneity). — Let π′
be a characteristic subgroup of finite index inside π (for instance, we can
take π′ to be the kernel of the homomorphism π → H1(S;Z/k) for any
integer k > 2), which is thus invariant under the action of Map(S). Such
a π′ corresponds to a finite regular cover p : S′ → S. For every simple
closed curve γ′ in S′, we denote by p∗γ′ the corresponding integral multi-
curve in S (where the concatenation of a curve γ ⊂ S with itself w times
is identified to the multi-curve wγ), and we say that the multi-curve p∗γ′
comes from S′.
Fix a hyperbolic metric h on S and let h′ be its pull-back on S′. For

every L > 0, consider the sets

C := {Γ ∈ C (S) |Γ integral multi-curve that comes from S′}
and CL := {Γ ∈ C | `h(Γ) 6 L}

and

C′L := {γ′ simple closed curve in S′ | `h′(γ′) 6 L}.

and define the locally finite measures mL := 1
LN(S′)

∑
Γ∈C δΓ/L on C (S).

Note that mL is Map(S)-invariant because π′ is a characteristic subgroup
of π. By [23], we know that |C′L|/LN(S′) is bounded above and below by
positive constants. Since the map p∗ : C′L → CL is surjective, with fiber of
cardinality at most [π : π′], the quantity |CL|/LN(S′) is bounded above and
below by positive constants too. By Remark 7.7, there exists a sequence
(Li) with Li →∞ such that mLi → m and such measure m 6= 0 is locally
finite and Map(S)-invariant. Moreover, it is immediate to see that m is
N(S′)-homogeneous, with N(S′) > N(S). As a consequence, m cannot be
a multiple of the Thurston measure.
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Appendix A. Estimates

In the present section we collect some estimates that will be employed
in the proof of Proposition 7.4, namely a bound on the Thurston volume
of the hR-unit ball BhR

inside ML 0(R) (Lemma 7.5) and an asymptotic
bound on the number of currents in the Map(S)-orbit of c = Γ + α of
h-length at most L (Lemma E).
We begin by introducing some notation.
Consider the subset ML Z(R) ∼= ML Z

0 (R)×
(⊕

j Z>0 · ∂jR
)
of integral

simple multi-curves in R inside ML (R) ∼= ML 0(R) ×
(⊕

j R>0 · ∂jR
)
,

and define the measures

mR/L := 1
LN ′(R)

∑
γ∈ML Z(R)

δ 1
Lγ

and mR
Th := mR

Th ⊗ λ∂R

on ML (R), where λ∂R is the Lebesgue measure on
⊕

j R>0 · ∂jR. Since⊕
j Z>0·∂jR is a lattice of unit co-volume in

⊕
j R>0·∂jR, we havemR/L →

mR
Th in the weak?-topology.
We denote by bch(L) the number of currents in the Map(S)-orbit of c of

h-length at most L and by b′hR
(L) the number of points in ML Z(R) of

hR-length at most L, so that

b′hR
(L) = LN

′(R)mR/L(BhR
).

Similarly, we denote by vhR
(L) the volume of the subset of laminations in

ML (R) of hR-length at most L, so that

vhR
(L) = LN

′(R)mR
Th(BhR

).

A.1. The proof of Lemma 7.5

We proceed in three steps: we relate first mR
Th(BhR

) to vhR
(1), then

vhR
(1) to b′hR

(L)/LN ′(R), and finally we estimate b′hR
(L)/LN ′(R) in terms

of the hR-lengths of the boundary components of R and of the hR-systole
of R.
In the following lemma we relate vhR

(L) and mR
Th(BhR

).

Lemma A.1 (Volume of balls in ML (R) and in ML 0(R)). — For every
hyperbolic surface (R, hR) with geodesic boundary, the following holds

vhR
(L) = mR

Th(BhR
) LN

′(R)

N ′(R) · (n− 1)!
∏
j `hR

(∂jR) .

where ML 0(R) is endowed with the Thurston measure and R>0∂jR with
the Lebesgue measure.
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Proof. — Since every lamination in R can be written as λ+
∑
j xj∂jR for

a certain λ supported in the interior of R and xi ∈ R, the volume vhR
(L)

can be computed as

vhR
(L) =

∫
D̂

mR
Th(Bh) ·

(
L−

∑
j

xj`hR
(∂jR)

)N(R)

dx1 · · · dxn

where the integration is performed over the domain D̂={(x1, . . . , xn)∈Rn>0|
L−

∑
j xj`hR

(∂jR) > 0}. By the change of variables tj := xj`hR
(∂jR)/L,

we obtain

vhR
(L) = mR

Th(Bh) LN
′(R)∏

j `hR
(∂jR)

∫
D

(
1−

∑
j

tj

)N(R)

dt1 · · · dtn

where the integration is performed over the domain D = {(t1, . . . , tj) ∈
Rn>0 |

∑
j tj 6 1}. One can easily check that

∫
D

(1−
∑
j tj)N(R)dt1 · · · dtn =

1
(N(R)+n)(n−1)! . �

We will also need that the asymptotic b′h(L) ∼ vh(L) as L → +∞ is
uniform over all hyperbolic metrics h whose systole is bounded from below.

Lemma A.2 (Volume of balls in ML (R) and simple integral multi-
curves). — Let R be a hyperbolic surface with geodesic boundary and let
s > 0. Given ε > 0 there exists L0 > 0 (that may depend on ε and s) such
that ∣∣∣∣ b′hR

(L)
vhR

(L) − 1
∣∣∣∣ < ε

for all L > L0 and for all metrics hR on R with sys(hR) > s.

Proof. — Note that all involved quantities are invariant under action of
Map(R). Thus it is enough to consider h in a fundamental domain F(R)
for the action of Map(R) on the Teichmüller space of hyperbolic metrics on
R. We denote by Fs(R) the subset of metrics hR on R with sys(hR) > s,
which is well-known to be compact.
Since the length function associated to hR depends continuously on hR

and Fs(R) is compact, the union Bs of the balls BhR
⊂ ML (R) as hR

ranges in Fs(R) is a compact subset. We also denote by vs > 0 the mini-
mum of vhR

(1) = L−N
′(R)vhR

(L) as hR ranges in Fs(R).
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Since mR/L → mR
Th in the weak?-topology of ML (R), there exists L0

such that |mR/L −mR
Th|(Bs) < vsε for all L > L0. Thus,

L−N
′(R)|b′hR

(L)− vhR
(L)| = |mR/L(BhR

)−mR
Th(BhR

)|

6 |mR/L −mR
Th|(BhR

)

6 |mR/L −mR
Th|(Bs) < vsε

for all L > L0, and we conclude that∣∣∣∣ b′hR
(L)

vhR
(L) − 1

∣∣∣∣ =
|b′hR

(L)− vhR
(L)|

LN ′(R)
LN

′(R)

vhR
(L) 6

vsε

vhR
(1) 6 ε

for all L > L0. �

The last estimate needed to prove Lemma 7.5 concerns b′hR
(L) and it is

a minor variation of Proposition 3.6 in [17].

Lemma A.3 (Simple integral multi-curves and boundary lengths). —
Let (R, hR) be a hyperbolic surface with sys(hR) > s > 0. Then

k4

`hR
(∂R)N ′(R) 6

b′hR
(L)

LN ′(R) 6
k5∏

j `hR
(∂jR)

where k4, k5 are constants that depends only on the topology of R and on s.

Proof. — Let P = {η1, . . . , ηN ′(R)} be a maximal set of simple, pairwise
disjoint geodesic arcs inR that meet ∂R orthogonally. Since sys(R) > s > 0,
such arcs ηi can always be chosen to be shorter than a constant that only
depends on s. Up to relabeling, we can assume that `hR

(η1) 6 `hR
(η2) 6

· · · 6 `hR
(ηN ′(R)).

The trivalent ribbon graph embedded in R dual to P has set V of vertices
corresponding to components of R \

⋃
i ηi and set E = {1, . . . , N ′(R)} of

edges corresponding to the ηi’s.
For every integral simple multi-curve γ ∈ ML Z(R), let DTj(γ) :=

ι(γ, ηj) for all j ∈ E and DT (γ) = (DT1(γ), . . . , DTN ′(R)(γ)) ∈ NE .
For every v ∈ V , let Ev be the subset of indices {i1, i2, i3} ⊂ E such
that v is bounded by the arcs ηi1 , ηi2 , ηi3 and denote by DTv(γ) the sum
DTi1(γ) +DTi2(γ) +DTi3(γ).
This easier version of Dehn–Thurston coordinates establishes a bijection

DT : ML Z(R) −→ Z =
{
m ∈ NE

∣∣∣∣ mv > 2mi is even
for every v ∈ V and i ∈ Ev

}
and we define `P(m) :=

∑
imi Col(`hR

(ηi)) for all m ∈ NE , where Col is
the decreasing function Col(`) := arcsinh(sinh(`/2)−1).
We notice that
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• ZM ⊂ Z ⊂ NE for every M > 0, where ZM := (2N ∩ [2M, 3M ])E
• by Proposition 3.5 in [17], the following estimate holds

1
k
6

`hR
(γ)

`P(DT (γ)) 6 k

for a constant k > 1 that depends only on R and on s.
Since ι(∂R, ηi) = 2 and Col(`hR

(η1)) > Col(`hR
(ηi)) for all i, we in partic-

ular obtain
2
k

Col(`hR
(η1)) 6 `hR

(∂R) 6 2kN ′(R) Col(`hR
(η1)).

By the above considerations

ZM (L/k) ⊆ DT (ML Z(R)(L)) ⊆ Z(kL)

where Z(kL) = {m ∈ Z |
∑
imi Col(`hR

(ηi)) 6 kL} and ZM (L/k) = {m ∈
ZM |

∑
imi Col(`hR

(ηi)) 6 L/k}.
On one hand, we observe that Z(kL) ⊂ NE ∩

∏
i[0,

kL
Col(`hR

(ηi)) ]. Since
there exists a constant k′ = k′(s) > 0 such that k′ < Col(`hR

(ηi)) <

`hR
(∂jR) whenever the arc ηi meets ∂jR, we obtain

|Z(kL)| 6 k′5L
N ′(R)∏

i Col(`hR
(ηi))

6 k5
LN

′(R)∏
j `hR

(∂jR)

where k′5 and k5 depend on R and s only and the last product is taken over
all the boundary components ∂jR of R.
On the other hand, we can take M = b L

3kN ′(R) Col(`hR
(η1))c in such a way

that ZM (L/k) ⊃ (2N ∩ [2M, 3M ])E . It follows that

|ZM (L/k)| > (M/2− 1)N
′(R) > k4

LN
′(R)

`hR
(∂R)N ′(R) .

We conclude that there are constants k4, k5 > 0 such that
k4

`hR
(∂R)N ′(R) 6

b′hR
(L)

LN ′(R) 6
k5∏

j `hR
(∂jR)

with k4, k5 as desired. �

We have now all the ingredients to estimate the volume of the unit ball
BhR

.

Lemma 7.5 (Volume of the unit ball in ML 0(R)). — Let (R, hR) be
a hyperbolic surface with geodesic boundary with systole sys(R) > s > 0.
Then

k̂

`hR
(∂R)N(R) < mR

Th(BhR
) < k̂′.
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for suitable constants k̂, k̂′ > 0 that depend only on s and the topology
of R.

Proof. — From Lemma A.1 we have

mR
Th(BhR

) = N ′(R) · (n− 1)!
∏
j

`hR
(∂jR) · vhR

(L)
LN ′(R)

for any L > 0. As s > 0 is fixed, we can find a suitably large L such that
Lemma A.2 gives 1

2b
′
hR

(L) < vhR
(L) < 2b′hR

(L), and so

1
2N
′(R) · (n− 1)!

∏
j

`hR
(∂jR) ·

b′hR
(L)

LN ′(R)

6 mR
Th(BhR

) 6 2N ′(R) · (n− 1)!
∏
j

`hR
(∂jR) ·

b′hR
(L)

LN ′(R) .

Together with Lemma A.3 we obtain the wished estimate. �

A.2. The proof of Lemma E

We recall the following lemma by Ivanov.

Lemma A.4 (Dehn twists and intersection numbers [13, Lemma 4.2]).
Let {ηj}pj=1 be disjoint simple closed curves on the surface S and let {tj}
be integers. Then

−ι(γ, β) +
p∑
j=1

(|tj | − 2) ι(γ, ηj)ι(ηj , β) 6 ι(ψ(γ), β)

where ψ = T t1ηi
◦ · · · ◦ T tpηp is the composition of tj right Dehn twists about

each ηj and β, γ are measured laminations.

Actually, we will employ Ivanov’s above inequality in the following form.

Corollary A.5 (Dehn twists and hyperbolic lengths). — Let (S, h) be
a hyperbolic surface with sys(S) > s > 0 and let {ηj} be a pair of pants
decomposition. Let γ = γ1 + · · ·+γp be a finite sum of simple closed curves
(but we do not exclude that ι(γ, γ) > 0) such that

(a) each γj intersects ηj in one or two points for j = 1, . . . , p,
(b) ι(γj , ηi) = 0 for i 6= j.

Moreover, let c = γ + η1 + · · ·+ ηq with q > p.
Then there exists k̃ > 0 that depends only on h such that the following

holds:
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• for every ψ = T t1ηi
◦ · · · ◦ T tpηp composition of tj Dehn twists about

ηj for each j = 1, . . . , p such that `h(c), `h(ψ(c)) 6 L, we have∑p
j=1 |tj |`h(ηj) 6 k̃L and, in particular, |tj | 6 k̃ L

`h(ηj) for all j =
1, . . . , p.

Proof. — Note that the formula in Lemma A.4 is linear both in β and
in γ. We choose β to be a binding current in S, which is a finite sum of
simple closed curves, and we choose γ as in the statement. By Lemma A.4,
we have

−ι(β, γ) +
p∑
j=1

(|tj | − 2) ι(γ, ηj)ι(β, ηj) 6 ι(β, ψ(γ))

and so
p∑
j=1
|tj |ι(β, ηj) 6 ι(β, γ) + ι(β, ψ(γ)) + 4

p∑
j=1

ι(β, ηj).

Recall that there exists a compact subset M of the interior of S that de-
pends only on h and that contains all simple closed h-geodesics, and so in
particular it contains ψ(γ) for all ψ ∈ Map(S). By Lemma 4.2, there is a
constant r > 0 that depends on h such that 1

r <
ι(β,·)
`h

< r. It follows that

1
r

p∑
j=1
|tj |`h(ηj) 6 r`h(γ) + r`h(ψ(γ)) + 4r

p∑
j=1

`h(ηj) 6 5rL

because γ +
∑p
j=1 ηj 6 c and ψ(γ) 6 ψ(c) as currents. It follows that∑p

j=1 |tj |`h(ηj) 6 5r2L and so we can take k̃ = 5r2. �

Finally, we will also need the following observation.

Remark A.6. — Let (S, h) be a hyperbolic surface with sys(h) > s > 0.
Let {ηj} be a pair of pants decomposition of S and let γl be a simple closed
curve on S that intersects ηl in one or two points and such that ι(γl, ηj) = 0
for j 6= l. There exists a constant a = a(s) > 1 that depends on s only and
an integer t such that `h(T tηl

γl) 6 a ·maxj{`h(ηj)}.

Idea of the proof of Remark A.6. — Consider the complement Sl of⋃
j 6=l ηj inside S, which can be a torus with one boundary component, or a

sphere with four boundary components. By elementary trigonometry it is
easy to see that there exists an integer t such that `h(T tηl

γl) 6 a · `l, where
`l is the maximum h-length of a boundary component of Sl. �

The key idea needed to prove Lemma E is to relate the number of currents
in the orbit of c to the number of suitable integral simple multi-curves. The
following is essentially borrowed from Lemma 5.6 in [18].
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Lemma A.7 (Comparing orbits of a current with orbits of simple multi-
curves). — Let (S, h) be a hyperbolic surface (possibly with boundary) and
let c be a current of type c = Γ+α. There exists a constant k = k(S, s, c) > 1
and an integral simple multi-curve Γ′ such that

bΓ
′

h (L/k) 6 bch(L) 6 b′h(kL)

for all L.

Proof. — Let P = {η1, . . . , ηN(S)+n} be a pair of pants decomposition of
S such that

• η1∪· · ·∪ηp sits inside A := hull(α) (note that p=− 1
2 (3χ(A)+n(A)),

where n(A) is the number of boundary components of A),
• ηp+1 ∪ · · · ∪ ηp′ is equal to supp(Γ) ∩ ∂A, and
• ηp′+1 ∪ · · · ∪ ηq is equal to supp(Γ) \ ∂A.

Reduction to the case of c equal to a multi-curve. Note that there exists
simple closed curves γ1, . . . , γp in the interior of A such that

• γ = γ1 + · · ·+ γp satisfies hypotheses (a) and (b) in Corollary A.5;
• η1 ∪ . . . ηp ∪ γ binds A.

Denote by cA the sum of α and of the summands of c supported on the
components of ∂A. Since the systole of h is bounded from below by s, for
all ϕ ∈ Map(S) the ratio

`h(ϕ(cA))
`h(ϕ(γ +

∑p′

j=1 ηj))
= `ϕ∗h(cA)
`ϕ∗h(γ +

∑p′

j=1 ηj)

is bounded below and above by positive constants that depend on A, s and
α only by Remark 4.3. Moreover, c− cA is the sum of positive multiples of
ηp′+1, . . . , ηq and so `h(ϕ(c−cA))/`h(

∑q
j=p′+1 ϕ(ηj)) is also bounded below

and above by positive constants that only depend on c. As a consequence,
for all ϕ ∈ Map(S) the ratio

`h(ϕ(c))
`h(ϕ(γ +

∑q
j=1 ηj))

is bounded above and below by constants that depend on S, s and c only.
Thus, we can assume that c = γ+

∑q
j=1 ηj and we choose Γ′ :=

∑q
j=1 ηj .

Let G :=
⋂q
j=1 stab(ηj) and H := Map(S,A) ∩ G and note that H has

finite index in stab(c), because γ +
∑p
j=1 ηj fills A. In order to give upper

and lower bounds for the cardinality bch(L) of the set

{ϕ ∈ Map(S)/ stab(c) | `h(ϕ(c)) 6 L}
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we follow Mirzakhani’s idea and we construct a map

ξ : {ϕ ∈ Map(S)/H | `h(ϕ(c)) 6 L} −→ML Z(S)

with fibers of bounded cardinality. The wished conclusion follows as we
show that there exist constants k1, k2 > 1 such that

(i) the image of ξ is contained inside the subset of ML Z(S) consisting
of multi-curves with `h 6 k1L, and

(ii) the image of ξ contains all points in Map(S) · Γ′ with `h 6 L/k2.
Definition of the map ξ. — Note that G/H is isomorphic to the free

Abelian group Ψ of diffeomorphisms of type ψ = T t1η1
◦ · · · ◦T tpηp for suitable

t1, . . . , tp ∈ Z. In every [ϕ] ∈ Map(S)/G we choose a representative ϕ0 ∈
Map(S)/H as follows. Pick any representative ϕ ∈ Map(S)/H in the class
[ϕ]. The map Ψ 3 ψ 7→ `ϕ∗h(ψ(c)) ∈ R+ is proper, because γ+η1 + · · ·+ηp
fills A, and so it achieves a minimum at some element ψϕ; we define ϕ0 :=
ϕ◦ψϕ. Now, every ϕ′ ∈ Map(S)/H in the class [ϕ] can be uniquely written
as ϕ′ = ϕ0 ◦ T t1(ϕ′)

η1 ◦ · · · ◦ T tp(ϕ′)
ηp and we let wj(ϕ′) := |tj(ϕ′)|. We then

define ξ as

ϕ 7−→ ξϕ :=
p∑
j=1

wj(ϕ) · ϕ(ηj) +
q∑
j=1

ϕ(ηj).

Note that ξϕ determines an element ϕ ∈ Map(S)/H up to finitely many
choices (namely, up to classes of diffeomorphisms that possibly exchange
the signs of the tj(ϕ) and permute the ηj ’s). Hence, each fiber of ξ has
cardinality bounded above by a constant that depends only on the topology
of S.
Upper bound (i). — We want to show that `h(ξϕ) 6 k1L with k1 :=

k̃p+ 1.
Since `h(ϕ0(c)) 6 `h(ϕ(c)) 6 L, we have wj(ϕ) = |tj(ϕ)| 6 k̃ L

`h(ϕ(ηj)) by
Corollary A.5. Thus, `h(ξϕ) 6

∑p
j=1(k̃L) +

∑q
j=1 `h(ϕ(ηj)). Since∑q

j=1 `h(ϕ(ηj)) 6 L, it follows that `h(ξϕ) 6 (k̃p+ 1)L = k1L.
Lower bound (ii). — Let a = a(s) > 1 be the constant that appears

in Remark A.6 and take k2 = 1 + ap. Fix ϕ ∈ Map(S)/H such that
`h(ϕ0(Γ′)) = `h(ϕ(Γ′)) 6 L/k2. We want to show that `h(ϕ0(c)) 6 L

and so ϕ(Γ′) = ξϕ0 belongs to the image of ξ.
For every j = 1, . . . , p by hypothesis `h(ϕ(ηj)) 6 L/k2, and so Re-

mark A.6 implies that there exists tj ∈ Z such that `h(ϕ(T tjηj γj)) 6 a(L/k2).
Hence, `h(ϕ ◦ ψ(γj)) 6 a(L/k2) with ψ = T t1η1

◦ · · · ◦ T tpηp , and so `h(ϕ ◦
ψ(c)) 6 (1 + ap)(L/k2) because c = Γ′ + γ1 + · · · + γp. As a consequence,
`h(ϕ0(c)) 6 `h(ϕ ◦ ψ(c)) 6 (1 + ap)(L/k2) = L. �
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Using the bounds proven in Lemma A.7, we can now obtain the wished
estimate for bch.

Proof of Lemma E. — It follows from [17] that the quantities
b′h(L)/LN(S) and bΓ′h (L)/LN(S) are bounded from below and above by con-
stants that depend on S, h and c. Thus, by Lemma A.7 there exists ṽ > 1
such that (1/ṽ)LN(S) < bch(L) < ṽLN(S). In particular,(

qN(S)/ṽ − ṽ
)
LN(S) < bch([L, qL]) <

(
ṽqN(S)

)
LN(S)

Let q > 1 be large enough so that v := ṽqN(S) satisfies (1/v) < (qN(S)/ṽ)−
ṽ. It follows that (1/v)LN(S) < bch([L, qL]) < vLN(S) and, clearly,
(1/v)LN(S) < bch(L) < vLN(S). �
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