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THE JONES–KRUSHKAL POLYNOMIAL AND
MINIMAL DIAGRAMS OF SURFACE LINKS

by Hans U. BODEN & Homayun KARIMI (*)

Abstract. — We prove a Kauffman–Murasugi–Thistlethwaite theorem for al-
ternating links in thickened surfaces. It implies that any reduced alternating dia-
gram of a link in a thickened surface has minimal crossing number, and any two
reduced alternating diagrams of the same link have the same writhe. This result is
proved more generally for link diagrams that are adequate, and the proof involves
a two-variable generalization of the Jones polynomial for surface links defined by
Krushkal. The main result is used to establish the first and second Tait conjectures
for links in thickened surfaces and for virtual links.
Résumé. — Nous montrons un théorème de Kauffman-Murasugi-Thistlethwaite

pour des entrelacs alternants dans des voisinages tubulaires d’une surface. Il im-
plique que tout diagramme réduit d’entrelacs alternant dans une surface a un
nombre minimal de croisements, et que deux diagrammes réduits alternants quel-
conques du même entrelacs ont le même nombre d’auto-enlacements.

Ce résultat est prouvé plus généralement pour les diagrammes d’entrelacs qui
sont adéquats, et sa démonstration utilise une généralisation à deux variables du
polynôme de Jones pour les entrelacs sur des surfaces définies par Krushkal. Le
résultat principal est utilisé pour établir la première et la deuxième conjecture de
Tait pour les entrelacs dans des voisinages tubulaires d’une surface et pour les
entrelacs virtuels.

Introduction

A link diagram is called alternating if the crossings alternate between
over and under crossing as one travels around any component; any link
admitting such a diagram is called alternating. In his early work of tab-
ulating knots [33], Tait formulated several far-reaching conjectures which,
when resolved 100 years later, effectively solved the classification problem

Keywords: Kauffman bracket, Jones polynomial, Krushkal polynomial, alternating link
diagram, adequate diagram, Tait conjectures, virtual link.
2020 Mathematics Subject Classification: 57K14, 57K12.
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for alternating knots and links. Recall that a link diagram is said to be re-
duced if it does not contain any nugatory crossings. Tait’s first conjecture
states that any reduced alternating diagram of a link has minimal crossing
number. His second states that any two such diagrams representing the
same link have the same writhe. His third conjecture, also known as the
Tait flyping conjecture, asserts that any two reduced alternating diagrams
for the same link are related by a sequence of flype moves (see Figure 5.1).
Tait’s first and second conjectures were settled through results of Kauff-

man, Murasugi, and Thistlethwaite, who each gave an independent proof
using the newly discovered Jones polynomial [19, 30, 34]. The Tait flyping
conjecture was subsequently solved by Menasco and Thistlethwaite [29],
and taken together, the three Tait conjectures provide an algorithm for clas-
sifying alternating knots and links. A striking corollary is that the crossing
number is additive under connected sum for alternating links. It remains a
difficult open problem to prove this in general for arbitrary links in S3.

Virtual knots were introduced by Kauffman in [20], and they represent a
natural generalization of classical knot theory to knots in thickened surfaces
up to stabilization. Classical knots and links embed faithfully into virtual
knot theory [11], and many invariants from classical knot theory extend in
a natural way. For instance, the Jones polynomial was extended to virtual
links by Kauffman [20], who noted the abundant supply of virtual knots
with trivial Jones polynomial. (For classical knots, it is an open problem
whether there is a nontrivial knot with trivial Jones polynomial.) Indeed,
there exist alternating virtual knots K with trivial Jones polynomial (and
even trivial Khovanov homology [18]). Consequently, the Jones polynomial
is not sufficiently strong to prove the analogue of the Kauffman–Murasugi–
Thistlethwaite theorem for virtual links (see also [15] and [9]).
The main result in this paper is an analogue of the Kauffman–Murasugi–

Thistlethwaite theorem for reduced alternating links in thickened surfaces.
It is established using a two-variable generalization of the Jones polyno-
mial for links in thickened surfaces defined by Krushkal [22]. The Jones–
Krushkal polynomial is a homological refinement of the usual Jones polyno-
mial in that it records the homological ranks of the states under restriction
to the background surface. It is derived from Krushkal’s extension of the
Tutte polynomial to graphs in surfaces [22]. The main result can be para-
phrased in terms of homological Kauffman bracket 〈 · 〉Σ as follows (see
Theorem 4.1 and Corollary 4.6):

ANNALES DE L’INSTITUT FOURIER
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Theorem. — If L is an oriented link in a thickened surface Σ × I of
genus g, and if D is a connected link diagram for L with n crossings, then

span(〈D〉Σ) 6 4n− 4 + 4g,

with equality if D is reduced and alternating.
In particular, any reduced alternating diagram for L has minimal crossing

number, and any two reduced alternating diagrams for L have the same
writhe.

The main result is proved more generally for diagrams that are adequate
in a certain sense (see Definition 2.5), and we show that every reduced
alternating diagram of a link in a thickened surface is adequate (Propo-
sition 2.8). In the last section, Corollary 4.6 is applied to prove the Tait
conjectures for virtual knots and links (see Theorem 5.2 and 5.3).

In [3], Adams et al. use geometric methods to prove minimality of re-
duced alternating diagrams of knots in thickened surfaces. In this paper, we
recover and extend the results in [3] to links in thickened surfaces admit-
ting adequate diagrams. A key step is provided by the dual state lemma
for links in thickened surfaces (Lemma 2.10), and its proof relies on an
analysis of the homological Kauffman bracket and Jones–Krushkal poly-
nomial. These invariants are closely related to the surface bracket polyno-
mial studied in [10] and [25]. However, they exhibit different behavior in
that they are not invariant under stabilization and destabilization. In [22],
Krushkal shows that the Jones–Krushkal polynomial admits an interpre-
tation in terms of the generalized Tutte polynomial of the associated Tait
graph. This result is a generalization of Thistlethwaite’s theorem [34]. In
a similar vein, Chmutov and Voltz show how to relate the Jones polyno-
mial of a checkerboard colorable virtual link with the Bollabás–Riordan
polynomial of its Tait graph in [8] (see also [7]).

We close this introduction with a brief synopsis of the contents of the
rest of this paper. In Section 1, we review background material on links
in thickened surfaces and virtual links. One result characterizes checker-
board colorable virtual links (Proposition 1.7) In Section 2, we recall the
definition of the homological Kauffman bracket 〈 · 〉Σ and show that it is
invariant under regular isotopy. We prove that every reduced alternating
link diagram is adequate (Proposition 2.8) and establish the dual state
lemma (Lemma 2.10). In Section 3, we introduce the Jones–Krushkal poly-
nomial J̃(t, z) ∈ Z[t1/2, t−1/2, z] and show that it is an invariant of links in
thickened surfaces up to isotopy and diffeomorphism. For checkerboard col-
orable links, we introduce the reduced Jones–Krushkal polynomial J(t, z)
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and give many sample calculations of J̃(t, z) and J(t, z). We prove that
the Jones–Krushkal polynomial of L is closely related to that of its mirror
images L∗ and L† (Proposition 3.12).

Section 4 contains the proof of the main result, which is the Kauffman–
Murasugi–Thistlethwaite theorem for reduced alternating link diagrams
on surfaces (Theorem 4.1 and Corollary 4.6). In Section 5, we apply the
main result to deduce the first and second Tait conjectures for virtual
links (Theorem 5.3). Tables 5.1 and 5.2 list the unreduced and reduced
Jones–Krushkal polynomials for all virtual knots with 3 crossings and all
checkerboard colorable virtual knots with 4 crossings.

Notation. — Unless otherwise specified, all homology groups are taken
with Z/2 coefficients. Decimal numbers such as 3.5 and 4.98 refer to the
virtual knots in Green’s tabulation [12].

1. Virtual links and links in thickened surfaces

In this section, we review the basic properties of virtual links and links
in thickened surfaces.

1.1. Virtual link diagrams

A virtual link diagram is an immersion of m > 1 circles in the plane with
only double points, such that each double point is either classical (indicated
by over- and under-crossings) or virtual (indicated by a circle around the
double point). Two virtual link diagrams are said to be equivalent if they
can be related by planar isotopies, Reidemeister moves, and the detour
move shown in Figure 1.1. (See [20] for more details.) An oriented virtual
link L includes a choice of orientation for each component of L, which is
indicated by placing arrows on the components as in Figure 1.2.
Given a virtual link diagram D, the crossing number is denoted c(D)

and is defined to be the number of classical crossings of D. The crossing
number of a virtual link L is the minimum crossing number c(D) taken
over all virtual link diagrams D representing L.
Given an oriented virtual link, each classical crossing is either positive

or negative, see Figure 1.3. The writhe of the crossing is ±1 according to
whether the crossing is positive or negative. The writhe of the diagram is
the sum of the writhes of all its crossings.

ANNALES DE L’INSTITUT FOURIER
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Figure 1.1. The detour move.

Figure 1.2. The virtual trefoil, Hopf link, and Borromean rings.

Definition 1.1. — For a virtual link diagram D, the writhe of D, de-
noted w(D) is defined as n+(D)−n−(D), where n+(D) and n−(D) are the
number of positive and negative crossings in D, respectively.

ε(c) = +1

c

ε(c) = −1

c

Figure 1.3. A positive and a negative crossing.

1.2. Links in thickened surfaces

Virtual links can also be defined as equivalence classes of links in thick-
ened surfaces. Let I = [0, 1] denote the unit interval and Σ be a compact,
connected, oriented surface. A link in the thickened surface Σ × I is an
embedding L :

⊔m
i=1 S

1 ↪→ Σ× I, considered up to isotopy and orientation
preserving homeomorphisms of the pair (Σ× I,Σ× {0}).
A surface link diagram on Σ is a tetravalent graph in Σ whose vertices

indicate over and under crossings in the usual way. Two surface link dia-
grams represent isotopic links if and only if they are equivalent by local

TOME 72 (2022), FASCICULE 4
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Reidemeister moves. The writhe of a link diagram on a surface is defined
in the same way as it is for virtual links (cf. Definition 1.1).
Framed links in Σ×I are represented by link diagrams on Σ up to regular

isotopy. Recall that two link diagrams on Σ are regularly isotopic if they are
related by a sequence of moves that involve Reidemeister 2 and 3 moves
and the writhe-preserving move in Figure 1.4. Notice that the writhe is
invariant under regular isotopy of links in Σ× I.

Figure 1.4. Regular isotopy includes the above move together with
Reidemeister 2 and 3 moves.

Let p : Σ×I → Σ be projection onto the first factor. The image p(L) ⊂ Σ
is called the projection of the link. Using an isotopy, we can arrange that
the projection is a regular immersion with finitely many double points.
Two links L0 ⊂ Σ0×I and L1 ⊂ Σ1×I are said to be stably equivalent if

one is obtained from the other by a finite sequence of isotopies, diffeomor-
phisms, stabilizations, and destabilizations. Stabilization is the operation
of adding a 1-handle to Σ to obtain a new surface Σ′, and destabilization is
the opposite procedure. Specifically, if D0 and D1 are two disjoint disks in
Σ which are both disjoint from the image of L under projection Σ×I → Σ,
then Σ′ is the surface with genus(Σ′) = genus(Σ) + 1 obtained by attach-
ing an annulus A = S1 × I to Σ r (D0 ∪ D1) so that ∂A = ∂D0 ∪ ∂D1.
This operation is referred to as stabilization, and the opposite procedure is
called destabilization. It involves cutting along a vertical annulus in Σ× I
disjoint from the link and attaching two 2-disks.
In [6], Carter, Kamada, and Saito give a one-to-one correspondence be-

tween virtual links and stable equivalence classes of links in thickened sur-
faces. The next result is Kuperberg’s theorem [23].

Theorem 1.2. — Every stable equivalence class of links in thickened
surfaces has a unique irreducible representative.

Given a virtual link L, its virtual genus gv(L) is defined to be the genus
of the surface of its unique irreducible representative. A virtual link L is
said to be classical if it has virtual genus gv(L) = 0. This is the case if
and only if it can be represented by a virtual link diagram with no virtual
crossings. For instance, the three virtual links in Figure 1.2 all have virtual
genus equal to one and so are non-classical (see Figures 3.2, 2.2, and 3.3).

ANNALES DE L’INSTITUT FOURIER
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There is a construction, due to Kamada and Kamada [16], which asso-
ciates to any virtual link diagram D a ribbon graph on an oriented surface.
The graph is a tetravalent graph representing the projection of D, and the
surface MD has a handlebody decomposition with 0-handles being disk
neighborhoods of each of the real crossings of D, and 1-handles for each
of the arcs of D from one crossing to the next. If D has n crossings, then
MD has n 0-handles and 2n 1-handles. Let ΣD denote the closed oriented
surface obtained by attaching disks to all the boundary components ofMD.
A diagram D for a virtual link L is said to be a minimal genus diagram if
the genus of ΣD is equal to the virtual genus of L.
Notice that under this construction, the link diagram is cellularly embed-

ded in ΣD, namely the complement of its projection is a union of disks. By
Theorem 1.2, this will be true for any minimal genus diagram of a virtual
link L.

1.3. Alternating virtual links

A virtual link diagram D is said to be alternating if, when traveling
along the components, the classical crossings alternate from over to under
when one disregards the virtual crossings. A virtual link L is alternating if
it can be represented by an alternating virtual link diagram.
In a similar way, a surface link diagram D on Σ is said to be alternating

if the crossings alternate from over to under around any component of D. It
follows that a virtual link is alternating if and only if it can be represented
by an alternating surface link diagram.

Definition 1.3. — Let D be a surface link diagram on Σ. A crossing
c in D is called nugatory if we can find a simple closed curve in Σ which
separates Σ and intersects D only in the double point c.

Remark 1.4. — For classical link diagrams, nugatory crossings can al-
ways be removed by rotating one side of the diagram 180◦ relative to the
other. In contrast, for link diagrams on surfaces, nugatory crossings are not
in general removable.

Definition 1.5. — A surface link diagram D on Σ is called reduced if
it is cellularly embedded and has no nugatory crossings.

Remark 1.6. — Note that, by the Kamada–Kamada construction, any
virtual link can be realized by a cellularly embedded diagram on a surface.
Thus, the first condition of Definition 1.5 can always be arranged for virtual
links.

TOME 72 (2022), FASCICULE 4
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Figure 1.5. A nugatory crossing.

1.4. Checkerboard colorable links

A surface link diagram D on Σ is said to be checkerboard colorable if
the components of Σ rD can be colored by two colors such that any two
components of Σ r D that share an edge have opposite colors. A link in
a thickened surface is checkerboard colorable if it can be represented by
a checkerboard colorable surface link diagram. Likewise, a virtual link is
checkerboard colorable if it admits a checkerboard colorable representative.
In [14], Kamada showed that every alternating virtual link is checker-

board colorable. In fact, in [14, Lemma 7] she showed that a virtual link
diagram is checkerboard colorable if and only if it can be transformed into
an alternating diagram under crossing changes.

There are, however, subtle differences between the categories of virtual
links and links in thickened surfaces. For instance, Kamada’s results hold
for links in thickened surfaces provided they are cellularly embedded, but as
we shall see, they can fail without this assumption. For instance, Figure 1.6
presents an alternating knot diagram on the torus which is not checkerboard
colorable, hence Kamada’s result is not true in general. The failure stems
from the fact that this diagram is not cellularly embedded. In particular,
the diagram in Figure 1.6 is not minimal genus, and any vertical arc disjoint
from the knot gives a destabilizing curve. Destabilization along this curve
shows that this knot is stably equivalent to the classical trefoil, which of
course is checkerboard colorable.
Several authors have used slightly different names for the notion of

checkerboard colorability. For instance, in [17], checkerboard colorable links
are called normal, and in [31], checkerboard colorable diagrams are called
even. In [4], checkerboard colorable links are called mod 2 almost classical
links.
Suppose that D is a surface link diagram on Σ which is cellularly em-

bedded and checkerboard colorable, and fix a checkerboard coloring of the
complementary regions of D in Σ. The black regions determine a spanning

ANNALES DE L’INSTITUT FOURIER
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Figure 1.6. An alternating knot diagram on the torus which is not
checkerboard colorable.

surface for L which is the union of disks and bands, with one disk for each
black region and one half-twisted band for each crossing.
The result is an unoriented surface F embedded in Σ× I with boundary

∂F = L. Associated to this surface is its Tait graph Γ, which is a graph
embedded in Σ with one vertex for each black region and one edge for each
crossing. There is an edge between two vertices for each crossing connecting
the corresponding regions. In particular, if a black region has a self-abutting
crossing, then its Tait graph Γ will contain a loop.
The dual spanning surface for L can be constructed by starting with

the white regions and adding half-twisted bands for each crossing. Its Tait
graph is defined similarly. The black and white Tait graphs are dual graphs
in the surface Σ, and each of the checkerboard surfaces deformation re-
tracts onto its Tait graph. The next result gives a useful characterization
of checkerboard colorability for links in thickened surfaces.

Proposition 1.7. — Given a link L ⊂ Σ×I in a thickened surface, the
following are equivalent:

(i) L is checkerboard colorable.
(ii) L is the boundary of an unoriented spanning surface F ⊂ Σ× I.
(iii) [L] = 0 in the homology group H1(Σ× I;Z/2).

Proof. — If L is checkerboard colorable, then an unoriented spanning
surface is obtained by attaching one half-twisted band between two black
regions for each crossing of L. This shows that (i) ⇒ (ii), and to see the
reverse implication, suppose that F is a spanning surface for L, realized
as a union of disks and bands in Σ × I. Perform an isotopy to shrink the
disks and bands so the images of the disks under projection p : Σ× I → Σ
are disjoint from one another and from each band. Thus, the projection,
restricted to F , is an embedding except for band crossings. At each band
crossing, we can attach a 1-handle as in Figure 1.7 so that the new surface

TOME 72 (2022), FASCICULE 4
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is the black surface for a checkerboard coloring of the resulting diagram of
L. Thus (ii)⇒ (i).

Two intersecting bands Addition of a 1-handle

Figure 1.7. Adding a vertical 1-handle at a band crossing.

The step (ii)⇒ (iii) is obvious, and the reverse implication follows from
a standard argument which is left to the reader. �

2. The homological Kauffman bracket

In this section, we recall the definition of the homological Kauffman
bracket from [22]. It is defined for link diagrams in thickened surfaces and
is an invariant of regular isotopy of unoriented links. We introduce a notion
of adequacy for link diagrams on surfaces and use the homological bracket
to prove that adequate link diagrams have minimal crossing number.

2.1. States and their homological rank

Let L be a link in Σ × I with surface link diagram D on Σ. Suppose
further that D has n crossings. For each crossing ci of D, there are two
ways to resolve it. One is called the A-smoothing and the other is the
B-smoothing, according to Figure 2.1.

c A-smoothing B-smoothing

Figure 2.1. The A- and B-smoothing of a crossing.

A state is a collection of simple closed curves on Σ which results from
smoothing each of the crossings of D. Thus, a state S is just a link diagram

ANNALES DE L’INSTITUT FOURIER
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on Σ with no crossings. Since there are two ways to smooth each crossing,
there are 2n states. We will use S = S(D) to denote the space of all states
of D. Ordering the crossings {c1, . . . , cn} of D in an arbitrary way, we can
identify each state with a binary word ε1ε2 · · · εn of length n, where εi = 0
indicates an A-smoothing and εi = 1 a B-smoothing at the crossing ci.

Given a state S ∈ S, let a(S) be the number of A-smoothings and b(S)
the number of B-smoothings, and let |S| be the number of cycles in S.
Define

k(S) = dim (kernel (i∗ : H1(S) −→ H1(Σ))) ,
r(S) = dim (image (i∗ : H1(S) −→ H1(Σ))) ,

where i : S → Σ is the inclusion map. We call r(S) the homological rank
of the state S, and we note that k(S) + r(S) = b1(S) = |S|.
Since Σ is a compact, closed, oriented surface, the intersection pairing

on H1(Σ) is symplectic. A given collection of disjoint simple closed curves
on Σ must therefore map into an isotropic subspace of H1(Σ). It follows
that the homological rank of any state S satisfies 0 6 r(S) 6 g, where g is
the genus of Σ.
The homological Kauffman bracket is denoted 〈 · 〉Σ and defined by set-

ting

(2.1) 〈D〉Σ =
∑
S∈S

A(a(S)−b(S))(−A−2 −A2)k(S)zr(S).

Here, z is a formal variable which keeps track of the homological rank of
S. Upon setting z = −A−2 − A2 and dividing one factor of −A−2 − A2,
one recovers the usual Kauffman bracket.
The following lemmas study the effect of the various diagrammatic moves

on the homological Kauffman bracket. These will be applied to show that
it is invariant under regular isotopy of links in surfaces. The first is an
immediate consequence of Equation (2.1), and the proof is left to the reader.

In the first lemma, denotes a simple closed curve on Σ.

Lemma 2.1. — The homological Kauffman bracket satisfies the follow-
ing identities.

(i) If is homologically trivial, then
〈 〉

Σ = −A2−A−2. Otherwise,〈 〉
Σ = z.

(ii) If is homologically trivial, then
〈
t L
〉

Σ = (−A2−A−2) 〈L〉Σ .
(iii)

〈 〉
Σ

= A
〈 〉

Σ
+A−1

〈 〉
Σ
.
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Lemma 2.2. — If a link diagram on a surface is changed by a Reide-
meister type 1 move, then the homological Kauffman bracket changes as
follows:

(2.2)
〈 〉

Σ

= −A3 〈 〉Σ and
〈 〉

Σ

= −A−3 〈 〉Σ .

Proof. — To see the first identity, apply Lemma 2.1(iii) to the left-hand
side of Equation (2.2) and simplify using Lemma 2.1(ii). The first equation
follows immediately. The second identity follows by a similar argument;
details are left to the reader. �

Lemma 2.3. — If a link diagram on a surface is changed by a Reidemeis-
ter type 2 or 3 move, then the homological Kauffman bracket is unchanged,
i.e., we have

(i)
〈 〉

Σ
=
〈 〉

Σ
, and

(ii)
〈 〉

Σ
=
〈 〉

Σ

Proof. — To prove (i), apply Lemma 2.1(iii) twice to the diagram on the
left and simplify using Lemma 2.1(ii). The identity (i) follows.

To prove (ii), apply Lemma 2.1(iii) to the lower crossing in the diagram
on the left and simplify, using the fact that 〈 · 〉Σ is invariant under Reide-
meister 2 moves. The identity (ii) then follows. �

Lemma 2.3 implies that the bracket 〈D〉Σ is an invariant of unoriented
links in Σ×I up to regular isotopy, and in Definition 3.1 we use Lemma 2.2
to define a normalization which is an invariant of oriented links in Σ × I
up to isotopy.

Figure 2.2. A minimal genus diagram of the virtual trefoil in the torus,
and the states SA and SB .

Example 2.4. — The virtual trefoil K (see Figure 1.2) admits a minimal
genus diagram D on the torus T , which has two crossings. The diagram D

is depicted in Figure 2.2, along with the state SA of pure A smoothings and

ANNALES DE L’INSTITUT FOURIER
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the state SB of pure B-smoothings. Clearly |SA| = 2, r(SA) = 1 and |SB | =
1, r(SB) = 1. One can further show that the other two states AB,BA have
|S| = 1 and r(S) = 1. Thus, 〈D〉T = A2(−A2 −A−2)z + 2z +A−2z.

Notice that the cube of resolutions for this knot has single cycle smooth-
ings. These occur whenever there are two states S, S′ with |S| = |S′| which
are identical everywhere except one crossing. For checkerboard colorable di-
agrams, one can show that |S| = |S′|±1 whenever S, S′ are two states that
differ only at one crossing (for a proof, see [18, Proposition 5.11]). There-
fore, the cube of resolutions of a checkerboard colorable diagram never has
any single cycle smoothings.

2.2. Adequate diagrams

Next, we introduce the notions of A-adequate and B-adequate for link
diagrams on a surface. In the following, for a given link diagram D on a
surface, let SA denote the pure A-smoothing state and SB the pure B-
smoothing state.
We take a moment to review the state-sum formulation for the homologi-

cal Kauffman bracket. Given a link diagram D on Σ and a state S ∈ S(D),
let

(2.3) 〈D |S〉Σ = A(a(S)−b(S))(−A−2 −A2)k(S)zr(S).

Then we can write

(2.4) 〈D〉Σ =
∑
S∈S

〈D |S〉Σ .

Definition 2.5. — The diagramD is called A-adequate, if for any state
S′ with exactly one B-smoothing, we have k(S′) 6 k(SA). The diagram D

is called B-adequate if, for any state S′ with exactly one A-smoothing, we
have k(S′) 6 k(SB). A diagram is called adequate if it is both A- and
B-adequate.

Recall that for a classical link, a link diagram D is “plus-adequate” if
the pure A-smoothing state SA does not contain any self-abutting cycles,
and it is “minus-adequate” if the same holds for the pure B-smoothing
state SB [24, Definition 5.2]. Thus, if a diagram is plus-adequate then it is
A-adequate, and if it is minus-adequate then it is B-adequate.

However, a diagram can be A-adequate without being plus-adequate, and
it can be B-adequate without being minus-adequate. Indeed, our notion
of adequacy is less restrictive because it allows self-abutting cycles in SA

TOME 72 (2022), FASCICULE 4
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provided that k(S′) 6 k(SA) for the new state S′ obtained by switching
the smoothing. In case |S′| = |SA|+1, this is equivalent to the requirement
that r(S′) = r(SA) + 1. There is a similar interpretation for B-adequacy.

In [15, p. 1089], Kamada defines a virtual link diagram to be proper if
four distinct regions of the complement meet at every crossing. Any vir-
tual link diagram that is proper is automatically adequate according to
Definition 2.5, but the converse is not true in general. Indeed, in Proposi-
tion 2.8, we will show that all reduced alternating link diagrams on surfaces
are adequate, whereas most alternating knot diagrams on surfaces are not
proper.
We use dmax and dmin to denote the maximal and minimal degree in

the variable A. For example, dmax(〈D |S〉Σ) = a(S) − b(S) + 2k(S) and
dmin(〈D |S〉Σ) = a(S)− b(S)− 2k(S). (Note that the homological variable
z is disregarded in degree considerations.)

Lemma 2.6. — If D is a surface link diagram on Σ with n crossings,
then

(i) dmax(〈D〉Σ) 6 n+ 2k(SA), with equality if D is A-adequate,
(ii) dmin(〈D〉Σ) > −n− 2k(SB), with equality if D is B-adequate.

Proof. — Suppose that S is a state for D with an A-smoothing at a
given crossing but otherwise arbitrary, and let S′ be the state obtained
by switching it to a B-smoothing at the given crossing. Clearly, a(S′) =
a(S)−1 and b(S′) = b(S)+1. Switching the crossing produces a cobordism
from S to S′, and there are three possibilities:

(a) two cycles in S join to form one cycle in S′,
(b) one cycle in S splits to form two cycles in S′, or
(c) switching from S to S′ involves a single cycle smoothing (see Fig-

ure 2.3).
Notice that |S′| = |S| − 1, |S′| = |S|+ 1, or |S′| = |S| in cases (a), (b), or
(c), respectively.

S

S′

S

S′

S

S′

Figure 2.3. The three types of cobordisms from S to S′ include a fusion
(left), fission (middle), and single cycle smoothing (right).
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Further, in case (a), either r(S′) = r(S) and k(S′) = k(S)− 1 or r(S′) =
r(S)−1 and k(S′) = k(S); and in case (b), either r(S′) = r(S) and k(S′) =
k(S) + 1 or r(S′) = r(S) + 1 and k(S′) = k(S). In case (c), one can verify
that r(S′) = r(S) and k(S′) = k(S). Since a(S′)− b(S′) = a(S)− b(S)− 2
and k(S′) 6 k(S) + 1 in all three cases, we conclude that

(2.5) dmax (〈D |S′〉Σ) 6 dmax (〈D |S〉Σ) .

Clearly dmax(〈D |SA〉Σ) = n + 2k(SA) and dmin(〈D |SB〉Σ) = −n −
2k(SB). Since any state is obtained from SA by switching smoothings at
a finite set of crossings, repeated application of Equation (2.5) gives that
dmax(〈D |S〉Σ) 6 dmax(〈D |SA〉Σ), and the inequality (i) follows.
Now suppose that D is A-adequate and S is a state with exactly one

B-smoothing. Then A-adequacy implies that k(S) 6 k(SA). Since a(S) −
b(S) = n− 2, it follows that

(2.6) dmax(〈D |S〉Σ) 6 dmax(〈D |SA〉Σ)− 2.

Any state S′ with two or more B-smoothings is obtained from a state S with
exactly one B-smoothing by switching the smoothings at the remaining
crossings. Therefore, by Equations (2.5) and (2.6), we find that

dmax(〈D |S′〉Σ) 6 dmax(〈D |S〉Σ) 6 dmax(〈D |SA〉Σ)− 2.

Thus dmax(〈D〉Σ) = n+ 2k(SA), and this completes the proof of (i).
Statement (ii) follows by a similar argument. Alternatively, one can

deduce (ii) directly from (i) using the observation that a diagram is A-
adequate if and only if its mirror image is B-adequate. �

Define the span of the homological Kauffman bracket by setting

span(〈D〉Σ) = dmax(〈D〉Σ)− dmin(〈D〉Σ).

By Lemma 2.3, the homological Kauffman bracket is invariant under the
second and third Reidemeister moves. Lemma 2.2 implies that span(〈D〉Σ)
is also invariant under the first Reidemeister move. Therefore, it gives an
invariant of the underlying link.

Corollary 2.7. — If D is a link diagram with n crossings on a surface
Σ, then

span(〈D〉Σ) 6 2n+ 2k(SA) + 2k(SB),

with equality if D is adequate.
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Proposition 2.8. — Any reduced alternating diagram D for a link in
a thickened surface Σ× I is adequate.

Proof. — Any reduced alternating link diagram on a surface is checker-
board colorable, and one can choose the coloring so that the white regions
are enclosed by the cycles of SA and the black regions by the cycles of SB .
Since each cycle in SA bounds a white region, it follows that SA is homolog-
ically trivial. Thus r(SA) = 0 and k(SA) = b1(SA) = |SA|. Similarly, since
each cycle in SB bounds a black region, SB is also homologically trivial.
Thus r(SB) = 0 and k(SB) = b1(SB) = |SB |.
We will now show that D is A-adequate. Suppose that S is a state with

exactly one B-smoothing. Then |S| = |SA| ± 1. (Since D is checkerboard
colorable, there are no single cycle smoothings.) If |S| = |SA| − 1, then
r(S) 6 r(SA) = 0. Hence r(S) = 0 and k(S) = |S| = |SA| − 1 = k(SA)− 1
as required. Otherwise, if |S| = |SA|+ 1, then we claim that r(S) = 1 and
k(S) = |S| − 1 = |SA| = k(SA).

To prove this claim, consider a self-abutting cycle of SA. This happens
only for crossings of D where a white region meets itself. Such a crossing
gives rise to a loop γ in the associated Tait graph Γ. We view Γ as a graph
embedded in Σ. Since D is reduced, it contains no nugatory crossings,
hence the loop γ must be a non-separating curve on Σ. This implies the
loop is homologically nontrivial in Σ, namely [γ] 6= 0 as an element in
H1(Σ). Since each cycle in SA is homologically trivial, the two new cycles
formed by switching the smoothing must both carry the homology class
[γ]. In particular, this shows that r(S) = 1, and it follows that k(S) =
|S|−r(S) = |SA| = k(SA). This completes the proof that D is A-adequate.
The same argument applied to the mirror image of D shows that the

diagram D is B-adequate. �

Theorem 2.9. — Suppose that L is a link in Σ × I admitting a con-
nected reduced alternating diagramD on Σ. Then span(〈D〉Σ) = 4n−4g+4,
where n is the number of crossings of D and g is the genus of Σ.

Proof. — Since D is a reduced alternating diagram, it is checkerboard
colorable. Further, we can choose the coloring so that the cycles of SA are
the boundaries of the white disks and the cycles of SB are the boundaries
of the black disks. Thus |SA| is the number of white disks and |SB | is the
number of black disks. The diagram D gives a handlebody decomposition
of Σ, and using that to compute the Euler characteristic, we find that
χ(Σ) = n− 2n+ |SA|+ |SB |. It follows that |SA|+ |SB | = n+ 2− 2g.
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By Proposition 2.8, D is adequate, and Corollary 2.7 applies to show
that

span(〈D〉Σ) = 2n+ 2(k(SA) + k(SB)),
= 2n+ 2(|SA|+ |SB |),
= 4n− 4g + 4. �

2.3. The dual state lemma

The next result is the analogue of the dual state lemma for surface link
diagrams. Note that for a given state S, the dual state, denoted S∨, is given
by performing the opposite smoothing at each crossing. For classical links,
the dual state lemma was proved by Kauffman and Murasugi [19, 30]. Our
proof is based on the one given by Turaev [35, Section 2].

Lemma 2.10. — Let D be a connected link diagram on a surface Σ with
genus g, and suppose that D has n crossings. For any state S with dual
state S∨, we have:

• |S|+ |S∨| 6 n+ 2.
• k(S) + k(S∨) 6 n+ 2− 2g provided that D is cellularly embedded.

Proof. — Assume the diagram D lies in Σ × {1/2} and that its double
points (or crossings) have been labeled c1, . . . , cn.
Given a state S forD, we construct a compact surfaceMS with boundary

∂MS = S ∪ S∨ embedded in Σ × I. The surface is a union of disks and
bands, and it has one disk for each crossing and one band for each edge of
D. Specifically, if there is an edge of D connecting ci to cj , then there is
a band of MS connecting the disk at ci to the one at cj . Note that we are
not excluding loops, which occur if ci = cj .

The disks of MS are assumed to lie in Σ × {1/2} and to be pairwise
disjoint. The bands ofMS retract to the corresponding edge of D, but they
sometimes include a half-twist, as explained below. The bands without
twists are assumed to lie in Σ×{1/2}, and the bands with a half-twist are
assumed to lie in a small neighborhood of the associated edge of D. (The
direction of the half-twist is immaterial.) From this description, it is clear
that there is a deformation retract from MS to the diagram D.

Let β be a band connecting the disk at ci to the disk at cj , and we
discuss now whether or not β is flat or twisted as in Figure 2.4. It con-
nects one of outgoing arcs of ci to one of the incoming arcs of cj . There
are four possibilities, according to whether the outgoing arc from ci is an
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ci cj

β

ci cj

β

Figure 2.4. The band β connecting the disk at ci to the disk at cj . Since
the crossings are opposite (over/under), the band will be untwisted if
the smoothings are the same (AA or BB) and twisted if the smoothings
are opposite (AB or BA).

overcrossing or an undercrossing arc, and whether the incoming arc to cj is
an overcrossing or an undercrossing arc. There are also four possibilities ac-
cording to the smoothings the state S specifies at ci and cj , which is one of
{AA,AB,BA,BB}. The band β will be untwisted if the arcs are opposite
(over/under or under/over) and the smoothings are the same (AA or BB),
or if arcs are the same (over/over or under/under) and the smoothings are
the opposite (AB or BA). Otherwise, the band β includes a half-twist (see
Figure 2.4).
This same prescription applies in case β is a loop. In that case, the

smoothings at ci = cj are necessarily the same, thus the band β will be
flat if the outgoing arc at ci connects to the other incoming arc at 90◦,
and it will be half-twisted if it connects to the opposite incoming arc (see
Figure 2.5).

β
β

Figure 2.5. A flat band and a half-twisted band.

When the surface MS is defined this way, it follows that ∂MS = S ∪S∨.
Consider the commutative diagram:

(2.7)

H2(MS , ∂MS) // H1(∂MS) //

i∗

��

H1(MS) //

j∗

��

· · ·

H1(Σ) = // H1(Σ)
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In the above, all homology groups are taken with Z/2 coefficients, and the
top row is the long exact sequence in homology of the pair (MS , ∂MS),
and the two vertical maps are induced by MS

j
↪→ Σ× I p→ Σ and ∂MS

i
↪→

Σ× I p→ Σ.
Since MS is connected and has χ(MS) = n − 2n = −n, it follows that

b1(MS) = b0(MS)− χ(MS) = n+ 1. Further, b2(MS , ∂MS) = 1, thus

|S|+ |S∨| = b1(∂MS) 6 b1(MS) + b2(MS , ∂MS) = n+ 2,

which proves part (a).
If D is cellularly embedded, then the map H1(D) → H1(Σ) induced

by inclusion is surjective. However, since MS deformation retracts to D,
it follows that the map j∗ in (2.7) is also surjective. Thus dim(ker j∗) =
b1(MS)− 2g = n+ 1− 2g.

By commutativity of (2.7), this implies that

k(S) + k(S∨) 6 dim(ker i∗) 6 dim(ker j∗) + b2(MS , ∂MS) = n+ 2− 2g,

which proves part (b). �

3. The Jones–Krushkal polynomial

In this section, we recall the Jones–Krushkal polynomial, which is a two-
variable Jones-type polynomial associated to oriented links in thickened
surfaces and defined in terms of the homological Kauffman bracket [22]. We
show that this polynomial, or rather its reduction, has a special form when
the link L is checkerboard colorable. We provide many sample calculations,
and we prove a result that describes its behavior under horizontal and
vertical mirror symmetry.

3.1. The Jones–Krushkal polynomial

Definition 3.1. — For an oriented link L in a thickened surface Σ× I
with link diagram D, the (unreduced) Jones–Krushkal polynomial is given
by setting J̃L(t, z) =

[
(−A)−3w(D) 〈D〉Σ

]
A=t−1/4 . Thus, we have

J̃L(t, z) = (−1)w(D)t3w(D)/4
∑
S∈S

t(b(S)−a(S))/4(−t−1/2 − t1/2)k(S)zr(S).
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The usual Jones polynomial is defined similarly:

VL(t) = (−1)w(D)t3w(D)/4
∑
S∈S

t(b(S)−a(S))/4(−t−1/2 − t1/2)|S|−1.

Since |S| = k(S) + r(S), it is clear that one can recover the usual Jones
polynomial from J̃L(t, z) by setting z = −t−1/2 − t1/2 and dividing one
(−t−1/2 − t1/2) factor out.

The factor t3w(D)/4 is chosen so that the right hand side of the above
equation is invariant under all three Reidemeister moves. Lemma 2.2 im-
plies that the polynomial J̃L(t, z) is invariant under isotopy of links in
Σ× I. It is also an invariant of diffeomorphism of the pair (Σ× I,Σ×{0}).
By Kuperberg’s theorem, we can obtain an invariant of virtual links by
calculating the polynomial on a minimal genus representative.
The next lemma shows that the Jones–Krushkal polynomial is a Laurent

polynomial in t1/2.

Lemma 3.2. — If L is an oriented link in Σ × I, then it follows that
J̃L(t, z) ∈ Z[t1/2, t−1/2, z].

Proof. — Equivalently, we claim that, for any surface link diagram D on
Σ, the normalized Kauffman bracket (−A)−3w(D) 〈D〉Σ lies in Z[A2, A−2, z].
Note that the claim, once proved, implies the lemma. Note further that

Equation (2.3) implies that the terms in 〈D |S〉Σ all have the same A-degree
modulo 4 for any state S ∈ S(D). For two states S1, S2 ∈ S(D), we have
a(S1) − b(S1) ≡ a(S2) − b(S2) mod 2. Hence Equation (2.3) implies that
the terms in 〈D |S1〉Σ and in 〈D |S2〉Σ have the same A-degree modulo
2. Thus, the claim will follow once it has been verified for any one state
S ∈ S(D).
We claim that (−A)−3w(D) 〈D |Sσ〉Σ ∈ Z[A2, A−2, z], where Sσ is the

Seifert state. This is the state with all oriented smoothings (see Figure 3.1).
(For classical links, Sσ coincides with the one produced by Seifert’s algo-
rithm.) As in Figure 3.1, Sσ has A-smoothings at the positive crossings and
B-smoothings at the negative crossings. Thus a(Sσ)− b(Sσ) = w(D).

positive crossing

A-smoothing B-smoothing

negative crossing

Figure 3.1. Oriented smoothings at positive and negative crossings.
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To complete the proof, we apply Equation (2.3) one more time to see
that

(−A)−3w(D) 〈D |Sσ〉Σ = (−A)−3w(D)
(
Aw(D)(−A−2 −A2)k(Sσ)zr(Sσ)

)
,

= (−1)w(D)A−2w(D)(−A−2 −A2)k(Sσ)zr(Sσ),

where the last expression clearly gives an element in Z[A2, A−2, z]. �

For a link L ⊂ Σ× I, where Σ has genus g, it follows that 0 6 r(S) 6 g
for all states S ∈ S. Thus, we can write J̃L(t, z) =

∑g
i=0 Φ̃i(t)zi, where

Φ̃i(t) ∈ Z[t−1/2, t1/2] for i = 0, . . . , g by Lemma 3.2.

Proposition 3.3. — If L is a link in Σ × I which is not checkerboard
colorable, then Φ̃0(t) = 0. Thus J̃L(t, z) = zJ ′(t, z), where J ′(t, z) =∑g
i=1 Φ̃i(t)zi−1.

If, in addition, L is a link in a thickened torus, then J̃(t, z) = zVL(t) and
so is completely determined by the usual Jones polynomial.

Proof. — If L is not checkerboard colorable, then [L] is nontrivial as an
element in H1(Σ). The same is true for any state S, since S is homologous
to L. Thus r(S) > 1 for all states, which implies that Φ0(t) = 0. If L is a
link in the thickened torus, then it follows that r(S) = 1 for all states, thus
J̃(t, z) = zVL(t) as claimed. �

Example 3.4. — Let K be the virtual trefoil (see Figures 1.2 and 2.2).
In Example 2.4, we showed that its diagram has homological Kauffman
bracket 〈D〉T = A2(−A2 − A−2)z + 2z + A−2z. Since this diagram has
writhe w(D) = −2, it follows that

(3.1) J̃K(t, z) = z
(
−t−5/2 + t−3/2 + t−1

)
.

Since K is not checkerboard colorable and has virtual genus one, Equa-
tion (3.1) can also be deduced from Proposition 3.3 and the fact that
VK(t) = −t−5/2 + t−3/2 + t−1.

Figure 3.2. A minimal genus diagram of the virtual Hopf link in the
torus, and the states SA and SB .
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Example 3.5. — The virtual Hopf link L (see Figure 1.2) admits a mini-
mal genus diagram D on the torus T which has one crossing. The diagram
D, along with the states SA and SB , are depicted in Figure 3.2. It has
|SA| = 1 = |SB | and r(SA) = 1 = r(SB), hence 〈D〉T = Az + A−1z.
Thus, the Jones–Krushkal polynomial of the virtual Hopf link is J̃L(t, z) =
z
(
−t−1 − t−1/2). Since the virtual Hopf link is not checkerboard colorable

and has virtual genus one, this also follows from Proposition 3.3 and the
fact that VL(t) = −t−1 − t−1/2.

3.2. The reduced Jones–Krushkal polynomial

In this section, we introduce a reduction of Jones–Krushkal polynomial
for checkerboard colorable links in thickened surfaces.

Suppose that L is a link in Σ×I represented by a checkerboard colorable
link diagram D on Σ. Since L is homologically trivial as an element in
H1(Σ× I;Z/2), it follows that k(S) > 1 for each state S.

Definition 3.6. — Let L be an oriented, checkerboard colorable link in
Σ× I and D a diagram on Σ representing L. The reduced Jones–Krushkal
polynomial is defined by setting

JL(t, z) = (−1)w(D)t3w(D)/4
∑
S∈S

t(b(S)−a(S))/4(−t−1/2 − t1/2)k(S)−1zr(S).

As before, we can write JL(t, z) =
∑g
i=0 Φi(t)zi.

Remark 3.7. — The reduced Jones–Krushkal polynomial JL(t, z) special-
izes to the usual Jones polynomial VL(t) under setting z = −t−1/2 − t1/2.
In particular, if L is a classical link, then any classical link diagram for L

will have r(S) = 0 for all states. Thus JL(t, z) = VL(t) when L is classical.

For classical links, Jones proved that VL(t) ∈ t(m−1)/2Z[t, t−1], where
m is the number of components in L [13, Theorem 2]. This result was
extended to checkerboard colorable virtual links by Kamada, Nakabo, and
Satoh [17, Proposition 8]. The next result gives the analogous statement
for the reduced Jones–Krushkal polynomial.

Proposition 3.8. — Let L be a checkerboard colorable link with m

components in Σ× I, and let JL(t, z) =
∑g
i=0 Φi(t)zi. Then it follows that

Φi(t) ∈ t(m+i+1)/2 Z[t, t−1].
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Proof. — Let D be a checkerboard colorable diagram for L. Lemma 3.2
implies that Φi(t) ∈ Z[t1/2, t−1/2]. For any state S ∈ S(D), define ϕS(t) ∈
Z[t1/2, t−1/2] by setting

(3.2) ϕS(t) = (−1)−3w(D)t3w(D)/4t(b(S)−a(S))/4(−t−1/2 − t1/2)k(S)−1.

If S′ ∈ S(D) is any other state, then we claim that

(3.3) b(S)− a(S) + 2|S| ≡ b(S′)− a(S′) + 2|S′| (mod 4).

Since any state can be obtained from any other by switching the smoothings
at finitely many crossings, it is sufficient to prove (3.3) when S′ is obtained
from S by switching just one smoothing. In that case, we have a(S)−b(S) =
a(S′)− b(S′)± 2 and |S| = |S′| ± 1 by checkerboard colorability, and (3.3)
follows.
From (3.2), it is clear that ϕS(t) ∈ t(3w(D)+b(S)−a(S)+2k(S)−2)/4 Z[t, t−1].
Let Sσ be the Seifert state with all oriented smoothings (see Figure 3.1).

Recall that b(Sσ)− a(Sσ) = −w(D).
We claim that

(3.4) m ≡ |Sσ|+ n (mod 2).

Each time we perform an oriented smoothing, the number of components
changes by one. Thus the claim now follows easily by induction on n.

For any state S, Equation (3.3) implies that

(3.5) b(S)− a(S) + 2|S| = b(Sσ)− a(Sσ) + 2|Sσ|+ 4`

for ` ∈ Z. By Equation (3.5) and the fact that |S| = k(S) + r(S), we get
that

(3w(D) + b(S)− a(S) + 2k(S)− 2)/2
= (3w(D) + b(S)− a(S) + 2|S| − 2r(S)− 2)/2,
= (2w(D) + 2|Sσ|+ 4`− 2r(S)− 2)/2,
= w(D) + |Sσ|+ 2`− r(S)− 1,
≡ w(D) +m− n− r(S)− 1 (mod 2),
≡ m+ r(S) + 1 (mod 2).

(The last two steps use Equation (3.4) and the fact that n ≡ w(D) (mod 2).)
We have shown that ϕS(t) ∈ t(m+i+1)/2Z[t, t−1] for each state S with
r(S) = i. Since we can write Φi(t) =

∑
r(S)=i ϕS(t)zi, the proposition

now follows. �
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Figure 3.3. A minimal genus diagram of the virtual Borromean rings
in the torus, and the states SA and SB .

Example 3.9. — The virtual Borromean rings L (see Figure 1.2) admits
a minimal genus diagram on the torus T , which is shown in Figure 3.3 along
with SA and SB . Notice that the diagram is checkerboard colorable, and it
has |SA| = 2, r(SA) = 0, and |SB | = 1, r(SB) = 0. By direct computation,
the three states AAB,ABA,BAA all have |S| = 1 and r(S) = 0, and the
three states ABB,BAB,BBA all have |S| = 2 and r(S) = 1. Therefore,
〈D〉T = A3d2 + 3Ad+ 3A−1dz+A−3d, where d = −A2−A−2. Since D has
writhe w = 3, it follows that

JL(t, z) = t− 2t2 − t3 − 3t5/2z.

3.3. Calculations

In this section, we provide some sample calculations of the homological
Kauffman bracket and Jones–Krushkal polynomials.

Figure 3.4. From left to right, a virtual link with four components, a
minimal genus representative in the torus, and the states SA and SB .

Example 3.10. — A virtual link L with four components along with a
minimal genus diagram on the torus T appear on the left of Figure 3.4.
The states SA and SB are shown to the right with shading around the
smoothed crossings. From this, we see that |SA| = 2 = |SB | and r(SA) =
0 = r(SB). Resmoothing one of crossings of SA, one can show that the four
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states AAAB,AABA,ABAA, and BAAA all have |S| = 1 and r(S) = 0.
Likewise, resmoothing one of crossings of SB , one can similarly show that
the four states ABBB,BABB,BBAB, and BBBA all have |S| = 1 and
r(S) = 0. Resmoothing two of the crossings of SA (or doing the same
to SB), one can show that the six states AABB,ABBA, BBAA,BAAB,
ABAB,BABA all have |S| = 2 and r(S) = 1. Thus,

〈L〉T = A4d2 + 4A2d+ 6dz + 4A−2d+A−4d2,

where d = −A2 −A−2.

Since this link has writhe w(L) = −4, it follows that

JL(t, z) = t−3
(
t−1(−t−1/2− t1/2) + 4t−1/2 + 6z+ 4t1/2 + t(−t−1/2− t1/2)

)
,

=
(
−t−9/2 + 3t−7/2 + 3t−5/2 − t−3/2

)
+ 6t−3z.

The diagram is alternating, therefore it is adequate.

Figure 3.5. The virtual chain link.

Example 3.11. — Figure 3.5 shows a virtual chain link with m−1 cross-
ings and m components. It is not checkerboard colorable, thus it follows
that r(S) > 1 for all states. One can further show that its virtual genus is
bm2 c.

Figure 3.6 shows the states SA and SB for the virtual chain link. Notice
that |SA| = 1 = |SB |. One can further show that every state S has |S| = 1.
Since L is not checkerboard colorable, it follows that every state has r(S) =
1. As a result we have

〈D〉Σ = Am−1z +
(
m− 1

1

)
Am−3z + · · ·+

(
m− 1
m− 2

)
A3−mz +Am−1z,

= (A+A−1)m−1z.

Since this link has writhe w = 1−m, we conclude that

JD(t, z) = (−1)1−mt(3−3m)/4
(
t−1/4 + t1/4

)m−1
z,

= (−1)m−1
(
t−1 + t−1/2

)m−1
z.
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Figure 3.6. The states SA and SB for the virtual chain link.

3.4. Horizontal and vertical mirror images

In this section, we describe how the Jones–Krushkal polynomial changes
under taking mirror images. Recall that there are two ways to take the
mirror image of a virtual link L. They are called the vertical and horizontal
mirror images, and they are defined in terms of virtual link diagrams as
follows.
Given a virtual link diagram D, the vertical mirror image is denoted D∗

and it is the diagram obtained by switching the over and under crossing
arcs at each classical crossing, see Figure 3.7. The horizontal mirror image
is denoted D† and it is the diagram obtained by reflecting the diagram D

across a vertical line x = x0 in R2 that does not intersect the real or virtual
crossings of D, see Figure 3.7.

K K∗ K†

Figure 3.7. The virtual knot K = 3.1 and its mirror images.

We describe these operations for links in thickened surfaces. Let L be a
link in Σ× I, and let D be its diagram on Σ. Let φ : Σ× I → Σ× I be the
orientation-reversing map given by φ(x, t) = (x, 1 − t) for (x, t) ∈ Σ × I.
Then φ(L) = L∗, the vertical mirror image of L. Now let ψ : Σ→ Σ be an
orientation-reversing homeomorphism. (For example, ψ could be reflection
through a plane when Σ is embedded in R3.) Then under ψ× id : Σ× I →
Σ× I, we have (ψ × id)(L) = L†, the horizontal mirror image of L.

Proposition 3.12. — If L is a link in Σ× I, then

J̃L∗(t, z) = J̃L(t−1, z), and J̃L†(t, z) = J̃L(t−1, z).

If L is a checkerboard colored link in Σ× I, then

JL∗(t, z) = JL(t−1, z), and JL†(t, z) = JL(t−1, z).
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Proof. — We give the proof for the vertical mirror image; the proof for
horizontal mirror image is similar and left to the reader. LetD be a diagram
on Σ for L. Then D∗ is obtained by switching the over and under arcs at
each crossing of D. Notice that an A-smoothing applied to a crossing of
D has the same effect as a B-smoothing applied to the crossing of D∗.
Thus, there is a one-to-one correspondence S ↔ S∗ between the state
spaces S(D) and S(D∗), where S ∈ S(D) and S∗ ∈ S(D∗) have opposite
smoothings at the corresponding crossings of D and D∗.
Clearly, w(D∗) = −w(D), a(S∗) = b(S), and b(S∗) = a(S). Further, we

have |S∗| = |S|, k(S∗) = k(S), and r(S∗) = r(S). Set d = −t−1/2 − t1/2.
Thus

J̃L∗(t, z) = (−1)w(D∗)t3w(D∗)/4
∑

S∗∈S(D∗)

t(b(S
∗)−a(S∗))/4dk(S∗)zr(S

∗),

= (−1)w(D)t−3w(D)/4
∑

S∈S(D)

t(a(S)−b(S))/4dk(S)zr(S)

= J̃L(t−1, z).

The proof for reduced Jones–Krushkal polynomial is similar and is left to
the reader. �

a

a

b

b

c

c

d

d

a

a

b

b

c

c

d

d

a

a

b

b

c

c

d

d

Figure 3.8. A minimal genus diagram of 3.1 and the states SA and SB .

Example 3.13. — Figure 3.7 shows the virtual knot K = 3.1 and its
mirror images K∗,K†, and Figure 3.8 shows a minimal genus diagram of
K on a genus 2 surface Σ2. The states SA and SB are shown in Figure 3.8
with shading around the smoothed crossings. From that, one can see that
|SA| = 1, r(SA) = 1 and |SB | = 1, r(SB) = 1. Resmoothing one of the
crossings in SA, one can show that two of the three states AAB,ABA,BAA
have |S| = 1 and r(S) = 1, and the third has |S| = 2 and r(S) = 2.
Resmoothing one of the crossings in SB , one can further show that two
of the three states ABB,BAB,BBA have |S| = 2 and r(S) = 2, and the
third has |S| = 1 and r(S) = 1.
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Since w(D) = −1, we have

〈D〉Σ2
= A3z + 2Az +Az2 + 2A−1z2 +A−1z +A−3z,

J̃K(t, z) = −
(
t−3/2 + 2t−1 + t−1/2 + 1

)
z −

(
t−1 + 2t−1/2

)
z2.

Thus, Proposition 3.12 applies to show

J̃K∗(t, z) = J̃K†(t, z) = −
(

1 + t1/2 + 2t+ t3/2
)
z −

(
2t1/2 + t

)
z2.

4. A Kauffman–Murasugi–Thistlethwaite theorem

In this section, we prove the Kauffman–Murasugi–Thistlethwaite theo-
rem for alternating links in surfaces. Throughout this section, Σ denotes a
connected closed oriented surface of genus g.

Theorem 4.1. — Let L be an oriented link in Σ× I, and suppose that
D is a connected diagram for L with n crossings. Then

span(〈D〉Σ) 6 4n+ 4− 4g,

with equality if D is reduced and alternating.

Proof. — Let D be a connected diagram for L with n crossings. Then
Lemma 2.10 and Corollary 2.7 combine to show that

span(〈D〉Σ) 6 2n+ 2k(SA) + 2k(SB) 6 4n+ 4− 4g.

In case D is also reduced and alternating, then Theorem 2.9 applies to
show that

span(〈D〉Σ) = 4n− 4g + 4. �

Corollary 4.2. — If a link L in Σ × I admits a connected, reduced,
alternating diagram with n crossings, then any other diagram for L has at
least n crossings.

Proof. — Let D be a reduced alternating diagram for L with n crossings,
then Theorem 4.1 implies that span(〈D〉Σ) = 4n−4g+4. If L were to admit
a diagram D′ with fewer than n crossings, then Theorem 4.1 would apply
to show that span(〈D′〉Σ) < 4n − 4g + 4. But span(〈D〉Σ) = span(〈D′〉Σ)
is independent of the choice of diagram for L, which gives the desired
contradiction. �

We now explain how to deduce that the writhes of two reduced alternat-
ing diagrams for the same link in Σ× I are equal.
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Definition 4.3. — Given a link diagram D in Σ × I, we define its p-
parallel Dp to be the link diagram in Σ×I in which each link component of
D is replaced by p parallel copies, with each one repeating the same “over”
and “under” behavior of the original component.

Lemma 4.4. — If D is A-adequate, then Dp is also A-adequate. If D is
B-adequate, then Dp is also B-adequate.

Proof. — Let SA(D) be the pure A-smoothing of D and SA(Dp) the
pure A-smoothing of the p-parallel Dp. It is straightforward to check that
SA(Dp) is the p-parallel of SA(D). Therefore, if a cycle in SA(Dp) is self-
abutting, then it must be the innermost strand parallel to a self-abutting
cycle of SA(D).

Let S′ be the state obtained from SA(D) by switching the smoothing
from A to B, and let S′′ be the state obtained from SA(Dp) by switching
the corresponding crossing on the innermost strand. Switching the smooth-
ing at a self-abutting cycle of SA(D) is either a single-cycle smoothing or
increases the number of cycles.
Suppose firstly that it is a single cycle smoothing. (This corresponds

to case (c) from the proof of Lemma 2.6.) Notice that the corresponding
cycle in SA(Dp) is not self-abutting. In particular, even though |S′| =
|SA(D)|, k(S′) = k(SA(D)) and r(S′) = r(SA(D)), for the p-strand cable,
we have |S′′| = |SA(Dp)|−1. It follows that k(S′′) 6 k(SA(Dp)) as required.
Now suppose that |S′| = |SA(D)|+1. (This corresponds to case (b) from

the proof of Lemma 2.6.) Since D is A-adequate, the homological rank
increases under making the switch from SA(D) to S′. But S′′ has the same
homological rank as S′, thus the same is true under making the switch from
SA(Dp) to S′′. In particular, this shows that k(S′′) 6 SA(Dp).

A similar argument can be used to show the second part, namely that if
D is B-adequate, then Dp is also B-adequate. The details are left to the
reader. �

The next result follows by adapting Stong’s argument [32] (cf. [24, Theo-
rem 5.13]). The proof is by now standard, but it is included for the reader’s
convenience.

Theorem 4.5. — LetD and E be two link diagrams on Σ that represent
isotopic oriented links in Σ × I. If D is A-adequate, then nD − w(D) 6
nE −w(E), where nD and nE are the number of crossings of the diagrams
D and E, respectively.

Proof. — Let {Li | i = 1, . . . ,m} be the components of L, and let Di

and Ei be the subdiagrams of D and E corresponding to Li. For each
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i = 1, . . . ,m, choose non-negative integers µi and νi such that w(Di)+µi =
w(Ei)+νi. Let D′i be the result of changing Di by adding µi positive kinks,
and let E′i be the result of adding νi positive kinks to Ei. Notice that D′
is still A-adequate.
The writhes of the individual components satisfy:

w(D′i) = w(Di) + µi = w(Ei) + νi = w(E′i),

and the contributions from the mixed crossings of D′ and E′ are both
equal to the total linking number link(L) =

∑
i 6=j `k(Li, Lj), which is an

invariant of the oriented link L. It follows that w(D′) = w(E′).
For any p > 0, take (D′)p and (E′)p. Then w((D′)p) = p2w(D′), because

in forming the p-parallel of a diagram, each crossing is replaced by p2

crossings of the same sign. The diagrams (D′)p and (E′)p, are equivalent
and have the same writhe, thus their homological Kauffman brackets must
be equal. In particular we have dmax(〈(D′)p〉Σ) = dmax(〈(E′)p〉Σ).
Clearly we have |SA(Dp)| = p|SA(D)| = p [k(SA(D)) + r(SA(D))] and

|SA(Ep)| = p|SA(E)| = p [k(SA(E)) + r(SA(E))]. Since

r(SA(Dp)) = r(SA(D)) and r(SA(Ep)) = r(SA(E)),

it follows that

k(SA(Dp)) = |SA(Dp)| − r(SA(Dp)) = p(k(SA(D))) + (p− 1)r(SA(D)),
k(SA(Ep)) = |SA(Ep)| − r(SA(Ep)) = p(k(SA(E))) + (p− 1)r(SA(E)).

Lemma 2.6 now implies that

dmax(〈(D′)p〉Σ) =
(
nD+

m∑
i=1

µi

)
p2+2

(
k(SA(D))+

m∑
i=1

µi

)
p− 2r(SA(D)),

dmax(〈(E′)p〉Σ)6
(
nE +

m∑
i=1

νi

)
p2 + 2

(
k(SA(E)) +

m∑
i=1

νi

)
p− 2r(SA(E)).

Since this is true for all p > 0, comparing coefficients of the p2 terms, we
find that:

(4.1) nD +
m∑
i=1

µi 6 nE +
m∑
i=1

νi.

Subtracting
∑m
i=1(µi+w(Di)) =

∑m
i=1(νi+w(Ei)) from both sides of (4.1),

we get that

(4.2) nD −
m∑
i=1

w(Di) 6 nE −
m∑
i=1

w(Ei).
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Subtracting the total linking number link(L) from both sides of (4.2) gives
the desired inequality. �

Corollary 4.6. — Let D and E be link diagrams on Σ with nD and
nE crossings, respectively, for the same oriented link L in Σ× I.

(i) If D is A-adequate, then the number of negative crossings of D is
less than or equal to the number of negative crossings of E.

(ii) If D is B-adequate, then the number of positive crossings of D is
less than or equal to the number of positive crossings of E.

(iii) An adequate diagram has the minimal number of crossings.
(iv) Two adequate diagrams of an oriented link in Σ× I have the same

writhe.

Proof.

(i). — Let, n+ and n− be the number of positive and negative crossings,
respectively. We have

nD − w(D) 6 nE − w(E),
n+(D) +n−(D)− (n+(D)−n−(D)) 6 n+(E) +n−(E)− (n+(E)−n−(E)),

n−(D) 6 n−(E).

(ii). — Use the negative kinks in the proof of Theorem 4.5. It follows
that

−nD +
∑
i

µi > −nE +
∑
i

νi =⇒ nD −
∑
i

µi 6 nE −
∑
i

νi,

nD + w(D) 6 nE + w(E) =⇒ n+(D) 6 n+(E).

(iii). — Follows from (i) and (ii).

(iv). — From (iii), we have nD = nE . It follows from Theorem 4.5 that

nD − w(D) 6 nE − w(E) =⇒ w(E) 6 w(D).

From (ii), we have

nD + w(D) 6 nE + w(E) =⇒ w(D) 6 w(E).

Therefore w(D) = w(E). �

In summary, Corollary 4.2 and Corollary 4.6 establish the first and second
Tait Conjectures for reduced alternating links in thickened surfaces.
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5. The Tait conjectures for virtual links

In this section, we will prove the first and second Tait conjectures for
virtual links using the results from the previous section. Corollary 4.6 gives
the desired conclusion for links in a fixed thickened surface, and it remains
to extend the statement to stably equivalent links in thickened surfaces.

This will be achieved in two steps. In the first step, we will show that any
reduced alternating diagram D of a virtual link L has minimal genus. Thus,
Corollary 4.6 applies to show that D has minimal crossing number among
all minimal genus diagrams for L. In the second, we will show that any
non-minimal genus diagram D′ for L has crossing number n(D′) > n(D).
This will be proved by relating the spans of 〈D′〉Σ′ and 〈D〉Σ.
For the first step, notice that Corollary 8 of [5] applies and shows that if

D is an alternating virtual link diagram for L, then it has minimal genus.
Another way is to use a recent result of Adams et al. from [1] to see that
any alternating virtual link diagram for L represents a tg-hyperbolic link
L ⊂ Σ × I in a thickened surface. Therefore, by [2, Theorem 1.2] tg-
hyperbolicity implies that this diagram is a minimal genus representative
for L.
Either way, we see that any reduced alternating diagram D for L is

minimal genus, and Corollary 4.6 implies that any other minimal genus
diagram D′ for L has n(D′) > n(D).
To complete the proof, we must rule out the possibility of a minimal

crossing diagram which is not minimal genus. The following conjecture
takes care of that and would lead to a direct proof of the Tait conjectures
for virtual links.

Conjecture 5.1. — Given a virtual link L, any minimal crossing dia-
gram for it has minimal genus.

Conjecture 5.1 is known to be true for virtual knots. The proof is due to
Manturov and uses homological parity [28]. As a consequence, we can give
a simple proof of Tait’s first and second conjectures for virtual knots.

Theorem 5.2. — Suppose that K is a virtual knot admitting an ade-
quate diagram D on a minimal genus surface Σ with crossing number n(D)
and writhe w(D). Then any other diagram D′ for K has crossing number
n(D′) > n(D). If D1 and D2 are two adequate diagrams of minimal genus
for K, then n(D1) = n(D2) and w(D1) = w(D2).
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Proof. — If D′ is a minimal crossing diagram for K, then Conjecture 5.1
implies D′ has minimal genus. Therefore, since D is also a minimal genus
diagram, Corollary 4.6(iii) applies to show that n(D) 6 n(D′). If D1 and
D2 are two adequate diagrams of minimal genus for K, then Corollary 4.6
applies to show that n(D1) = n(D2) and w(D1) = w(D2). �

We will now show how to prove the Tait conjectures for virtual links
without assuming Conjecture 5.1. This is achieved by developing an al-
ternative approach that involves comparing the spans of the homological
brackets of links related by stabilization moves.

To that end, observe firstly that the homological Kauffman bracket is an
invariant of unoriented links in thickened surfaces under regular isotopy,
and that the Jones–Krushkal polynomial J̃L(t, z) is an invariant of oriented
links under isotopy and diffeomorphism of the thickened surface. As we have
seen, however, neither is invariant under stabilization or destabilization.
Suppose then that L is a virtual link andD is representative link diagram

on a surface Σ. By the Kamada–Kamada construction, we can assume that
the inclusion map D ↪→ Σ is a cellular embedding (cf. Remark 1.6).
If D is not a minimal genus diagram for L, then it must admit a desta-

bilizing curve γ. Let D′ be the link diagram on the destabilized surface
Σ′ of genus g − 1 obtained by destabilizing Σ along γ. Then it follows
that the homological Kauffman brackets and Jones–Krushkal polynomials
of D and D′ are related to one another in a more-or-less straightforward
way. Namely, the bracket 〈D′〉Σ′ is obtained from 〈D〉Σ by replacing z by
−A2 − A−2 in some of the terms. The Jones–Krushkal polynomials are
related in a similar fashion. Specifically, let U be the subspace of H1(Σ)
generated by [γ] and its Poincaré dual and suppose that S ∈ S(D) is a
state for D such that i∗(H1(S)) ∩ U 6= 0. Then under destabilization, if
the homological rank of S drops by one, then we substitute one z-factor in
〈D〉Σ with −A2−A−2. Otherwise, if i∗(H1(S))∩U = 0, then the homolog-
ical rank does not change and we do not make the substitution. In either
case, we see that span(〈D′〉Σ′) 6 span(〈D〉Σ) + 4.
Repeat this argument until a minimal genus diagram is obtained. (This

step uses Kuperberg’s proof of Theorem 1.2, which tells us that any non-
minimal genus representative can be repeatedly destabilized to obtain a
minimal genus representative.) Therefore, suppose that γ1 . . . , γ` are desta-
bilizing curves for D, and let D′ be the link diagram on the surface Σ′ ob-
tained by destabilizing Σ along γ1 . . . , γ`. Notice that Σ′ has genus g′ = g−`
and it is by assumption a surface of minimal genus for L.
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Then as explained above, the bracket 〈D′〉Σ′ can be obtained from 〈D〉Σ
by substituting z = −A2 − A−2 for up to ` of the z-factors in the terms
〈D |S〉Σ for any given state S ∈ S(D). The number of z-factors requiring
substitution in 〈D |S〉Σ is equal to the dimension of i∗(H1(S)) ∩ U , where
U ⊂ H1(Σ) is the symplectic subspace generated by [γ1], . . . , [γ`]. (Note
that dimU = 2`, since it also contains the Poincaré duals of [γ1], . . . , [γ`].)
With each substitution the span of 〈D |S〉Σ increases by four, thus it follows
that span(〈D′〉Σ′) 6 span(〈D〉Σ) + 4`.
Lemma 2.10 and Corollary 2.7 imply that

(5.1) span(〈D〉Σ) 6 4(n− g) + 4,

where n = n(D) is the crossing number of D and g = g(Σ) is the genus
of Σ.
Now suppose that D′′ is an adequate diagram for L on a minimal genus

surface. Since D′ is also a minimal genus diagram for L, Theorem 1.2
implies that D′′ and D′ represent equivalent links in Σ′ × I. Therefore

(5.2) span(〈D′′〉Σ′) = span(〈D′〉Σ′) 6 span(〈D〉Σ) + 4`.

In addition, Theorem 2.9 implies that

(5.3) span(〈D′′〉Σ′) = 4(n′′ − g′) + 4 = 4(n′′ − g + `) + 4,

where n′′ = n(D′′) is the crossing number of D′′.
Therefore, by Equations (5.1), (5.2), and (5.3), we see that

span (〈D′′〉Σ′) = 4(n′′ − g + `) + 4 6 span(〈D〉Σ) + 4`
6 4(n− g) + 4`+ 4.

(5.4)

Thus, we conclude from this that n′′ 6 n.

Theorem 5.3. — Suppose that L is a virtual link admitting an ade-
quate diagram D on a minimal genus surface Σ with crossing number n(D)
and writhe w(D). Then any other diagram D′ for L has crossing number
n(D′) > n(D). If D1 and D2 are two adequate diagrams of minimal genus
for L, then n(D1) = n(D2) and w(D1) = w(D2).

Remark 5.4. — In the classical setting, Thistlethwaite proved the follow-
ing stronger result, namely that a classical link L is alternating and prime
if and only if span(VK(t)) = c(L), the crossing number of L. One can see
by example that this result is not true for virtual knots. In particular, the
virtual knots 4.98 and 4.107 are both checkerboard colorable, prime and
have the same crossing number and reduced Jones–Krushkal polynomial
(see Table 5.2). However, 4.107 is alternating and 4.98 is not.
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A natural question is whether the Tait flyping conjecture can also be
extended to alternating virtual links. The flype move is shown in Figure 5.1.
For tangles that contain only classical crossings, it is immediate that the
flype move does not alter the virtual link type. When the tangle contains
virtual crossings, the flype move can change the virtual link type. (This
was already noted by Zinn-Justin and Zuber in [36].)

The analogue of the Tait flyping conjecture is therefore the assertion that
any two reduced alternating link diagrams of the same link are related by
a sequence of flype moves by classical tangles.

Question 5.5. — Is the Tait flyping conjecture true for alternating
virtual links?

T
T

Figure 5.1. The flype move for virtual links, where “T” is a classical
tangle diagram.

In a different direction, one can ask whether the Tait conjectures continue
to hold in the welded category.

Question 5.6. — Are the Tait conjectures true for alternating welded
links?

Another interesting question is whether the Jones–Krushkal polynomial
is a virtual unknot detector. Proposition 3.3 shows that a virtual knot that
is not checkerboard colorable has nontrivial Jones–Krushkal polynomial.

Question 5.7. — Does there exist a checkerboard colorable virtual
knot K which is nontrivial and has JK(t, z) = 1?

For classical knots, this is equivalent to the open problem which asks
whether the Jones polynomial is an unknot detector.

For classical links, Khovanov defined a homology theory that categorifies
the Jones polynomial. The result is a bigraded homology theory of links
that is known to detect the classical unknot [21]. Khovanov homology has
been extended to virtual knots and links (see [26, 27]), and it categorifies
the usual Jones polynomial for virtual links. However, the resulting knot
homology does not detect the virtual unknot.
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An interesting problem would be to construct a triply graded homology
theory for links in thickened surfaces that categorifies the Jones–Krushkal
polynomial. In particular, is the resulting knot homology theory sufficiently
strong to detect the virtual unknot?

In closing, Table 5.1 presents the Jones–Krushkal polynomials for virtual
knots with up to three crossings and Table 5.2 the reduced Jones–Krushkal
polynomial for checkerboard colorable virtual knots with up to four cross-
ings.
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Table 5.1. The Jones–Krushkal polynomials for virtual knots with up
to three crossings. Note that 3.5, 3.6, and 3.7 are checkerboard col-
orable, and their reduced Jones–Krushkal polynomial is listed first.
The knot 3.6 in boldface is classical.

Virtual Knot J̃K(t, z)

2.1 (−t−5/2 + t−3/2 + t−1)z
3.1 −(t−3/2 + 2t−1 + t1/2 + 1)z − (t−1 + 2t−1/2)z2

3.2 (t−2 − t−1 + 1− t+ t2)z
3.3 −(t−3 + 2t−5/2 + 2t−2)z − (t−5/2 + t−2 + t−3/2)z2

3.4 −(3t−1 + 2t−1/2)z − (t−3/2 + t−1/2 + 1)z2

3.5
(
(t−3− 2t−2) + (t−7/2− t−5/2− t−3/2)z

) (
−t1/2− t−1/2)

3.6
(
−t−4 + t−3 + t−1) (−t1/2 − t−1/2)

3.7
(
(t−2 − t−1 − 1) + (t−3/2 − 2t−1/2)z

) (
−t1/2 − t−1/2)

Table 5.2. The reduced Jones–Krushkal polynomials for checkerboard
colorable virtual knots with four crossings. The knot 4.108 in boldface
is classical.

Virtual Knot JK(t, z)

4.85 (3t−2 + 2t−1)+(t−5/2 +6t−3/2 + t−1/2)z+(t−2 + 2t−1)z2

4.86 (−t−1 + 2− 2t) + (−t−3/2 + t−1/2 − t3/2)z
4.89 (t−4 + 4t−3) + (4t−7/2 + 4t−5/2)z + (2t−3 + t−2)z2

4.90 5 + (4t−1/2 + 4t1/2)z + (t−1 + 1 + t)z2

4.98 (t−1 + 3 + t) + (4t−1/2 + 4t1/2)z + 3z2

4.99 (−t−1 + 3− t) + (−t−3/2 + t−1/2 + t1/2 − t3/2)z
4.105 (t−4 + t−3 − 2t−2 + t−1) + (2t−7/2 − 2t−5/2)z
4.106 (−t−3 + t−2 − 1) + (−t−5/2 + 2t−3/2 − 2t−1/2)z
4.107 (t−1 + 3 + t) + (4t−1/2 + 4t1/2)z + 3z2

4.108 t−2 − t−1 + 1− t+ t2
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