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XXL TYPE ARTIN GROUPS ARE CAT(0) AND
ACYLINDRICALLY HYPERBOLIC

by Thomas HAETTEL (*)

Abstract. — We describe a simple locally CAT(0) classifying space for XXL
type Artin groups (with all labels at least 5). Furthermore, when the Artin group
is not dihedral, we describe a rank 1 periodic geodesic, thus proving that XXL type
Artin groups are acylindrically hyperbolic. Together with Property RD proved by
Ciobanu, Holt and Rees, the CAT(0) property implies the Baum–Connes conjecture
for all XXL type Artin groups.
Résumé. — Nous décrivons un espace classifiant localement simple CAT(0) pour

les groupes d’Artin de type extra extra large (dont tous les exposants sont au
moins égaux à 5). De plus, lorsque le groupe n’est pas diédral, nous décrivons
une géodésique périodique de rang 1, ce qui implique que ces groupes d’Artin de
type extra extra large sont acylindriquement hyperboliques. En conjonction avec
la propriété RD prouvée par Ciobanu, Holt et Rees, cela implique la conjecture de
Baum–Connes pour tout les groupes d’Artin de type extra extra large.

1. Introduction

Artin–Tits groups are natural combinatorial generalizations of Artin’s
braid groups. For every finite simple graph Γ with vertex set S and with
edges labeled by some integer in {2, 3, . . .}, one associates the Artin–Tits
group A(Γ) with the following presentation:

A(Γ) = 〈S | ∀{s, t}∈Γ(1), wm(s, t) =wm(t, s) if the edge {s, t} is labeled m〉,

Keywords: Artin groups, CAT(0) space, acylindrical hyperbolicity, Baum–Connes
conjecture.
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where wm(s, t) is the word stst . . . of length m. Note that when m = 2,
then s and t commute, and when m = 3, then s and t satisfy the classical
braid relation sts = tst.

Also note that when adding the relation s2 = 1 for every s ∈ S, one
obtains the Coxeter groupW (Γ) associated to Γ. Most results about Artin–
Tits groups only concern particular classes, which we recall now. The Artin
group A(Γ) is called:

• of large type if all labels are greater or equal to 3,
• of extra large type if all labels are greater or equal to 4,
• of extra extra large type (XXL) if all labels are greater or equal
to 5,

• right-angled if all labels are equal to 2,
• spherical if W (Γ) is finite, and
• of type FC if every complete subgraph of Γ spans a spherical Artin
subgroup.

The rank of an Artin–Tits group A(Γ) is the number of vertices of Γ. The
dimension of an Artin–Tits group A(Γ) is the largest rank of a spherical
Artin subgroup. In particular, every large type Artin group has dimension
at most 2.
Many geometric questions are still open for general Artin groups (see [13]

and [25]). In particular, Charney asks the following question, to which we
believe the answer is positive:

Conjecture 1.1. — Every Artin–Tits group is CAT(0), i.e. acts prop-
erly and cocompactly on a CAT(0) metric space.

This conjecture has been proved for the following classes of Artin groups:
(1) Right-angled Artin groups (see [14]).
(2) Some classes of 2-dimensional Artin groups (see [7], [9]).
(3) Artin groups of finite type with three generators (see [8]).
(4) 3-dimensional Artin groups of type FC (see [3]).
(5) The n-strand braid group for n 6 6 (see [10], [20]).
(6) The spherical Artin group of type B4 (see [10]).
Since the classes of 2-dimensional Artin groups studied by Brady and

McCammond in [9] and the extra extra large type Artin groups we are
studying in this article have a large intersection, we will state their results
more precisely.

Theorem 1.2 (Brady and McCammond [9]). — Let A(Γ) be an Artin
group such that one of the following holds:

ANNALES DE L’INSTITUT FOURIER
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• |S| = 3 and all labels are greater or equal to 3.
• Γ contains no triangles.
• All labels are greater or equal to 3, and there is a way of orienting
the edges of Γ so that neither of the graphs in Figure 1.1 appear as
subgraphs.

Then A(Γ) is CAT(0).

Figure 1.1. The two forbidden subgraphs in Brady and McCammond’s
result.

On the other hand, concerning the cubical world, very few Artin groups
have proper and cocompact actions on CAT(0) cube complexes (see [19]).
Nevertheless, the question whether all Artin groups act properly on a
CAT(0) cube complex, or more generally have the Haagerup property, is
still open.

Concerning variations on the notion of nonpositive curvature, Bestvina
defined a geometric action of Artin groups of spherical Artin on a simplicial
complex with some nonpositive curvature features (see [4]). More recently,
Huang and Osajda proved (see [22]) that every Artin group of almost large
type (a class including all Artin groups of large type) act properly and
cocompactly on systolic complexes, which are a combinatorial variation of
nonpositive curvature. They also proved (see [21]) that every Artin group of
type FC acts geometrically on a Helly graph, which give rise to classifying
spaces with convex geodesic bicombings.

Another variation on the notion of nonnegative curvature is the acylindri-
cal hyperbolicity (see [27] for a survey). A group G is called acylindrically
hyperbolic if it admits an acylindrical action on some hyperbolic space X
(and is not virtually cyclic), i.e. for every ε > 0, there exist N,R > 0 such
that, for every x, y ∈ X at distance at least R, we have

|{g ∈ G, d(x, g · x) 6 ε and d(y, g · y) 6 ε}| 6 N.

In most cases, it is much easier to find an action on some hyperbolic space
with one element satisfying the WPD condition (see [5]), and then accord-
ing to Osin (see [26]) there exists an acylindrical action on some other hy-
perbolic space. Concerning Artin–Tits groups, Charney and Morris–Wright
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(see [15]) ask the following question, to which we believe the answer is pos-
itive:

Conjecture 1.3. — For every Artin–Tits group A, the central quotient
A/Z(A) is acylindrically hyperbolic.

This conjecture has been proved for the following classes of Artin groups:
(1) Right-angled Artin groups (see [12]).
(2) Braid groups, seen as mapping class groups (see [24] and [6]).
(3) Artin–Tits groups of spherical type (see [11]).
(4) Artin–Tits groups of type FC such that Γ has diameter at least 3

(see [16]).
(5) Artin–Tits groups such that Γ does not decompose as a join of two

subgraphs (see [15]).
The purpose of this article is to define a new geometric model for XXL

type Artin groups.

Theorem 1.4. — Every XXL type Artin group is the fundamental
group of a compact locally CAT(0) 3-dimensional piecewise Euclidean com-
plex. Furthermore, if the rank of the Artin group is at least 3, then some
element acts as a rank 1 isometry.

An isometry of a CAT(0) space is called rank 1 if some axis does not
bound a flat half-plane. An interesting consequence, due to Sisto (see [28]),
is that if a group G acts properly on a proper CAT(0) space such that
some element has rank 1, then G is either virtually cyclic or acylindrically
hyperbolic.
Also note that if A has rank 2, then A is virtually a direct product of Z

and of a free group, so A is not acylindrically hyperbolic, but its geometry
is well understood. In particular, the central quotient A/Z(A) is virtually
free and thus acylindrically hyperbolic.
We can deduce the following consequence, regarding the two main con-

jectures.

Corollary 1.5. — Every XXL type Artin group of rank at least 3 is
acylindrically hyperbolic. In particular, Conjecture 1.1 and Conjecture 1.3
hold for all XXL type Artin groups.

Note that the class of XXL type Artin groups is not contained in the
classes studied by Brady and McCammond in [9], by Martin and Chatterji
[16] or by Charney and Morris–Wright [15]. For instance, if Γ is a complete
graph on at least 4 vertices, with labels at least 5, then none of the previous
results apply.

ANNALES DE L’INSTITUT FOURIER
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Many consequences of being CAT(0) are already consequences of be-
ing systolic, and as such are consequences of Huang and Osajda’s result
(see [22]). For instance, the Novikov conjecture, the fact that centralizers
virtually split, the quadratic Dehn function. Let us list a few general con-
sequences of being CAT(0) and acylindrically hyperbolic, which are new
for XXL type Artin groups.

Corollary 1.6. — Let A be an XXL type Artin group.
• A satisfies the K-theoretic and L-theoretic Farrell–Jones conjec-
tures (see [2] and [29]).

• A is SQ-universal, i.e. every countable group embeds in a quotient
of A (see [26]).

• If V = R or V = `p(A), for p ∈ [1,∞), then H2
b (A, V ) is infinite-

dimensional (see [26]).
• A has a free normal subgroup (see [26]).
• A has Property Pnaive: for any finite subset F ⊂ A\{1}, there exists
g ∈ A such that for all f ∈ F , the group 〈f, g〉 is freely generated
by {f, g} (see [1]).

• A is not inner amenable (see [18]).
• The reduced C∗-algebra of A is simple (see [18]).

Ciobanu, Holt and Rees proved (see [17]) that every extra large type
Artin group satisfies the Rapid Decay Property. According to Lafforgue
(see [23]), the property RD together with the CAT(0) property imply the
Baum–Connes conjecture, so we can state the following.

Corollary 1.7. — Every XXL type Artin group satisfies the Baum–
Connes conjecture.

Acknowledgments

The author would like to thank warmly Chris Cashen for discussions
and an invitation to the University of Vienna, where part of this work was
initiated. The author would like to thank Anthony Genevois and Damian
Osajda for many insightful comments. The author would also like to thank
the anonymous referee for comments improving the exposition.

2. The case of dihedral Artin groups

We start by decribing a very simple nonpositively curved metric model for
dihedral Artin groups, which we will use in the sequel as building blocks. If
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m > 2, let us denote the dihedral Artin group by I2(m) = 〈a, b | wm(a, b) =
wm(b, a)〉.

Lemma 2.1. — For everym > 5, there exists a compact, locally CAT(0),
3-dimensional piecewise Euclidean complex Xm and x0 ∈ Xm with

π1(Xm, x0) ' I2(m) = 〈a, b | wm(a, b) = wm(b, a)〉.

There exist locally geodesic oriented loops Xa
m, Xb

m of length 1 through x0
such that π1(Xa

m, x0) = 〈a〉 and π1(Xb
m, x0) = 〈b〉. Let a+, a− ∈ lkx0(Xm)

denote the images in the link of x0 of the positive and negative sides of the
loop Xa

m, and similarly b+, b− ∈ lkx0(Xm) for Xb
m. We have furthermore:

• Xa
m ∩Xb

m = {x0},
• ^x0(a+, b+) = ^x0(a−, b−) > 4π

5 .
• ^x0(a+, b−) = ^x0(a−, b+) > 3π

5 .
In addition, if m > 6, we have ^x0(a+, b−) = ^x0(a−, b+) > 2π

3 .

Proof. — Fix α ∈ (0, tan( π10 )).
Assume first that m is odd, then according to Brady and McCammond

(see [9]), there is an interesting presentation of I2(m) given by I2(m) =
〈a, b | wm(a, b) = wm(b, a)〉 = 〈t, u | tm = u2〉, where t = ab and u =
wm(a, b), so the central quotient G of I2(m) is isomorphic to 〈t, u | tm =
u2〉/〈tm = u2〉 ' Z/mZ ? Z/2Z. Consider the action of G on the Bass–
Serre (m, 2)-biregular tree T , and consider the regular m-gonal complex
Tm obtained from T by replacing the star of each vertex with valency m
by a regular m-gon with side length 1, where t acts on the base m-gon P
by a rotation of angle 4π

m . Let us denote p = m−1
2 . Note that a = t−pu and

b = ut−p, and tp acts on the base m-gon by a rotation of angle 4pπ
m = −2π

m .
This way, the axes of a and b acting on Tm intersect the boundary of the
m-gon P in consecutive sides. Let e ∈ Tm denote the intersection of the
axes of a and b, it is also the unique vertex fixed by u = wm(a, b) (see
Figure 2.2).
Consider the action of I2(m) on R by a·x = b·x = x+α. We can endow R

with the piecewise Euclidean simplicial structure where the vertex set is αZ.
Let Ym = Tm × R, endowed with the diagonal action of I2(m), with

basepoint y0 = (e, 0). The stabilizers of the points of Tm are conjugated to
either the cyclic subgroup spanned by u or by t, and these subgroups act
freely properly by translations on R, we deduce that the action of I2(m) on
Ym is free, with compact quotient. More precisely, since I2(m) acts tran-
sitively on vertices of Tm and since the stabilizer of each vertex has m
orbits of vertices in R, we deduce that Ym has exactly m orbits of vertices.
Furthermore, since Ym is locally finite, we deduce that Xm = I2(m)\Ym

ANNALES DE L’INSTITUT FOURIER
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P e

a

b

Figure 2.1. A part of the complex T5, with the axes of a and b.

is a compact locally CAT(0) space such that π1(Xm, x0) is isomorphic to
I2(m), where x0 = I2(m) · y0 (see Figure 2.2).
Let Y am, Y bm denote the axes of a and b through y0, their image in Xm

define locally geodesic oriented loops Xa
m and Xb

m, such that the angle
at x0 between a+ and b+(and similarly between a− and b−) is equal to
π − 2 arctan(α) > 4π

5 .
Concerning the angle between a+ and b−, note that the R components

of these vectors have opposite signs, hence the angle between a+ and b−

is strictly bigger than the angle between their Tm components, which is
precisely (m−2)π

m . Hence

^x0(a+, b−) > (m− 2)π
m

>
3π
5 ,

and similarly between a− and b+.
Up to rescaling Xm, since Xa

m and Xb
m have the same length, we can

assume that they both have length 1.
Assume now that m = 2p is even, then according to Brady and Mc-

Cammond (see [9]), there is an interesting presentation of I2(m) given by
I2(m) = 〈a, b | wm(a, b) = wm(b, a)〉 = 〈a, t | atp = tpa〉, where t = ab. In
particular, I2(m) can be seen as the HNN extension of the group 〈t〉 ' Z
with the subgroup 〈tp〉 and the identity map, with stable letter a.

Consider the action of I2(2p) on the Bass–Serre oriented 2p-regular tree
T . Let T ′ denote the barycentric subdivision of T , it is an oriented (2p, 2)-
biregular tree. Consider the regular 2p-gonal complex T2p obtained from T ′

TOME 72 (2022), FASCICULE 6



2548 Thomas HAETTEL

a

b

x0

Figure 2.2. Une partie du complexe X5, avec les axes de a et b.

by replacing the star of each vertex with degree 2p by a regular 2p-gon with
side length 1, such that t acts on the base 2p-gon P by a rotation of angle
4π
2p . The action of 〈t〉 on the vertices of P has two orbits, corresponding to
the two possible orientations of edges adjacent to the base vertex.
Since b = a−1t, the axes of a and b acting on T2p intersect the boundary

of the 2p-gon P in consecutive sides. Let e ∈ Tm denote the intersection of
the axes of a and b (see Figure 2.3).

P e

a

b

Figure 2.3. A part of the tree T6, with the axes of a and b.

Consider the action of I2(m) on R by a·x = b·x = x+α. We can endow R
with the piecewise Euclidean simplicial structure where the vertex set is αZ.

Let Ym = Tm × R, endowed with the diagonal action of I2(m), with
basepoint y0 = (e, 0). The stabilizers of the vertices of Tm are all equal to
the kernel Z(I2(m)) = 〈tp〉 of the action. This cyclic subgroup acts freely
properly by translations on R, we deduce that the action of I2(m) on Ym
is free. More precisely, since I2(m) acts transitively on vertices of Tm and
since the stabilizer of each vertex has 2p orbits of vertices in R, we deduce

ANNALES DE L’INSTITUT FOURIER
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that Ym has exactly 2p orbits of vertices. Furthermore, since Ym is locally
finite, we deduce that Xm = I2(m)\Ym is a compact locally CAT(0) space
such that π1(Xm, x0) is isomorphic to I2(m), where x0 = I2(m) · y0.
Let Y am, Y bm denote the axes of a and b through y0, their images in Xm

define locally geodesic oriented loops Xa
m and Xb

m, such that the angles at
x0 between a+, b+ and between a−, b− are both equal to

π − 2 arctan(α) > 4π
5 .

Concerning the angle between a+ and b−, note that the R components
of these vectors have opposite signs, hence the angle between a+ and b−

is strictly bigger than the angle between their Tm components, which is
precisely (m−2)π

m . Hence

^x0(a+, b−) > (m− 2)π
m

>
3π
5 ,

and similarly between a− and b+. And, if m > 6, this angle is bigger than
2π
3 .
Up to rescaling Xm, since Xa

m and Xb
m have the same length, we can as-

sume that they both have length 1. We can also assume that, up to refining
the piecewise Euclidean structure of Xm, the axes Xa

m and Xb
m lie in the

1-skeleton. �

3. The general case of XXL type Artin groups

We now describe a metric model for XXL type Artin groups, obtained
by gluing the complexes obtained by dihedral Artin groups. This is the first
part of Theorem 1.4.

Theorem 3.1. — For every XXL type Artin group A, there exists a
compact locally CAT(0) 3-dimensional piecewise Euclidean complex XA

and x0 ∈ XA such that π1(XA, x0) ' A.

Proof. — For each s ∈ S, let Xs denote a circle with length 1 and base-
point x0 ∈ Xs, such that π1(Xs, x0) will be identified with 〈s〉. Let E
denote the set of all edges of Γ. For each I ∈ E, let XI denote a copy of
Xm, where m is the label of the edge I. Consider the following space

XA =
(⋃
I∈E

XI ∪
⋃
s∈S

Xs

)
/ ∼,

where the identifications are given, for all s ∈ S and I = {s, t} ∈ S2,
by Xs ∼ Xs

s,t. According to the Van Kampen Theorem, the fundamental

TOME 72 (2022), FASCICULE 6
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group π1(XA, x0) is isomorphic to A. Up to refining the cell structure, we
can assume that XA is a piecewise Euclidean cell complex XA. In order to
prove that XA is locally CAT(0), according to Gromov’s link condition, it
is sufficient to prove that the link of every vertex is CAT(1). For every edge
e of XA, the link of e in XA is the disjoint union of links of e in all XI ’s
that contain e. Since each XI is CAT(0), the link of e in XA is CAT(1).

In other words, it is enough to prove that the link of every vertex of XA

is large, i.e. every closed locally geodesic loop has length at least 2π. Fix a
vertex x ∈ XA, and assume that ` is a locally geodesic loop in the link of
x. We will prove that ` has length at least 2π.
Assume first that ` is contained in a unique Xab. Since Xab is CAT(0),

the link of x in XA is large, so ` has length at least 2π.
Assume now that ` is contained in Xab∪Xbc. Since Xb is convex in both

Xab and Xbc, we know that Xab ∪ Xbc is CAT(0), hence ` has length at
least 2π.

Assume now that ` is contained in Xab ∪ Xbc ∪ Xac, but not less than
three. Recall that ` is locally geodesic and Xa and Xb are convex in Xab.
Therefore if ` entersXab throughXa, it exitsXab throughXb, and similarly
for Xbc and Xac. In particular, the length of ` is at least

^x0(a+, b−) + ^x0(b−, c+) + ^x0(c+, a+) = 2× 3π
5 + 4π

5 = 2π

or

^x0(a+, b+) + ^x0(b+, c+) + ^x0(c+, a+) = 3× 4π
5 > 2π.

Assume now that ` is contained in no fewer than four XI ’s. Then its
length is at least 4× 3π

5 > 2π.
In conclusion, every locally geodesic loop in the link of x has length at

least 2π. So the link of x is CAT(1), and XA is locally CAT(0). �

Note that this construction is not sharp, meaning that we could also
build this way a locally CAT(0) model for some Artin groups which are
not of XXL type. However, the precise combinatorial conditions would not
be very elegant to write down. Furthermore, such a construction cannot be
adapted to take into account the (3, 3, 3) triangle Artin group for instance,
which is known by Brady and McCammond (see [9]) to be CAT(0) using
another complex.

ANNALES DE L’INSTITUT FOURIER
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4. A rank one geodesic

We will now prove that the locally CAT(0) complex we built for XXL
type Artin groups has rank 1, meaning that there exists a periodic geodesic
in the universal cover which does not bound any flat half-plane. Fix α ∈
(0, tan( π10 )). We start by looking at a specific loop for the complex for
dihedral Artin groups, first in the odd case.

Lemma 4.1. — For every odd m > 5, there exists a locally geodesic
oriented simple loop ` in Xm based at x0 such that, if we denote `+, `− ∈
lkx0(Xm) the images in the link of x0 of the positive and negative sides of
the loop `, we have:

• Xa
m ∩ ` = Xb

m ∩ ` = {x0},
• ^x0(a+, `+),^x0(a−, `−) > 2π

5 .
• ^x0(b−, `+),^x0(b+, `−) > π

5 .
• ^x0(a−, `+),^x0(a+, `−),^x0(b+, `+),^x0(b−, `−) > 4π

5 .

Proof. — In the polygonal complex Tm, consider the two m-gons P, P ′
adjacent to the base vertex e. Consider the vertex x ∈ P such that e and
x are “almost opposite” in P , i.e. form an angle of 2pπ

m from the center of
P , where m = 2p+ 1. Consider the unique vertex x′ ∈ P ′ such that (x, 0)
and (x′, 0) are in the same I2(m)-orbit in Ym, then x′ and e form an angle
of −2pπ

m from the center of P ′ (see Figure 4.1).

P P ′
ex x′

a

b

P P ′

e

x x′

a

b

Figure 4.1. The construction of the loop in X5 and in X6

The piecewise Euclidean path from x′ to x consisting of the two segments
from x′ to e and from e to x projects to a locally geodesic oriented simple
loop ` in the image of Tm×{0} in Xm. By construction, we have Xa

m ∩ ` =
Xb
m ∩ ` = {x0}. Furthermore, we have
• ^x0(a+, `+) = ^x0(a−, `−) > pπ

m >
2π
5 and

• ^x0(b−, `+) = ^x0(b+, `−) > (p−1)π
m > π

5 .

TOME 72 (2022), FASCICULE 6
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Furthermore, since the angle at e inside Tm between a− and `+ is infinite,
we deduce that in the whole space Ym = Tm × R we have ^x0(a−, `+) =
π − arctan(α) > 9π

10 >
4π
5 . Similarly

^x0(a−, `+) = ^x0(a+, `−) = ^x0(b+, `+) = ^x0(b−, `−) > 4π
5 . �

We now turn to the even dihedral Artin groups.

Lemma 4.2. — For every even m > 6, there exists a locally geodesic
oriented simple loop ` in Xm based at x0 such that, if we denote `+, `− ∈
lkx0(Xm) the images in the link of x0 of the positive and negative sides of
the loop `, we have:

• Xa
m ∩ ` = Xb

m ∩ ` = {x0},
• ^x0(a+, `+),^x0(a−, `−) > π

3 .
• ^x0(b−, `+),^x0(b+, `−) > π

3 .
• ^x0(a−, `+),^x0(a+, `−),^x0(b+, `+),^x0(b−, `−) > 4π

5 .

Proof. — In the polygonal complex Tm, consider the two m-gons P, P ′
adjacent to the base vertex e. Consider the vertex x ∈ P such that e and x
are opposite in P . Consider the unique vertex x′ ∈ P ′ such that (x, 0) and
(x′, 0) are in the same I2(m)-orbit in Ym, then x′ and e are opposite in P ′
(see Figure 4.1).
The piecewise Euclidean path from x′ to x consisting of the two segments

from x′ to e and from e to x projects to a locally geodesic oriented simple
loop ` in the image of Tm×{0} in Xm. By construction, we have Xa

m ∩ ` =
Xb
m ∩ ` = {x0}. Furthermore, we have

^x0(a+, `+) = ^x0(a−, `−) = ^x0(b−, `+) = ^x0(b+, `−) > (m− 2)π
2m >

π

3 .

Furthermore, since the angle at e inside Tm between a− and `+ is infinite,
we deduce that in the whole space Ym = Tm × R we have ^x0(a−, `+) =
π − arctan(α) > 9π

10 >
4π
5 . Similarly

^x0(a−, `+) = ^x0(a+, `−) = ^x0(b+, `+) = ^x0(b−, `−) > 4π
5 . �

We can now prove that the complex XA has an isometry of rank one,
thus proving the second part of Theorem 1.4.

Theorem 4.3. — Assume that A(Γ) is an XXL type Artin group with
at least three generators. Then there exists a locally geodesic loop in XA

whose lifts in X̃A have rank 1, i.e. do not bound flat half-planes.
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Proof.
• If Γ has no edge, then A(Γ) is the free group on S and XA is a
wedge of |S| circles. So every geodesic in the tree X̃A has rank 1.

• Assume now that Γ has at least one edge labeled by some odd
number m > 5, between a and b. Fix c ∈ S\{a, b}. Let `ab ⊂ Xab ⊂
XA denote the loop given by Lemma 4.1, and consider the oriented
loop Xc ⊂ XA. Then consider the concatenation ` = `ab · Xc. We
will prove that the angle at x0 between the incoming loop c− and
the outgoing loop `+

ab is bigger than π.
By construction, in the link of x0, every path from `+

ab to c−

must pass through one of {a+, a−, b+, b−}. Let us compute the four
quantities:

^x0(`+
ab, a

+) + ^x0(a+, c−) > 2π
5 + 3π

5 = π,

^x0(`+
ab, a

−) + ^x0(a−, c−) > 4π
5 + 4π

5 > π,

^x0(`+
ab, b

+) + ^x0(b+, c−) > 4π
5 + 3π

5 > π,

^x0(`+
ab, b

−) + ^x0(b−, c−) > π

5 + 4π
5 = π.

We deduce that the distance in the link of x0 between `+
ab and c−

is bigger than π. Similarly, the distance in the link of x0 between
`−ab and c+ is also bigger than π.

• Assume now that Γ has at least one edge, and that all edges are
labeled by even numbers. Consider some edge between a and b,
labeled by some even m > 6. Fix c ∈ S\{a, b}. Let `ab ⊂ Xab ⊂ XA

denote the loop given by Lemma 4.2, and consider the oriented loop
Xc ⊂ XA. Then consider the concatenation ` = `ab · Xc. We will
prove that the angle at x0 between the incoming loop c− and the
outgoing loop `+

ab is bigger than π.
By construction, in the link of x0, every path from `+

ab to c−

must pass through one of {a+, a−, b+, b−}. Let us compute the four
quantities:

^x0(`+
ab, a

+) + ^x0(a+, c−) > π

3 + 2π
3 = π,

^x0(`+
ab, a

−) + ^x0(a−, c−) > 4π
5 + 4π

5 > π,

^x0(`+
ab, b

+) + ^x0(b+, c−) > 4π
5 + 2π

3 > π,

^x0(`+
ab, b

−) + ^x0(b−, c−) > π

3 + 4π
5 > π.
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We deduce that the distance in the link of x0 between `+
ab and c−

is bigger than π. Similarly, the distance in the link of x0 between
`−ab and c+ is also bigger than π.

In conclusion, in each of the last two cases, ` is a locally geodesic loop in
XA such that the angle at (each of the two passings at) x0 is bigger than
π. In particular, any lift of ` in X̃A does not bound a flat half-plane, so it
has rank 1. �

BIBLIOGRAPHY

[1] C. R. Abbott & F. Dahmani, “Property Pnaive for acylindrically hyperbolic
groups”, Math. Z. 291 (2019), no. 1-2, p. 555-568.

[2] A. Bartels & W. Lück, “The Borel conjecture for hyperbolic and CAT(0)-groups”,
Ann. of Math. (2) 175 (2012), no. 2, p. 631-689.

[3] R. W. Bell, “Three-dimensional FC Artin groups are CAT(0)”, Geom. Dedicata
113 (2005), p. 21-53.

[4] M. Bestvina, “Non-positively curved aspects of Artin groups of finite type”, Geom.
Topol. 3 (1999), p. 269-302.

[5] M. Bestvina & K. Fujiwara, “Bounded cohomology of subgroups of mapping class
groups”, Geom. Topol. 6 (2002), p. 69-89.

[6] B. H. Bowditch, “Tight geodesics in the curve complex”, Invent. Math. 171 (2008),
no. 2, p. 281-300.

[7] N. Brady & J. Crisp, “Two-dimensional Artin groups with CAT(0) dimension
three”, in Proceedings of the Conference on Geometric and Combinatorial Group
Theory, Part I (Haifa, 2000), vol. 94, 2002, p. 185-214.

[8] T. Brady, “Artin groups of finite type with three generators”, Michigan Math. J.
47 (2000), no. 2, p. 313-324.

[9] T. Brady & J. McCammond, “Three-generator Artin groups of large type are
biautomatic”, J. Pure Appl. Algebra 151 (2000), no. 1, p. 1-9.

[10] ———, “Braids, posets and orthoschemes”, Algebr. Geom. Topol. 10 (2010), no. 4,
p. 2277-2314.

[11] M. Calvez & B. Wiest, “Acylindrical hyperbolicity and Artin-Tits groups of spher-
ical type”, Geom. Dedicata 191 (2017), p. 199-215.

[12] P.-E. Caprace & M. Sageev, “Rank rigidity for CAT(0) cube complexes”, Geom.
Funct. Anal. 21 (2011), no. 4, p. 851-891.

[13] R. Charney, “Problems related to Artin groups”, American Institute of Mathe-
matics, https://people.brandeis.edu/~charney/papers/Artin_probs.pdf.

[14] R. Charney & M. W. Davis, “Finite K(π, 1)s for Artin groups”, in Prospects in
topology (Princeton, NJ, 1994), Ann. of Math. Stud., vol. 138, Princeton Univ.
Press, Princeton, NJ, 1995, p. 110-124.

[15] R. Charney & R. Morris-Wright, “Artin groups of infinite type: trivial centers
and acylindical hyperbolicity”, https://arxiv.org/abs/1805.04028, 2018.

[16] I. Chatterji & A. Martin, “A note on the acylindrical hyperbolicity of groups
acting on CAT(0) cube complexes”, https://arxiv.org/abs/1610.06864, 2016.

[17] L. Ciobanu, D. F. Holt & S. Rees, “Rapid decay and Baum–Connes for large
type Artin groups”, Trans. Amer. Math. Soc. 368 (2016), no. 9, p. 6103-6129.

ANNALES DE L’INSTITUT FOURIER

https://people.brandeis.edu/~charney/papers/Artin_probs.pdf
https://arxiv.org/abs/1805.04028
https://arxiv.org/abs/1610.06864


XXL TYPE ARTIN GROUPS 2555

[18] F. Dahmani, V. Guirardel & D. Osin, “Hyperbolically embedded subgroups and
rotating families in groups acting on hyperbolic spaces”, https://arxiv.org/abs/
1111.7048, 2011.

[19] T. Haettel, “Virtually cocompactly cubulated Artin–Tits groups”, Int. Math. Res.
Not. IMRN (2021), no. 4, p. 2919-2961.

[20] T. Haettel, D. Kielak & P. Schwer, “The 6-strand braid group is CAT(0)”,
Geom. Dedicata 182 (2016), p. 263-286.

[21] J. Huang & D. Osajda, “Helly meets Garside and Artin”, https://arxiv.org/
abs/1904.09060, 2019.

[22] ———, “Metric systolicity and two-dimensional Artin groups”, Math. Ann. 374
(2019), no. 3-4, p. 1311-1352.

[23] V. Lafforgue, “K-théorie bivariante pour les algèbres de Banach et conjecture de
Baum–Connes”, Invent. Math. 149 (2002), no. 1, p. 1-95.

[24] H. A. Masur & Y. N. Minsky, “Geometry of the complex of curves. I. Hyperbol-
icity”, Invent. Math. 138 (1999), no. 1, p. 103-149.

[25] J. McCammond, “The mysterious geometry of Artin groups”, Winter Braids Lect.
Notes 4 (2017), no. Winter Braids VII (Caen, 2017), article no. 1 (30 pages).

[26] D. Osin, “Acylindrically hyperbolic groups”, Trans. Amer. Math. Soc. 368 (2016),
no. 2, p. 851-888.

[27] ———, “Groups acting acylindrically on hyperbolic spaces”, https://arxiv.org/
abs/1712.00814, 2017.

[28] A. Sisto, “Contracting elements and random walks”, J. Reine Angew. Math. 742
(2018), p. 79-114.

[29] C. Wegner, “The K-theoretic Farrell–Jones conjecture for CAT(0)-groups”, Proc.
Amer. Math. Soc. 140 (2012), no. 3, p. 779-793.

Manuscrit reçu le 25 juillet 2019,
révisé le 5 janvier 2021,
accepté le 25 janvier 2021.

Thomas HAETTEL
Université de Montpellier
IMAG, Univ Montpellier, CNRS, France
Place Eugène Bataillon
34090 Montpellier
France
thomas.haettel@umontpellier.fr

TOME 72 (2022), FASCICULE 6

https://arxiv.org/abs/1111.7048
https://arxiv.org/abs/1111.7048
https://arxiv.org/abs/1904.09060
https://arxiv.org/abs/1904.09060
https://arxiv.org/abs/1712.00814
https://arxiv.org/abs/1712.00814
mailto:thomas.haettel@umontpellier.fr

	1. Introduction
	Acknowledgments

	2. The case of dihedral Artin groups
	3. The general case of XXL type Artin groups
	4. A rank one geodesic
	References

