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ANALYSIS ON SOME LINEAR SETS
by Robert KAUFMAN

0.

Let F be a compact subset of (— oo, oo) and for each
integer N ^ 1 let VN = v(N; F) be the number of intervals
[/cN-1, {k+ 1)N~1] meeting F; F is called small provided
log VN ==o (log N). The existence of small sets of « multipli-
city » (Mo-sets in [61, p. 344]) was proved in 1942 by Salem
and used by Rudin [4, VIII]; a program somewhat analogous
for locally compact abelian groups was completed by Varo-
poulos [5].

Does there exist a small set F with the property that both
F and (say) F^ = {x2: xe F} are Mo-sets? The construction
of these sets doesn't seem accessible by the method of Rudin
and Salem [4], nor by the Brownian motion [3]. In this note an
affirmative answer is given to a more general problem.

THEOREM 1. — Let (AJ be a sequence of real functions of
class Cl(— oo, oo) with derivatives h[ > 0. Then there is a
small set F with the property that each An(F) is an Mo-set.

Small sets occur naturally in the construction of independent
sets [3, 4, 5]; after the metrical theory of Diophantine ap-
proximation a set F is called metrically independent if to each
integer N ^ 1 and each s in (0, 1) there is a Uo so that
the simultaneous inequalities

N

S u^ — v < U-^6, U = max (|^|, .. ., |^|) > Uo
i=ly=i

\x, — Xj\ ^ e for 1 ^ i < j ^ N
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have no solution in integers Ui, . . . , UN, v and members
a;i, . . . , O ; N of F. Compare [1, VII].

Uncountable metrically independent subsets could perhaps
be constructed by classical arguments, for example that of
Perron [1, p. 79] or Davenport [2].

THEOREM 2. — The set F determined in Theorem 1 can be
required to have the property that each h^(F) be metrically
independent.

THEOREMS la, 2a. — Theorems 1 and 2 remain true provided
each h^ is monotone-continuous and h^ > 0 almost every-
where.

1.

In the proof of Theorem 1 we require two arrays of indepen-
dent random variables (Y/^) and (i;/c,m) defined on a space
(a, P) for 1 < k < oo, 1 ̂  m ^ /c6. Each Y^ is uniformly
distributed upon [0, 1] while

P{^. == 1} = ̂  = ̂  = 1 - P{^. == 0}.
Suppose that f is a measurable function on (— oo, oo)

and — 1 < f ̂  1, and let p. == 7^E(/'(Y))$ elementary
calculations show that

E^We-^-) ^ exp 1 ̂ 2 exp 0(7r^3)z

with an ' 0 ' uniform for — 1 ̂  f ̂  1, — 1 ̂  t ^ 1,
0 ^ Ttfc ^ 1. Hence for any z > 0 and 1 > ( > 0

P{| 2 Sk,m — /c5 > js/c5} ^ 2 exp — z/c5^ exp 1 /c6^2 exp 0(7r,/c^3).
m ' ^

Choosing z = t == /c~2 and using TT^ == A*~1 we obtain

PS S^-^l ^ /c3; ^ O W e x p - 1 ^
( m ) ^

Thus
/c<»

LEMMA 1. — S Sfc,m == A-5 + 0(/c3) almost surely in Q.
CT==1

A sequence of random measures X^ is now determined as
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follows : for any function g on (— oo, oo)

f g d\, == ̂ (0) + /c-5 S ̂ g^ I06> "Y,,,,).
t/ m

Thus in every instance 5^ ^ 0 and ||Xj > /c~2; moreover
|]XJ == 1 + 0(/c--2) almost surely. Because Se-^10^ < oo the
convolution X === TC * \^ converges, and F is defined to be
its closed support. F is contained in at most

II [J'+W] =^o(/clofffc)
^==1

intervals of length e~klo6tk.
Because {k + 1) log2 {k + l)//c log2 k ~> 1, this is sufficient

to obtain

LEMMA 2. — F is almost surely a small set.

LEMMA 3. — Let /lesC^— oo, oo) and h' > 0; let (c^),
(u^), (^n) &<° sequences of real numbers such that

l^ml + Kl == 0(i) ^ l^m^ml -> W •

Then
lim f1 exp iuĵ  + ̂ t) dt === 0.
m>oo ^ O

Proof. — Let g denote the C1 function inverse to A,
and let ^ > 0. The integral is transformed to

J == P' g{y)ex? ^my^m1 dy,
J<X.m

where a^ == h(c^), p^ == A(^ + ^m)* A further substitution
2/ == 2/i + ^m1 yields

T 1 r^ '/ \ • -1/7
T J g w exp ̂ umy^m y

1 /"Pm^«m1 .
— -a- g (?/ + ^^m1) exp w^y.v^ dy.

^ J^-^

This tends to 0 because (3^ — a^ == O(^) and ^m^m1 == o(l)-

Proof of Theorem 1. — We show that for each function h^
lim j exp iuh^{s)\ {ds) = 0, almost surely. Then ^n(F) is an
tt»oo v
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Mo-set; because ^n(F) is compact it is enough to prove

r 1-lim | exp ir^h^ {ds) = 0, r = 1, 2, 3, ....
r-^oo l/

To each integer r ^ 3 we attach the integer k{r) defined

by k{r) ^ log3 r < k(r} + 1 and write X^ = H * X,. Then
^k

V exp ir1^^ {ds) = ff exp ir2/^ + w}\ {ds) ̂  {dw).

For each real number w in the support of X^ let m(w) be
„ JL

the expected value of f exp ir^h^s + w)X^ (^). Then

y exp ir^h^s)^ {ds) ^ I \f exp ir^h^s + w)X^ (<fc)
- m(w)| X, (d^) + II ^11 max | m(w)|.

The second integral, say I, can be handled by Jensen's
inequality and the estimates at the beginning of 1. Let
— 1 < ( < 1 and <D(;r) = ̂ 1. Then

EWJ^II-^Rel)) ^ 2 exp 1 WO (exp W).
2i

-1
Choosing t = k 2 we observe

pj|Re I| > |W^ - P{<D(||X,|]^5Re I) > exp/c4}

^ 2 exp 1 /c4 exp O^772) exp — k^
2i

This is the general term of a convergent series, inasmuch asi_
k === k(r) > — 1 + log3/*. Thus, almost surely in t2, for
r > TQ

^ 1 .-l
Re j exp ir^h^-k [ds}\ ^ k ^l^j + ||X,|| max|m(w)|

and of course a similar statement holds for the imaginary part
of the integral. Now

\m{w}\ < k-2 + |^exp ir^h^ ̂  H + w) dt\

with w = 0(1) and k = /c(r). To apply Lemma 3 we must
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1. 1
verify r2 e^loss k —> oo but this is plain from /c(r) < log3 r.
Because max [| X^[| < oo almost surely, the proof of Theorem 1
is complete.

2.

Theorem 2 requires the construction of a random function 9
in C°°(— oo, oo). Let ^ be a function in C^— oo, oo) with
the properties

(i) ^ = = 0 on [ — o o , ~ 2 ] , ^ = = 3 on [2,oo],
(ii) ^ > 0, and <j/ > 1 on (~ 1, 1).

Let (a?) be a sequence of real numbers such that every real
number belongs to infinitely many of the intervals (a? — p~"1,
a? + p'"1). Finally, let (Zp) be a sequence of independent
random variables on (Q, P), uniformly distributed upon
[0, 1]. We define

<p(^) = S e-^{p-^ + p^{x - a,)) + x.
p==i

To each compact set F and number 8 > 0 there are num-
bers q^ and q^ so that

l qt

^ ^ 4, q}S ^5 , U (^p - P"\ % + P-^^F-

THEOREM 3. — Let F be a small set and / ieC^—oo, oo),
h' > 0; then A<p(F) is almost surely metrically independent.

For each integer U > 1 we can choose a subset S(N, U)
of R^^ so that every point in ¥^ has distance < U"^ from
some point in S(N, U), while card S(N, U) ^ ^(NU^; F).

Beginning with an inequality

S ^<P(^) - ^ < U-^6, \h^} - /i<p(i/,)| > e {i ^ /)
•/:=l

we conclude first that jy, — yy| > 73 for some fixed Y} > 0.
Let (^i, . . ., z^) be the member of S(N, U) associated to
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(t/!? • • • , ?/n). Then
N

(1) S u^{zj) - v\ < U-"-6 + (XU.U-3"),

|z. - z^\ > T) - 2U-3N•
For large U we can find S < T) - 2U-3N and corresponding
numbers q^ q^. Let q^ < p < ^, |z, — a?) < p-i.

l i
p^Zp + p2 (2; - ap) < p-i + p-2 < 1,

Ip^Zp + p^ - a,}\ > jA - p-i - p-^ > 4, ^en / ^ i.

Therefore —— ^ u^(Z^) = ̂ ..^-^(Z.) exceeds a|u,| in
~'P J=l °L'p

modulus, with an a > 0 independent of Ui, . . ., u,. Hence
the probability of the inequality (1) is 0(U-1. U-"-6) for each
(zi, ..., ZTn). The requirement U==max( |ui | , . . . , |UN|)
determines 0(UN-1) N-tuples and plainly v = 0(U). Because
F is a small set v^NU31*; F) == U<>(1) as U -> oo. Theorem 3
follows from this and SU-1-1^0^ < oo.

Proof of Theorem 2. — Here we use the fact that F and y
depend on independent c-fields. F is almost surely small,
whence each An<p(F) is almost surely metrically independent,
by Theorem 3. By Theorem 1, each A,y(F) is almost surely an
Mo-set and Theorem 2 is proved.

3.

Proof of Theorems la and la. — According to a theorem of
Marcinkiewicz [611, pp. 73-77], to each 8 > 0 there exist
functions g, in C^— oo, oo) so that

w(^ ^ gj < 8re-2, n = 1, 2, 3, ....

At almost all points of density of the set (^ = gj, g'^=h'^ > 0.
Passing to a perfect subset of the set (gn > 0, gn == A,, g, = AJ,
we can find a g,, in C^— oo, oo) such that

m{h, ^ gj < 28?i-2, n == 1, 2, 3, . ..,

gn > 0 everywhere.
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We observe next that to each e > 0 there is a constant
e) so that for all Borel sets SB(

^ X(S) dP ^ e + B(e)m(S).

Thus to each e > 0 we can choose functions ^ by Marcin-
kiewicz9 theorem, so that

PW^ ^y(^) ^ ^n9(^) for some n) > e} < s.

In proving this implication it must be observed that <p and X
are stochastically independent and 9' > 1. Writing G for
the inner set in the last inequality, we know that
/^<p(G n F) == g^(p(G' n F) is almost surely metrically inde-
pendent and that A,9(G'n F) is almost surely an Mo-set, if
only X ( G ' n F ) > 0$ and this holds for ||X|| > c excepting an
event of probability < e. Thus Theorems la and 2a are
derived from Theorems 1 and 2.
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