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MULTIPLICATIVE FUNCTIONALS
OF DUAL PROCESSES
by Ronald K. GETOOR (*)

1. Introduction.

Let X and X be a pair of standard processes in duality
relative to a Radon measure S? that is X and ^ satisfy
the conditions on page 259 of [1]. We refer the reader to [1]
for all terminology and notation not explicitly defined here.
One of the most important properties of such dual processes is
(VI-1.16) — all such references are to [1] — which states that
if B is a Borel set, then for all a ^ 0 and x, y in the state
space E

(1.1) P^{x, y) = u-P^x, y).

This result which is due to Hunt [4] may be viewed as stating
that the process X killed when it first hits B and the process
X killed when it first hits B are in duality. Define
q,f{x) = E-{ /(X,); t < TB} and f^{x) = ̂ { /•(X,); ( < Ta}.

For typographical convenience we will omit the hat « ^ » in
those places where it is obviously required. Thus

^{/•(X<); t <TB}

is short for ^x{ /*(X1()$ ( < ta}. It is easy to see that (1.1) is
equivalent to

(1.2) (/"Q,, §)==(/ - , Q.g)
for all t ^ 0 and for all f, g in C^. Here C^ denotes the

(*) This research was partially supported by the Air Force Office of Scientific
Research, Office of Aerospace Research, United States Air Force, under AFOSR
Grant AF-AFOSR 1261-67.
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44 RONALD K. GETOOR

real valued continuous functions with compact support, and
(<p^ tp) == j (p(^)^(rr) Ar with S {dx) = dx.

The purpose of this paper is to extend (1.1) and (1.2) to a
more general class of multiplicative functionals than those of
the form M( == I(O,TB)(^). Our basic result is that if M is an
exact MF^. ^iniiltiplicative functional) of X, then there exists
a unique exact J^IF, ]M, of ?C such that (1.2) holds where
(Q() and ((^) are the semigroups generated by M and ]M
respectively. In addition an appropriate analogue of (1.1)
also holds. Actually the existence of M is an easy consequence
of a result of Meyer [6] and undoubtedly is known to many
people. Our main contribution is the fact that this corres-
po^W^ is» iXiultipUp^tive, that is, MN === MN, and it is
this property th^t turns the above correspondence into a
• l i"^^, 7., i - i S , . A -S m .u3eful tool. ,

• ; - i; } -i • • | , • • ' -,•{ -•U'l | ' t • ; t ';-| • } '.

Thi^ papep re|pre^ents an extension of work begun by Hunt
in Sections 17 and, 21' ojf [4]. In particular it provides an answer

J3 tfie raiHer cryptic comment at the top of page 304 in [1].
ome oftliese^ results we^re announced in [3].
We now will outline the contents of this paper. The basic

results and some consequences are established in Sections 3
and 4. In particular ^Section 3 treats the existence of M and
S|ecftion,4 rth^ jnultipj^atiye property of the correspondence
betweqn dM! .and! IMi-m Sortie ̂ iexarirvplles of this correspondence
are discuss^ in Seetiofi 5, while Sfectidri 6 contains an extension
of these results to non-p^a^t multiplicative functionals. In
Section 7 we associate a measure |AM with each natural mul-
taplicativenfurietitinal iM^ oS/^ X^i ? ^and/dn Section 8 we show
that (AM = -t^^1' These< pesuife are •liheni ilsedrto show, roughly
speaking, that M is natural if and only if ]VI is natural and
that M is continuous if and only if ]M, is continuous. See
Theorem 8.6 for the precise felatements. Finally Section 9
contains a few elementary applications of the above results to
additive functionals. \^ intend to ,devote a future paper to
some (jleep^r applications i^i this same direction. ;

The notation used in tins paper is tliat of [1]. However, for
eonvenienee of thei reader we •collect here. someof the less istan-
d&^d 'notation. The^ st^te^spde^ Efwburpt^c^^esrs^tpeal^^
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compact space with a countable base. E^ == E u {A} where
A is adjoined to E as the point at infinity if E is not compact
or as an isolated point if E is compact. All numerical functions
f on E are automatically extended to E^ by setting /*(A) == 0
unless explicitly stated otherwise. For any such /*,
I f\\ = sup {| f {x)\ : x e E}. Of course, [[ f\\ may be infinite.
8(8*) denotes the a-algebra of Borel (universally measurable)
subsets of E. We will write /*e8(8*) to indicate that the
numerical function f is Borel (universally) measurable.
If 36 is any collection of numerical functions, b36 denotes
the bounded functions in 96 and 36^ (or 36+) denotes the
nonhegative elements of 36. For example, /*e 68+ means
that f is a bounded nonnegative Borel function. C^ denotes
the real valued continuous functions with compact support

rb .
on E. By j we will always mean the integral over (a, b]
unless explicitly stated otherwise. Finally we often will omit
the qualifying phrase « almost surely ».

2. Preliminaries.

We fix once and for all a pair of standard processes
X === (^, 3?, ^, X(, 6,, P") and X = (^, 9, ̂ , JC,, §„ P^ on
the same state space E which are in duality relative to a
fixed Radon measure ^. We often write simply dx for ^{dx}
and (/*, g) will always stand for f fg (K, = j f{x)g{x) dx
whenever the integral makes sense. Naturally not all that
follows depends on the existence of the dual process X. We
will use the results of Section VI-1 of [1] without special
mention. Note, however, that we are assuming here that the
basic measure S is a Radon measure whereas in [1] it is
only assumed to be cr-finite. This is merely for convenience.
On the other hand we make no regularity assumptions on the
resolvents of X or X such as those made in Sections VI-2
and VI-4 of [1].

Let M = (M() be a multiplicative functional (MF) of X.
Throughout this paper all MF'5 are assumed to be right
continuous, decreasing, and to satisfy 0 ^ M( ^ 1. Also
equality between MF'5 always means equivalence9^ that is,
M = N provided that (almost surely) t —>• M( and (—> N<

4.



46 RONALD K. GETOOR

are identical functions on [0, ^). See (III-1.6). For f^^
define

(2.1) ^f{x)=EX{f{XW, t ^ 0
VY {x) = E" ^ e-^f (X,)M, dt, a ^ 0

so that (Q() and (V®) denote the semigroup and resolvent
generated by M respectively. Since /*(A) =0 we have

^f{x)=EX{f(X^ t < ^}
and VY {x) == E" ^ e-^f (X,)M, ̂ .

We will use the results and terminology of Chapter III of [1]
without special mention. In particular, recall that
EM == {x: P^Mo == 1) == 1} is the set of permanent points
for M, and in the present situation (—> M( is identically
zero almost surely P10 if x is not in EM.

We now introduce an operator associated with M that will
play a fundamental role in the sequel. For /*e^ and a ^ 0
define

(2.2) P^ {x) =-Exf^ e-^f (X,) dM, if x e EM
== f {x) if x <t: EM.

Observe that the integration in (2.2) extends only over the
interval (0, ^) by our convention on /*. Of course, PM is
given by a kernel and as usual we write

PS/"(^)=/P^ dy)f{y).

Note that if T is a terminal time and M( == I^T)^)) then
P^f == P^, Thus P^ extends the notion of « hitting opera-
tor » to a general MF (x). Obviously P^l ^ 1 for all a ^ 0.
The following relationship is well-known but we will include
a proof for completeness.

(2.3) PROPOSITION. — If U01/* is finite, then
U^— ̂ f= P^UV

Of course, if a > 0 and f bounded, then V^f is bounded.

(1) It is well-known that on a possibly larger 0 space one can introduce a stopping
time R such that P^ == P^.
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Proof. — If x ^ EM, then V^ (a;) == 0 and so the result is
obvious in this case. The simplest way to prove the desired
identity for x e EM is to make use of the following lemma
which is due to Meyer. See [5, Chap. vn, Th. 15]. This lemma
will be used several times in the sequel.

(2.4) LEMMA. — Let (a^; t ^ 0) be a right continuous
increasing process adapted to (^) and such that a(0) == 0.
Let {yt) and (z^) be two nonnegatwe (measurable with respect
to 9) processes such that for all stopping times T and some
fixed initial measure [L one has E^z/r) = E^z-r) where we set
y^= z^= 0. Then

E^ F yt da, = E^ F Zt da^
fy 0 *J 0

The proof of (2.3) now goes as follows. It suffices to consider
f ̂  0 and x e EM. Let a, = Mo — M(, y, == e-^f (X,),
and Zt = j^ e-^f (X,) ds. The hypotheses of (2.4) are satis-
fied and one obtains

P^UY^) = E^°° .-^/(X,) da,

=EX^U7e~^^ds)d^
=Exf^e-sf(X^ds
-UTO-VY^),

since Mo = 1 almost surely P-^.
The following result is essentially known. See Meyer [6].

Once again we will give the proof for completeness. For the
first time we make use of the dual process X. Our notation
follows the pattern of [1] for the most part. For example,
P^u-(x, y} =fP^(x, dz)u-(z, z/).

(2.5) THEOREM. — Let M be an exact MF of X. Then for
each a ^ 0 there exists a function ^(x, y) ^ 0 such that

(i) ^f(x)=f^{x, y ) f ( y ) d y
(ii) u^x, y) = ̂ {x, y) + P^{x, y).
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Let f^{x)= f dyf{y)^(y, x). Then (V^ is a resolvent
exactly subordinate to (t^). Finally x -> ̂ (x, y) is a — (X, M)
excessive for each y, and y -> ^(x, y) is a —- ^ excessive for
each x.

Proof. — First of all we suppose that a > 0. If f ̂  0 is
bounded, then P^f = UY— V^ is a-excessive by defi-
nition of an exact MF. Hence P^fe ©a and P^f ^ f whe-
never /e (g01. Here (g01 denotes the set of a-excessive functions.
Also if a < (B then using (2.3)

PSWQr) = E^°° .-^(l - M,) /•(X,) dt

^ E- ̂ ao .-^(1 - M,) /•(X,) ̂  = PW(x).

In particular for each y, x -> P^ua(a;, y) is a-excessive and
P|uP ^ P^ ^ u" if P > a. Also for each x, y -> P^{x, y)
is in ©a (the a-coexcessive functions) because it is the a-copo-
tential of the measure P^(^, .).

Let Fa = {{x, y) : u^x, y) < 00} and define

w^, y) == u^x, y) - P^(x, y) if (x, y) e F^
- + oo if {x, y)^I\.

Let FS = {y : {x, y) e r^}. Then for each x, E - FS is of
measure zero and hence polar. Consequently (2.3) implies that
for bounded f

(2.6) ^f{x)==f^{x, y ) f { y ) d y .

But I\ c I\+p since i^+P ^ ua. Therefore using the resolvent
equation for (VT) and (2.6) we see that for each x and
(3 ^ 0

(2.7) (BV^PW^, y) + w^Cr, y) = ̂ (^ y)

almost everywhere. Now F^ is cofinely open and y -> w^{x, y)
is cofinely continuous on F^ provided y ^ a* It
( J L ( . ) ^pV^rr, .) and ^.^^pV^PP^, .), then for
z/eFS, pV^w^, y) = (lU^/) - ̂ U^y) which is cofinely
continuous on 1̂ . As a result (2.7) holds everywhere on F^.
Consequently [BV^iW^, y) ^ ^(rc, y) everywhere, that is,
for each y, x->w°'{x, y) is a — V supermedian (111-4.5).
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Therefore pV'+Pw"^, y) increases with p and we define
^{x, y) = lim pV'+lW^, y). Then p" < w" and for each y

ft^. 00 U ?

a; -» (^(a;, y) is a — (X, M) excessive. Moreover if f is in
fcg:, IIV'+iyH < (a+p)-i||/-| |, and so (2.6), (2.7), and the
monotone convergence theorem imply that

^f(x)=f^(x, y ) f ( y ) d y ,
establishing (2.5 i).

Before establishing (2.5 ii) we need to make a few preliminary
observations. First of all in light of (VI-1.5) it is clear that
u^^x, y) decreases to zero as (3 -> oo for {x y) e F But
PM^+P^, y) < u^[x, y ) and so P^+PU^P decreases to zero
as p -> oo on I\. Now fix {x, y) e I\. Then

^+^(x, y) = w^x, y} - w^x, y}
= w^x, y) - u^(x, y) + P^u^x, y),

and letting (3 -> oo we find that Vs- == w"- on ?„. Therefore
for (x, y) e ?„.

(2.8) u^x, y) == ^{x, y) + Py{x, y).

Now fix y. Then {x : (x, y ) <t I\} is of measure zero and so
(2.8) holds almost everywhere. But EM is finely open and
x -> ̂ (x, y) is finely continuous on EM since M is exact-
see (III-5.8). Therefore (2.8) holds if x is in EM. But if x
is not in EM, ^{x, y) = 0 and (2.8) holds by the definition of
PM. Since y is arbitrary this establishes (2.5 ii).

For /-e&g* and a > 0 define /•¥«(</) = f ^{x, y} f {x} dx.
Then for^ f, g^ €„ we have (/•¥«, g) = ( f, V^). Note that
/•V < /-U" if f^ 0 and so /-V- is bounded if /•<= &g*. Recall
that we write the action of U" on a function f as
fV^x) == ff(y}V-(dy, x) ==ff{y)ua(y, x) dy. Consequently
for fe CK and a, (3 > 0

(2.9) /-V2 - /•V? - (p - a) f V^P == 0

almost everywhere. If g e b^ and y > 0, then

g V T = g U T - ( x U T where ^( . ) =/^ g^P^, .), and
since all terms are bounded it follows that gV^ is co finely
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continuous. As a result the resolvent equation (2.9) holds
identically. Thus (V^) is a resolvent subordinate to (U").
Moreover the subordination is exact because f^ — /'V01 = pitj01

is a-coexcessive for /*e &8 .̂. Here (J i ( . ) = f dx f (rc)P^(rr, .).
See (III-4.8).

It remains to show that y -> ^(x, y) is a — V excessive
for each x in order to complete the proof of Theorem 2.5.
First observe that the resolvent equation for (V7) implies
that if (B > a > 0 and y is fixed, then

(2.10) f^x, z)^{z, y) dz = f^x, ^(z, y) dz

almost everywhere in x. But as functions of x both integrals
are finely continuous on EM and vanish off EM. Hence (2.10)
holds identically in x and y. Now fix x and let
u{y) = ̂ {x, y). Then

(Bu^(z/) = (B/>(^ z)^[z, y} dz

:=(B/^r, z)^(z, y)dz
= (BV^^, y) f ̂ , y) = u{y)

as (B —> oo since z -> ^(z, y) is a — (X, M) excessive for
each y. Therefore u is a — V excessive, completing the
proof of Theorem 2.5 when a > 0.

It is easy to see that ^{x, y ) ^ ^{x, y) if 0 < a < p.
Consequently defining

^(x, y) = ̂ °{x, y) =lim^(x, y),
a->0

one easily checks that v has the desired properties, i.e., (2.5 i)
and (2.5 ii) hold when a = 0 and ^{x, y) is (X — M)
excessive as a function of x and V excessive as a function
of y.

(2.11) Remarks. — Clearly ^ is the unique function
satisfying (2.5 ii) and such that x -> ^{x, y) is a — (X, M)
excessive for each y. In particular ^(a;, y) = 0 if x is not
in EM, and y —> ^{x, y) vanishes almost everywhere on
E — EM. This last statement will be made more precise in the
next section. See (3.4).
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3. Dual multiplicative functionals.

In this section we will associate with each exact MF of X
an exact MF of X in such a manner that (1.2) and an
appropriate generalization of (1.1) hold. We begin by establi-
shing some notation. If M = (M() is a MF of X, we write
(Q() and (V^) for the semigroup and resolvent generated
by ]M. In keeping with the pattern of notation established in
Section VI-1 of [1] we will write the action of these operators
as follows :

f^{x) = ff{yA{dy, x) = ̂ { f(X,W

fHr) =ff(y)\-{dy, x) = fi- f^ e-tf(X,)M, dt.

For notational convenience we will write &M in place of E^
for the set of permanent points of M. Similarly we will write
P^ in place of P^ for the operator defined in (2.2) relative to
M. In accordance with the above we will write the action of
PM on a function f as

fPW=ff(y)P^{dy, x).

With these conventions (2.3) becomes

(3.1) fv- - f^ = yu^M

provided fV^ is finite.
We now are prepared to state the main result of this section.

Recall that (/, g) == j f{x)g{x) dx provided the integral exists.

(3.2) THEOREM. — Let M be an exact MF of X. Then
there exists a unique exact MF, M, of X satisfying

(3.3) P^{x, y) = u-P^x, y}.

For each a > 0, (3.3) is equivalent to (/"V^ g) = (/*, V^)
for all /*, g e CR. Moreover EM A ̂  is semipolar. Finally let
F == EM —- fi]M. Then M^ = 0 almost surely on {Tp < ^}.
In particular if M doesnt vanish on [0, ^), then EM == E
and E — EM is polar.
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Proof. — Let (V") be the resolvent constructed in Theo-
rem 2.5. Then (V01) is exactly subordinate to ((P1). Now by a
result of Meyer [6, Th. 1.1] there exists a unique semigroup (Q()
subordinate to (f\) having (V^ as its resolvent and such that
IQ( -> l(^o as t -> 0. Meyer assumes that (U01) maps
continuous functions into continuous functions and this is
used at one point of his proof. However, it suffices for this
point to note that if f is a bounded continuous function, then
a^U® converges pointwise boundedly to f as a -> oo, and
so this assumption on (U*) is not necessary. By another
theorem of Meyer, see (111-2.3), there exists a MF, M, of ^
which generates (C^). Clearly the resolvent corresponding to
M is (^a). Consequently M is exact. Now (3.1) implies that
for each fixed y

u^x, y} = ̂ , y) + u^x, y}

almost everywhere in x. Combining this with (2.5 ii) we see
that (3.3) holds almost everywhere on { ^ : u a ( ; c , ^ / ) < 00}
and hence almost everywhere on E if a > 0. But both
sides of (3.3) are a-excessive as functions of x and so (3.3)
holds if a > 0. The case a == 0 is obtained by a passage to
the limit. The fact that (3.3) is equivalent to (^V^ g) == (/*, V^)
for all /*, geCs: follows readily from (2.3) and (3.1).

Next let N be another exact MF of X such that
P^^ y} = ̂ PSK^ V) for a11 a > 0. But using (3.1) we see
that M and N generate the same resolvent, and hence the
same semigroup. Therefore M and N are equivalent (II 1-1.9).
Thus we have established the existence and uniqueness asser-
tions in (3.2).

We turn now to the relationships between EM and EM.

Since EM == {V1! > 0} == LJ {vli ^ iln}. in order to show
71

that EM — EM is semipolar it will suffice to show that
K = {V1! ^ a} — &M is thin for each a > 0. As usual we
write 0 .̂ = P^l. Let {h^} be a sequence in fc8+ such that
U^f l and let ^ = h^. Then

P^Ol = lim P^PKI^ - lim U^Pl^.
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But Pi{^ is a measure carried by K u ̂  which is contained
in E — EM^ since K c E — ^M and ^M is cofinely open.
However JPH., x) = s^ if x is in E — t^ and so
^M^i^ = f^n. Consequently

PM<H == lim U^i^ == lim PiU1^ = <^.
n n

For ^ in K c EM.

PU(^) = -^ E^V^ dM, = 1 - V1!^) < 1 - a,

and so <H(^) < PMI(^) < 1 — a for all a; in K. Therefore
K is (totally) thin and hence EM — SM is semipolar. By
duality £^ — EM is semipolar and so the symmetric diffe-
rence of EM and ^M is semipolar.

Actually somewhat more is true. Let K be as in the pre-
ceding paragraph. Then <H = PM^K. If x is in EM and
B( == Mo -— M(, then using (2.4) one obtains

WW = E" r^E^-V) rfB^E" re-^^dB,.v o i/ o

Now let To = 0 and T^i = T, + TK o 6^ be the iterates
of TK. Since K is totally thin, T^f + oo and clearly
t + T K < > 6( === T^+i if Tn ^ ( < T^i. For notational conve-
nience let M^ = M(_ if t > 0, Mo == Mo. Then for x in EM

PW(x) = Ex S ^-^[MT, - M^J

= E'^i) - E" S M^^-^ - e-^i].
n l̂

But PM^K^) = O^) = E^e-^) and since TK = Ti, this
implies that E^M^Je-^ — e-^+i] === 0 for all n ^ 1 since
each term is nonnegative. In particular when n === 1

Ea7{M^-TK[l-6-^oQT,]}^0,
and because K is thin, this tells us that M^ = 0 almost
surely P^ on {TK < ^}. Let F = EM - &M.1 Then F is
the increasing union of such sets K», and so Tp == inf TK .
Now M is right continuous and so MT^ = 0 almost surely
P10 on {Tp < ^} for each x e EM. Of course, if x is not in EM
then almost surely P^, (-> M( is identically zero. This com-
pletes the proof of Theorem 3.2.
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(3.4) Remarks. — It is now evident that ^(x, y) == 0 if x
is not in EM or if y is not in &M. The fact that Mr == 0
almost surely on {Tp < 0 implies that F is polar with
respect to the canonical subprocess (X, M) corresponding
to X and M. The example at the end of Section 8 shows that
EM = E does not imply that E — &M is polar, while the
example at the end of Section 9 shows that E — ^M need
not be empty when M doesn't vanish on [0, ^). Finally it is
evident in view of the complete duality between X and X
that the map M -> M is bijective from the class of exact
MF'5 of X to the class of exact MF'5 of X. We will write
M -<—>- ]M for this correspondence, and we will say that M
and M are dual functionals.

(3.5) COROLLARY. — Let M be an exact MF of X and M
be an exact MF of X. Then M and M are dual functionals
if and only if (^Q(, g) == (/*, Q<g) for all t > 0 and f, g e C^.

Proof. - If (f^ g) = {f, Q,g) we obtain {f^ g)^= (f, V-g)
by taking Laplace transforms. This yields M -<—>- M. Conver-
sely if M -<—>- M, the uniqueness theorem for Laplace
transforms yields the desired equality almost everywhere
(Lebesgue) in t, and since t -> ( /*Q(, g) and ( —> (f, Q^g)
are right continuous for f, g e C^ the proof of (3.5) is complete.

4. The multiplicative property.

We come now to the fundamental property of the corres-
pondence set up in Section 3. Recall (111-5.20) that the product
of two exact MF's is again exact. We denote the product of
two MF'5 M and N by MN, that is, MN = (M,N,).

(4.1) THEOREM. — The correspondence M -e—^ ]V[ is multi-
plicative, that is, if M -<•—>- M and N •<—>- ]ST, then
MN^-^MN.

We will break up the proof of this theorem into a series of
lemmas. Let us fix M and M with M ^—>• M. We will use
the notation established in Section 3 without special mention.
In particular {QJ and {Qj are semigroups subordinate to
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{PJ and {Pt} respectively, and so we can choose q^x, y)
and qt(x, y) to be jointly universally measurable in (x, y),
lying between zero and one, and such that

Q<(o;, dy) == q^(x, y)P((rc, dy)
^{dy, x) = q,(x, y)P,[dy, x).

(4.2) LEMMA. — Let G(x, y) be nonnegative and jointly
measurable (i.e., G e (8* X 8*)+). Then

f[fP^dy)G(x,y)]dx=f[fG(x, y)P^dx, y)] dy,

and a similar formula holds if P( and P^ are replaced by Q<
and Q( respectively.

Proof. —- It suffices to prove this when G{x, y) == g{x)h(y).
But then the desired equality reduces to (g, P(A) = [g?^ h).
Similarly (g, Q(A) == (gQ^, A) implies the formula involving Q,
and (^.

(4.3) LEMMA. — Let g <= feg^.. rAen /or almost all y

f 8Wqt{^ y}Pi(dx, y)== f g{x)q,{y, x)P,{dx, y).

Proof. — Let fe C^. Then using (4.2)

(g, Q^) -/[/Pf^ dy)q,{x, y ) f { y ) ] g(x) dx
= f [f p^ v^ y)gW] f (y) dy.

But (^ Q(/') = (gQ(, /') and the result follows since

(gQ<, /) =f[fPt{dx, y)q^ x)g{x)]f{y)dy.

(4.4) LEMMA. — Let 9 and ^ be in bS^. with 9 == ^
aZmo^t everywhere. If f is bounded and integrable, then
{^ f) = (+^(, f) and (<pQ,, /•) == (^ /•) /or ^ac/i ^
Moreover

(4.5) J'9(^)^(^ 2/)^(^, y) = fWq^ x)P,(dx, y)

almost everywhere in y.
5
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Proof. — It suffices to consider the case /*<= CR and 9
and ^ integrable. Then [L [dx) = f(x) dx is a finite measure.
Let D = [cp ^ +}. Then D is of a potential zero and so
P^(X, e D) == 0 almost everywhere (Lebesgue) in 5. Now
fix (. Then there exists a sequence {t^} decreasing to (
such that for each n

0 = P^ e D] == / PJD, x) f{x) dx.

Therefore (9^, /•) = (^,/"). But

(A. f} = {^ PJ) -> (y, PtH = (yP(, f)
since /"e Cf, and similarly (^P(,, /') -> (^P(, /'). Hence
(<pP(, /') === (<}'P(, f ) . A similar argument yields

(?Qt, n=(^,/").
Coming to (4.5) we again may assume that <p and ^ ar®

integrable. If fe C'j[ then using (4.2)

(?, Qt/") =/[/^, y)q>(a;)P,(^, y)]f{y) dy.

But by the first assertion in (4.4),

(y, Q/".)=(v0,, n=(^,/'),
and this yields (4.5) because

(44, /') =/[/4'(^(y, ̂ P^, y)]f{y) dy.

(4.6) LEMMA. — Let F(a;o, ^i, ..., ^n) be nonnegati^e,
bounded, and measurable and let 0 < <i < • • • < ^. Then
for almost all XQ

f " ' f f\(^i, ^0)^(^1, ^o) . . • ^t,-^(^n, ^-i)
^-tnA, ^n-l)F(a;o, • . . , ^ n )

= / •••/ f\(^l? ^o)^(^0, l̂) . . . ^ -̂̂ (̂ n, ^-i)

^-^(^-i, ^)F(a;o, . . . ^).
71

Proof. — It suffices to consider F(rCo, . . . 5 ^n) = II jG'(^j)
y=o

where each /) is in CK. In this case /o(^o) P^y8 no ^ole a11^
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so we will drop it from our notation. The proof proceeds by
induction on n. If n = 1 this reduces to Lemma 4.3. For
the induction step let s^ = ̂  — ^, s^ == ^ — t^
sn-\ = tn — t^. Then the induction hypothesis implies that

?(^i) == / • • • / Pt,-t,(dx^ x^)q^{x^ x^)
• . . f\-^(^n, ^n-i)̂ -̂ , x^) f^) . . . f^x,)

and

l̂) =/••• / ̂ A, ̂ l)̂ (̂  ^2)

• • • P^J^n, ^n-l)fc-^(^-l, ^n) ^2(^2) • . • fn^n)

agree almost everywhere. Multiplying by f^x^) and using (4.5)
we obtain Lemma 4.6.

We now fix t. Let

U = {0 == to < ̂  < ... < ^ = (}

be a finite subdivision of [0, t], and define

M,(°a) = ̂ (Xo, xj^jx,, xj .. .̂ (x ,̂ x<).
Meyer has proved that if {U^} is an increasing sequence of
such subdivisions such that U^/c is dense in [0, (], then
MtCUfc) -> M( almost surely. See, for example, the proof of
(III-2.3) in [i]. We also define for such a subdivision

M,CU) = ^(Xo, x,)... ̂ (x^, ^)
Mrcu)=^(x,, Xo)...^j?c, x^j.

Of course, iM^^) -^ M( almost surely, and we are going to
study the relationship between M^H) and M^U).

(4.7) LEMMA. — Let (A be an absolutely continuous initial
measure on E. Then M )̂ == M )̂ a^mo^ surely P^.

Proo/*. — It suffices to prove that if F(^o, x^ . . ., a;J is a
nonnegative bounded Borel function, then

fi-{F(X,, . . . , X,)M^)} = ^{F(X,, . . . , X^MW}
almost everywhere in x. But writing these expectations out
in terms of the finite dimensional distributions of X, this
reduces to Lemma 4.6.
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Combining Lemma 4.7 and the preceding discussion we see
that M^^ltfc) -> Mi almost surely P^ provided that [L is
absolutely continuous.

We are now prepared to prove Theorem 4.1. Let M and N
be exact MF'5 of X and let M —-^ M and N ^—>• N.
Let (Rf) and (ft^) be the semigroups generated by N and 1NT
respectively and let R<(^, dy) == r^x, y)Pt(x, dy) and
^-((A/, x) == r^x, y)Pt{dy, x). It U is as before, we define
Nt(°ll), N^L), and N?(°li) in the obvious fashion. By the
preceding discussion M^^^N^^) —> M(N( almost surely,
M^ll^N^) -> M,N( almost surely, and

M;WN?(UO -> M,N,

almost surely P^ provided [L is absolutely continuous. In
these statements {^tl/c} is any increasing sequence of partitions
of [0, t] w-hose union is dense in [0, (]. It will be convenient
to let ^ = = { 0 , t2-^ 2(2-^ . . . , Q. Let /*, g<=&8+ . Then
^(dx) == f{x) dx and \{dx) == g(x) dx are cr-finite measures
on E. We claim that (U = U^ for a fixed n)

(4.8) E^M^N^^X^^fi^M^^WAX^)}.

Let us assume the truth of (4.8) for the moment and use it to
complete the proof of Theorem 4.1. If we set U == ̂  in
(4.8) and assume that /*, g e= CK, then letting n —^ oo we
obtain

(4.9) E^{MAg(X,)} = ̂ {MAAXi)}.

Thus if we define (B() and (S^) to be the semigroups gene-
rated by MN and ]M]N respectively, then (4.9) states that
(/•, S^g) == (/'S(, g) for each ( and all f, g e CK. Hence by
(3.5), MN^—MN.

Therefore to complete the proof of Theorem 4.1 we must
establish (4.8). Using Lemma 4.7 we see that the right side of
(4.8) reduces to fiW^N?^) f{X,)}. Thus in order to
establish (4.8) we must show that

(4.10) E^M^N^^X,)} = fi'WWNrCU) /-(X,)}.
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We will prove (4.10) for any partition U of [0, t] into equally
spaced points by induction on the number of such points. If
U = {0, t}, (4.10) is an immediate consequence of Lemma 4.2.
Now let U = {0 = to < ti < • • • < („ < ^+1 == t} where
tj+i — tj = s for all /, and let V == {0 = to < t^ < • • • < („}.
Define

<P(^i) ==/ • • • fPs(dx^ x^)q,(x^ x^)r,{x^ x^)
. . . ̂ (J^+i, ^)^(^+l, ^)^(^n+l, ^n) A^n+l)

-^{M^N^A^)}.

Then by Lemma 4.2 (or the case n == 1) the right side of
(4.10) is

f g{xo) dxofP,(dx^ Xo)q,{x^ Xo)r,(x^ ^0)9(^1)

=f(?{^l) dx^fP,{x^ dxo)q,{x^ Xo)r,(x^ Xo)g(xo)

= f^i)W dx, = fi^M^^N^T)) /(JCJ}

where ^(^i) denotes the integral over ô 8in(^

\{dx^) === 4/(^i) AKi.

But by the induction hypothesis this last expression becomes

E^MJ^NJ^XJ} = E^M^N^)^^)},

establishing (4.10). Thus finally the proof of Theorem 4.1 is
complete.

Theorem 4.1 will have a number of important consequences
in the following sections. Here is one which generalizes (1.1).
If T is an exact terminal time of X, then M( == I[O,T)(<)
is an exact MF of X with M2 == M. Consequently if
M -<—>- ]M, then according to (4.1), M2 = M. Let
T == inf { ( : ]M( === 0}. Then T is a terminal time and
]M( = I[Q f)(t). Hence T is an exact terminal time of 5C.
Also P^ = P^ and P^ = P^ (== P^ for typographical
convenience). If we agree to say that two exact terminal times
are equivalent if the corresponding MF'5 are equal (i.e.
equivalent as MF'^), then we have proved the following corol-
lary.
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(4.11) COROLLARY. — Let T be an exact terminal time of X.
Then there exists a unique (up to equivalence) exact terminal
time T of X such that P^u^x, y) = u^P^x, y).

The discussion leading to (4.11) depended on the fact that
(M^ === (M)2. The next corollary is a useful extension of
this fact. First observe that if X > 0 and M is a MF of X,
then M^ == (M^) is again a MF of X. Moreover (111-5.9)
and (111-5.20) imply that M^ is exact if M is.

(4.12) COROLLARY. — Let M be an exact MF of X and
let M ^—^ M. Then for any X > 0, M^ ^—^ M\

Proof. — If X is a positive integer this is an immediate
consequence of (4.1). Let M112 < > N. Then using (4.1),
]^2 ̂  ]\/[ a^d hence ^='Sl112. Consequently M^ -<—>- M^
whenever X is a dyadic rational. Given X > 0 let {X^}
be a sequence of dyadic rationales approaching X. Then
(M,)^ -> (M^ and (M^» -> (l^^. Combining this with (3.5)
yields (4.12).

We will close this section by discussing a generalization of
the switching identity (1.1). To this end we fix an exact MF,
M with dual ]M, and as usual (Q() and (V^) will denote
the semigroup and resolvent generated by M. If N is another
exact MF of X we define operators Qg as follows :

(4.13) W {x) = - E- f^ e-^f (X^N<, x e E^
-/"(^lA ^Ei,.

Observe that if T is an exact terminal time and N< == I[O.T)(^)?
then

Q_a,f(x)=EX{e-aTMrf{Xr}}=^f(x).

Let (W^ denote the resolvent corresponding to MN.
Using (2.4) it is easy to check that if /*e ̂  and V^/* is finite,
then

(4.14) QgV^ = VY - WY.

A straightforward computation now shows that (W01) is
exactly subordinate to (V^ and that Q^ maps ^(M) into
itself. Here ^(M) denotes the set of a — (X, M) excessive
functions.
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In the next proposition Q^ is defined from M and N in
the same way that Q^ is defined from M and N. Of course
we write f^{x) = J ' f ( y ) ^ ( d y , x) for the action of (^ on a
function /*.

(4.15) PROPOSITION. — For each a ^ 0,

Q ,̂ y)=^(x, y).

Proof. — It suffices to prove this when a > 0. Let f and g
be in CK. Using (4.14) and its dual along with (4.1) we have

(^ Q5VY) = (g, (V06 - w^) = {g^- - w°v) = (gv^, /•).
Consequently Q^VY (^) = f ̂ {x, y) f (y) dy almost every-
where, and hence everywhere since both sides are in ^(M)
as functions of^rr . This in turn implies that for a fixed x,
QS^^ y) = ^OS^? 2/) almost everywhere in y, and hence
everywhere since both functions of y are in ^(M). Thus
(4.15) is established.

The most important special case of (4.15) is when
^ == \o^)(t) with B a Borel set. In this case (4.15) states

(4.16) Q^a^^^^^^

5. Some examples.

In this section we will give some examples of dual multi-
plicative functionals.

Undoubtedly the most important example is given by the
dual exact terminal times TB and TB where B is a Borel set.
This example already was discussed in (1.1) and (1.2). At the
opposite end of the spectrum from this example is the case of
« classical » functionals which is treated in the next two propo-
sitions.

(5.1) PROPOSITION. — Let h be a bounded nonnegative
Borel function. Then M( = M,(/i) == exp [— F/i(X,) ds] and
IM( =fltW = exp [— f^ A(X,) ds] are dual functionals.
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Proof. — Both M and M are continuous and they are
exact since EM = &M == E. In order to show that M •<—>• M
it suffices to prove that for /*, g e C^ and for each fixed t > 0

(5.2) EWg(X,)}=^{]V[,/-(X,)}

where we have written }Lf{.} for E ^ { . } when
^dx) = f{x) dx and similarly for fi^. First of all we consider
the case h e C^. Then

F A(X,) ds = lim t- S h fx W] = lim -̂ - $ h |YX ^M
Jo » n fc=l L \ n /J n M ^o L\ n ] \

since /i is in CK. Thus if H^(a;) == exp | — — h{x) | we have

M<=limnHjxf^1 and ^ = limTT HnfxWl, andn^^o L \^/J ^ " k==o L \yi/J
hence to establish (5.2) it will suffice to prove

(5.3) E/SnHrxW|g(x<){ = fi^nH F^OA^)!.
(k==o L Y'1 '/-1 5 (fc==o L Y'"/-1 )

for any H e &84..
If n == 1, (5.3) reduces to the identity

(/•H, P<(Hg))= ((/•H)^ Hg).

It is easy to check by induction on n that (5.3) may be written
in the form (/-H, (P,/,H)»g) = (/-(H^,)-, Hg) (2). But for a
fixed s the identity

(/•H, (P,H)-g) = (AHP,)", Hg)
is immediate, and this establishes (5.3). Thus we have proved
(5.2) when h^Ct

Let 96 denote the class of all bounded nonnegative Borel
functions hioT which (5.2) holds. Clearly 38 is closed under
bounded pointwise limits and we have just seen that C^ c 38.
Consequently 36 contains all bounded nonnegative Borel
functions. Thus Proposition 5.1 is established.

We now are going to extend Proposition 5.1 to the case of an
arbitrary nonnegative Borel function h. However, we must

(2) Here (P^H)" denotes the n-th iterate of the operator P,H which maps a bounded
function g into the bounded function P,(Hg), and (HP^)" is defined similarly.
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exercise a certain amount of care in this case since
exp [— j A(X,) A?J need not be right continuous if h is
unbounded. To overcome this, let

T== in f ^t:f^h{X,)ds== ooj.

Then T is a terminal time and we define

(5.4) M, = M<(A) == I[O.T)(<) exp [- f^ h(X,) ds]-

Clearly M is a right continuous MF of X, and if h is
bounded then T = oo so that this is consistent with our
previous definition of M((A). Of course, when h is unbounded
EM need not be all of E. However if x is not in EM, then
P^(T == 0) = 1 and almost surely P37, f1 h{X,) ds = oo for
all t > 0. As a result, using (III-5.9), it is easy to check that
M is exact. One more observation is needed. Namely if we
define M? = exp [— ̂  ( h(X,) ds]. then ( ̂  M( and (-> M?
agree for all values of ( except possibly ( == T, and so
V<tf(x)=Exf^e^tf{XWdt. Of course, ^(A) is defined
analogously.

(5.5) PROPOSITION. — If h is a nonnegative Borel function^
then M{h) and M(/i) are dual functionals.

^ Proof. ^ Let h, = h A n. Then M<(/iJ -^ M?(A) and
^(^n) -^ M?W where the notation is that introduced above.
Let (V?) and (V?) denote the resolvents of M<(AJ and
M,(^) respectively. Then by (5.1), (/•, V^g) = (/•V?, g) and
letting n -> oo and using the remark preceding the statement
of Proposition 5.5 we obtain ( f, V01 g) == ( /V^, g). Hence
M -<—>- ]M and (5.5) is proved.

Proposition 5.5 was proved by Hunt in [4]. Hunt used a
different method. If we combine (4.1), (5.5), and the duality
of TB and TB for a Borel set B, we obtain the full duality
result proved by Hunt in [4].
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6. Duality of non-exact multiplicative functionals.

It often is useful to extend the notion of duality to general
(always right continuous, decreasing, and satisfying
0 ^ M< ^ 1) multiplicative functionals.

(6.1) DEFINITION. — Two MF'5, M and M of X and X
respectively are said to be dual (or to be in duality) provided that
( /*? Q-tg) = ( f^.h g) /or all t ^ 0 and /*, g e= C^". This condition
is equivalent to ( /*, V^g) == ( yV", g) /or all a > 0 anJ /, g e CK.

It follows from (2.3) that if M and M are dual MF'5,
then P^u^, y) == u^P^x, y) almost everywhere with respect
to ^ X S on E X E. This will be an identity in x and y
if and only if M and M are exact.

(6.2) PROPOSITION. — L e t M be a MF of X. Then there
exists a unique exact MF, M of X ^Aa< is dual to M.

Proof. — It is known that there exists a unique exact MF,
M* of X such that if (W^i is the resolvent corresponding
to M*, then ^ ^ W^ EM c EM*, V^, ^W^, .) if
*y <= EM, and t —> M( and ( —> M? are identical almost surely
P^ on [0, ^) if ^ € = E M . In particular M( ^ 'M^ almost
surely. Finally EM* — EM is of potential zero and hence of
measure zero. See (111-4.9) and its proof and (111-4.25). We will
call M* the regularization of M. Since V^g == W^ almost
everywhere we have ( /*, V^g) = ( /*, W^g) for all /*, ge G^.
Thus if M^—^M*, then M and M are dual MF'5.

(6.3) Remark. — The proof of (6.2) shows that M and M
are dual if and only if their regularizations are dual.

It follows from (111-4.25) that for each t > 0 we have
almost surely M* = lim M(_^ o 6,. Consequently if M and N

s^Q

are MF'5, then for each t almost surely (MN)^ === M^Nf.
But (MN)* and M*N* are right continuous and so
(MN)^ = M*N\ Similarly (M^)* == (M*)^ for any X > 0.
The following result now follows from (6.3), (4.1), and (4.12).
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(6.4) COROLLARY. — Let M and ]M and N and 1^ be dual
respectively. Let \ > 0. Then MN and M1N and! M^ and iM^
are rfuaZ respectively.

We will say that two terminal times T and T of X and X
respectively are dual provided the corresponding MF'5 are
dual. Observe that if T is a terminal time of X and
M, = I[O,T)(<), then (M*)2 = M* since M2 = M. Conse-
quently there exists an exact terminal time T* such that
M? = I[O,T*)(<). We call T* the regularization of T. It is
immediate that almost surely T ^ T* and that if x is not
regular for T then T = T* almost surely P^.

If M is a MF define S = inf {t < ^: M, = 0} if the set in
braces is not empty and S = ^ if it is empty. (Note that we
are not assuming that M( == 0 if t ^ ^.) Then S is a
terminal time, but it need not be exact even when M is
exact. (See the example on page 131 of [1].) The following
result is sometimes of interest.

(6.5) PROPOSITION. — Let M and ]M be dual MF's.
Then S and S are dual terminal times.

Proof. — There is no loss of generality in assuming that
M( == 0 if t ^ ^ since (M() and (I^)(t)M() are equivalent
MF'5. Similarly we may assume that M( = 0 if t ^ $. Let
N(==l im(M<) \ Then N , = = 1 if ( < S and N , = 0 if

X^o
( > S, that is, N( == I[o.s)(^) for all t except possibly ( === S.
In particular if (W") is the resolvent corresponding to S>
then WY^) = Ex f e-^WXt) dt = lim V^) for all

bounded f and a > 0 where (V^) is the resolvent of M\
Similarly f^{x) = lim f^(x) where (W^ and (V^) are the

X-^o
resolvents of S and M^ respectively. As a result (6.4) implies
that S and S are dual terminal times.

7. Measures associated with multiplicative functionals.

In this section we will associate with certain MF's a
measure in a natural and useful manner. The ideas and tech-
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niques of this section are due to Revuz [9]. We merely adapt
his methods to cover the situation which interests us here.
These results will be applied to the study of dual functionals
in Section 8.

It will be convenient to single out a particular representative
of a given MF. Recall that we are identifying equivalent
MF'5. Therefore in the remainder of this paper we will assume
that each MF, M is normalized as follows : M^(co) == 1 for
all t > 0 if Xo(o>) == A, M,(<o) = lim M^(co) = M^-(co) if

U^((D) ^

t ^ ^(cl)) and Xo(^) e E. This is no loss of generality since
each MF is equivalent to a normalized one. See (111-4.23).
As in Section 6 we define S, or SM if the dependence on M
needs emphasis, as follows : S = inf {t < ^ : M{ = 0} if the
set in braces is not empty and S === ^ if it is empty.

We now fix a normalized exact MF, M with dual M also
assumed to be normalized. Let B( = Mo — M^. Then
B(^ = B( + M((B^ o 6(). That is B is an additive functional
of (X, M) except that ( —> B( need not be continuous at
t == S. See (IV-1.1) for the definition. However (-> B( is
constant on [S, oo] and is continuous at t = ̂  in view of
our normalization of M. Note that V^f{x) = PS/*^) ^ x

is in EM, but that V^f {x) •=== 0 if x is not in EM. Here
U^ is the a-potential operator associated with B, that is,

Vy(x)=EX fxe-cltf{X,)dB,
Jo

For the purposes of this paper the following definition is
appropriate.

(7.1) DEFINITION. — A family A == (A^: t ^ 0) of nonne-
gative random variables is called an additive functional (AF)
of (X, M) provided:

(i) for each t, A( is 9^ measurable'^
(ii) for each t and s, A^, = A( + M^(A^ o 6^) almost

surely,
(iii) almost surely t —^ A( is right continuous, increasing,

constant on the interval [S, oo], continuous at t == ^, and
Ao=0.

As remarked above this differs slightly from (IV-1.1) in that
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it does not require A to be continuous at S when S < ^.
(In [1] we assumed that M^ = 0 if t ^ ^ which implies that
A is constant on [S, oo], and so it was not necessary to
require this in (IV-1.1).) Let A(M) denote the class of all
AF'5 of (X, M) which are finite on [0, ^). In particular
B e A(M). For simplicity in what follows we will restrict our
attention to A(M), although the results are valid somewhat
more generally. This is justified because our main concern in
this paper is B.

Following Revuz [9], we define for f^&+ and A e A(M)

(7.2) ^(/•)=supr^/7(X,)JA,
(>0 ^O

This definition does not depend on the existence of the dual
process X. One need only assume that X has a reference
measure and that E; is a fixed excessive reference measure.
One says that A is integrable if VA(I ) < oo. If A == 2A"
where each A" is integrable, then A is said to be cr-integrable.

(7.3) Remark. — Our definition of o-integrability differs from
that of Revuz who requires that E = |jE where
^(IrJ < °o tor each n. Since we are assuming that
A e A ( M ) , if such E^ exist then A? == F IpjX,) dA, is in
A(M) for each n. Clearly A == SA" and each A" is inte-
grable. Thus our definition is somewhat more general than
Revuz's and is the appropriate one for us. If one considers
additive functionals which are not in A(M), then A" defined
above need not be an additive functional and one is forced
to adopt Revuz's definition.

Exactly as in [9] one establishes the following proposition.

(7.4) PROPOSITION. — Let A e A ( M ) . If febS+ then

V A ( f) = lim t-^ r/'(X,) rfA, = lim a(l, U^),/ \ i /n t /o w-^yt^O »/0 ' ' " oc>3c

and this last limit is increasing. If A is a-integrable VA defines
a measure which is a countable sum of finite measures', it is
finite if and only if A is integrable. Clearly VA does not charge
polar sets and if A is continuous VA does not charge semipolar
sets.
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Proposition 7.4 is relatively elementary and is valid under
the assumption that ^ is an excessive reference measure for X.

The next result is much deeper and is the key to our later
applications. We do not strive for the utmost generality in its
statement. Recall that A is natural provided that almost
surely t -» A( and ( ->• X( have no common discontinuities.
Furthermore we will say that a Borel set D carries A provided
that almost surely (-» A( and (-> f l^X,) dA, agree on
[0, ^). Evidently this implies that V^f = U^( /"In) for all
a > 0 and /e g+.

(7.5) THEOREM. — Let AeA(M) and assume that A is
natural, a-integrable, and u^ = U l̂ is finite. If A is carried
by fim, then u^ = VS where v = VA, that is,

E- ̂ e- d^ == f ̂ , y)^dy).

Proof. — This is essentially Proposition V.I of [9]. As in [9]
it suffices to prove it when a > 0 and A is integrable. Let
febS+ be integrable (with respect to ^). Then since M: is
exact /-V == /•U' - ( /•0 - /•V«) is the difference of two
bounded oc-coexcessive functions, and so ( -> /'V'fX,.) is left
continuous on (0, ^) by Weil's theorem [10]. Now arguing
exactly as in [9] one shows that V'v < u^. Again just as in
[9] one finds that

r (î  - vv) ̂  < A-Hm ̂  p^+p) _ ̂  pv'+pv)].
v •" U ̂  00

But (l,(B^+P)->v(l) by definition, while (1, iBV^)-^^)
because ^(IV^) increases to the indicator function of 6,1
as (B -> oo. The fact that A is carried by &M obviously
implies that v also is carried by fin. Consequently u^ = VS
almost everywhere, and hence everywhere since both functions
are a — (X, M) excessive. This establishes Theorem 7.5.

Remark. — Under the assumptions of (7.5) the measure VA
must, in fact, be c-finite. Indeed if (JL is any measure carried by
^M and V^ is finite almost everywhere, then one can find a
strictly positive f such that (/; V^) < oo. But f^ is
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strictly positive on SM and f (fV0;) d[L = (/*, V^) < oo.
Consequently [L is ^-finite.

Next the following uniqueness theorem is proved in the same
manner as (VI-1.15).

(7.6) PROPOSITION. — Let [L be a measure. If V^ is finite
almost everywhere, then V^JL determines the restriction of [L
to ^M.

Clearly this is the most that one could expect since for each
x, ̂ {x, y) =0 if y ^ ^M and so \^{x) == f^ ^{x, y)^{dy).
Thus under the assumptions of Theorem 7.5, VA is the unique
measure carried by ^M such that u^ = V^VA. Using (4.16)
the proof of (VI-3.1) can easily be modified to obtain the
following result.

(7.7) PROPOSITION. — Let A satisfy the hypotheses of (7.5).
Then for any f^ 8+, V^f = V^ /VA).

Now we turn our attention to sufficient conditions that the
hypotheses of (7.5) hold. Once again we follow Revuz [9].
The next lemma is the analogue of Lemma 11.2 of [9] and the
proof is exactly the same.

(7.8) LEMMA. — Suppose that A and D are in A(M) and
that D is integrable. If fe &8+ is such that for some a ^ 0,
UA/* ^ u^ < co then V A ( / ' ) < °o.

(7.9) LEMMA. — Let A e A ( M ) . If A is continuous at S,
then A is carried by EM.

Proof. — Let R be the hitting time of EM. Recall from
(111-5.3) that almost surely S < R. Since A is continuous
at S

At = f^IE^dAU= £ ̂ (^rfAU5

and hence A is carried by EM.
The criteria for cr-integrability contained in the next two

propositions will suffice for our purposes. However, we readily
admit that Proposition 7.11 is not particularly satisfying as it
stands.
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(7.10) PROPOSITION. — Let A € = A ( M ) . If A is continuous^
then A is G-integrable.

Proof. — Let C; === f (Mn)~1 dP^y Note that the integration
extends over (0, ( A S ) since A is continuous and constant on
[S, oo). Let g be a bounded strictly positive integrable
function and define

^{x) = E^e-'M. exp [- C,]g(X.) dt.

Clearly y > 0 on EM. A straightforward computation shows
that

Ul<p(a;) = E" fe-'M^i - e-^g{X,) dt < V^rc).
€/ 0

If E^ === {9 ^ l/^}? then I^ < n^ and so

Ull^ ^ nUi9 ^ ^V^.

If Dt = F M^g(X^)du then D e A(M) and u£ == V .̂ But
for any a > 0, a(l, V^) == a(l^a, g) ^ C g d^ < oo and
hence D is integrable. It now follows from (7.8) that
VA(En) < °o for each n. Since EM == U E^ Lemma 7.9
implies that A is (y-integrable, completing the proof of
(7.10).

(7.11) PROPOSITION. — Let A e A(M) and assume that for
some a ^ 0, u^ is finite. //*, in addition^ A(S) — A(S —) is

/»t
bounded by a constant, then L( == ^ Ip:^(Xu) dAy 15 a-integrable.

Proof. — Let {a^ : — o o < n < o o } b e a two-sided sequence
of positive numbers such that a^ < a^ if n < m and
lim a^ = 0, lim a^ = + 00- F01' each TZ define

n->—oo n->+<»

T^ == inf {( < S : a^M( ^ A( — A(_ < a^+iMJ.

Then each T^ is a complete terminal time (IV-4.6) and using
standard techniques we can write

(7.12) A^A^+A?+ 1 A?
n==—oo
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where A0 is continuous, A* is constant except possibly for a
jump at S, and each A" is a pure jump element of A(M)
which is continuous at S and satisfies

O,M( ^ A? — A?_ < a,+iM(

at its (discrete) points of discontinuity. According to (7.9),
A6 and each A^ is carried by EM. Let L* = f1 I^(X^A;.
Then in light of (7.10) in order to establish (7.11) it will suffice
to show that L* and each A^ are c-integrable.

Now fix n and let D = A,. Then D e A(M), u^ is finite,
D is carried by EM, and D( — D(_ ^ aM^ where a = a^+i.
We now use an argument of Revuz to show that D is cr-inte-
grable. We may assume a > 0 since u^ decreases as a
increases. Let fe bS+ be strictly positive and integrable.
Then VY is bounded and strictly positive on EM. Define
F, = {u£ ^ /cVY} n {VY ^ k-1}. Clearly U F, = EM. Fix k
and let T = Tp,, g = Ip,. Then

VW^E-f^^e-^XW
= E^-^XTnDT - DT-]} + Q^Ug^).

But U£g ^ u£ ^ A-VY on FK and so Q^Ugg ^ /cQ^VY.
On the otherhand the first term is dominated by

aE^-^X^MT} ^ akQC,Jaf{x).

Thus U£g ^ k(a+ l)Va/>. Consequently by (7.8), VD(FK) < oo
and hence D is o-integrable since it is carried by EM.

Finally it remains to show that L* is o-integrable. Unfor-
tunately we have been unable to find a simple proof of this
fact and the argument that we are now going to give is a bit
involved. It is essentially due to Meyer [7]. As we have remar-
ked several times S need not be exact. Therefore let T be the
regularization of S. (See the discussion following (6.4).)
Thus T is an exact terminal time S ^ T and S = T almost
surely P-^ if xe EM. We will omit the phrase « almost
surely » in the remainder of the proof of (7.11) in those places
where it obviously applies. Since S ^ ^ we may assume that
T ^ ^.

We define the iterates of T in the usual manner: To = 0,
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T,,+i == !„ + T o 6^ for n > 0, and let R = lim T,,.
Clearly each T,,<^ and so R<^. Since T is exact, T is
a complete terminal time, that is, for each /c^O, n^l, and
stopping time Q, T,+, == Q + T, o OQ on {T, < Q < T,^}.
See (IV-4.6) and (IV-4.36), and also [8]. One checks easily
that T,_i<;T^ on { T n < R } and that R is a strong terminal
time. If En = {x: P^R > 0) == 1}, then E^ c ER. (In
fact ER = ET = {x: P^T > 0) = 1}.) Let OQ = 0 and
cin = a for re ^ 1 where 0 < a < 1. Define

N.= n (i-^).
",Tn<(

Then N^ is right continuous and N( > 0 if ( < R, N( == 0
if ( ^ R. Using the fact that T is a complete terminal time
one can easily check that N = (N() is a MF. Next define

D.=- f f- «R
<-' [0,t3 ^^^u-

== lim D,, ( ^ R,
u^R

and observe that D is an additive functional of (X, R).
Intact D( = na if T^ ^ t < T^+i. Next let g be a bounded
strictly positive integrable Borel function and define

<?{x) = E-j^ e-^g(X,) dt.

It is evident that 9 (re) > 0 if and only if x e ER and that
9 e &8^. Using the integration by parts formula [5] one finds

^(^-t^a)
( 1 \on [0, R), and so dDt= N^ — ) Making use of this a
. ^familiar calculation using (2.4) yields

U^) = E- f^ e-\l - NJg(X.) dt < Wg{x),

where (W^ is the resolvent corresponding to R.
We claim that a(l, Uj^p) ^ (1, g) for all a > 1. This is the

key step in the proof of (7.8), but we will give the argument for
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completeness. By the resolvent equation and its analogue for
(U£), (IV-2.3)
W«g - USy = Wg + (1 - oQW'Wig - [Ui,y + (1 - oQWU^],

and since alW" < 1 this yields for a > 1

a(l, W«g - U&P) > (1, W^g - U^<p) ^ 0.

Consequently a(l, U£<p) < a(l, W'g) = a(lW°', g) <£ (1, g) < oo
because g is integrable.

Now returning to A*, if b is a bound for A(S)— A(S —)
we have for each x e EM

U^) < bE^e-^Xs)} == bE^e-^X^)} < -^-US^^).a
But U^9 = 0 off EM and so

a(l, U^) ^^(1, US9) ^ -^-(1, g) < ex).a a

Finally since 9 > 0 on EK => EM we see that

Lr = ̂  IEJXJ dA.:

is cr-integrable, completing the proof of (7.11).

(7.12) Remark. — In checking the hypotheses of (7.5) the
following observation is helpful. Suppose that A e A(M) is
carried by EM and that A(S) — A(S —) ^ 6M(S —) on
{S < 00} where & is a positive constant. Then if u^ is
finite, A is carried by EM. Indeed since U^(rr, .) is a finite
measure it suffices to show that V^l^{x) = 0 for each fixed
a;<=EM where K = {V1! ^ a} — SM with a > 0 because
EM — EM is a countable union of such sets. But in the proof
of (3.2) we showed that M^- == 0 almost surely P^ on
{TK < ^} tor each x in EM. Fix such an x. The following
statements are understood to hold almost surely P^. Clearly
S < TK and so

Uj^) == E-^^-^X^A,
< ^^{e-^Ms-; S = TK < ^} = 0,

and so A is carried by EM.
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Recall that B( == Mo — M(. Suppose that

A< = ̂ 'IE»(XJ dB^ == - ̂  IE,(XJ rfM«

is natural. Then combining (7.11), (7.12), and (7.7), we see
that there exists a unique <?-finite measure (A == V A carried by
E M O ^ M such that V^f = ¥"( fy.) for all /'e8+. We will call [A
(Ae measure associated with M. In particular for each a; e Em,
/•e8+, and a 5? 0

(7.13) P&( /• IrJ{x) = Uif (x) = f ^(x, y) f {yWy).

8. Dual functionals and measures.

In this section we will make use of the results of Section 7 to
study the relationship between M and ML The next theorem
is the key to what follows. We fix an exact normalized MF,
M and let B, = Mo - M, and A, =^I^(XJ dB^ Ob-
viously B and A haveabounded potentials. We assume that A
is natural and let [L be the measure associated with M.

(8.1) THEOREM. — Using the above notation^ for each
y e EM, a ^ 0, /*e 84" which vanishes oft EM,

f^{y)=ffW^ yWx),
that is, the restriction of P^{dx, y) to !SM is given by
^(^ y)^W. •

Proof. — It suffices to prove this when a > 0. Let R be
the hitting time of EM. Since S ^ R, B^ — A^ is constant
on [0, R) and has a jump of magnitude MR- at ( == R < ^.
Of course, MR- = 0 unless S == R < ^. Therefore for if
x e EM and g e ̂ + we have

P^) = Ugg(^) = VW + E^-^XiOMn-; R < ^}.
Now fix x e EM and y e EM. Then

f8.2) u^x, y) = P^x, y) == f ^(x, z^dz^z, y)
+ E^e-^XR, I/)MK-; R < 2:}.
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Denote the expectation term in (8.2) by q{x, y). Substituting
u» = p' + P^u' into the left side of (8.2) and u"- == ̂  + u^P^
into the right side of (8.2) we obtain

(8.3) / ̂ {x, z)P^(dz, y) + / P^x, z)P^(dz, y)

= f'^{x, zWz)^z, y )

-}-f^(x, zWz^P^z, y) + q{x, y).
But

(8.4) fP^(x, z)P^{dz, y) =fP^(x, dz^P^z, y)

= f ^{x, zWz^P^z, y)
+Ea{^uaP^(Xn,y)MB-; R < i:}.

However if R < ^ then XR e E — En and if x^ « EM,
U^XQ, y) = u'P^a-o, y) because f^Xy, y) == 0. Consequently
the expectation in (8.4) is just q(x, y). On the other hand the
left side of (8.4) is dominated by u°'(a;, y), and so combining
(8.3) and (8.4) we see that for a fixed y e EM

/ ^(x, z)P^(dz, y)=f ̂ (x, z)v.{dz)^{z, y)

almost everywhere in a; on EM, and hence everywhere on E
since both sides are a — (X, M) excessive functions of x.
Theorem 8.1 now follows from the uniqueness result (7.6) since
P'PM < u'P^ < u".

If we set B, = Mo - M, and A( = F I^JXJ dB, and
, A . v Q

if we write U^ for the potential operators associated with A,
then following corollary is immediate.

(8.5) COROLLARY. — Suppose that A is natural and that pi
is the measure associated with M. Then ^ is the unique measure
carried by EM n fin such that for each a ^ 0

Uj^, dy) = ̂ {x, y)[L{dy)', V^dy, x} = ̂ (y, x)^{dy),

where we have written V^{dy, x) for the measures associated
with U^ in keeping with our standard notational scheme.
Moreover [L doesnt charge polar sets and if A is continuous

[L doesn^t charge semipolar sets.
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We come now to the main result of this section. In addition
to the notation developed above we set A? == A( if ( < S
and A? = As- if ( > S. Thus A* is an additive functional
of (X, M) that is continuous at S and A? = A( == Mo — M(
if t < S. We define A* in a similar manner.

(8.6) THEOREM. — Let M be an exact MF and M be its
dual:

(i) A is natural if and only if A is natural.
(ii) If A is continuous, then A* is continuous.
(iii) If X is special standard and A is continuous, then A

is continuous.

Proof. — If C e A(M) and F is a Borel set, then it is easy
to check that for any a ^ 0

(8.7) Uglp(^) = E^-^X^qTp) - C(Tp -)]}
+ Q^Ug4(a;),

and as in (IV-2.4) it follows from (8.7) that Q^Ug4== Ug4
for all open sets G if C is natural. See (4.13) and the para-
graphs which follow it for the definition of the operators Q^.
Now the proof of (IV-2.5) is easily modified by taking account
of the possible jump at S to yield the fact that if C has a
finite a-potential then C is natural if and only if
QSU^IG == U^IG for all open sets G. We will make use of
this fact in proving (i).

Assume that A is natural. Then according to the dual of
(8.5), UA(^, dy) = v{x, y)[^{dy) where (JL is the measure
associated with A. Now let G be an open set. Then using
(4.16) we obtain

QGUAIG(^) -/QG^, dz)f^{z, yWy)
= f v[x, z) f^ QG^Z, yWy).

But (A is carried by &M and for any point y e= G n EM,
(^(.^ y) = s^. Thus for any Borel set F,

^QG(r , z /M^)=^ ( rnG) ,



MULTIPLICATIVE FVNCTIONALS OF DUAL PROCESSES 77

and so

QcUAlG^) -^(^ ̂ W = UAW

Therefore A is natural and (8.6 i) is established because of the
complete duality between A and A.

Next we will prove (8.6 iii). However for notational conve-
nience we will actually prove the dual statement. That is we
will assume that X is special standard and A is continuous
and conclude that A is continuous. First observe that the
proof of (IV-4.30) carries over to the present situation (the
process X in (IV-4.30) is assumed to be special standard)
and so if C e A(M) has a finite potential then C is continuous
if and only if QpUclR = UC;IK tor all compact K. Now by
the dual of (8.5), UA(^, dy) == v{x^ y)^{dy) where (JL is carried
by EM n EM and doesn't charge semipolar sets. As in the
proof of (i)

(?1 )̂ = f ̂  z) f^ (Wz, yWy).

But (K — "^K) n &M is semipolar and so this last displayed
expression is just f v{x^ z)^[dz) = V^I^x). Therefore A is
continuous and (8.6 iii) is established.

Finally we turn to (8.6 ii). Once again for notational conve-
nience we will prove the dual statement. It follows from the
dual of (8.5) that U^(rc, dy) = ̂ {x^ y)^{dy) where (JL doesn't
charge semipolar sets. Fix a > 0 and write A == A* + J
where J e A(M) is constant except possibly for a jump at S.
By (8.6 i), A, and hence A*, is natural. Let u •=== u^. We
are going to show that u is a regular a-potential of (X, M),
that is, if {T^} is an increasing sequence of stopping times
with limit T, then Q^u == lim Q^u. Let us assume this for
the moment and complete the proof of (8.6 ii). By (IV-3.14)
there exists a continuous additive function C of (X, M)
such that u^ = u = u^*. But A* is natural and continuous
at S and so the uniqueness theorem (IV-2.13) implies that
A* == C. Hence A* is continuous.

Thus to complete the proof of (8.6) we must show that
u = u^ is a regular a-potential of (X, M). If {T^} is an
increasing sequence of stopping times with limit T and if
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/^^(M), then Q^/* decreases and always dominates Q /̂*.
Thus it will suffice to show that w == u^ is a regular a-potential
of (X, M) because w === u 4- u^ and all three functions are
bounded elements of ^(M). But w{x) == j ^ {x , y)[^{dy)
where [A doesn't charge semipolar sets. Now fix x^ and let
{T\} and T be as above. Then Q^^, y) decreases to a
limit q^y). Since y—Q.y(x,y) is in ^(M), ^ is a -- (^C, ]M)
super-mean-valued and by Doob's theorem it differs from its
a — (5C, M) excessive regularization q^ on at most a semi-
polar set. See the discussion and footnote on page 198 of [1].
On the other hand if fe C^ then

/ Q?.̂  y) f (y) dy = Q^VY {x)
== E" f00 e-^f (X()M, dt ^ E" f' e-^f (X()M( dt

- f ^ ( ^ y ) f ( y ) d y .

Consequently q^ = Q^^^ • ) almost everywhere and since
Q^^a?, . )e^ a(M) it follows that ^^Q?^^?-) everywhere.
Hence for each fixed x, Q^^a(^) t/) decreases to Q-^^, y)
except on a semipolar set (in y). But p. doesn't charge
semipolar sets and so

Q^(^) = f ̂ {x, yWy) -^ f Q ,̂ yWy) = Q^(o;).

Thus w is a regular a-potential of (X, M) and the proof of
(8.6) is complete.

Remark. — Most likely (8.6 iii) is valid without the assump-
tion that ^ is special standard. Indeed the proof (of the
dual) of (8.6 ii) shows that u^ is a regular a-potential of
(X, M). But u^ == u^ + u°f and so u^ is a regular a-potential
of (X, M). Consequently there exists a continuous additive
function C of (X, M) so that uj = ug. Making use of the
relationship between J and A one can then show that
U^/* = U^/* for all bounded f. If one could conclude from this
that J == C, then J would be zero and so A itself would
be continuous. Unfortunately the uniqueness theorem (IV-2.12)
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does not apply because J charges S and we have been
unable to overcome this difficulty.

The following corollary is an immediate consequence of
Theorem 8.6.

(8.8) COROLLARY. — Let M
If M is continuous, then t —> M(

be an exact MF of
is continuous on [0, §).

X.

We close this section with an example to show that the
conclusion of (8.8) can not be strengthened to assert that tSl
is continuous. Let E be the real line. Let X be translation
to the right at speed one and let X be translation to the left
at speed one. Let h{x) == \x\~1 if x < 0 and h{x) == 1 if
x > 0. Define M( == exp — j A(X,) ds . An elementary
calculation shows that

if Xo ^ 0

if 0 ^ t < — Xo == x

if t^ - X(0) > 0,

and using (5.5)

^
x

x + (
0
^-<

if

if
if
if

Xo = - x < 0

Xo=0
0 ^ ( < Xo
t ^ Xo > 0.

Thus M is continuous and EM == E. On the other hand
^ = E - {0} and § == D^ = inf {t ^ 0: X, = 0}.
Clearly M is continuous on [0, S), but has a discontinuity at
S if ^o > 0- Finally observe that A( == — F I(JC^) dM,
is continuous as it should be according to (8.6 iii). However,
in this example A = A*.

9. Some applications.

In this section we give a few elementary applications of the
results developed in the preceding sections to additive func-
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tionals of X. As before X and X are dual processes.
Suppose M is a MF of X which doesn't vanish on [0,^),
that is, S = ^. Then EM = E and M is exact. Assume that
M is natural. Then by (7.13)

(9.1) P^dy)=^(x,yWy)

for all a ^ 0 and x in E where (JL is a a- finite measure
carried by ^M. According to (3.2), E — &M is polar in this
case, and, of course, \L doesn't charge polar sets. Now define

. ^(M^ .. , .AI= - —— if t < ^
J Q M^_

== A^_ if t ^ ^

It is evident that A is a natural additive functional of X.
Do not confuse this additive functional with the A of sections 7
and 8.

(9.2) PROPOSITION. — For each oc ^ 0 and /*e8+

V^f{x)=fu^y)f(y^{dy).

Proof. — It suffices to prove this when a > 0. First note
that dkt = — (M(_)-1 dMt = M^(M,)-1. If /*e 8^ a standard
calculation using (2.4) yields (see [7])

v^f= UY— VY— P^UY.
F i x x . Then from the above and (8.1)

fV^dz)^ y) = P^ ,̂ y) = u-P^ y)

= f u^x, zWz)^{z, y)

almost everywhere on &M and hence everywhere on E.
Consequently the dual of the uniqueness theorem (7.6) implies
that U^, dz) = u^x, Z)[L (<fa), proving (9.2).

Using the above notation let us consider M the dual of M.
Since S === ^ it follows from (6.5) that the regularization of §
is ^. In particular if xe fi^ then § = $ almost surely P^.
Since E — £IM is polar we may consider X as a process on
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&M. However, for notational simplicity, let us assume that
EM == E rather than keep track of the inessential polar set
fi - EM. If we define A, = - f (M^_)-1 dM^ it t < t
and A ( = A $ - if t ^ S, then by (8.6 i), A is a NAF of X.
Evidently U^(A/, x) = ̂ {dy^y, x). Thus if < /•, g> = f fgd^L
we have

(9-3) </•, U^>=</*UL g>

f01* y^65^- We call A and A dual additive functionals.
Suppose we begin with a continuous additive functional A

of X, and assume that t ->• A( is finite on [0, ^). Then
M( = e~^t is a continuous MF of X which doesn't vanish on
[0,^) and

A,- - ̂  (M^.)-i dM^ = - ̂  (MJ-i dM,

In this case t -> M^ is continuous on [0, t) by (8.6 ii) recall
that we are assuming ^ = E so that § = $. But then A
is continuous and finite on [0, $). Clearly A( = — log ]M(
in this situation. The following proposition summarizes this
discussion. We write A^(X) for the class of continuous
additive functionals of X which are finite on [0, ^).

(9.4) PROPOSITION. — Let AeA^X). Then there exists a
unique a-finite measure (JL not charging semipolar sets and a
unique A e A^X) -- more precisely A is in A^Xj fij where
^[ ̂  denotes the restriction of X to &M — 5^cA ^a(

U ,̂ dt/) = ̂ (.r, i/)^(rfy); V^dy, x) = \L{dy}u^y, x).

Proposition 9.4 has been obtained earlier by Revuz [9]
using different methods. See [2] for earlier work. Revuz
actually characterized the measures p. arising in (9.4).

We will end this section with an example to show that the
exceptional polar set E — SM can not be eliminated in
general. This is the same example as in Section 8 of [2].
Unfortunately the conclusions drawn from this example in [2]
are not necessarily valid because the description of the fine
topology for X on page 151 of [2] is incorrect.
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Let E be the real line and S be Lebesgue measure. Let X
be the (increasing) stable subordinator of index 1/2 and JC be
the corresponding decreasing stable process of index 1/2. The
potential kernel is given by

/ \ {c(u — x)~112 v > xi i l ^ r ii\ —— ) 'v ' u^[^y y ) — )n ^(0 y ^ x

where c is a positive constant. Let h{x) ==1 if x ^ 0 and
h{x) = (- x)-112 if x < 0. Define A, = f h{X,) ds, If T,
is the hitting time of [&, oo) and x < &, then

E^AT,} =f^ u{x, y)h{y) dy < oo,

and since T^ ^ oo as b -> oo it follows that A( is finite.
Thus A e A^X) and obviously the measure [L in (9.4) is
given by ^{dy) == h(y) dy. Let A( == J A(X^) ds and
T == inf { t : A( == oo }. Then according to (5.5),

M, = l^{t)e-\

The same calculation as above shows that P^T == oo) = 1
if x + 0, but P°(t = 0) = 1. Consequently E -- ]&M = {0}
and A is the dual of A. Therefore the exceptional polar set
can not be eliminated in (9.4).
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