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INFINITELY DIVISIBLE PROCESSES
AND THEIR POTENTIAL THEORY
(First Part) ()

by Sidney C. PORT and Charles J. STONE (*)

1. Introduction.

Let & be a locally compact, non-compact, second coun-
table Abelian group. An infinitely divisible (i.d.) process X,
on (& 1is a spatially homogeneous standard Markov process
having statesin . We will show that associated with every
such process is a corresponding potential theory that yields
definitive results on the asymptotic behavior of the process
in both space and time.

Our results are stated and proved in the general context
of an 1.d. process on an arbitrary second countable locally
compact Abelian group. Most of these results are new when
applied to and 1.d. process on Euclidean space.

The potential theory we develop for i1.d. processes, when
applied to Brownian processes (a particular family of 1.d.
processes), yields that of classical Newtonian potentials for
Brownian motion processes on R? d > 3 and that of loga-
rithmic potentials for planar Brownian motion. We may there-
fore view our potential theoretic results as an extension of
these classical results to the more general setting of i.d.
processes. In our development, both probabilistic and potential

1) The second part will be published in vol. 21, 3.
P p
(3) The preparation of this paper was sponsored in part by NSF Grant GP-8049.
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theoretic, we have been guided on the one hand by the known
facts due to Doob, Hunt and Kac about Brownian motion
and to Port about stable processes and on the other hand by
our previous general results on random walks, which were
based in part on earlier work of Spitzer, Kesten, and Ornstein.

Basic notation and concepts used throughout this paper
are listed 1n § 2. The reader should refer to this section while
reading the introduction as the need arises.

Given any continuous convolution semi-group u' of pro-
bability measures on (& a fundamental theorem (see [2]
Chapter I, § 9) on the construction of Markov processes assures
us that there 1s an 1.d. process X, such that

P(X,eA) = u(A — 2).

An i.d. process is called non-singular if for some ¢t > 0, p!
has a non-trivial absolutely continuous (with respect to Haar
measure) component. Otherwise the process is called singular.
As we shall see, the strongest possible results are usually valid
for non-singular processes. .

A point ze® 1s called possible if for each open neigh-
borhood N of 0 thereisa ¢ > 0 such that p{N + z) > 0.
The collection X of all possible points is a closed sub semi-
group of &. Throughout this paper we assume that the closed
group generated by X i1s &. This assumption entails no
loss in generality and is essential to the proper formulation
of our results.

The process is called recurrent if

Glz, A) = [ Pi(z, A) ds =

for all non-empty open sets A and all points z e @&. Otherwise
the process is called transient. For transient processes
G(z, A) < © for all ze® and all relatively compact sets
A. Every i.d. process is either transient of recurrent, and for
any recurrent process X = (. These details can be found
m § 4. .

The i.d. process X, = — X, 1is called the dual process
(to X,). Quantities referring to this process are prefixed
with co-.

In § 3 we gather together various facts of a technical nature
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that are used throughout the remainder of the paper. Some of
these are of intrinsic interest.

Section 4, as mentioned above, gives the details of the
classification of an i.d. process as transient or recurrent.

In § 5 we discuss the periodicities of the process and prove
some ratio limit theorems. These theorems take their nicest
form when the process satisfies

Condition 1. — For some compact set C

llm sup N = 1.

Condition 1 is necessarily satisfied for recurrent processes. It
is convenient to let ®* denote the functions in ® (bounded,
measurable functions having compact support) if the process
is non-singular and the functions in C, (continuous with
compact support) otherwise. In Theorem 5.3 we suppose
that Condition 1 holds and let fe®* and ge®* with

0+ J(g j&, ) dz. We show that

hm/“P7@>* J(f)
b [ Peg(z) J(8)

or

hmPP ds _ J(f)
o [TPrga) do I8)

according as the process is transient or recurrent.

For a measurable set B let Tg =1inf {¢t > 0: X,e B} (= o
if no such t) denote the first hitting time of B. In § 6 we
show that to each B and A > 0 there i1s a unique Radon

measure ) supported on the closure B of B such that
E, () dz = uhGH (da).

The measure p) is called the A-capacitory measure of B

and its total mass CX(B) is called the A-capacity of B. The

correspondlng quantities ) and C)‘(B) are called the co-A-

capacitory measure and co-A-capacity of B. The quantity

C*(*) is a Choquet capacity on the Borel sets having the addi-

tional properties CMB + z) = C*B) and C*— B) = C}B).
9
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For any Borel set B, CAB) = CAB). We call a Borel set B
essentially polar if P,(Ts < ) =0 a.e. and essentially co-

polar if P,(Ts < ) =0 a.e. The set B is essentially polar
if and only if C*B) =0 for some (and hence all) A > 0.
On the other hand if C*B) > 0 and £ = @, then

P, (Tg < w0) >0

a.e. = and, in the non-singular case, for all z.

The A-capacity theory developed in § 6 is applied in § 7
to investigate when a one point set is essentially polar. We
show that one point sets are not essentially polar if and only
if G*0, dr) has a bounded density and moreover if this is
the case then a point a is regular for {a} if and only if G*(0, dz)
has a bounded continuous density. We apply these results
to processes on R? and prove the result (due to Kesten)
that one point sets are essentially polar whenever d > 2.
We also show that continuous paths having bounded variation
are also essentially polar when d > 3.

In § 8 we show that if B 1is a Borel set, then either
P,(Tg < ©) =1 a.e. z or lim P,(X.eB forsome = > ¢)=10

t>o0

a.e. Sets of the first type are called recurrent sets while those
of the latter type are called transient sets. For a recurrent
process every non-essentially polar set is a recurrent set. For
transient processes a set can be of either type but BeB (the
relatively compact Borel sets) is both transient and co-tran-
sient. One of the most important results about co-transient
sets is that associated with each such set is a unique Radon

measure pp supported on B such that
P (Ts < ©) dz = usG (dz).

The measure pp is called the equilibrium measure or capaci-
tory measure of B; its total mass C(B) is called the capacity
of B and C(B) < oo whenever B eB. In addition, C(B) =0
if and only if B is essentially polar. The measure wg can be
obtained as the vague limit of the measures u} as A |0
and also as the vague limit of the measures

1 %

in (d2) = - [Balo) — PBa(a)] da,
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where ®g(x) = P,(Ts < ®). The measures p, have the
common mass C(B). The set function C(¢) is a Choquet
capacity on the relatively compact sets and C(B) = C(B)
for such sets. For non-relatively compact sets G(B) = C(B)
whenever B is both transient and co-transient.

Section 9 is of a technical nature. The class $, consists
of those Be$ with non-empty interior having the property
P,(Tg =Ts) =1 a.e. z. In this section we show that func-
tions such as

Hef(2) = E,[f(Xx,); Ts < ] and Gof(z) = E.[ [ f(X,)dt]

are continuous for a.e. z when Be®, and feC, These

results are needed for the work in later sections. We also show

that sets with a nice boundary in R? are in ®,. For an

arbitrary & we show that given any relatively compact
set B we can find K>B, K compact and Ke®,.

A transient 1.d. process is said to be type I if im Gf(z) =0
Z>

for every bounded measurable function f having compact
support. It is called type Il otherwise. In § 10 we first esta-
blish the renewal theorem. According to this theorem, the
process i1s type II only if G =ReH or G =ZeH,
where H is compact. We suppose that & = ReH or
® = Zo H, Haar measure on & being chosen as the direct
product of normalized Haar measure on H and Lebesgue
measure on R or counting measure on Z. We let ¢ denote
the projection from & to R or Z. We say that z - +
or x> — o according as ¢(z) > 4+ © or ¢(z) > — .
With this description, the process is type Il transient if and
only if ¢(X,) has finite non-zero mean m. In the type II
case if, say, m > 0, then for fe ®*

lim Gf(z) =0 and  lim Gf(z) = 3.

z>—0 z>+0o m

Most of Section 10 1s devoted to establishing the asymptotic
behavior of Hgf(z) for a type II process. Suppose m > 0.
Then C(B) < m for any co-transient set B and C(B) =m
for any co-transient recurrent set B. In addition, for any

¢ € C,, the smoothed hitting measure /é) dy o(y)Hs(z 4y, *)
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converges strongly to the measure m™'J(p)up as z - — oo.
These smoothed results are the best possible for arbitrary
Borel sets and arbitrary transient type II processes. Sharper,
unsmoothed, results are obtained for special sets. For example,
if Be®,, then Hg(z, *) converges weakly to m™py as
z - — o and in the non-singular case the measure Hp(z, *)
converges strongly to m™'up for any Be®.
For a Borel set B set

En(t, A) = j’é P,(Ts < t, Xy, e A) do

and Eg(t) = Eg(t, B). In Section 11 we show that for a tran-
sient process

lim [Eg(t + h, A) — Ep(t, A)] = hus(A)

t>o0

forany Ae® and co-transient set B. In addition, for such
sets,

Jo Po(Ts < @, Xr, & A)P,(Ts = ) do = tun(A).
For a transient set B and any Borel set A
Jo Po(Ws < t, Xw, e A) do = tfin(A),
where Wy, the last hitting time of B, is undefined on
[Ty = 0] and defined on [Ty < ] by
Wi =sup {t > 0: X,eB}.
Sections 12-14 are concerned with the asymptotic behavior
o PHf, E.[f(Xw,); Wi > ¢, Ts < ©]

and
E.[f(Xg,);t < Ty < 0]

for large ¢t when X, is a transient process satisfying Condi-
tion 1 and B is a relatively compact set. Let geC,, J(g) =1,

and set r(t) = ﬂw (g, Pg) ds. We show that if feC, and
Be®, then

PHaf(z) ~ r(t)(es, )
Ez[f(an_); Ws > 2 Ts < OO] ~ r(t)(ﬁn, f)

and
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For non-singular processes these results hold for any Be®
and any fe®. For singular processes we obtain results of
this type for sets in % and functions fe ® if we first smooth
out on x.

A transient process is called strongly transient if

ST r(t) dt < oo,

It 1s called weakly transient if f t) dt = . For strongly
transient processes

J E.[ ;0 < Te < ] dt = GyHgf ()
and
lim [Es(t, A) — tus(A)] = f{ P.(Ts < 0)Hu(z, A) do

forany Be®, Ae® and fe®. For weakly transient pro-
cesses

S Ef(Xe); 7 < To < 0] de ~ ([ r(x) dv) (us, f)
and
[En(t; A) — tun(A)] ~ ([ r(x) dx) C(B)us(A)

forsets B in %,, functions feC, and sets A such that
up(|9A]) = 0. For non-singular processes we may enlarge
the class of sets and functions for which these results are valid.
If the process satisfies Condition 1 and also

sup(r(t)[r(2)) < o,

then these results can be strengthened (by omitting the inte-
gration on ¢ in the first result). Examples show however
that in general these stronger results need not be true.

For an arbitrary transient 1.d. process examples show that in
general for f, geC, and J(g) # 0, theratios Gf(zx)/Gg(x)
need not have a limit as x — c. In Section 15 we first show
that these ratio’s do have a limit if one goes to infinity along
the path of the dual process. More precisely we show that for

all ze®,
P, [lim Zl=2d — 0] — 4,

= Gg(— X,)  J(g)
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This result is used to show that for any Be®, and feC,

P, [lim E_x[f(Xe)|Ts < 0] = () )] —1

o C(B)
and for geC, J(g ) # 0,
Gg
P [lim GRS = T Jo PoTo = ) 1) da] = 1.

We also show that results of this type for arbitrary relatively
compact sets hold provided that we first smooth out on the
initial point — X,. We also show that for any B € B and
sets A and C in B such that |dA] =|oC] =0 and
[C] > 0,

GBxA+X) [A| _
P[MGO C+X) |C|P(T )]_1'

Let {(0) denote the characteristic function of the distri-
bution of X, when X, = 0. In Section 16 we will show that
there 1s a continuous function log {1(6) which vanishes only
at 6 = 0 and 1s such that

aie) =es &, >0 and 6e@.

We will show that the process is transient or recurrent accor-

ding as
Jo < 1 > o
log .(6)

converges or diverges for a compact neighborhood Q of the
origin of @©.

In Section 17-22 the process X, is assumed to be recurrent.
In Section 17 we define a collection F of integrable functions
whose Fourier transforms have compact support and which
satisfy certain other conditions (described at the beginning
of Section 17). Properties of this family of functions were
developed in [7]. We let 3 =3 in general and ¥ =
in the non-singular case. For suitable positive constants
¢, A > 0, operators A* are defined by

Xf = () — OF
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We will show that, for fe d*, AMf has a finite limit as A | 0.
This limit defines the recurrent potential operator A acting
on J*. Various properties of the operators A* and A are
obtained in this section. In stating and proving these results
we must distinguish between type I and type II recurrent
processes. A recurrent process can be type II only if

&==ReH or & ~ZoH.

Suppose & = ReH or & =Ze H, Haar measure and ¢
being chosen as indicated above in our discussion of type II
transient processes investigated in Section 10. Then the recur-
rent process is type II if and only if ¢(X;) has mean 0 and
finite variance o®2.

In Section 18 we introduce a classification of the sets in %
corresponding to a recurrent process. %, denotes the sets
in % which are not essentially polar. %, denotes the sets
in $ such that Gg(z, A) is locally integrable for all compact
sets A. %3 denotes those sets in # such that Gg(z, A) is
bounded in z for all compact sets A. Finally %, denotes,
as discussed above, those sets in % having a non-empty
interior and such that P, (Tg=Ts) =1 for almost all
ze®. Then B2%,2B,2%8;2%,. In the non-singular case
$, = B3. We construct an example of a process such that
some set in $ having positive measure is not in $,. Such
a set is not essentially polar so that in general $; need not
equal %,. We obtain a basic identity for sets B e $,:

Af(z) — HpAf(z) = — Gf(2) + Ln(2)J(f)

for feF and ze@®. Here L is non-negative, vanishes
on B, and is locally integrable. If B e $;, then Lg 1slocally
bounded. In the type Il case we set

L; - LB + O‘z(q) _— HB“I))'

Using the above basic identity we determine the asymptotic
behavior of Ggf,(zr) as y—> ©. For Be®; and fe®*

lim Gof,(z) = Lo(@)J(f), <G,

Y>>0

lim Gofy(o) = Li(@I(f), =<®,

Y>+ow

or
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according as the process 1s type I or type II. For Be,®
similar results hold if we smooth out on =z.

In Section 19 we investigate the asymptotic behavior of
Gef(z) and Hsf(z) as z— . In stating these results it is
convenient to let #} = %, in the non-singular case and %,
otherwise. If Be®] and fe ®* then

lim Gyf(z) = (f, Lo)

z> 0

or _

lim Gaf(2) = (f, L)
according as the process 1s type I or type II. Similar results
hold for B e ®, if we smooth out on z. There is an equili-

brium probability measure pp supported by B associated
with every Be®,. In the type Il case there are also two
auxiliary probability measures p§ and uy such that
wp = (ug + ©5)/2. I Be®B] and fe®* then

lim Haf(@) = (f, ua)

lim Haf(2) = (f, u3)
according as the process 1s type I or type II. Similar results
hold for Be®, if we smooth out on z.

In Section 20 we show that there is a real-valued « Robin’s
constant » k(B) < oo associated with all sets in %. Moreover
k(B) > — o if and only if Be®%, In particular, in the
non-singular case k(B) > — o if and only if B is not
essentially polar. The construction described above shows
that there are singular processes having sets Be% which
are not essentially polar but have — oo for their Robin’s
constant. The Robin’s constant is related to the other potential
theoretic quantities. For instance, in the type I case for

Be® and fed*
lim (Af(x) — La(2)J(f)) = k(B)J(f)

>

and

lim Gef (2) = (f, Ls) = — k(B)J(f) + (Af, us).

&>

The Robin’s constant k(B) depends on B in a nice way. Let
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Be® and let B,e®, n > 1, be such that B,| and

P.(Ts,}Ts as n—> o0)=1 ae ze@®.
Then
lim k(B,) = k(B).
We also show that k(B) defines a Choquet capacity on %
which is translation invariant and such that

k(B) = k(— B) = k(B).

In Section 21 we investigate the time dependent behavior
of the process (some of the results stated here in this introduc-
tion are not proved until Section 22 in the type II case). We
show that, for Be®,, Ep(t 4 s)/Ep(t) > 1 as t—> oo and
for B and C both in %,, Eg(¢)/Eg(t) > 1 as ¢t—> oo. If
Be%,, then
lim [P, s) ds/Ep(t) = Ly(2)
and if Be®, similar results hold if we smooth out on z.
In the type I case we show that for Be®] and fe ®*

lim [ B, : To > s) ds/Eg(t) = Lg(2)(f, vs).

t>o0

(No corresponding results are obtained in general for sets B
in B, or even in %;). We obtain a formula for pp, Be %y,
namely

Jo Lo()Py(Ts < t, Xnye A) dy = tug(A), Ae8.
-We show that for Be®,

. Eg(¢, A) ‘
R o Aed.
lim Ex(t) ua(A), Ae
Finally we show that for a suitable positive function g(t),
t >0,
llmj (Eq(s) — Exg(s)) ds/g(t) = k(C) — k(B)
whenever B and C are both'in # and Ak(B) and k(C)
are not both — co.
A recurrent process satisfies Condition 2 if there 1s a ge J*,
J(g) =1, such that for some «, 1 < « < 2, and some
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slowly varying function H, G*g(xz) ~ A 1H/*H(1/A), uni-
formly in = on compacts. This condition is satisfied for every
type II process with « =2 and H the constant function
(2/r)26. On R or Z this condition is satisfied for any
process in the domain of attraction of a stable law with
exponent «. In Section 22 we show that considerable streng-
thenings of the results in Section 21 are possible for processes
satisfying this condition. As examples of these we show that
for every type 1I process

lim [E(t + h, A) — Eu(t, A) IVt = h(2/n)20up(A)

for any Be®%, and any Borel set A, and that for any set
Be®%; and fe®]

lim E,[f(Xx,); Ts > ] Vt
= (2/m)"%(c [2)[p5(A) L5 (2) + us(A)L(2)].
For any process satisfying Condition 2

[Ec(t) — Ex(t)] ~ [k(C) —

1 +2/a

Ol )
for Ce B, and B e R. Inparticular, for every type II process,
lim [E¢(t) — Eg(t)] = 26%[k(C) — k(B)].

We also show in this section that if the process 1s type II,
then for Be &%,

Jogr Polt < To < ¢ + b, Xe,e A) do ~ h(o[2)(2/m) 2u5(A)i e,

Let Qif(z) = E,[f(Xr,); Ts > t]. A function f is said to
be essentially Q% invariant if for each ¢, Qtf =f a.e. If

Lf(x) = f(z) for all z, then f is said to be Q} invariant.
In Section 23 we first show that every bounded essentially
Qb invariant function is of the form oP,(Ts = o) for
some constant «. For recurrent processes we show that Lg
(and Lj in the type II case) are essentially Qb invariant
functions for sets B e ®,. For setsin %®; the only Qf inva-
riant functions that are locally bounded and bounded from
below are multiples of L (and linear combinations of Lf
and Lz in the type II case).
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Let B be a closed set, not necessarily relatively compact.
The process stopped on B has transition operator sP* given

by
sP'f(z) = Qbf(2) + Ez[f(Xry); T < t].

We define the operator -Ap as follows. The domain D(Ag)
consists of all measurable functions f such that

cup sup LPF@) = f@)] _

0<t<1 xe@ t

sPf(2) — f(2)
t

" and

lim exists.

tvo

For feD(Ap) set |
Agf(z) = lim alif@t:fﬂ.

tvo

In partlcular oP! = P!, and we set Ap = A. In Section 24
we investigate Poisson’s equation for A and Ap. Let heCe.
Then for transient processes the only continuous solutions of
Af = — h that are bounded from below are f= Gh -+ r
where r is bounded from below and Ar = 0. In particular
the only bounded solutions are f= Gh + B. For recurrent
processes in general there are no such solutions. For non-
singular processes there is such a solution if and only if J(k) < 0
and in that case the only such solutions are f= — Ah 4 B
in the type I case and f= — Ak — (aJ (h)/c?)y + B in the
type Il case where |« < 1. Suppose that B # g. Let
C,B’) be the continuous functions having compact support
contained in B’. For ¢ a Borel function that is bounded on
B we show that the only bounded solutions of the equation
system Agf= —h, f=¢ on B, heC/(B’) are

f(2) = Guh(z) + Hap(2) + aP,(Ta = o)

for non-singular processes and in the general case every solution
coincides a.e. with such a function. In general there are no
continuous solutions because the functions Ggh, Hpzp and
P,(Ts = o) need have no continuity properties. We do show
however that these functions always possess the following
stochastic regularity properties: Let <, be stopping times
such that ©,} Ty a.s. P,. Then ass. P, Hpop(X;,) = o(Xr,)
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on [T < o], Px (Tsg=oo)—>1 on [Ts= ], and
Ggh(X:,) = 0. A measurable function f is said to be harmo-
nic on the complement B’ of a closed set B if for every
open set U having compact closure contained in B’,

(@) = E,[f(Xr,)].

A harmonic function is said to be stochastically regular if for
any sequence <, of stopping times t,} Ty as. P, it is
true that f(X;)— f(Xy,) as. P, on [Ty < ] and for
some constant «, f(X;)—>a« as. P, on [Ts= 0]. We
show that every function f of the form

f(z) = Hipe(2) + «P,(Tp = o)

for ¢ bounded on B is a stochastically regular harmonic
function and conversely every bounded stochastically regular
harmonic function is of this form. Using results from § 25
we show that if B 1is a compact set such that

P.(Xr,eB|Ty < ©) =1 forall zeB,

then for ¢ a bounded function that is continuous at each
point of BT, the only bounded harmonic functions f on B’
such that lim f(z) = ¢(r) are f(z) = Hgo(z) 4+ o«P,(Ts = ).

In Section 25 we show that for arbitrary Borel sets B the
functions Ggh, Hgep etc., have desirable continuity properties
whenever the 1.d. process 1s a strong Feller process, i.e. when-
ever P'fe C(®) for f a bounded Borel function. Every process
such that X, has a density for each ¢ 1s such a process. For
these processes and for closed sets B we can then find solutions
to the equation system Azf= — h, f=1¢ on B that are
continuous on B’u (B"n(C;) where C, denotes the set of

continuity points of ¢ and B" denotes the regular points
of B.

2. Notation.

In this section we introduce the notation and basic concepts
that will be used throughout this paper.

® will be a fixed locally compact, non-compact Abelian
group. The Borel sets of & are the elements of the minimal
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o-field generated by the open sets. Haar measure on & will
be denoted by |:| or dzx. The phrase almost everywhere
(a.e.) will always be with respect to Haar measure, and the
phrase essentially will mean except on a set of Haar measure 0.

The complement of a set B will be denoted by B’ or B-.

For a Borel set B, Ty =inf {t > 0: X,e B} (= o if no
such t) and Vy=1nf {t > 0: X,eB} (= o if no such ).
For Ts < o we define Wy=sup {t > 0: X,eB}. If
Ts = oo the random time Wj; is undefined.

A function [ defined on & 1is called universally measu-
rable if for any finite measure y on (& there are Borel
functions f; < f; such that f; < f < f, and

[ (@) — fu(a)) dz = 0.

These functions are needed because in general some of the
quantities we deal with e.g. E,[f(Xy,); Ts < ©] for B a
Borel set and f a Borel function are not Borel functions but
only universally measurable. We will state and prove our
results for Borel functions. In a few instances it will be neces-
sary to apply some of these results to universally measurable
functions. In the places where this occurs no difficulty arises
and we shall just do so without further explicit mention.

In our work we will need various classes of functions.
These are

® : All bounded Borel functions having compact support.
(The support of f 1s {z: f(z) # 0}.)

C(®): All bounded continuous function on .

Co(®): All continuous functions vanishing at 0.

C(®): All continuous functions having compact support.

F: A certain collection of integrable functions defined in
Section 16 whose Fourier transforms have compact support
and satisfy some additional technical requirements.

®* = ® 1if the process 1s non-singular,
C, 1if the process is singular.
® if the process is non-singular,
F  1if the process is singular.

*
F

i

If x 1s any of the above class of functions y* denotes the
collection of non-negative functions in y.
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We introduce the notation

A f(z) dz
= Jo fl2)ela) da
— o fla)u (do)
fy ) =fle —y).
For A > 0 we define operators on bounded Borel functions
or non-negative Borel functions as follows :

Cf(e) = [, e ¥Pflo) de = E, ["f(X
AMf(z) = J(f)c* ka (@ )
where c¢* is an appropriately choosen positive constant
Hif (2) = E,[e72Tsf(Xe,); Ts < 0]
If( x) = E, [e™sf(Xv,); VB < ©]
Gif(@) = B, [ eMf(X
Uif(z) = E. [, e Mf(X )

If any of the above quantities are finite for A =0 we denote
that operator by the same symbol without the 2, e.g.

Hyf(z) = Hif(2).

Other operators we will use are:
bf (2) = E,[f(X,); Ts > 1]
sPf(z) = Qbf(e) + E[f(Xr,); Ts < 1]
RYf(z) = [;” Pf(a) ds

We define

En(t, A) = [y Po(Ts < t, Xr,e A) do
Ex(t) = Ex(t, B)

eb(t, A) = Eg(t + h, A) — Eg(t, A)

es(t) = eb(t, B)

E}(A) = [ eMEg (dt, A) = [, H)(z, A) do
wh(A) = AE}(A
CAB) = uj(B)
Li(z) =2t [)" Py(Tp> t)e™ dt

where ¢* is the constant that enters into the definition of AX.
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Some constants associated with sets are

C(B): The capacity of B. This is defined only for transient
processes (see § 8).

k(B): The Robin’s constant of B. This is defined only
for recurrent processes (see § 20).

k*(B): Constants related to the Robin’s constant for type 11
recurrent processes (see § 20).

wp: The equilibrium measure of B. This is defined for
transient processes in § 8 and for recurrent processes in
§ 19.

ws : Measures supported on B related to the equilibrium
measure for type Il recurrent processes (see § 19).

Lg and Lg: Functions that occur in our study of recurrent
processes (see § 18).

Various classes of Borel sets will be used in our work. These are

%: all relatively compact Borel sets.

$, : all relatively compact sets that are not essentially polar.

$, . all relatively compact set such that Gg(z, A) is locally
integrable for A a compact set.

$s: all relatively compact sets such that Gg(z, A) 1is
bounded for A a compact set.

By: all relatively compact sets having non-empty interior
such that P, (Tg=Ts) =1 a.e. =

$* =% 1n the non-singular case and HB* =%, in the
singular case.

®; = B, in the non-singular case and B; = %, in genearl.

@: all relatively compact sets whose boundaries have
zero Haar measure.

Of all groups &, two particular compactly generated
groups play a distinguished role. These are when & 1is iso-
morphic to either RoH or Ze H, where H 1is a compact
group. In this case we will identify & with either Re H
or ZoH. Let ¢ denote the natural projection of Re H
onto R orof ZoH onto Z. The i.d. process induced on R
or Z 1is the process ¢(X,). If ¢(X,) has finite mean then
EY(X, — Xo) =tm for some constant m. Similarly if
¢(X,) has finite variance then Var ¢(X, — X,) = tc2. We
set &= {z: ¢(z) > 0} and G = {z: {(z) < 0}.
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By lim f(z) = f(0) we mean that given ¢ > 0 we can

find a compact set K such that |f(z) — f(®) < ¢ for
ze¢ K. When & can be identified with either Re H or
ZeH we define lim f(z)=f(+ o) as lim  f(z). We

rTESGE,r> ©

introduce the convention that

Lim, f(z) = (f(4 o) + f(— «))/2,
when & 1s one of our distinguished groups and Lim, = lim,
otherwise. .
The process X, = — X, is called the dual process. Quan-
tities that refer to this process are denoted by ~. For example
the quantity Hgf for the dual process is denoted by Hyf.

The quantity Em[ﬁT“f(X,) dt] for the dual process is denoted

by either E,[ [f(x) dt] or E[[™f(X) dt]. Quantities
that pertain to the dual process are prefixed by co-. For
example the quantity C(B), which is the quantity C(B)
for the dual process, 1s called the co-capacity of B.

A point e @® 1is said to be regular for B if P (Vs =0)=1.
The collection of all regular points of B is denoted by B". The
collection of all co-regular points is denoted by "B.

If vy is a bounded measure then the Fourier transform

2(0) of vy 1s ¢(0) = [;g(ﬁ, x>y (dz) where 0 1s a character
of &. The Fourier transform [ of a function feL;(®) 1is
f(E))z(/:g <0, z>f(z) dz. Haar measure 1s choosen so that

f(a:)=fé<6, x>f(6) d0, whenever [ is continuous and f

1s integrable.

3. Preliminaries.

In this section we will gather together some preliminary
facts of a technical nature that will be used throughout the
sequel.

The transition operator P’ of an 1.d. process has the pro-
perty that P/feC, if feC(,. Consequently, by a fundamental
result in the construction of Markov processes there is a reali-
zation of the process as a standard Markov process. Hence-
forth X, will always denote this realization of the process,
and in the future we will freely use the properties of standard
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processes. For a full discussion of the properties of standard
processes we refer the reader to [2] Chapter. 1.

The dual process to X, 1s the process X,=—X,. It
follows at once that for any two functions f, ge® or any
two non-negative functions that for any ¢ > 0,

(f, P'g) = (8, P),

and thus for any *» > 0 (= 0 also in the transient case) that
(f, G*g) = (g, G*). A slightly deeper duality relation will be
given a shatly. These relations are some of the key tools used
in our development.

The hitting times Ty and Vy are stopping times. An appli-
cation of the strong Markov property (valid for any standard
process) yields the first passage relations

(3.1) G* — HiG* = Gj
and
(3.2) G — MG* = U

These equations are the Laplace transform versions of the
relations

(33) P(X,eA)= ['[P,(Tpeds, X,edy)P (X, cA)

+ P(Tp > ¢, X, € A)
and

(3.4) P(X,eA)= ['LP,(Vyeds, Xy, edyP,(X, A

+ P (Vs > t, X, A)
respectively.

A zero-one law for stopping times (see [2], p. 30) asserts
that P, (Vp=0)=1 or 0. A point x uis called regular for B
if P, (Ve=0)=1. Let B" denote the set of all regular
points of B. It is clear that BcB < B. Our next result
shows that B n (B")° has Haar measure zero.

Prorosition. 3.1. — For any Borel set B and any t >
P, (Ve < t) =P, (Te < t),z¢B, and P, (Ts < t) = P,(Vy <
ae. xeB. In particular, P, (Vy=0)=P,(Tsg=0)=
a.e. zeB. _

Proof. — 1t 1s clear that P (Vy < t) =P, (Tp < t) for
z ¢ B. To establish the last assertion we proceed as follows.

0,
t)
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On the one hand for A > 0 and ¢t > 0,

J. Pta, dy)P(T5 < 1) = P(X,eB forsome
— P, (X;eB for some se(

S @«
-

Al
—
~—
-

and
P, (Ve<t)<P,(X;eB for some se[0, t])<P,(Vsg<it) and
thus for any fe CG¢

(35) [ f(2)P.(Vs<1)do< lim P} (dy)P, (TB<t)

_/;5 < t) da-
On the other hand

JoPHdy)P,(Ts < ) = [ P(Ts < )P*f(y) d
Let K be open, K compact, contain the support of f. Then
Jeo Po(Ts < O)Pf(y) dy < [ f(@)P"(z, K) dz > 0, h > 0

SO
lim [0 P/(Ty < OP(y) dy = [ Py(Ts < 0)f(y) dy.

hvo

Thus from (3.5) and the above computation we see that

S f@P(Vo< ) dz < [ f(2)Po(Ts < ¢) da

< [ f(@) < 1) d,
and thus for any ¢t > 0

S F@P.(Ve < t) do = [ f(2)Po(T5 < ¢) da.
Since feCF is arbitrary P, (Vs < &) =P (Ts < t) a.e.
Prorosition 3.2. — Let B be any Borel set and let fe ®*.
Then P[Ts < t) = P{Vs < t) is continuous on (0, o).

Proof. — Suppose 3t > 0 such that P{Ts=1¢) =¢ > 0.
Then for any 3, 0 < 3 < ¢

e =P(Ty = 1) < [ P (dy)P,(Ts = 3)
= [, P(Ts = 3)P=¥(y) dy,



INFINITELY DIVISIBLE PROCESSES AND THEIR POTENTIAL 177

and thus [ P/(Ty=38) dy >0 forall 3,0 <35 <t Let
K, be relatively compact with union &. Since

JePulTs < ) dy < |K,] < o0
it can only be that
f;n P,(Tg = 38) dy > 0 for countably many & in (0, ¢).

Consequently
J_dy PTy =38) < p S, Py(Ts = 8) dy

can only be positive for countably many & e (0, t) a contra-
diction. Thus Pf(TB =1 =0 forall ¢t >0, as desired.

We are now in a pos1t10n to establish the duality relation
alluled to above.

Prorosition 3.3. — Let B be a Borel set. Then for any two
functions f, ge ®+, and » > 0

(3.6) (f, Ghe) = (8 Gif),

(3.7) (f, HG*g) = (g, H}GM),

(3.8) (f, Usg) = (8, U}f)
and

(3.9) (f, I3G g) = (g, MGH).

Before proving this proposition we point out that it follows
at once from the proposition that it holds for A =0, and for
f, g arbitrary non-negative measurable functions, whenever
the quantities involved are finite. Also, the following holds.

CororLLarY 3.1. — Let f, g be any two non-negative measur-
able functions. Then for any t > 0

(3.40) [ [ f(2)P TB>tXedy)()dx
= [ . g)P(Ts > t, X, « do)f(a) dy

and
@11 [ [ f@)P Wwaw@m
= [ [Le)P (Vs > t, X,edn)f(2) dy.
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Proof of Corollary. — It suffices to prove (3.10) since
P.(Ve >t X,eA)=P,(Ts >t, X,eA), z«Bn(B") and
|IBn(B")| =0. Also (3.10) holds for all non-negative f
and g if and only if it holds for f, ge Ct. But for such f, g

o

both terms in (3.10) are right continuous in ¢ and thus (3.10)
follows from (3.6) by the uniqueness of the Laplace transform.

Proof of Proposition. — The first passage relations show
that (3.6) and (3.7) are equivalent as are (3.8) and (3.9). Since
IBn (B")| =0 it follows that (3.6) and (3.8) are equivalent,
so 1t suffices to establish (3.6). We will first do this for an
open set B. Let B be an open set and let f, ge ®*+. Then
as the paths are right continuous and B 1s open

(342) [ f(@)do [ P(X,eB forall se(0,1),X,=dygly)

zhmj@f )do [_P.(Xya.eBallj,0 << n X edygly)

_lim [ gly)dy [, PyXyneB, allj,0 << nX edo)f(z)

= [L ey dy [(PX,¢B all se(0,1),X, <do)f(a).
Also (again because X, is right continuous and B is open)

[X,¢B all se(0,0)]=[X,eB al sel0,1)],

[X,eB all se(0,1)]=[X,¢«B all se][0,1)]

and
(313) [X,¢B all se][0,1]]

:r:] [5(3¢ Ball Se<0,t—|——i—>]

(314) [X.¢B all se[0,]] \
=\ [X.« Bal Se<0,t+%‘)]'

It now follows from (3.12)-(3.14) that (3.6) holds for B open,
and thus (3.7) also holds for B open. We may rewrite (3.7)

(3.45)  E[feuGrg(Xy,)] = E,[e?hGH(Xa,)]

Now let B be any Borel set. By theorem 10.20 of Chapter 1
of [2] there is a decreasing sequence of open sets B, such
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that Ts, } Tz a.e. P, and TB } T ace. 139. Also
Grg(Xr,) = f e Mf(X,) dt | GMh(Xy,), n > o,

and likewise for G)‘f(XTm). Thus, setting B = B, and passing
to the limit we see that (3.7) holds for all B. Since (3.7) and

(3.6) are equivalent, (3.6) holds for all Borel sets B. This
establishes the proposition.

Another useful relation is the following

Prorosition 3.4. — Let A, B be Borel sets and let A < B.
Then for any fe®t and A > 0

(3.16) Hif(z) = Hy(HYf)(2)
(3.17) Gif = Gif + HRGAf

Proof. — If AcB then T, > Ty so Ty = Ts+ Ti.0r,
Hence

Hif(2) “xf(XrA); Ty < o]

= E { MeExayle ™ af(Xr,); Ta < ©]; Tp < o0}
= Hj(Hif)(=).

In a similar manner

Gif(z) = B, [Taef(X) dt = B, [ eMf(X,) dt
+ E, for e X:) dt = Gif(2)

-+ Ezge“)\TnEx(Tn)[t/o‘TA eMf(X,) dt] g
= G}f () + HEGAf(2).

The following is a useful fact to know.

Prorosition 3.5. — Let B be any relatively compact set.
Then E,Tg < .

Proof. — Let K be a compact set such that B — B c K.
Then for any zeB,

P, (X;eB) = Py(X,e B — 2) < Py(X, e K),
and thus for zeB,

P (X,eB) > Py(X, K.
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Since K 1s compact thereis a #, > 0 such that
Py(X,eK%) =38 >0
and thus inf P, X, eB’) >3 >0. Hence for zeB,
P(Tw < t) > Py(X,eB) > 5 so
sup P(Te > t) < 1—3.

TEB

It easily follows that
sup P(Ty > nt) < (1 — ¥)"

T€B

and thus for any zeB,
E. Ty <

1
y— <

If z¢B then P, (Ty =0)=1 so E, Ty =0.

The following simple estimates are of frequent use.

Prorosition 3.6. — Let B be relatively compact and let
t > 0. Then there is a compact set K, such that

(3.18) P.(Ts < t) < 2P, (X, e K)).
Also there is a compact set K such that for all t > 0,

(3.19) P, <2 [T P(X,eK) ds.

Proof. — Since the paths are bounded we can choose K,

compact such that P,/(X;eK, for s <1t) > —;— for yeB
and thus

P(X,cK) > [* [ P(Tyeds, X, cdy)P,(X, e K)

> <%> P.(Ts < t).

Similarly we can choose K compact such that

P(X,eK for 0<s<1)>—§- for ye<B
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and thus
St P(X,eK) d _
/ fH—l Te < 5, X, e dy)Py(Xi1-, € K) ds

> <?> P.(Ts < t).

When the resolvant G*(0, dz) is absolutely continuous with
respect to Haar measure then we expect that the first passage
relations should hold for nice versions of the densities of
GMz, dy) and G)(z, dy). We will spell out these details in the
next five propositions Throughout this discussion A > 0 in
general and A > 0 1n the transient case.

Recall that a non-negative function f is called A-excessive

if eMPf<f and eNPULf, t40.

Prorosition 3.7. — If GM0, dz) < dx then \-excessive
functions are lower semi-continuous.

Proof. — Let gMx) be a density of G*O0, dx). Then if

¢ 1is bounded and measurable G¢(z) is continuous. Indeed,

|Gro(x + z5) — Gho(zo)l < lol. [, 18}y — 2) — gy)| dy

and translations are continuous in the L,;(®) norm. The
assertion now follows from this fact and the fact that given f
A-excessive there i1s a sequence ¢, of bounded measurable
functions such that G*¢, 4} f. (See [2] Chapter 2, Proposition
2.6 and Exercise 2.19.)

Prorosition 3.8. — Let GM0, dx) < dx. If f and g are
A-excessive and = g a.e. then f(x) = g(x) for all z. Simi-
larly, if f > g a.e. then f(z) > glz) for all x.

Proof. — It follows at once from the resolvent equation
that GF(0, dz) < dz for all B > 0. The assertions follow
at once from this and the fact that if f is A-excessive then

BGHHFL f, B — co.

ProrosiTion 3.9. — Assume GO, dx) < dxv. Then there
is a version gMz) of the density of GO, dx) such that
gy — =) dy = GMz, dy) and gMy — z) is A-excessive in =,
A-co-excessive in y and gMz) = gh— =z).
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Proof. — By Theorem 1.4 of Chapter 6 of [2] we know that
there is a function u*(z, y) such that
GNz, dy) = uMz, y) dy, Gy, dz) = wX(=, y) da,

and uMz, y) is A-excessive in zx and A-co-excessive in y.
To establish the proposition we need only show that
uMz, y) = u*0, y — z) for all # and y. To this end note
that u*(z,y) = u*(0,y — z) a.e.y and u(z,y) = ur(z — y,0)
a.e. z. Thus
.[é ub(z + a, 2)uMz, y + a) dz
— [ ub — 7 — auMz — y —
= v/@ uf(0,z —z — a)urMz — y — a, 0) dz
= /(:5 ub(z, t)urt, y) dt.
Since u*(., y) is r-excessive it now follows from the above

by multiplying through by B and then taking the limit as
B — oo that

ula + a, y + a) = uM=, y).
Thus ghz) = w0, x) is the required density.
Note. — In view of Proposition 3.8 g*x) is the unique
density with the stipulated properties.

Prorosition 3.10. — Assume GH0, dz) < dz. Then for
any Borel set B

Jo My(w, da)ghy — 2) = [ Tij(y, dz)gH(z — 2).
Proof. — This 1s Theorem 1.16 of Chapter VI of [2].

Prorosition 3.11. — Assume G*0, dz) < dz and let B
be any Borel set. Then U}(z, dy) has a density u)(z, y) such
that for all z and vy,

(3.20) iz, y) = @y, )

(3.21) My —a) — 5 M}z, dz2)ghly — z) = uh(=, y).
Moreover ul(z,y) = 0 if either x is a regular point or y is a
co-regular point of B.

Proof. — It is clear that for each fixed z (3.21) holds for
a.e. y. We can define u}(z, .) by the left hand side provided
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we know that it i1s non-negative for all y. Thus we must
show that for all y

(3.22) gy — =) fl'[ x, dz)gMy — 2)
= 5 My, da)gz — y).

We know that (3.22) holds for a.e. y. The function gy — x)
1s A-co-excessive 1n y. Also it 1s easily checked that for any

measure @ the function /é gMz — y)u (dz) is A-co-excessive.
Thus both sides of (3.22) are A-co-excessive functions of y.
The desired conclusion now follows from Proposition 3.8.
Now if z 1s regular for B, then II}(z, dz) is the unit mass
at z soit follows from (3.21) that u}(z, y) = 0. By Proposition
3.10 and the fact that II}{y, dz) is the unit mass at y for y
a co-regular point of B we see that u)(z, y) =0 for y a
co-regular point. Finally (3.20) follows from (3.21) and Propo-
sition 3.10.

When the process X, 1s non-singular we know that there
isa t, > 0 and a non-trivial density p,(x) such that

P%(0, dz) = p, () dz + QY(0, dx).
Q*+(0, ®) < QY0, 8)Q (0, S)

it follows that QY0, &) 1s decreasing. Since Q%0, &) < 1
it follows that Q%(0, &) < [Q%0, &)]*{ 0 and thus

(3.23) lim [ p(2) do = 1.

t>

Since

4. Classification of an i.d. process.

In this section we will characterize an i.d. process as being
recurrent or transient analogous to the corresponding classi-
fication for a random walk.

DériniTioN 4.1. — A point xe® s called possible if for
each neighborhood N of 0 there is a t >0 such that

Py(X,e N 4 z) > 0. We denote the set of all possible points
by Z.
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Prorosition 4.1. — The set T is a closed sub-semi-group

of &.

Proof. — Let zeZX’. Then there i1s a neighborhood N
of 0 such that Py(X,e N 4+ 2) =0 for all ¢ > 0. Let N,
be a neighborhood of 0 such that N; + N;cN and let
ye N, + z. Then for any ¢t > 0,

Po(X,eN; +y) < Po(X,eN + z) = 0,

and thus yeZXZ’. Thus N; +zeZX’ so X' is open. To see
that X 1is a semi-group let N be a neighborhood of 0 and
let N; be a neighborhood of 0 such that N; — N; e N.
Then

PO(Xt+sE N+ 24 y)
>
>

Jxyi0 Po(Xi € dz)Po(X,e N + 2 + y — 2)
Py(X, e N; 4+ z)Po(X, e N; + y).

Thus if z any yeX sois =+ y.

Basic Assumption. Throughout this paper we assume that
the group generated by X ts . This entails no loss in gene-
rality and is essential to the proper formulation of our results.

Prorosition 4.2. — If for some relatively compact open
neighborhood N of 0, G(0, N) < o, then G(z, K) < ©
for all x and all compact sets K. On the other hand if G(0, N) = oo
for all open neighborhoods of 0, then G(0, N 4 z) = ©
for all zeX.

Proof. — Suppose that G(0, N) < oo for an open neigh-
borhood N of 0. Let N; be an open neighborhood of 0

such that N, — N; ¢ N, where N; is the closure of N;.
Then for any ze@®,

G(z, Ny) = [o Hy,(, dz)G(z, Ny) < SUP Gz, Ny)
< GO, N, — Ny) < G(0, N) < oo.
Given any compact set K we can cover K by finitely many
of the open sets N; — 2. Hence G(z, K) < o forall ze@®

and all compact sets K.
Suppose now that G(0, N) = o for all open neighborhoods
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of 0. Let zeX. Then for any neighborhood N; of 0,
Py(Ty, < ©) > 0. Let N; be an open neighborhood of 0

such that N; — N; ¢ N. Then

G(0, N+ 2) > [ Hu,(0, dy)G(0, N + 2 — y)
> Py(Typ < ) iii GO, N + z — y)
YEN+T
> Py(Tyew < ©)G(0, Ny).

Thus G(0, N 4 z) = oo.

DeriniTioNn 4.2. — An i.d. process is called transient if
G(0, N) < oo for some relatively compact open neighborhood
of 0. Otherwise the process is called recurrent.

It follows from Proposition 4.2 that this is a disjunct classi-
fication. For general transient processes X need not be a
group. However for recurrent processes X 1s always a group,
and under our basic assumption, X = @.

Prorosition 4.3. — For a recurrent process £ =& and
G(z, K) = © a.e. & whenever |K| > 0. Moreover, a process
is recurrent if and only if for every open neighborhood N of 0
and every ze®, P (X,eN for some s>t =1 for all
t> 0.

Proof. — Let ® denote the collection of all points ze®,
such that Py(X;eN +x for some s > t) =1, for all
neighborhoods N of 0 and all ¢ > 0. We claim that if
zeZ and yeR then y — xeR. To see this suppose it is
false. There then exists a ¢, > 0 and a neighborhood N of 0
such that Py (X,e¢N + (y —z)) for all s > ¢) > 0. Let
N, be an open neighborhood of 0 such that N; — N; c N.
Now if X,eN;,+2z and X, — X,¢N+ (y —2z) then
X,¢N; +y. Hence if we choose ¢ such that

Po(X,eN; +2) >0
we see that
Po(X;e¢N; +y for all s > ¢, +¢)
> Py(X;e Ny, + 2)P(X;, — X, e N+ (y —z) forall s > t 4 ¢,)
= Py(X;eN; + 2)Po(X; e N+ (y — z) forall s > ¢) > 0.

This contradicts the fact that ye®. From this fact it follows
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at once that either R =g orif & # ¢ then R is a group
and ® = X. Indeed, if R # ¢, then we see that if ye®
so1s y—y=0. Hence also —y=0—yeR, and thus
for any zeX, + — 0=2e®R. Thus we have shown that
either T =R or R =g

Suppose that X, is recurrent. Let N be a neighborhood
of 0 and choose the sub neighborhood N; ¢ N such that
N; + N; e N. Since for zeN,

P(X;eN forall s < h)> Py(X,eN; forall s < h)
and P(lm X;= X;) =1 we can choose h > 0 so that

)
sy —_—
P(X,eN forall s<h) =3 >0 forall zeN,. But then
for (n —1)h < t < nh,

Py(X,,eN) > /1;‘ Py(X,edy)P (X e N) > Py(X,e N;)3.

Hence

Thus the random walk X,,, n > 0, is recurrent, and by a
well-known result on random walks Py(X,, € N for some
n>ny) =1 for all n,. But then Py(X,eN for some
t > 1) =1 for all ¢ and consequently 0e®R, so R # g,
and therefore R = Z.

Now suppose that & = X andlet N and N; be as before.
Define stopping times T, < T, < --- as follows:

T]_ :inf {t > 0: X‘ENI}
and
T, —inf{t>T,+h:X,eN,}.

Since P,(X;eN; for some s> ¢)=1 for all ye® and
all ¢ > 0 it easily follows that

Py(X,eN, forsome s>T,+h) =1

for all n. Now

Eol [0 1x(X,) ds|X(T,) = y| = [ P(X, < N) ds > h;

T’l
and thus
Eof /7" 1x(X.) ds| > h3Py(T, < o) = h.

Tn
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Hence

GO, N) > 3 [Eo [ 1xX,) ds] > 3 b8 = w

n=1 Ta n=1

and thus the process X, 1s recurrent.
Finally suppose K 1is compact and |[K| > 0. Then for
any compact set C, |C|] > 0,

(4.1) [ G, K) do = f@ G(0, dy) [, 1xly + ) da.

Since f(; 1x(y + z) dz is a continuous function it follows from
Proposition 4.2 and the fact that X = @& in the recurrent
case that the right hand side of (4.1) is infinite whenever the
process is recurrent. Thus fc G(z, K) dz = o for every

compact set C, |C|] > 0 and thus G(z, K) = « a.e. (If not,
there i1s a compact set C and an N < o such that

G(z, K) < N for all ze(C, and so
J. Gz, K) dz < N|C| < o.)

ProrositioN 4.4. — The process is transient if and only
if for every compact set B,

lim P,(X,eB forsome s>1t) =0,ze@®.

t>0

Proof. — 1f (4.2) holds then by Proposition 4.3 the process
1s transient. On the other hand if the process is transient then
from (3.19) we see that there is a compact set K such that

P.(Ts < ) < 2G(z, K)

and so

P.(X,eB forsome s3> &) = [ P, dy)P,(Ts < )
< 2P'G(z, K).

Since P!G(x, K) | 0 as ¢— oo the result follows.

5. Periodicities and the ratio limit theorem.

In this section it will be convenient to work with the proba-
bility measures p‘ defined by p!(dz) = P40, dz). Then
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ptt=p s pu’ for s >0 and ¢ > 0 and p' is continuous
in t, in the sense of weak convergence. Let S, be the support
of p!. Then & 1is generated by

L s.

t>0

Proposition 5.1. — The groups ®, t > 0, generated by
S, — S, are all equal to some fized group ©,.

Proof. We note first that S,,, =5, + S, for all s, ¢ > 0.
Thus

Seet — Sepe =8, — 5, + S, — S,.

Consequently
@s = @sﬂ 1S ®: + ©t

and also &,c®,.,. It follows that @,y = Ouu » and,
by a simple induction argument, that &, is independent of t.

From now on &; will denote the group generated by
St - St‘

Prorosition 5.2. — In the non-singular case &, = .

Proof. — Let the process be non-singular. Then, for some
t > 0, u' has a density component that is positive on some
non-empty open set. Thus some S, has a non-empty interior
and hence some S, — S, has a non-empty interior. From
this it follows easily that &, is an open subgroup. Now p!
converges weakly to the probability measure concentrated
at the origin as ¢ — 0. Thus for ¢ sufficiently small S,
contains a point of &, and hence S,c@®,. Since
Seie =S, +5S, s, t >0, it follows that S,c@®, for all
t > 0. Therefore &, = &, as desired.

Let A denote the annihilator of &;.

Prorosition 5.3. — If &/®, is compact, then A is coun-
table and there are only a countable number of times t such
that S, does not generate .

Proof. — Let &/®, be compact. Since A is isomorphic to
®/®,, it follows that A 1is discrete. Now & 1is second coun-

table and hence so is . This implies that A is countable.
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For t > 0, S, fails to generate & if and only if there is
a 060G suchthat 6 % 0 and {{0) = 1. (Here §' denotes
the characteristic function of p!) This can happen only if
0 e A. For each such 6 there are only a countable number
of times t such that {/0) = 1. Since A is countable, the
proof is complete.

Set H=(®/®,. Let M be the natural map from & to
H. Then M(S,) is a single point. Thus we can define a func-
tion T: [0, o) - H by setting T(t) = M(S).

PropositioN 5.4. — The function T 1is continuous.

Proof. — Let U be an open set of H and let ¢, e [0, o)
be such that T(t) e U. We need only find an ¢ > 0 such
that T(t)eU for ¢t > 0 and [t — ¢ < e.

Let P=M-1(U). Then P 1is open and P+ &, = P.
By assumption pk is supported by P. Thus we can find a
compact set CcP such that p»C) > 0. By continuity
of p! we can find an ¢ > 0 such that p/(P) > 0 for ¢ > 0
and |t —t] < e. It follows that p' is supported by P
for such values of ¢t or, equivalently, that T({)eU for
t >0 and [t —1t)| < e, as desired.

We can extend T to (— oo, ©) by setting T(—t) = — T(¢)
for t > 0. Then T 1s a continuous homomorphism from R

to H.

Prorosition 5.5. — T(R) s dense in H.

Proof. — Let U be a non-empty open subset of H. We
need only prove that there is a ¢t such that T(f) e U.

Set P=M-*U). Then P 1is open and P+ &, =P.
There exist r >0, s >0, zeS,, and yeS, such that
z—yeP. Set t=r—s. Then

T(t) = T(r — s) = T(r) — T(s) = M(a) — M(y) = M(z — y) < U,

as desired.

Prorosition 5.6. — Either H is compact or H s isomorphic

to R.

Proof. — By the previous proposition H is solenoidal and
the result follows (see Hewitt and Ross [4, pp. 84-5]).
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Prorosition 5.7. — Suppose H s not compact. Then
S, t =0, lies in a closed semigroup of &. Also, for any
compact set C, u'(C) =0 for t sufficiently large.

Proof. — Since H 1is isomorphic to R, T(t), ¢ > 0, ranges
over a proper closed semigroup in H and hence S,, t > 0,
lies in a proper closed semigroup in &. We also have (since
H = R) that T(t) > © as |{{ > . If C is compact then
M(C) 1is compact and hence T(t)n M(C) 1s empty for |t|
sufficiently large. Thus for ¢ sufficiently large S,nC is
empty and hence u‘(C)=0.

Prorosition 5.8. — Suppose H is compact. Then T(t),
t > 0, ranges over a dense subset of H.

Proof. — Let S be the closure of the range of T(¢),t > 0.
Then S 1is a closed and hence compact sub-semigroup of H.
By Hewitt and Ross [4, p. 99] S must be a subgroup of H.
Since T(—¢)= — T(t) for t > 0, S contains the range of
T(t), — © <t < o, and hence by Proposition 55 S is
all of H.

Prorosition 5.9. — For t > 0 define the operators
Uit): H>H by U@)h =h+ T(t). Then U(t), t > 0, is

an ergodic semigroup.

Proof. — Clearly U(t), ¢t > 0, defines a continuous semi-
group of invertible measure preserving operators.
Let I: H—- R be a bounded measurable function such

that, for all ¢ > 0, I(h 4 T(¢)) = I(h) a.e. h. We want to
prove that I 1is constant a.e.

Let {c(h), he H} be a complete orthonormal basis of
continuous characters in $,(H). Then there are constants

a, such that in % (H) for ¢t > 0.
% aci(h) = I(h) = I(h + T(2))
= 2 aei(h + T(t)

= % axci(T(2))ci(h

Consequently a,(c,(T(¢)) — 1) = 0,¢ > 0. Thus either a, =0
or ¢(T(t) =1, t > 0. In the later case the fact that the

)
)-
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range of T(t), t > 0, 1s dense in H 1implies that ¢, (k) =1,
he H. In other words, I is constant a.e., as desired.

Prorosition 5.10. — Let H be compact, let dh be norma-
lized Haar measure on H and let [ be a continuous real-
valued function on H. Then

hm—-ffh—}—T = [.f(h)

t>0

uniformly for heH. Moreover
.1 e
lim = [ f(T(s)) ds = [, f(h) dh

t,g>»o T

Proof. — The first conclusion of the proposition follows
from the previous proposition, the pointwise ergodic theorem
and the fact that f, being a continuous function on a compact
group, is uniformly continuous. The second conclusion follows

from the first since T(s 4+ t) = T(s) + T(¢) for s, t > 0.

Prorosition 5.11. — Let H, dh, and [ be as in the previous
proposition. Let g and h be continuous bounded non-negative
functions on [0, o) such that g(t) is positive for t sufficiently
large,

lim 8(s +1) _
e (1Y)

uniformly for s in compacts, and
. [h(t) \
lim (=% — f(T()) )= 0.
> <g(t) ft <)))
Under these conditions

S h(s) ds

li " f(h) dh
bn [ g(s) ds = Jufl

or

h(s)
Ezz:f—“s = Jul®)d

according as the integral of g over [0, ) converges or diverges.
10



192 SIDNEY C. PORT AND CHARLES J. STONE

Proof. — The proof of this proposition is a straightforward
application of the second part of the previous proposition.

Set Dt:S‘+@1,t>0

Tueorem b.1. — Let A be a compact subset of &, and B
anopen subset of &, such that |Alg, > 0 and 0 < |B|g, < .
Then for any 0 <« < o, ¢ > 0, and compact subset C
of &, thereisa 8 > 0 such that for t sufficiently large

wHe + y + A)f|Alg, < (1 + ez + B)/[Blg, + e

for xeD, yeD,nC, and — r < s < 7.
We begin the proof of this result with

Lemma b.1. — The conclusion of Theorem 5.1 holds if s, t
are restricted to integer multiples of any fixed o« > 0.

Proof. — This lemma reduces immediately to Theorem 1
of Stone [10].

Let « > 0 be fixed. For t > 0 set t* = min [na|na > t]
and ¢~ = max [nalnx < t].

Lemma 5.2. — Let A be a compact subset of &, such that
|Alg, > 0 and let < > 0. Then for sufficiently small « > 0
there is a compact subset A; of &, such that |A;|lg, > 0 and
a compact subset C of & such that Dy ,nC #d,t> 0, and
for t sufficiently large

iz 4+ A)|Alg, < (1 4 e)u"(@ + y + A1)/ Adlg,
for zeD, and yeD,._,nC.
Pr.'oof. — There 1s a compact subset A; of &; such that
AcA, and
Ao, = (14 o) ¥ Alg,

The conclusion of the lemma now follows easily from the fact
that p' converges weakly as ¢t — 0 to a probability measure
concentrated at the origin.

Lemma 5.3. — Let B be an open subset of &, such that
0 <|Blg, < © and let ¢ > 0. Then for sufficiently small
« >0 there is an open subset B, of &, such that



INFINITELY DIVISIBLE PROCESSES AND THEIR POTENTIAL 193

0 < |By|lg, < © and a compact subset C of & such that
Di-nC # g, ¢t >0, and for t sufficiently large

v (x +y + By)/|Bilg, < (1 + €)u'(z + B)/|Blg,
for zeD, and —yeD, - nC,.

Proof. — There is a relatively compact open subset B,
of @&, such that B, cB and

1
IBlg, < (1 + ¢) *[Bifg.

The conclusion of the lemma again follows easily from the
fact that u' converges weakly as ¢— 0 to a probability
measure concentrated at the origin.

Proof of Theorem 5.1. — The theorem follows easily from
Lemmas 5.1-5.3.

We will use Theorem 5.1 only when the process satisfies

Condition 1. — For some compact set C

lim sup (u!(C))" = 1.

By Proposition 5.7 we see that if Condition 1 holds, then
®/®, is compact. It follows from Proposition 1 of Stone [13]
that for sufficiently large compact sets C

D,nC # ¢, t>0.
In the next several results z,eD,, ¢t > 0 and the z;s all lie

in some fixed compact set.

Prorosition 5.12. — Suppose Condition 1 holds and let B
be a non-empty open subset of &,. Then

lim (i, + B))# = 1.

Proof. — Let B, be a non-empty relatively compact open
subset of ®; such that B;cB. Let C, be a compact set
containing all z, ¢t > 0. Let C be a compact set containing
(C; — G — By)u ;. By Theorem 5.1 for any & > 0 there
1s a t, > 0 such that

w(B; 4 y) > e, yeD,nC.
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Consequently

wHe(wy, + By) > ‘/w‘(k—-l)to"'B‘ w5 (dz)u's(zy, — z + By)

> e dpt—Dha(g, 1 + By).
Thus by induction
whe(z,, + By) > e k=1,2, ....
It now follows from Theorem 5.1 that

lim inf (pi(z, + B))1/* > €72,

Since 3 can be made arbitrarily small the proof of the propo-
sition 1s complete.

From Theorem 5.1 and Proposition 5.12 we obtain imme-
diately

Prorosition 5.13. — Suppose Condition 1 holds and let A
and B be respectively compact and non-empty open subsets

of &,. Then
. p (@ + A) |A|
b S0P =+ B) < B

uniformly for s in compacts.
From this proposition we obtain immediately

Tueorem 5.2. — Suppose Condition 1 holds and let A and
B be relatively compact sets in &, such that [dA|gy =|3B|g, =0
and |B|g, > 0. Then

Lim P-S+t(xs+t + A) |A|@1
2 (@ £ B) Bl

uniformly for s in compacts.
Let f, denote a continuous non-negative function on &,
having compact support and such that

S fol2) dz =1

(where dz here represents Haar measure on &,). Set

gt) = [ ot (@dyfily — =), t>0.

I
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If Condition 1 holds then by Theorem 5.2,

lim 8+ _
= (1)

uniformly for s in compacts. From Theorem 5.2 we also have

Prorosition 5.14. — Suppose Condition 1 holds and let f
be a continuous function on &, having compact support. Then

.1 ¢ .
lim 5 Lvg, ¥ @y — ) = [ f(@) da

From this proposition we have

Prorosition 5.15. — Suppose Condition 1 holds. Let F
be a collection of continuous functions on &, such that the
functions in F are uniformly bounded, equicontinuous, and
supported by a common compact set. If f,eF for t > 0, then

1¢£T<-£5£t+1@ )ity — @) — [, (@) ):0.

Let ¢ be a continuous function on & having compact
support. Then as z ranges over a compact subset of & the
family F of functions ¢(z + y), ye ®,, satisfies the condi-
tions of Proposition 5.15. Thus from that proposition we obtain
immediately

Prorosition 5.16. — Let Condition 1 hold and let ¢ be a
continuous function in & having compact support. Then

tim (s [ 6 (dye(y) — [, oy + =) dy) = 0.

We now wish to apply Proposition 5.11 to the above result.
Let ¢ be a continuous function on & having compact
support. We can define a function f on H by setting

fh)= [ ely+a)dy i h=Ma)

Then f 1is well defined and continuous on H. Furthermore
the functional 1 defined by

Io = fn f(h) dh
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13 a non-trivial translation invariant non-negative linear
functional on the continuous functions of & having compact
support. Thus for some positive number ¢ we have

S f(r) dh = c [ o(a) da.
Finally we observe that
Jo. oy +2) dy=f(T(R), ¢>0.
Therefore by Propositions 5.11 and 5.16 we have

Prorosition 5.17. — Suppose Condition 1 holds and let o,

and @, be continuous functions having compact support and
such that J(@y) # 0. Then

Hm£)W5%Nh=J@Q
t> ‘/tw° (p's, (P2) dS J(‘Pz)

or

MWACTOL NN
- [ onds o)

according as the process is transient or recurrent.

In the non-singular case &, = ® and the discrete time
results of Stone [10] are easily extended to continuous time.
In particular we have

Prorosition 5.18. — Suppose Condition 1 holds and the
process is non-singular. Let Ae® and Be®B with |B|>0.
Then

wz+ A) _ A
ki —
ﬁuw+m |B|

and the convergence is uniform for x and y in compact subsets
of ® and s in compact subsets of (— o0, ).

Proof. — Let Ae®. Then for s > 0
f@ w(A — 2) do = |A].

For any 0 < s, < o0 and ¢ > 0 there is a compact set G
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such that
Swh —2)de> Al —e,  0<s <5

Using these results we easily reduce Proposition 5.18 to the
corresponding discrete time result, Corollary b of [10].

Let ¢ be a continuous function in @& having compact
support. Then as xz ranges over a compact the collection
{9} 1s uniformly bounded, equicontinuous, and has common
compact support. Thus from Proposition 5.17 and 5.18 we
obtain

Tueorem b5.3. — Suppose Condition 1 holds and let fe ¢*
and ge®* with J(g) # 0. If the process is transient, then

. S Pf@) ds g
o [Py ds  (E)

uniformly for x and y in compacts. If the process is recurrent,

then
llmfP‘ ) ds _ 3()
t>o0 f Ps J(g)

uniformly for = and y in compacts.

Closely related to ratio limit theorems are local limit theo-
rems. We will assume that @& 1s a closed subgroup of Euclidean
space R’ For simplicity we will also assume that

®& = Z4 g R4

and Haar measure on @& is chosen as the product of counting
measure on Z% and Lebesgue measure on R**%.

TueoreM b.4. — Let & be a closed subgroup of R* normal-
1zed as indicated above. Suppose there is a continuous strictly
positive function B, t > 0, such that B7*X, is asymptotically
distributed as a stable distribution havmg density p. Let fe ®*
In the transient case

lim [ Pf(e) dsf | B ds = p(0)J(f
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uniformly for x in compacts. In the recurrent case

hm/ Pef( dﬂ/: B—* ds = p(0)J(f)

t>0

uniformly for x in compacts.

Proof. — By arguing as in the usual local limit theorems
(Stone [10], [11], [12]) one can show that for an appropriate
positive constant ¢, as ¢ —> o

Pf(2) = ap(O)B fo, (@ + o + y) dy + o(B7)
uniformly for z in compacts. It is necessarily true that

hm B:-H

t> Bt 1

uniformly for s in compacts. It now follows from the ergodic
theorem thatas ¢, v— oo foranappropriate positive constant ¢,

ST Pf (@) ds = eap(0)3(f) [ Bt ds + o ([ B ds)

uniformly for z in compacts. By the same methods one can
show that as ¢, = > ®©

ft+-c P‘fy( ) = ¢, ‘[H‘T B:dp(y/B‘) ds + o (

uniformly for ye®. The only value of ¢, which is compa-
tible with this last formula, the assumptions on &;, and the
fact that X,/B, has as asymptotic distribution with density
p is ¢ =1. Thus

[t+f P‘f(a:) ds = P(O)J(f) ‘ +T B,"' ds + 0 ( t+T B"d ds)

uniformly for z in compacts as ¢, v —> . In the transient
case

t+T

B ds)

fo”B,—ddt<oo

and in the recurrent case

S Brtdt = oo,

from which the conclusion of the theorem follows easily.
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The remaining two results of this section will be used in
Section 10 in reducing results in continuous time to the
corresponding results in discrete time.

Prorosition 5.19. — For fixzed v > 0, let &, be the group
generated by S.. If &, is compactly generated, then so is @.

Proof. — Let C, be a compact subset of @&, that generates
®,. Let C; be a compact subset of @& such that
Py(X,eC;) >0 for 0 <t< . Let @& be the subgroup
of & generated by C, 4+ C;. Then ®&; contains C, and
hence ®; contains &,. Thus @; contains @,, where &,
is defined as usual. Since &; n S, is non-empty for 0 < ¢ < ~,
it follows that ®; contains S,, 0 < ¢ < 7. Thus &; contains
S, 0 <t < o, and hence &; =@ as desired.

Our final result is rather special and will be needed only
in discussing type Il transient processes.

Suppose @ =ReH or @ =ZoH, where H is a
compact group. If &/®, is not compact, then & = Ro H,
®, = H, and the induced process on R moves determinis-
tically. Under these conditions we have the following

Tueorem 55. — Let & = Re H, where H is a compact
group and suppose that &, = H. Then there is some non-zero
constant m such that p' is supported by mt + H for ¢t > 0.
Let D and E be Borel subsets of & with |D| < oo. Then

limfmyp.'(x +mt+ E)ds, yeH,

t>o0
exists uniformly in y and the limit is independent of y.

Proof. — Let ¢' be the probability measure induced on
H by p’ Since &, = H none of the measures ¢' are sup-
ported by the translate of a proper closed subgroup of H.
It follows from the Ito-Kawata Theorem that if f is a conti-
nuous function on H, then

lim [ o (dw)f(w — y) = . f(w) dow

t>0

uniformly in y, where dw is normalized Haar measure on

H.
For any subset A of & let A, = {zeH|r+ zeA}.
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Then for reR and ze H

wl(r + 2+ E) = oz + B,).
Thus
plxz 4+ mt + E) da.
= f f w(r+z+ mt 4 E) dz

=/ drf Yz 4 E_,) dz
“ﬂ[«; dr/];cp (dw) _/l;lE_r w —y — z)1p (2) dz.
For each r

St (w—2)1n(z) dz, weH,

defines a continuous function. Therefore

lim [ o (dw) [ s (w — y — 2)1n,(2) dz

=de£1Erw—Z1D )dz
= IE—rlﬁlDrlﬂ

uniformly in y. Since

‘/::]D,hi dr =|D|g <
it follows that

lim [ @+ mt + E) do = [T ID,J|E_,| dr

t>x

uniformly for ye H, as desired.

6. A-Capacities.

Let u be a Radon measure on &, ie. p 1is a regular
measure on & such that p(K) < oo for all compact sets K.
The measure pG* is called the A-potential of . For transient
processes we can also take A = 0. The measure pG is called
the potential of . It is of vital importance to know that the
A-potential of a measure determines the measure under quite
general conditions.
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Taeorem 6.1. — Let A > 0, and in the transient case
A > 0. Suppose p is a Radon measure such that pG* is also
a Radon measure. Then pG* determines p. In particular,
if w is a finite measure then pG* determines p.

Proof. — Suppose u(®) < . Then for any compact
set K,

wGA(K) < u(®) sup G(r 2, K) < e,
€K
and thus pG* is a Radon measure. Let p be any measure
satisfying the conditions of the theorem. Let K be any
compact set. We can then find feC! such that
inf GM(z) > & > 0,

z€K

and thus from (3.2)
WIY(®) = wII}(K) < 574G < co.

Hence the measures wIl} are finite for all compact sets. The
assertion of the theorem now follows from Proposition 7.6
of [5]if A > 0. An examination of the proof of this proposi-
tion shows that it is also valid for A = 0 provided that for
any excessive function f there is an increasing sequence
of bounded non-negative functions ¢, such that Ge,}f.
That that is so in our case follows from Exercise 2.19 of Chapter
2 of [2] and the fact that sup G(z, K) < oo for all compact
sets K. sek
The following useful result is due to Hunt [5]

Prorosition 6.1. — If p and v are two Radon measures
such that pG*» < vG* then pI}G* < vII}G* for any Borel
set B. If the process is transient then this is also true for A = 0.

Proof. — Since for any fe ®*t, IIJG*f is A-excessive, we
can find bounded f, > 0 such that G, } II}G*f. The

result follows from this.
Let B be a Borel set and let A > (0. Define the measure

E} by
‘Aj (z, A) dxz,
and set p} = 7\E§.
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Tueorem 6.2. — Let A > 0. The measure p} is the unique
measure supported on B whose ) potential has the density
(relative to Haar measure) E,(e\Ts),

Proof. — The measure E} and hence p} is a Radon mea-
sure. Indeed, let K be a compact set and let feCF be
such that Glf( ) > 8 > 0, ze K. Then from (3.1)

Hy(z, K) < 5'H}GM(z) < G(z)

and thus E}(K) < |J(f)|/A8 < . Also from (3.1) we see
that for any fe @+

I = B3GH + [, Gif(2) d
Now from (3.6) we have
Jo G (@) dz = (1, Gif) = (f, Gj)
= Jof@ dz [ P(Ty > eMdt= [, f(2) du[1— B (e Ts) ]
Thus
(6.1) G = [; B (e )f(a) da.

The uniqueness of the measure p} follows at once from

Theorem 6.1.

DeriniTiON 6.1. — The measure p} is called the \-capacitory

measure of B; its total mass u}(B) = CAB), is called the
A-capacity of B. The corresponding quantities for the dual
process are called the co-\-capacitory measure and co-\-capacity

respectively and denoted by (s and CMB) respectively.
Prorosition 6.2. — For any Borel set B, CAB) = C\B).

Proof. — By definition, CB) = u}(®) =2 [, E,(e?™) da.
Let f,e® and f,41. Then from Theorem 6.2

CA(B) = u}(®) = lim AE}GH, = lim f@Em e fo(7) da
_AfE ) 53(®) = Cr(B).
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Prorosition 6.3. — If for some A > 0, CA(B) =0 then
CMB) =0 forall » > 0 and P,(Ty < ) = P,(Tp < o) =0,
a.e. x. Conversely, if P,(Tg < ) =0, a.e. z, then CAB) =0
for all A > 0.

Proof. — From (6.1) we see that C*B) = 0 if and only if
Jo Eole™) dz=0. Now, [y E,e?h) do=0 if and only
if E,(e*s) =0 ae. 2, and E,e?%) =0 if and only if

P,(Ts = ®©) = 1. The assertions of the theorem now follow
from these facts.

Tueorem 6.3. — Assume = = @. Then for » > 0,CAB) > 0
if and only if P,(Ty < ®©) > 0 a.e. z and P, (Ts < ) > 0
a.e. x. In the non-singular case the d.e. x can be strengthened
to all .

To prove this theorem we will need the following.

Lemma 6.1. — Assume £ =@®&. Then if A is a non-
empty open set, GMz,A) > 0 for all x. If |K| > 0 then

GMz, K) > 0 a.e. = and in the non-singular case for all z.

Proof. — The first assertion of the theorem follows at once
from the fact that T =& and the fact that the paths are
right continuous. Now let |K| > 0 and let ge ®* be such
that g(z) > 0 on a set of positive measure. Then

Jo 8@)GMz, K) do= [ GX0, dy) [ 1x(z +y)g(z) do

The function _/(;, 1x(x + y)g(x) dx 1s continuous (because C,

1s dense in L,) and not identically 0. Thus by first part of
the theorem

Jo GNO, dy) [ 1x(z + y)g(x) dz > 0.

Hence for any such g, (g, Gkix) > 0 and thus GMg(z) > 0
a.e. z. Finally if the process 1s non-singular, then for some
t > 0,

PY0, dy) = p(t, y) dy + v(dy)

where p(t, y) > 0 for all y on some set of positive measure.
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But
Gz, K) > [ eP(z, dy)GM(y, K)
> [y ep(t, y — )Gy, K) dy

and by what was just proved Gy, K) > 0 a.e. y. Hence
t/(; , y — 2)GMy, K) dy > 0. This establishes the lemma.

Proof of Theorem. — Suppose that CAB) > 0. Then by

Proposition 6.3 P,(Ts < ®) > 0 on some set of positive
measure. Consequently, there is a compact set K having

positive measure such that inf,eP,(Ts < ) > § > 0. But
then

tP,(Ts < o) ffPXedy (Ts < o) ds
>st P.(X, e K) ds.

By Lemma 6.1, we know that Gz, K) > 0 a.e. 2 (and for
all z in the non-singular case). For each z such that

GMxz, K) > 0 thereisa ¢ > 0 suchthatfP (X, eK)ds > 0.

Hence P,(Ts < ) > 0 a.e. z (and for all z in the non-
singular case).

Conversely, if P,(Ts < ) >0 a.e. 2 then by Proposition
6.3 CMB) > 0. This establishes the theorem.

We will now show that C*(:) is a Choquet capacity.

Prorosition 6.4. — Let A > 0. Then C.) has the follo-
wing properties.

(a) If AcB, then C}A) < C*B).
(b) CMA uB) + CMA nB) < CHA) + CMB).
(¢) CMB) = sup CHK), K compact.

KCB

(d) CAB) = inf C}U), U open.
(
(

¢) C\B + y) = CAB), all y.
f) CA(B) = CX(— B).

Proof. — Suppose AcB. Then T, > Ty, so
E,(e7) < E (e7*).
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Assertion (a) follows at once from this last inequality. Assertion
(b) follows from the inequality

(6.2) P,(Tans < ) < Po(Ts < t, Ty < 8)
=P,(T\ < t) + P,(Ts < t) — P,(Taus < 1).

Let K be a compact set and let A, be relatively compact
open sets such that A, > A, ;> A,,; and m A, = m A, =

The T,, are an increasing sequence of stopplng tlmes Let
T = lim Ta,. Then clearly T < Tx. By quasi-left continuity,
X(T,,) = X(T) as. P, for every z. Now X(T)e[ A=K,
so T > Tx. Thus T = Tx and therefore n

P,(X(T,,) - X(Tx)) = 1.
Hence

E,(e ) | E (e7*x)

and therefore C*A,)| CAK). This shows that (d) holds
whenever B is compact. Similarly, it 1s quite easy to verify

that (¢) holds whenever B 1is an open set. Indeed, if B
1s open there i1s a sequence of compact sets K, cK,c..

such that |_J K, =B, so Tg, | Ts and thus
E (e7*Tu) 4 E,(e7"s).

)

Hence C*K,) 4 C*B). Properties (a), (b) and (d) for com-
pact sets show that C*(.) 1s a Choquet capacity on the com-
pacts and thus by Choquet’s capacity theorem there i1s a
unique extension of C*(-) to the Borel sets. Denote this
extension by Ci(.). For any Borel set B we then have

(6.3) C3(B) = sup CA(K), K compact
KCB
(6.4) Ci(B) = inf CMU), U open.
UDB

But by (a) if KecB, CAK) < C*B) and thus by (6.3)
Ci(B) < C¥B). Also if U>B, then CNU) > C*B) and so
by (6.4) CiB) > CB). Hence C*B) = CiB), so C*-)
1s itself its extension from the compact sets to the Borel sets

and therefore (¢) and (d) hold for any Borel set B. To see
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that (e) holds note that
Ez+y(e_)‘T‘+’) = E,(e™)

and thus integrating on z we see that (e) holds. Finally (f)
holds because E,(eT) = E_,(e7*s), and thus

CB) = CN— B) = C}— B).

This completes the proof.
The following proposition is a simple consequence of Propo-
sition 6.3.

ProrositioN 6.5. — Assume B,, n > 1 all have \-capacity

0. Then B=UB,, also has \-capacity 0.

Proof. — C*B,) =0 if and only if P, Ty < ©)=0
a.e. Since this is true for all n, P,(Ty < o) =0 a.e., and thus

CAB) = 0.

Prorosition 6.6. — Let A > 0 and let B be any Borel set.
Let K, be relatively compact sets such that K, 1, K,cB and

P(Tx, | Ts) =1 ae ® Then ), —>u} vaguely and
CA(K,) + CA(B).

Proof. — From the assumption it follows that
E,(ex) 4 E (e7*T:) a.e.

and thus by montone convergence and Proposition 6.2

lim CMK,) = lim % [i Ey(e?™) dz = [ E,(¢%) dz = CA(B).

n>»o0

Also for any feCf,
(6.5) (wk, GM) 1 (b, G).

Let K be any compact set. Then we can find fe Cf such that
GM(z) = 8 > 0, ze K, and thus

sub (K) < (ud, G¥) < oo.

Thus there is a subsequence p} that vaguely converges to
a measure p. Fatou’s lemma shows that (g, G*) < (ud, G)
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and thus pGMK) < o for any compact set K. Now by
Proposition 6.1. for any feCf,

up I3 G < pll}. GHf,

and since p3lI3.GA [0 as K1 @&, we see that given ¢ > 0
we can find a compact K such that for all n > 1,

pk TG < e
But then

(6.6) [ ui, (do)GH(a) f ek, (dz) T13.Gf(2)
< (s}, TLGY) <
Also,

(67 limlim J vk (d2)GH (@)=lim [ u(d2)G (2) = (1, Gf ).

It now follows from (6.6) and (6.7) that
hm (u},, G*f) = (4, Gf).

n >
J

Thus from (6.5), (¢, GM) = (1}, G*f) and it now follows from
Theorem 6.1 that w = u}. If we had another vaguely con-
verging sequence we would again obtain that the limit measure
was p} so upg, —> uh vaguely.

Prorosition 6.7. — Let » > 0 and let B be a Borel set
and let U, be open, U,| and such that P,(Ty }Ts) =1
a.e. Then py, - pp vaguely and CNU,) | CB)

Proof. — The proof is similar to the previous proposition
and will be omitted.

7. Applications of A-capacities.

In this section we will illustrate the use of the A-capacity
theory of the last section in finding criteria for when various
sets are hit or not. Mainly, we will focus our attention on one-
point sets but we shall also indicate how analogous results
can be given for other sets. These results are to be considered
only as examples of what can be done. No attempt has been
made to be exhaustive.
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By Proposition 6.4., for any ze®, C*({z}) = C*{0}) = C*
so either every one-point set has positive capacity or every
such set has 0 capacity. Our first result gives a necessary
and sufficient condition for C* > 0.

Tueorem 7.1. — In order that C* > 0 it is both necessary
and suﬂicient that G0, dz) have a bounded density. In that
case there is a version g(x) of the density such that al(y — x)
is A-excessive in x, A-co-excessive in y and gMNz) = gh(— x).
For this version of the density

(71)  EJe™Vir; Vo < 0] = Crg(— 2), ze@®.

Proof. — Assume C* > 0. By Theorem 6.2 applied to
B = {0} we then see that

(7.2) E.[e?V1; V, < o] de = C*GM0, dx).

Thus G*(0, dz) and hence G0, dz) has a bounded density.
By Proposition 3.9 we may assume that the density g* is
choosen to have the properties stated in the theorem. From
(7.2) 1t follows that (7.1) holds for a.e. z. Since both sides
are A-excessive it follows from Proposition 3.8 that (7.1)
holds for all =.
Suppose now that G*(0, dz) has a bounded density g

Again we may assume g* has the excessive function properties
stated in the theorem. By Proposition 3.11, for all z and y,

gy — 2) — [Tz, d2)gy — 2) = u(=, y)-

Let B, be open, B, compact,

B,5B,5B,5 -, |B.=[ )B.= {0}.

Then as u} (z, 0) = 0 we see that for some K,0 < K < o

(13) g~ 2) = Edfexp (— AVa)gH(— Xv,); Va < ]
< KE,[exp (— AVy,); Vg, < ©].

Quasi-left continuity shows that for z # 0, V5 4V, and
Xy, = 0 as. P, on [V < o]. Thusfor = # 0

g — z) < KE,[e™V10}; Vg, < 0],
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Since g*— z) > 0 on a set of positive measure we see that
E,[eMio); Vg < 0] > 0 on a set of positive measure and
thus by Proposition 6.3 C* > 0. This completes the proof.

Cororrary 7.1. — Suppose C* > 0. Then
P, (Vi < ©) >0

if and only if g M—1z) > 0. The set y= {x: g(— z) > 0}
is a sub-semigroup of & contained in — Z. If T =
then 2y=@® and for all 2 ®

(7.4) E.[eMiot; Vigy < 0] = Eg[e=™int; Vy < 0] B2,
Proof. — The first statement follows at once from equation
(7.1). Also by (3.21) applied to B = {b} we see that
g\ z) = Eo[eVio1; V< 0]gh(z — b).
Using (7.1) again it follows that
(7.5) gMx +y) > Crgh(z)gMy).

Hence z + ye X, whenever z and yeX,. Nowif ghx) > 0
then for any neighborhood N of 0

GMO0, N+ 2) > Eg(e™=)G¥z, N + 2)
= Eo(e2%)GX0, N) > 0

so zeXZ. Finally, if £ =@ then by Theorem 6.3
E,[e*Viol; Vig; < 0] > 0

a.e. x and thus g— ) >0 a.e. z. Given any ze®
there are then points a, b such that z = a + b and gh(a) > 0,
g"(b) > 0. It follows from (7.5) that g'(z) > 0 for all 2z @.
Thus Z, = @&. Equation (7.4) now follows from this fact
and equation (7.1). This establishes the corollary.

If C* > 0 it is natural to inquire if z is regular for {z}.
Now =z 1s regular for {z} if and only if

Ex[e—“riw?; Vu.‘ < w:l = 1.

Since E,[eizl; Vi, < 0] = Eg[e™i0); Vi, < o] either
every point 1s regular or no point is regular. ‘
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Cororrary 7.2. — If C* > 0 and E,[e™it; V) < 0] =1
then the density g* in Theorem 7.1 is continuous on & and
g"0) > 0. Conversely if GO, dz) has a bounded continuous
density then C* > 0 and E,[e?V0) V, < 0] = 1.

Proof. — Suppose C* > 0 and Ey[eio; Vi, < 0] = 1.
From (7.1) we then see that

1 = E[e™Viol; Vi, < 0] = C*gX(0)
and thus g*0) > 0. Again from (7.1) we then see that

A
—AViot . _ 8X x)
E. [e*i01; Vo < 0] = 20)

As A-excessive functions are lower semi-continuous in this
case (Proposition 3.7) we see that

lim E [e7Vi01; Vi, < 0] > Egle™™0t; V, < 0] = 1.

T>Ty

Thus E,[e*Viol; Vi < o] and consequently gh(— z) is
continuous at 0. Now from (7.5) and the fact that here
C* = [g0)]* we have

(7.6) gie +y) > gha)gy)[gh0)]
Setting z = a 1in (7.6) we see that
im gNa +y) > gNa).
>0
Now set z 4+ y=a 1in (7.6) to obtain

gNa) > ga — y)gMy)[g0)] .

gha) > Im gha — y).

>0

Thus

Hence g* is continuous at a.

Suppose now that G*0, dr) has a bounded continuous
density u*x). We will now show that uMz) = gh(x) where
g* is the density given in Theorem 7.1. Since

g(— a) = WX(—2)

a.e. z and gM— z) is A-excessive it suffices by Proposition
3.8 to show that u}(— x) is A-excessive. Now as gh(— z)
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1s A-excessive
—\t t A A
e [ Pz, dy)gh(— y) < gH— 2),

and thus for a.e =z,

e [ Px, dy)ud(— y) < wX(— a).

As both sides are continuous in z this inequality must hold
for all z. Also as u* is bounded and continuous

Jo P, dy)X(— y) > wX(— a)

as t| 0. Thus ur— z) is A-excessive. Now let B, be open
relatively compact neighborhoods of 0 such that B,| {0}.
-Then from (7.3) we see that for z # 0,

(7.7) g (— x) = E[e™ioi; V(i) < o0]g*0).

Hence gM0) > 0 since otherwise g— z) =0. On the other
hand from (7.1) for = 0 we see that

Eo[e=2V101; Vi, < 0] = C*gH0)
and thus (again by (7.1))

(7.8) Eg[e™™w01; Vi < 0]
. Eo[e_lvmt; ViO( < w]g)‘(— .’I:)
B £40) '

Comparing (7.7) with (7.8) we see that
Eo[e_)‘v)m; Vzog < w:] = 1.
This completes the proof.

Remark. — In the above proof we used the continuity of the
density to show that it was the density g*. Only the conti-
nuity at 0 of the density g* was needed to establish the
regularity at 0. Thus alternately we could assume that
G0, dr) has a bounded density g* such that g(— x) is
A-excessive and continuous at 0.

The remainder of this section will be devoted to finding a
simple sufficient condition to guarantee that a set have zero
capacity. We will confine our attention to processes on R%
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Prorosition 7.1. — Let X(t), t > 0, be an infinitely divi-
stble process on R®. Then for any positive random variable T

(79)  lim e—ef P(IX(t)] <& T > t) dt =

Proof. — It suffices to prove this result under the added
assumption that X(¢) does not have any ]umps of magmtude
larger than 1 (for the time S to the first such jump is a posi-
tive random variable and we can consider the time min(S, T)).
Under this assumption the logarithm of the characteristic
function of X(t) can be written as

t(ia.0 4 [ (¢ — 1 — i0.a)y (da)).

For 0 <3 < o let Xj), t >0, denote an infinitely
divisible process whose characteristic function has logarithm

t(in.0 4 [ (" — 1 — ib.2)v (dz)).
Then Xj(¢t) has mean «f and

E| X5(t) — at|2 =1t |z|2v(dz) = o,

121<®

where o3 >0 as 8 — 0. By Tchebychef’s inequality for
e >0

£ hoit
P(IXg(t) — at| > 7) <2F 120

If 0<t<¢/2af, then |at] < /2. Consequently

2
P(Xs(t)] > €) < %"Z—Bf 0<t< e/
If o5 =0 forsome § > 0, then X(t),¢ > 0, is a pure jump
process and

SUP(X()) =0, T > 1) dt > 0,

from which (7.9) follows immediately. Thus in proving Propo-
sition 7.1 we can assume that o3 > 0 for all 8 > 0.
Let 8 > 0 be fixed. There is an ¢, > 0 such that

c2

€
—_ < —
8%  2/«f

0 < & < &,
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Then for 0 < ¢ < ¢, :
1 : e?

P(|X8<t)l > 5) < —2—’ 0 <t < -8_(—5%
Consequently there i1s an ¢, > 0 such that for 0 < e < ¢
2

P(X(f)<c and T>i)> % 0<t<qy

o709

This shows that for 0 < ¢ < ¢,

Y 52
SOPIX@) <& T >t de > o

Since ¢ >0 as & - 0 we see that (7.9) holds as desired.
In the next result & = R*@Z* and S,, r > 0, denotes

the points in & of the form (z;,, ..., %444), Wwhere
Zg 41y - - -5 Ta4g are integers and

dy+de

Y <

i=1

TaeoreM 7.2. — Let & = R*®Z%* and let B be a Borel
set in &. If ’
(7.10) lim sup @' < o,
r>0
then CAB) = 0.

Proof. — We can assume that CAB) < . Then for any
Borel set A

Joud (d2)Gz, A) = [ E.e™do < |A].
Setting A =B + S,, we see that

1B+ 8] > fu}(d2)GNz B + 8,)
> p)(B)GN0, S,) = CAB)GX0, S,).
By Proposition 7.1
GH0, S,)

lim 0 2r)

r>0 r?
If (7.10) holds, then

lim sup
r>0 r

B+,

2

<

and hence C*B) =0 as desired.
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Cororrary 7.3. — Let &= R2. Then C*{z})=0 for
al ze@®.

CoroLrLary 7.4. — Let & =R?® and let B be the range of
a continuous curve having bounded variation. Then CMB) = 0.

Proof. — We can write
B={9(1),0 <t <1},

where ¢ 1is a continuous function of total variation M < oo.
Choose r > 0 and set z, = ¢(0). Let z; be the first (in
the sense of least value of t) point, if any, along the curve
whose distance from z, is r. If z,; exists let z, be the
first point, if any, along the curve beyond z,, whose distance
from x,.; 1s r. Let x, ..., zv be all points obtained by
this procedure. Then Nr < M and

N

B +8.c|_J(+ S,
j=o0
Consequently
IB+S,| < (N+1) —% n(2r)? < 12 <3273‘M + 3237rr>

and it follows from Theorem 7.2 that C*B) = 0.

8. Transient and recurrent sets.

In this section we will first show that a Borel set B is
either such that P, (Vs < ©)=1 ae. z or lim P(X;eB

t>x

for some s>1¢ =0 a.e. x For a recurrent process,
P,(Vs < ®©) =1 a.e. for any set having C*B) > 0. In the
transient case a Borel set may be of either type. A Borel set
such that P, (X,eB for some s >1¢) |0, ae. as t—>o
is called a transient set. Most of this section is devoted to
showing that associated with each such set 1s a unique Radon
measure {is, called the co-capacitory measure of B, such
that P,(Ts < o) dz = fisG(dz) and in investigating asso-
ciated capacity theory.
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Prorosition 8.41. — Let B be a Borel set. Then either
P.(Vs < ©) =1 a.e. (and for all = in the non-singular case)
or lm P (X;eB for some s >1t) =0 ae. (and for all =z

t>w

in the non-singular case).

Proof. — Let ¢gp(z) = P, (Vs < ©). Then as ¢p is an
excessive function, Plog(z) | r(z), t > 0. Let h(z)=q¢g(z) — r(x).
Then ¢s=r+ h, Ph| 0, and by dominated convergence

Pi(a) = 5 P, dy)[lim Pealy)] = lim P**ea(a) = r(a),
so r(z) is P! invariant for each ¢. But then AG(z) = r(z).
Now AG*(0, dz) is a probability measure on & and r is
bounded. Thus by the Choquet-Deny theorem there is a
constant « such that r(z) = « a.e. on the group generated

by the support of AG*0, dz). It is quite easy to see however
that the support of this measure 1s just . Thus

(8.1) ¢8(z) = a + h(x) a.e. ze@®.

In the non-singular case it follows from (3.23) that r(z) = «
so (8.1) holds for all ze®. The conclusion of the theorem
now follows at once from (8.1) and the following

Lemma 81. — If « > 0 then P, (Vg < ) =1 a.e. (and

for all z in the non-singular case).

Proof. — Let ge®* be such that J(g) = 1. Then the
measure P, (Vp > t, X,edy) is absolutely continuous and
thus

Pyt < Vp < ©) = [(Py(Vs > t, X,edy)P,(V5 < )
> aP,(Vp > 1).
Thus for any ¢ > 0,
P,(Vs < ©) > P,(Vp < £) 4 aP,(Vp > 1)

and so aP,(Vy= ) < 0. Since « > 0, P,(Vz= o) =0.
Since g was arbitrary, P, (Vp= o) =0 a.e. 2, and so

P.(Vs < ©) =1, a.e. @ If the process is also non-singular,
then for some ¢, > 0,

P40, dy) = py(y) dy + ., (dy)
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where p,(y) > 0 on a set of positive measure. Hence for
t >t

P, (Vs < ) fd
Since (see 3.23) lim f py) dy =1 we see that

P.(Vy < 00) =1
for all 2. This establishes the lemma.

Cororrary 841. — If the process is recurrent then
P,(Vs < ©) =1 a.e. (all z inthe non-singular case) whenever

CAB) > 0.

Proof. — Suppose false. Then in (8.1), « = 0 so Pleg(z) | 0
a.e. Then for any ge®*

82)  (g:Glen — Plon) = ] (sP'es) di.

Since by Proposition 4.3 G(z, K) = © a.e. if |K| >0 it
must be that o5 — Plog =0 a.e. for otherwise the left
hand side of (8.2) would be infinite which cannot be because
the right hand side is bounded by J(g). But then the left
hand side of (8.2) is 0. Let g,e®t J(g,) > 0 be such that
g.1 1. Then by monotone convergence,

0 = lim fo‘ (gm Plos) dt = [ (1, Plgn) dt = [; ox(2)

Thus ¢p(z) = 0 a.e. That is impossible since we are assuming
CMB) > 0. This establishes the corollary.

Dérinition 8.1. — A Borel set B s called recurrent if

P,(Ts < ©) =1 a.e. Itis called co-recurrent if P,(Ts < ) =1
a.e. It is called transient (respectively co-transient) if it is not
recurrent (respectively co-recurrent).

From Corollary 8.1 we see that if the process i1s recurrent
then any set B such that C*B) > 0 is recurrent. Since
— X, is also a recurrent process and C}B) = CMB) every
such set 1s also co-recurrent.

Throughout the remainder of this section we will assume
that X, is a transient process. Our aim is to show that there
1s a capacitory measure that is attached to every co-transient
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set and to develop the relevant capacity theory. The major
results are summarized in Theorem 8.1.

Prorosition 8.2. — Let B be a co-transient set. Then there
is a unique Radon measure wg whose potential ppgG has

P,(Ts < o) as its density function.

Proof. — Let §3(2)=P.(Vs< ) andlet ¢p—[f5—D"3s] %
Then G¢, < §s and Gy, | $s a.e. Thus for any feCg,

(83) (V‘M Gf (f’ GLP,,) 1\ (f’ 53)’

where p,(dz) = ¢,(2) dz. Given any compact set K we can
find feC% such that Gg(z) > 8 > 0, ze K and thus

(8.4) en(K) < 87Yf, @8) < o0.

Let K, be a family of compacts K,cK,cK,c
UK = @®. Then for feCt,

(85) f,, u(da)Gf() = [y fiz) dz [ G(z, dy)bn(y)
= [of(@ dfoK (2, dy)buly) < [, f(@) dz Hx3s(a).
Now for any fixed ¢ > 0,
Hy:#n(2) = E.[$5(Xn;,)] < Po(Tx; < 1) + Pion(a).

But l-)‘c“;SB,LO a.e. and Tx;Too a.s. P, as r— . Thus
for any feCf,

(8.6) lim f, Ax;@a(2)f(2) dz = 0.

Let € > 0 be given. Then from (8.5) and (8.6) we see that
there is an ry, such that for all h, 0 < h < 1, and r > r,

(8.7) [ en (d2)Gf(a) < ¢

From (8.4) we see that there is a subsequence h,| 0 and a
Radon measure pp such that u, — pp vaguely. Now

(88) |(f, 8) — [ v (d2)GF(=)| < (F, &) — (s, G|
+ Jr, v (d2)Gf ().
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Since Gf is a bounded continuous function it follows from

(8.3) and (8.7) that for all r > r,,
[(f, @) — . e (d)Gf(a)] < <,

and thus letting r - o

|(f’ 53) — (s, Gf)l < e

Since & was arbitrary we see that (f, §s) = (us, Gf). It is
clear that wsG 1s a Radon measure and thus by Theorem 6.1
the measure pp 1is unique. This establishes the proposition.

CororLrLarYy 8.2. — Let B be a co-transient set and let
wy (dz) =—% [$n(z) — P'gp(x)] dx. Then for all h > 0,

er(®) = up(®) and the measures p, converge vaguely to s
as h|O0.

Proof. — During the course of the proof of Proposition 8.2.
it was shown that p, - pp vaguely. To complete the proof

we must show that the p, have the common total mass
e(®). To this end let f,eC{ be such that f,41. Then

(o o= (=22, )

By Proposition 8.1 (§s, f,) = (w8, Gf,) and so

(]_5"513, fn) = (@B, thn) = (P'B’ Gthn)'
Thus '

(ens fa) = —,1; fo " (ws, Pf,) ds.

Letting n — o we see by monotone convergence that

wn(®) = ()

as desired.

DeEriniTioN 8.2. — Let B be a co-transient set. The measure
wp in Proposition 8.2 is called the capacitory measure or equi-
librium measure of B. Its total mass C(B) ts called the capacity
of B. Similarly if B is transient the corresponding measure
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fiz is called the co-capacitory measure or co-equilibrium measure
of B and its total mass C(B) is called the co-capacity of B.

Prorosition 8.3. — If B 1is relatively compact then ug
is finite and supported on B. The measures p} — p, weakly

and C(B) = C(B).

Proof. — Let B be relatively compact. Then B is both
transient and co-transient. Consequently, for any feC},

@ > [PuTy < 0)f(a) do > [y Bule™M)f(e) do = phGC(a).

Choose feC} such that G'f(z) > 8 A zeB. Then for any
zeB and A < 1, GM(z) > Gif(z) > §, so

w}(B) < 37 [y Pu(Ty < 0)f(a) da.

Hence there is a sequence 2,0 and a finite measure p
supported on B such that u}» - p weakly. Since G4 Gf,
and Gf is a bounded continuous function, G*f - Gf uni-
formly on B and thus

Jo PulT )f(z) do = lim (o, Gf) = u, Gf).

Thus by the uniqueness of pp, p = pp. It mow follows that
uy — wp weakly. Since B 1is relatively compact,

lim CA(B) = lim (u}, 1) = (us, 1) = C(B),
AYo AYo

and as CMB) = CAB) we see that C(B) = C(B).

Remark. — In point of fact stronger results are true. For
any co-transient set B and for any relatively compact set

A, ul;(A) — us(A). This will be established in § 11.

Prorosition 8.4. — The set function C(-) ts a Choquet
capacity on the relatively compact sets that has the additional

properties that C(B + z) = C(B) for all x and C(— B) = C(B).

Proof. — We must show that properties (a) — (f) of Propo-
sition 6.4 hold for C(-). That (a) and (b) hold for C(B)
follows at once from the fact that C*B) — C(B), A | 0. Let
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K be compact. We can then find relatively compact open sets
A;>A;5A;> ... such that m A, = K. The times T,, 4 Tx

a.s. P, and thus P,(T,, < w3¢Pz(TK < ). Consequently,
for any feCg,

Jo PolTs, < 0)f () dzy [ P(Tx < o)f(2) da,
and thus by Proposition 8.2,

(840)  lim(us, Gf) = ux, Gf).

Now uy,(A;) < o, and pa,(A;) and px(A,;) are dominated
by us(A;). Thus there is a subsequence ta,, of the py,

that converge weakly to a measure p supported on A,.
If follows from (8.10) that w = px, and thus @, — px
weakly. Hence C(A,) | C(K). If U 1s a relatively compact
open set, then there are compact sets K,, K;c K;c ... such

that UK,,=U. Arguing as above we find that ux, — py
weaklynand thus C(K,)1 C(U). Thus C(¢) is a Choquet

capacity on the compact sets. Let C, be its extension to the
Borel sets. What we have just proved about relatively compact
open sets shows that if U 1is such a set then C,(U) = C(U).
Arguing now as in the case of A-capacities we see that (c)
and (d) hold for all relatively compact sets. Properties (e)
and (f) follow from the fact that they are true for C*B)
and CAB) - C(B).

The next result is a corollary of the proof of the previous
proposition.

Prorosition 8.5. — Let K be compact and let U, be open
relatively compact set > K such that U, | K. Then wy, - px
completely. Let U be an open relatively compact set and let
K, be compact K,cU and K,4 U. Then px, - uy comple-
tely.

We will now show that for any co-transient set B, approxi-
mations from below are always possible. The approximation
from above may fail since there need not be any co-transient
open set oB if B 1is not relatively compact.
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ProrosiTion 8.6. — Let B be a co-transient set and suppose
AcB. Then A s co-transient and C(A) < C(B).
Proof. — Clearly A 1is co-transient and

P (T, < ) < P(Tp < )
and thus for any f > 0
(a5 Gf) < (ws, Gf).

Since 1 1s excessive we can find f, > 0 and bounded such

that Gf,11. Thus C(A) = uA(®) < ua(®) = C(B).

Prorosition 8.7. — Let B be a co-transient set. Then
sup{C(K): KeB, K compact} = C(B). Moreover if K,cB,
K,, relatively compact, and XK;cK,c.--; are such that

P, (Tx, | Ts) = 1 a.e.then px, — us vaguely and C(K,) 4 C(B),

so if C(B) < oo then the convergence is complete.

Proof. — Let K, satisfy the hypothesis of the theorem.
Then

(8.11) (ex, Gf) 1 (s, Gf).

By essentially the same argument as used in the proof of
Proposition 6.6 we can show that px, — pp vaguely so we
will omit these details. Now from Proposition 8.6 we know

that C(K,) < C(B) so lim C(K,) < C(B). On the other
hand, if feCH 0 < f < 1,n we know that

(b, f) < CG(K,)
and thus (wp, f) < hm C(K,). Letting f41 we see that
CB) < li’fn C(K,). Hence linm C(K, =CB). If GB) < o

vague convergence becomes weak convergence and since we
have just shown there is no escape of mass the weak converge
1s complete. Finally, by 10.16 of Chapter 1 [2] we can find
compacts K,cB such that P (Tx, 4Ts) =1 ae. z and
thus C(K,) 1} C(B). Hence

sup{C(K): KB, K compact} = C(B).

This establishes the proposition.
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Cororrary 8.3. — If B 1is transient and co-transient then
C(B) = C(B).
Proof. — Immediate from the previous proposition and the

fact that for relatively compact sets K, C(K) = C(K).

Prorosition 88. — Let B, be co-transient sets such that

CB,) =0, n=1, 2, ... Then UB,, is co-transient and
(m)e "

Proof. — Since C(B,) =0 it follows from Proposition 8.2
that P (Ts, < ©) =0 a.e.,, and thus P’<TU < w\=0

a.e. Hence UB is co-transient and C <U B > = 0.

The followmg 1s one of the most fundamental facts about
transient 1.d. processes.

TreoreEm 8.1. — Let B be a co-transient set. Then there is a
unique Radon measure pp supported on B such that
G (dz) = @p(x) dz. The total mass C(B) of us s finite
whenever B is compact. Whenever B is both transient and

co-transient C(B) = C(B).

Proof. — It follows from Proposition 8.2 that there is a

unique Radon measure pp whose potential is §p(z) da.
From Proposition 8.3 we see that if B is relatively compact

then up(®) < o and pp is supported on B. The fact
that in general pp is supported on B follows from this fact

and Proposition 8.7. The final assertion in the theorem is
just Corollary 8.3. This establishes the theorem.

9. On sets in 3,.

Recall that #, consists of those sets Be % having a non-
empty interior and such that P (T3 = Ts) =1 for almost
all ze@®. In this section we will develop some properties
of sets in %, and also find a sufficient condition for sets to
be in %, in the special case that & be isomorphic to a closed
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subgroup in Euclidean space. We will establish at the end of
this section that, in general, if B 1is a relatively compact
set there 1s a compact set B, e$%, containing B.

Prorosition 9.1. — Let B be a Borel set in & and let
Y.€G with y, >0 as n—> . Then

Px(llm TB_yn == TB) =1

holds at all x such that P, (Ty = Ts) = 1.

Proof. — Let B, be the closed set consisting of all points
whose distance from B is no larger than the maximum
distance from the origin to y,, k > n. Then B, are closed
sets and B, | B as n— . By quasi-left-continuity

P.(Ts,4Ts as n— o0)=1, ze®.
Consequently
P, (lim inf Ts_, > Ts) =1, ze@®.

n>o0
It is also clear that

P,(lim sup Ts_,, < Ts) =1, ze®.

n>oo

In other words

P.(Ts < lim inf Ty_, < lim sup Ty, < Tj) = 1.

n>o n>»o

Thus if P,(Ts = Ts) =1, then
P,(lim Tp_, = Ts) = 1,

n>»®

as desired.

Prorosition 9.2. — Let B be a Borel set having a non-
empty interior and let feC,. Then Ggf and Hsf are conti-
nuous at every x such that P (T = Ts) = 1.

To prove that Ggf is continuous at z, we need only prove
thatif y, > 0 as n — o, then Ggf(z + y,) - Gsf(z). Now

Guf(@ + y) = B, [ f(X, + ya) dt.

Since B has a non-empty interior and f has compact support
11
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the desired result follows by dominated convergence and
Proposition 9.1.

To prove that Hpf is continuous at =z, we need only prove
thatif y, >0 as n —> o, then Hyf(z 4 y,) - Hsf(z). Now

Hef(# + ya) = E{f(Xe,, + ¥); Toy, < o}
To prove the desired result we need only show that
(9.1) P, (Tg= o or XTn-y,, — X, as n—> ) = 1.
To see that this 1s the case note that, except for a set of

P, probability zero, Xy, — Xr, as n-—> o on the set

(Tg < o), where B<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>