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NORMAL FORMS FOR CERTAIN
SINGULARITIES OF VECTORFIELDS

by Floris TAKENS

1. Introduction and statement of the results.

The main goal of this paper is to study singularities of
vectorfields on R1 and singularities of vectorfields on R2

with a « rotation as 1-jet »; these are the simpelest non-
hyperbolic singularities. For the first sort of singularities we
obtain :

THEOREM 1. — Let X be a C^-vector field on R1 of the

form X == xkF(x) -b- with F(0) ^ 0 and k S? 2. Then there
bx

is a C00 orientation preserving diffeomorphism

<p: (^,0)^(^,0)

such that, in some neighbourhood of the origin 0 6 R1,

<pJX) = {8xie + a^~1) ̂ - with 8 = ± 1 and a e R ; 8
brr

and a are uniquely determined by the (2/c — 1) — jet of X
in 0 eR1.

There is an analogue of this theorem for local diffeomor-
phisms :

THEOREM 2. — Let Y : (R1, 0) -> (RS 0) be a C^diffeo-
morphism such that Y2 has the form Y2^) == x + a;kF(a;)
with F(0) ^ 0 and k ^ 2. TA^ri there is a C°° orientation
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preserving diffeomorphism <p : (R1, 0) -> (R1, 0) ^ucA that, in
some neighbourhood of 0 e R1,

(pYy^) == ± x + 8^ + aa^-1,

8 == ± 1 and a e R; 8 and a are uniquely determined by
the (2k— 1) — jet of Y in OeR 1 ; i/ Y is orientation
reversing, then k is odd.,

Remark. ̂  Tile above two theorems, for f A- ==d, were
proved by S. Sternberg [4]; in this case they should be for-
mulated in a somewhat different' way.

For vectorfields on R2, we obtain the following result.

THEOREM 3. — Let X = Xi -b- + Xg -b- be a ^'vector-y • bx^ ~Zx^
field on R2 such that the i-jet of Xi, resp. Xg, m the origin
equals the i-jet of — 2nx^ resp. ^x^ Then,

either, there is a C90-diffeomorphism 9 : (R2, 0) -> (R2, 0) such
that

<P<(X) = f{^ + ^1) ̂  ̂  - ̂  '\ + X, ' + X '
\ b^ bo;!/ ba?i b^

wA^ /• is a C00-function, f{0,0) ^0 and Xi, Xg are
/)!a( G06-functions {i.e., the oo-/^ ojf X; 15 zero in (0,0)),

or, there is a C00-diffeomorphism 9 : (R2, 0) -> (R2, 0) such
that, in some neighbourhood of the origin,

<p.(X) = f^x,, x,) hnx^ ̂ - ~ 2^ ̂  + (8(^ + ̂ 1)'

+ a(ai + ̂ 2fc) {^ .'- + x, ^\}
\ ^X^ ^^2/J

with f a C"-function, f{0, 0) = 1, 8 = ± 1, /c e N,
/c ^ 1 and a e R; 8, k and a are uniquely determined
by the oo -/^ o/* X in the origin.

Remark. — It is clear that, using a coordinate change
and/or multiplication with a constant, theorem 3 can be

applied to any C'-vectorfield X === Xi -^ + Xg -̂ - on R2

^a^ ^x^
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(>^y \
for which X(0) == 0 and ——* (0)) has 2 non-zero purely

•i 0.2^ /,• timaginary eigenvalues. J /l'•/

From conversations with R. Moussu and others I learned
that theorem 2 has a consequence which has some impor-
tance in the theory of co-dimension one f dilations :

THEOREM 4. — Let T: ,.(R1, 0) -^ (R1, 0) be a ^orienta-
tion preserving diffeomorphism of the form Y(rc) == x + a^F^)
with F(0) 7^ 0 and! k ^ 2. TAen t/ier^ is a C^-vector field X
on R1 5ucA (Aa(, w a neighbourhood of the origin, Y == ^x.i?
where ^x < ^ R1 -̂  R1 15 t/i^ ' time t integral of X (/or
/c = 1 this result follows from Sternberg [4]).

The rest of this paper is organized as follows.'In §2 we
show that the above theorems 1, 2 and 3 are true « in the
formal sense », i.e., that they are true modulo flat functions
and vectorfields. In § 3 we prove theorem 1. In § 4 we prove
the existence of solutions of a certain functional equation;
this result is then used in § 5 to prove the theorems 2, 3 and 4.

We shall use the following notation: If X is a vectorfield
on R", then ^x: R" X R -> R", the integral of X, is the

map defined by ^x(p, 0) = p and - (^x(p, ()) == X(^x(p,0)

(we shall always assume that ^x ca.n be defined on all of
R11 X R) .^X,( : R" -> R" denotes the map defined by

^(p)=®x(jM).

2. Formal normal forms.

Before we start with the actual proofs, we have to state and
prove two preliminary lemmas.

LEMMA(2,1).— Let X==X i+X2 and Y be C°°-^c-
tor fields on R" such that [Y, Xi] = 0. If the {s^ — 1) — jet
of Xg and the (s^ — 1) — jet of Y are zero, s^ > 2, </ien
^ (^ + ̂  - 1) - /^o/1 (^y.i)^ X an^ (XI+X^-EY, Xg]
are equal {jet means here always : jet in the origin of R").

Proof.— Because ^ > 2, the 1-jet of ^y < is the 1-jet
of the identity for all (. This implies that the 5i-jet of
(^Y,i)»X2 equals the s^ — jet of X^ for all t. One knows
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from differential geometry [2] that

^((^.<LX,) = - [Y, (®T.,LX,].

As the (^ — 1) — jet of Y is zero, the (^1+^2 — 1) — Jet
of [Y, (^Y.tLXg] is completely determined by the s^ — jet
of Y and the s^ — jet of (^r.^Xg; both are independent
of (. Hence, for all (, the {s^ + ^ 2 — 1)— Jet of

^ ((^y.t)A) equals the (^ + 5, ~ 1) - jet of - [Y, Xg].

From this it follows that the ($1 + s^ — 1) — jets of
(^y ,i)»Xa and Xg — [Y, Xg] are equal. The lemma now
follows from the observation that (^y i)«Xi = Xi (because
[Y, X,]=0).

LEMMA (2,2). — Let Y be a diffeomorphism of R" to
itself such that the (s-^ — i)~jet of Y in the origin equals the
{s^ — l)"/^ °f ^he identity, s^ > 1. Let Y fee 50 me sector field
on R" wi(/i zero {s^ — i)-jet, s^ ^ 2. TAen (/ie (^ + ^2 — l)"/^
of^Y.i^^i^aMrf^A^yu^ areequal, Ay(Y)=Y-^(Y).

Proof. — Let Y(, for t e R, be the diffeomorphism defi-
ned by Y( == ^y^Y^Y,-f From the fact that the 1-jet of
^y^ is the 1-jet of the identity for all (, it follows that
the ^i-jet of Y( is independent of t. Now we define the
vectorfield Z< on R", depending on ( e R, to be the vec-
torfield such that each p e R" and ( e R, Z((p) is the tangent
vector of the curve ui—>- ^M-ii^t)"'^?)- This definition of Z^ is
equivalent with Z< == Y — (Y^Y == A^(Y); it is clear

that, for each p e R" and ( e R, ^- (Y<(p)) == Z^Y^p)).

Hence the lemma is proved once we know that the (^1+^2—1)-
jet of Z^ is independent of t. This last fact follows from
the fact that the 5^-jet of Y( is independent of ( and that
the (^2 — l)-jet of Y is zero : this namely implies that the
{s! + ^2 — l)-J^t of (^t)»Y, and hence of Z(, is indepen-
dent of t.

PROPOSITION (2,3). — Let X be a C^-vector field on R1

of the form X == ^V(x) b- with F(0) ^ 0 and k ^ 2.ox
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Then there is a (^'orientation preserving diffeomorphism
9 : (R1, 0) -^ (R1, 0) such that the oo 'jet of <^(X) in the origin

equals the co-jet of (8^ + a -̂i) -b- for some 8 == ± 1 and
ox

a e R; 8 and a are uniquely determined by the (2k — l)-/e(
of X IM the origin.

Proof. — First we notice that for fixed X, the
(1 + k — l)-jet of 9»(X) only depends on the 1-jet of 9.
Next we construct, by induction, a sequence of diffeomor-
phisms 9,: (Ri, 0) ̂  (Ri, 0), i == 1, 2, . . ., with the follo-
wing properties :

(i) the {i — l)-jet of 9, is the (i — l)-jet of the identity;
(ii) 9; is the time 1 integral Qf^ of the vectorfield

Y, = a^ — for some a; e R;
OX

(iii) for each i, the (i + k — l)-jet of

(<pi),(<p^iL • • • (?iLX == (9,9^ .,. 9i)^x) = x1

is as in the conclusion of proposition (2,3).

Construction of 9;, i = 1, 2,

(a) ^=1. For Yi==ai^— we have ^{x) == e^x and
hence the /c-jet of oa;

(?iL(X) == (^-a^)fc.F(6-a^).—^—=: 6<l-k)a<.^.F(^-a^) -̂ -.
^(e-01^) v 7 ^a;

As A* > 2, there is exactly one Oi e R such that
e(i-^. F(0) = ± 1; hence there is exactly one Oi such
that ^i transforms the /c-jet of X in the required form.

(&) i = 2, . . ., k — 1. We have now Y, == a,x1 -^-; the
^x .

/c-jet of (9.-1 . . . 9iLX == X1-1 has the form 8^-^
ore

with 8 = ± 1. From lemma (2,1) we now obtain that the
(k + , - l)-jet of (9.LX1-! (9, = ̂  ,) equals the
{k + i - l)-jet of X1-! - [Y,, X1-1]. The {k + i - l)-jet

of this last vectorfield is given by X1-1 —(k— i)a^+1-1 -b-.
ore

As {k — i) ^ 0, there is exactly one a, such that the
12
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(k ̂  i—l)-jet of ('^y^i^X1"1 has the required form.

(c) i == /c. We take again Y^ == a^—? 9^ == ^y^i. By
03?

the same calculations as above, we find that the (2/c — l)-jet
of ((p/^X^-1 is given by

X^ - [Y,, X^] == X^ - (k - k)a^-1 ̂ -= X^1.
!>x

In other words, we are not able to change the (2k — l)-jet
of X. As a in proposition (2,3) is allowed to be any real
number, the (2k — l)-]-et of X^1 was already in the requi-
red form. From the above arguments it follows that this time
we may chose for a^ any real number.

(d) i > A*. By the same argument as under (&), we obtain
exactly one a^ for each i such that the (/c + i — l)-jet

of (^y^i^X1"1 has the required form if Y^ == a^—•o x
To prove proposition (2,3) we first construct 9, using the

above sequence 91, (pg? • • •• Let 9^, I == 1, 2, . . ., be the
map 9^ == 9^9;_i . . . 91. Then, for any i ^ Z, Z' the
i-jets of 9^ and 9^, are equal. Hence, by Borel's theorem [3],
there is a diffeomorphism 9 : (R1, 0) -> (R1, 0) such that
for all i ^ Z, the i-jets of 9 and 9^ are the same. From
the construction of the sequence 91, 92, . . . above it is clear
that the oo-jet of 9^(X) is given by (8^ + aa;2^)—
tor some 8 == ± 1 and a e R. x

Finally we have to show that 8 and a are uniquely deter-
mined by the (2/c— l)-jet of X. Notice that the oo-jet
of 9 is not uniquely determined by the requirements in
proposition (2,3) (see under (c) above), but the (k— l)-jet
of 9 is uniquely determined by these requirements (for
given (2k — 2)-jet of X). The {2k — 2)-jet, and by (c)
above even the (2/c — I)-]6! of 9*(X) is then uniquely
determined by the (/c — l)"J^t of 9 and the (2/c — l)-jet
of X. Hence 8 and a, are uniquely determined by the
(2/c — l)-jet of X and the requirements imposed on 9.

PROPOSITION (2,4). — Lei Y : (R^ 0) -> (R^ 0) be a 0°°-
orientation preserving diffeomorphism of the form
V(x} == x + x^^x) with F(0) ^ 0 and k > 2. Then there
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is a (^-orientation preserving diffeomorphism <p :

(RI,O)^(RI,O)
such that yYy-1^) == x + 8^ + ao^~1 + g(:r) /or 5owe /!a(
function g, 8 = ± 1 and a e R; 8 and a are uniquely
determined by the {2k — i)~jet of Y.

Remark. — The same proposition holds if we require 8 = ± a
for some a ^ 0.

Proof. — The proof of this proposition is completely ana-
logous to the proof of proposition (2,3); we only have to
use lemma (2,2) instead of lemma (2,1). Hence, instead
of [Y(, X], we have to calculate here Ay(Y<) for
Y. == a^ —• This goes as follows :

ox

^(Y<)^) = a^-^+'.Y'^-^))5

ox

= a,{^ + {k - ̂ ^.F^) + 0(|^|)) ̂ -
ba;

Hence the (/c + i — l)-jet of Ay(Y) = Y — Y,(Y) is given

by a,{i - /c^+^F^) -a-.
oa;

One can now construct a sequence 91, (pg, . . . as in the
proof of proposition (2,3). This time one also has to use the
following (rather trivial) fact: if Ti, Yg: (R1, 0) -> (R1, 0)
have the same {i — l)-jet, then there is a vectorfield Z,
with zero {i — l)-jet, such that the i- jets of ^.i^i and
Yg are the same; the i-]et of Z is completely determined
by the i-jets of Yi and Yg. If ^ = = 1 , one has to assume that
both YI and Tg are orientation preserving.

The rest of the proof of proposition (2,3) carries over to
the present case without any difficulty.

LEMMA (2,5). — Let T : (R1, 0) -> (R1, 0) be an orienta-
tion reversing diffeomorphism of the form Y(.r) == -— x + x2F{x)
{we do not assume here that F(0) ^ 0). Then there is a CT-orien-
tation preserving diffeomorphism 9 : (R1, 0) -> (R1, 0) such
that (pYq)-1^) = — x + ̂ G{x2) + g{x), where G is a C00-
function and g is a flat C^-function.
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Proof. — We use again the same procedure as in the proofs
of the propositions (2,3) and (2,4). Now we want a sequence
of diffeomorphisms 9; such that

(i) the ( .—l) - je t of 9, is the (i — l)-jet of the identity;

(ii) 9i is the time 1 integral ^Y,.I of Y^ == a^ -b- for
some a; e R; " b^

(iii) for each i, the i-jet of 9i9i_i . . . 9iY93-1 . . . 9-1

is as in the conclusion of lemma (2,5).
To show that such a sequence exists, we have to calculate

the i-jet of Air ^a^—) for each ^Clea r ly the i-jet of

^f^?^) is the ^jetof (-l)^ia^^-. Hence the\ ox/ ^x
.-jet of A^ (a^ -^ = a,x1 ̂  - Y, ̂ ^ ̂  is given by :

2a;a;1— if i is odd,^x ?

0 if i is even.

From this the existence of the sequence 9^, 93, . . . follows-
the rest of the proof is as in the proof of proposition (2,3)!

PROPOSITION (2,6). — Let T: (R1, 0) -^ (R1, 0) be a C00-
diffeomorphism such that T2 has the form ^¥2(x)=x+xkF(x)
with F(0) ^ 0 and k ^ 2. TAen ^re 15 a CT-orientation
preserving difteomorphism 9 : (R1, 0) -> (R1, 0) 5ucA that
9^9-1^) = ± a; +^8^ + a^-1 + g(a;) WK/I 8 = ± 1, a e R
and g a flat function; 8 and a are uniquely determined by
the {2k — l)-j'et(>f Y in OeR 1 ; if Y is orientation reversing,
then k is odd.

Proof. — If Y is orientation preserving, Y is of the form
V{x) =^x+xk f(x), where F(0) ^ 0. In this case we can
apply simply proposition (2,4). If T is orientation reversing,
we may assume (because of lemma (2,5)) that Y is of the
form ^(x) = - x + ̂ G(x2) + g(x) where g is a flat
function. If G is flat, Y2^) = x + g{x) for some flat func-
tion g; this contradicts the assumption on Y2, so we have
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to assume that G is not flat. We can now write Y in the
form Y(a;)=-^+^+i.G(^)4.g(^) with G(0)^0. If we now
calculate T^ ^ ^ain ^}=x-1 .^ .G(0)+ terms of
order > 2Z m x; hence we have /c == 2Z + 1 which is odd.

Let 8^= ± 2 and a e R be such that there is a diffeomor-
phism 9, such that^'y-i^i^+aa^-i + some flat func-
tion of x. 8 and a exist and are uniquely determined by
the (2k - l)-jet of Y (see proposition (2,4)). Next we
define Tg., a.: (R1, 0) -> (Ri, 0), for

80 = ± 1, ao 6 R by ^s.,^) = - x + So '̂-" + '̂+1.
The" ^l,^)=^-28o^'+i+(8§.(2^1)-2ao)^+ terms
of order ^ 4Z + 2 in a;. Using proposition (2,4) and the
fact that k = 21 + 1 it is clear that there is a diffeomor-
phism y such that the oo-jet of ^y^'y-iy-i and Yj a are
the same if and only if — 2&o =8 and (8§. (2Z+1) -^ao^a.
This last pair of equations has a unique solution for fixed 8
and a; call it S, a. From the proof of proposition (2,4)
it is clear that the oo-jets of y and y are not uniquely
determined. For y we simply make a choice and then keep
it fixed. Now we make the oo-jet of 9 unique by requiring
that the /c-jet (== the (21 + l)-jet) of $ is the /c-jet of the
identity.

Finally we have to show that the oo-jets of y^y-yly-i
and ^8, a are the same. This follows from the following calcula-
tion in which = means that the oo-jets on both sides are the
same. We know that y is uniquely determined by

(a) the /c-jet of y is the /r-jet of the identity;
(&) y^yCT-1)2 = v.
Now we define^ ? by ? == ^^(W-1). As the /c-jets

of Ts.a and 9^9-1 are the same, the k- jet of y equals the
/f-jet of the identity. ^ also satisfies (6) above so y = $.
This means that y = ^^(T^V"1) or Y^.^vy^y-^-i.

Hence, for 9 == yy, we have

yYq)-1^) = — x + Sa;* + aa^ + g(.r)

for some flat function g and S = ± 1, a e R. The fact that
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8 and a are uniquely determined follows from the way
in which they were constructed.

LEMMA (2,7). — Let X be a sector field on R1 of the form

X === a^F^) -^ with k ^ 2 and F(0) ^ 0. Y : (R1, 0)->(R1, 0)

denotes the map ®x.r Let &x == ± 1, ax e R, 8y == ± 1
and! a^p e R fee ^ucA (Aat (Aere are orientation preserving
difteomorphisms <pi, (pa: (R1,0) -^ (R2,0) such that the

co-jet of (9i)»(X) is given by (8x^ + ax^"1)— and theox
oo -jet of ya^yiT1 by x\—^ x + 8iy^ + a^a?2*"1. T/ien 8x==8iy
^nrf ( ax + -Y A:) = ay.

Proof. — Without loss of generality we may assume
that X is already in the form X = (8x0^ + ax^"1 + terms

of order > 2k in x) —• We want to computebx

[2fc-l -1

®x(^, t) = 5 a^t).^ + terms of order > 2k in a; j-

It is clear that a^{t) = 1, Oa(() = . • • = a^i{t) = 0. To

compute a^), . . . , a^i{t) we use . (^x(^, <)) == X(^x(^, t)),o v
this gives, modulo terms of order ^ 2k in a;,

2k-l /2fc~l \kl /2fc-l \ 2k-l

S a;(^==8x( S ^(^) +ax( 5 ^(()^/c) •
i==l \i==l / \i=l /

Using the fact that Oi == 1 and Og == • • • == a^i ==0 we
get (again modulo x^) :

2A?-1

5 a[(t}^ = W + /cSxa^t)^2^1 + ax.r2^1.
i==l

From this we obtain, using that ^x(^? 0) = x for all re e R2,
or 0^(0) == 0 for i > 1:

a^(() == §x, which implies a^t) == 8x .^$
^k+i(^) = = • • • = a^-zW = 0 and Oa^i(() = /c .Sx .Sx .^ + ax,

'[
which implies a2fc_i(() == — kt2 + ax(.2!
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Hence the (2k —l)-jet of Y is given by

x l—*- x + W -(- (ax + 1 k} a;2k-l-
\ -" /

From this and proposition (2,4) the lemma follows.

PROPOSITION (2,8). - Let X = Xi -5- + Xa -&- fee a C00-
8a;i oa^

wctorfield on R2 sucA (Aa( <Ae l-/e( o/ Xi, resp. Xg, m
^ ongm eyua^ the 1-j'et of — I-KX^ resp. 2nxi. Then
either there is a C'-dineomorphism y : (R2, Q) -> (R2^ Q) such

that

^W=f^+^(x,^--x,^)+X,b+X,^
\ &a;a î/ O.KI 2 &a;2

where /• is a C°°-function, /•(O) ^ 0 and Xi, X^ are
Hat C°°-functions (i.e., the oo-jet of both Xi and Xg
is zero in the origin),

or there is a C°°-diffeomorphism <p : (R2, 0) -> (R2, 0) such
that

<P«(X) == f(x^, Xs) [2TC^ ̂  - 2nx^ 5 + (8(.r2 + ̂

+ a(^ + .J)̂ ) (̂  - + ̂  -)1 ̂  X, 6 + X, &

\ oa;i &a;a/J &a;i Sa-a

with /• a C°°-function, /•(0,0) = 1, X^ and X^ flat
(.-functions and 8 == ± 1, a 6 R, ^ ^ 1. $, a and k
are uniquely determined by the oo-jet of X in the
origin.

Proof. — According to [5] one may assume that X has
the following form

X == Ai(^ + ̂ ) (2nx^ -&- - 27^ -^-\
\ &a;2 5a;i/

+ h,{xi + ̂  (x, & + ̂  5 ^ + X, -&- + X, -8-
\ oa;i o^/ 1 oa;i ' 2 oa-g

with^Ai, Aa, X^ Xg C-.functions, Ai(0) = 1, ^(0) == 0 and
Xi, Xg flat. If h^ is a flat function, we are done: we then
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have the first of the two alternatives in the conclusion of
proposition (2,8).

Next we assume that h^ is not flat.

LetX== (Ai(^+a;|))^.X;

this is, at least in a neighbourhood of the origin, well defined.
The oo-jet of X equals

7^(xi + o|) (;ri —— + x^ ——} + 2nxi —— — 27^ ——,
\ brCi bo?2/ bx^ b^

where %2(^+^)==(^l(^+^))~l.(^(^+^));^ is not flat.
We now want to show that there is a C^-diffeomorphism <p :
(R2, 0) -> (R2, 0) such that the oo-jet of y^(X) has the form

2nx, -b- - 27^2 ̂ - + (8(^ + ̂
0 X<^ 0 X-^

+a(^+4)2k)^lA+^A)\ î ^x^J
for some k ^ 1, 8 == ± 1 and a e R.

The /c, occuring above, is the integer for which we have
^(^! + ^1) == (^ + ^D^H^ + ai) tor some C'-function H
with H(0) 7^ 0. To construct 9, we make again a sequence
of diffeomorphisms 9,: (R2, 0) -> (R2, 0), i = 0, 1, 2, . . .,
such that

(i) for each i, the 2i-jet of 9; equals the 2i-jet of the
identity;

(ii) 9^ is the time 1 integral ^y,,i of a vectorfield

Yi == a^ + xiy ( x^ — + ^2 ,— ) for some a, e R;
\ ox! OX^/

(in) the (2/c + 2i + l)-jet of (9^ . . . (9o)»X has the
required form. The construction of this sequence 90, 9i, ...
and the proof that the required diffeomorphism 9 exists
goes exactly in the same way as in the proof of proposition (2,3).

Finally we have to show that /c, 8 and a are uniquely
determined by the oo-jet of X. To do so, we first have to
define the Poincare map for a vectorfield X as above. Let I :
(R, 0) —> (R2, (0, 0)) be some embedding; then the Poincare
map Pi x? associated with X and Z, is a map from a
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neighbourhood U of 0 e R to R such that, for x e U,
f(P^x(^)) is the first intersection of the positive integral
curve of X, starting in l(x), with Z(0,oo) if x > 0 and
with l{— oo, 0) if x < 0, Pi.x(O) = 0. Using the blow
up construction in [5], it is easy to see (a) that P, x is
a local diffeomorphism, (b) that, if V : (R, 0) -> (R2, (Q^ Q))
is another embedding, there is a diffeomorphism X^:
(R, 0) ->• (R, 0) such that (in a neighbourhood of 0 e R)
^(PI. x(^)""1 == Pr. x and (c) that the oo-jet of Pi x is
determined by the oo-jet of X. From these properties of
P(;X and proposition (2,4) it follows that for some X, the
oo-jet of XP^x^"1 equals the oo-jet of t\—>- (+ 8^ + at2^1

for some k ^ 2, 8 = = ± 1 and a e R; A, 8 and a are uni-
quely determined by the oo -jet of X (the case that the
oo-jet of P/ x equals the oo-jet of the identity is excluded
because we assumed that h^ is not flat). From the defini-
tions it is clear that A", S, a do not change if we replace X
by y^(X) for any diffeomorphism 9 : (R2, 0) -> (R2, 0).
We proved the existence of a map 9 such that

9*(X) = f{x^ ^) f2^^ - 2^ ̂ - + (8{xi + ̂
L 0*^2 OSCy^

+.(M-)(^+^)]+X,^+X.^

with /'(O, 0) = 1, 8 == ± 1, k ^ 1, a e R and Xi, X^ flat
functions. Using lemma (2,7) it follows that k, 8, a and k,
8, a are related in the following way:

2/c + 1 = k-, 8 = 8 ; (a + 1 k\ == a. This implies that
\ . "- /

also /c, 8 and a are uniquely determined by the oo-jet
of X.

3. The proof of theorem 1.

To derive theorem 1 from proposition (2,3) it is enough
to prove the following.

PROPOSITION (3,1). — Let X and X be two ^-vector-

fields on R1 of the form X = xkF{x) ̂  resp. X = xk?{x) ̂
VX 03?
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with k > 2, F(0):^0 and ^{0) ^ 0. If the {2k—i)-fets
of X and X are the same, then there is a C°°-orientation pre-
serving diffeomorphism 9 : (R1, 0) -> (R1, 0) such that
9»(X) == X holds in a neighbourhood of 0 e R1.

Proof. — We define on R2 the vectorfield X by
X = (^F(a;) + y.^.(F(a;) - F{x)) ̂ - In lemma (3,2) below

ox
we show that there is a vectorfield Y on R2 of the form
Y = G(x, y} —4- — such that G(0, x) = 0 and such that,ox oy
in a neighbourhood of 1̂  = {(x, y)\x e [0,1], y = 0},
[Y, X] == 0. We show now, assuming the existence of such a
vectorfield Y, tha,t there is a diffeomorphism as in the conclu-
sion of proposition (3,1). We take 9 such that, for x near
0 e R1, (a;, 0) and (9(0;), 1) are on the same integral curve
of Y, or (9(^), 1) = ®y.i(rp,0). Because [Y, X] =^ 0 in
a neighbourhood of Lp, ^y^ and ^i^, commute as long
as all the integral curves in question are close to Lp. This
means in particular that for x close to zero and ( small,
^y.i ^x. ((^, 0) = ^x. < ^Y,i(a;,0). This, together with the
fact that X| {y = 0} = X and X| {y == 1} = X, implies
that 9»(X) == X in a neighbourhood of 0 6 R1.

LEMMA (3,2) (see also [6]).

Let X = (^.F{x) + y.^.H^)) b-^x

be a sector field on R2, k > 2 and F(0) ^ 0. Then there is a
vectorfield Y = x^ K(rc, y) -^ + -b- ^ucA t/ia( [X, Y] == 0

0 3v V fs

on a neighbourhood of Ix == {(.», y)|.r e [0,1], y == 0}.

Proof. — Writing out [Y, X] == 0, we obtain

.^A.K(a;,l/).[/c.aA-l.F(a;) + ^.F'^) -f- 2/c.y..^^'t-l.H(a;)
• + y.a^.H^a;)] + ̂ .^(x) - (^.F(a;)

+y.^k.H(.r)).(/c.^-l.K(a;,y)+aA^(a;,y)^=0.
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The termes with â '"1 cancel, so we can devide by ^k and
obtain:

- ̂  (^ y)(F(^) + y.^. H(^)) + K(^ y)(F^)

+2k.y.xk-l.H{x)+y.xk.Hf{x)-k.y.xk-l.}l(x})+H{x)^

We have to solve K from this equation; the functions F
and H are given. For each fixed y the above equation is an
ordinary differential equation without « singularities » near
x == 0 (because F(0) ^ 0 and hence ¥(x) + y.^.H^) ^ 0
for x near 0). By the existence (and smoothness) theorem
for solutions of differential equations depending on a parameter
there is a solution (near Lp) of the above equation; this
solution can be made unique by requiring that K(0, y) = 0
for all y e R.

^ 'i. " '
4. Existence and uniqueness of solutions

of a certain functional equation.

In this § we want to prove the following.

THEOREM (4,1). — Let A: R1-> R1 be a C^-diffeomor-
phism, depending on real parameters (JL^, . . . , ( JL, . , which is
of the form A(rr; (AI, . . ., (JL,.) = x + ̂ .F^; p.i, . . ., (A,.) with:

(i) / c > 2 ;
(ii) F(0; (Jii, .. ., ^) + 0 for all ^ ..., ̂
(iii) F is a C00-function of (.r; (AI, ..., (JL,.) an^ i^ co-fet,

as function of Xy is the same for all points (0; ^i, ..., (JL,.),
i.e., F can be written as

F(a?; p.i, ..., ii,) === ¥^{x) + Fa(a;; (AI, . . ., (A,),

wi(A F^ /?a( in all points (0; ^i, . .., (JL^).

Let Y == g{x\ (JL^, . . . , (Xr)— be a C^-yectorfield^ depending: • ; • .; '̂ ' ' ' o x
smoothly on (JL ,̂ ..., (A^, with .g flat in all points
(0; (AI, . ..,(Ar);

Then there iSy for each positive C, an e > 0 and a unique
C" sectorfield Z on R1 n {\x[ ^ e}, /Za( in 0 e R1 anrf
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depending smoothly on (AI, ..., |A^ such that A^(Z) + Y == Z
on R1 n {[a;| < e} for each (pii, ..., (ir)? wu^ \V-i\< C
/or aM i == 1, . . ., r, for some extention Z of Z to the
whole real line.

Before we come to the real proof of the theorem (4,1)'
we have to introduce some notation, apply some coordinate
changes and reformulate the theorem.

a) Some notation and definitions.
From now on we shall denote (^.i, . . . , | A r ) by (A; we

shall also sometimes denote A(;r; (x) by A^r). On T(R1), the
tangent space of R1, we introduce coordinates (^,^); x
giving the position on R1 and v measuring the length
of vectors. A induces in a natural way a diffeomorphism
A^ : T(R1) -> T(R1), depending on (JL, which has the form

A^, ̂ ; (A) == (a; + ̂ .F(^; ^),
[1 + /c.^.F^; (i) + ̂ .F'Qr; (JL)].P),

?^T7
where F^; (x) ==— {x\ (JL). A« is defined by^x *

^(^ ^) == A,(a;, ^; (A).

Next we choose a vectorfield X on R1 (independent of
(A) such that ®x.i == A^, for all p. (we use the symbol A to
indicate that only the oo-jets in {x == 0} are equal); such
a vectorfield X exists because the oo-jet of A^ in {x = 0}
is independent of (A and because for each orientation preser-
ving diffeomorphism 9 : (R1, 0) -> (R1, Q) there is a vector-
field X on R1 such that 3)x.i == $. It is clear that X

can be written in the form X == o^.F^) — with F ( x ) + 0.bx
Also X induces a vectorfield on T(R1) which is given by

X^ = ̂ .F(o;) -^ + (k.x^ .F(^) + ^.F'^)) ̂  -^ Clearly we

have ®x .1 == A^ (i.e., oo-jets are equal in all points of
{a; ==?: 0}) for all (A. (The 6nly reason why we introduced
the vectorfields X and X^ is that they will turn out to
be very helpfull to carry out one of the necessary coordinate
transformations.)
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Finally we define the diffeomorphism 0 : T(R1) -> T(R1)
depending on (x,, by

<S>(x, ^; ^) = A.(a;, p; (x) + (0, g(a;; (A)) = ̂  + ̂ .F^; (z),

[l+^.^- l.F(.r;(.)+a; fc.F'(.r;(x)].p+g(a;;(,)), where g is
the function defining Y (see the statement of theorem (4 1))
^y.(x, v} is defined by <&^, p) = <D(a;, p; ^);

^ : T(R1) X R'--^T(Ri) x ̂

is defined by 9>{x, p; y.) = (0(a;, p; ;,); ^. Clearly we have
®^ 61 == ;, for all (A.

6) First restatement of the theorem.
Using the notation, introduced in a), we can give the follo-

wing restatement of theorem (4,1) :
For each C > 0 there is an e > 0 and an unique smooth

C'-submanifold W of dimension r+1 in the {x, p; {x)-space
such that:
^ (i) W is of the form W == {(x, p; (x)|p == h(x; (x), \^\ < C,
i == 1, . . ., r and |a;| < e} for some C^-function h which
is flat in all points (0; y.);

(ii) there is an extension W of W, i.e.,

W={(.r,^^=^;(x)}

with h{x; (x)|{|a;| < e, )(A,| < C} == h, such that

(0(W)) n {H < e,jtA,| < C } = W
= (^(W)) 0 {|a;| < e, j^| < C}.

c) TAe first coordinate transformation.

As new coordinates on T(R1) we take p==a;-*;(, and
x = x. This change of coordinates is of coarse singular along
x = 0, but <D and X», expressed in these coordinates,
are still smooth; this follows from the explicit form of <I»
and X,, with respect to these coordinates, which we shall
calculate now.

From the .definition of x and w, we obtain directly

P = 5r̂ , x = x, 8 = x^^ and ̂  = -^ - ̂ -i ,; A.
^ oc oa; &5 <)p
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Using this we see that X^ has, with respect to the (£, ?)
coordinates, the form

X^xk.^x)(^-k.x-\^^\+{k.xk-l.'F(x}

+ 5*.F'(5;)) .^.(?.5-* ̂  == ^.F(:c) 44-5k.p.F'(aO 4;
oc oa; . 8p

this is still C".
For <E>, expressed in the (a;, f) coordinates we obtain

€»(S, ??; (A) = (5 + ̂ .F^; (A),

(1 + /c.^.F^; (x) +xc.¥'{x•,v.)}.xk^+ g(x; [x)\
CC+^.F^))'' . /

It is clear that g{x;y.),== . ^^l—rr; is still C°° and
• (a; + x " . v [x; (i))" • •

flat in all points of {x == 0} for all ^.Furthermore,
{x + ̂ .F^; (i))" = £"(1 + k.xk-l.¥{x•, (JL) + terms of order
> /c in x). Hence there is some C^-tunctiort F(5c; (i) such
Z^..P(.;.)=^*-^^^^^»^-.so

we obtain 0(o;, ^; (Ji) === (x i+ ̂ ..F^;^), ̂ (a;; ^):.^+g(^; p.)).
From the definition of F1 and the condition (iii) imposed
upon F in theorem (4,1) it follows that the oo -jet of P(^; (i),
as function of rr, is the same in all points (0; (i).

Next we show that ®x,,i == ^ix still holds after the coor-
dinate change (this is not evident because along '

{x = 0} = {^== 0},

ouy coordinate change is singular). We first observe that
the po-jet of 0 along {x ===0}, in the (S, ^) coordinates,
is completely determined by the oo-jet of F along {x = 0}.
Next we write ^x,,i in the form

^x.,i(^, P) =^ {x + ̂ ^(a;), [1 + k.^^x) + ^.F'^)].^)

for some function F. From the way X was chosen and X
was defined, it is clear that such F exists; furthermore the
oo-jet of t in {x =0} equals the oo-jet of F(o;$ p.), as
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function of Xy in {x = 0} for all (A. From this it follows
that if we now write ^x,.i in the (5, ^-coordinates we
find along {x = 0} the same oo -jets as for 0 along {x == 0},
Hence we have also in the S, ~v coordinates 3)^ i === 6«.

Finally, let W = {(^, p; pi)|p = h{x9, (i), |^| < e, |^| < C}
be a submanifold of the (a;, ^; p.)-space as in the conclusion
of restatement &.. Then the same manifold W is given in
the (x, ?)-coordinates by

W = {(x, ?; (i)|? == X-\h{x', pi), |5| < e, |(4 ^ C}.

As h was flat in all points of {x ===0}, x^.h^x', (i) is still
smooth and flat in all points of {x == 0}.

Resuming, we have the following: by the coordinate
transformation v == x^. ̂ , x == re, we changed the form of
0 but apart from that the problem to be solved (finding W
as in &.) remained the same.

d) The second coordinate change.

This coordinate change will be obtained by using the vec-
torfield X^. As we have seen under c., the vectorfield X
has, with respect to the (5, v) coordinates, the form

X.=?.F(S)^+^..'.P-0)^,

Hence, if we devide by S^, we get again a smooth vector-

field x^. X^ == F(x) 4 + ^. F' {x) 4:- Because F(0) ^ 0,oa; op
x^ .X^ has no zero-points for \x\ small. Using integral
curves of 5""*. X, it is easy to see that there is a regular
coordinate change ^ == ^(5, ^), x = x with ^(0, ?) === 1?,

such that x^X.^ == V{x) -^ and hence
bx

X, =^.F(£) ̂  == ̂ ^(x) 4 -
; bn; ^a?

(at least for [S|, or |5*), small). From this it follows that <&,
in the (5,^) coordinates, has the form

; ^ ̂  ̂  - (5 + P. F^; p.), ? + G(^ ^; (A))
with F as in A. and G flat in all points of {a?===0}. ' i . [
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e) The second restatement of the theorem.
From b) and the properties of the coordinate transforma-

tions described under c) a n d d ) it follows that theorem (4,1)
is a consequence of

PROPOSITION (4,2). — Let 0: R2-^2 be a C^-diffeo-
morphism, depending on \L = (|AI, .. ., (A,.), which is of the
form <S>{x, v, |A) == [x + xk.F{xf, (A), y + G(x, p; (A)) wi^
F(^; (A) == Fi(o;) + Fg^; (A), Fa anrf G flat along {x = 0}
and Fi(0) 7^ 0. 0 : R2 X R' ~> R2 X R' ^no^? the map
$(^;(A) == (0(^^;(JL);(Jl).

Then there is for each C > 0 an s > 0 and a unique
submanifold W of R2-^ such that

(i) W is of the form W = {{x, v\ \^}\v == h[x\ (i), |a;| < e
and | (Ai| ^ C, i = 1, . . ., r} for some C00-function h which
is flat in all points (0; (A);

(ii) there is an extension W of W, i.e.,

W={(.r^;(A)|^==^;(A)}

wi<A Ji(x', (A) == /i(a;; (A) 17 |a;| < e anrf \[L,\ < C, such that

0(W) n { |^^ej^|^C}==W==0^(W) n {)^| ^e, H^C}.

Notice that we simplified our notation (symbols) compared
with d..

f) Reduction to the expansion case.

If 0 satisfies the conditions in the assumption of propo-
sition (4,2), then also 0~1 satisfies them. If W is invariant
under 0 (in the sense of (ii) above), then W is also inva-
riant under 0~1. With this in miqd, one can carry out the
following simplification.

For any C > 0, there is an ? > 0 such that if
[p.»[ ^ C for i == 1, . . . , r and 0 < \x\ ^ e, then
| (x + xk.¥{xf, p.))!^ N. Let now U+, resp. LL, be the set
of points (re; (A), \x\ ^ s, j^) ^ C, suchthat

\x+xk.F{x,^ ^ \x\, resp. \x+xk.F{x^)\ < \x\.

Depending on the sign of F(0; (A) and the value of k (even
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or odd), we have one of the following four situations :
1. LL is everything
2. U+ is everything
3. U_={|a;|<0},U+={|^0} subsets of \x\ ̂  e, |̂ | < C.
4. U.=={|^|^0},U4-=={|^<0}

Below we shall prove that there is an invariant manifold
W+ of the form

W+ == {{x, (.; (i)l(a;; (x) e U+, \x\ 4 e', P == A+(^; (x)}
which satisfies the conditions (i), (ii) in proposition (4,2)
if everything is restricted to the set of points {x, p; pi) with
(a;; p.) e U+. The same construction, using O-1 instead of 0,
gives a manifold W_. In case 1, resp. 2, above W^
resp. W+, is already the required manifold. Incase 3. or 4.,'
one has to take W = = W _ u W + ; as W^ and W+ have,5
along {x = p = 0} oo-order contact with {p == 0},

W = W^ n W+
is a smooth manifold which has all the required properties.
Hence in the proof of proposition (4,2) we may restrict our
attention to those points {x, ^; (A) with (.r; pi) e U+.

g) Some definitions.
We ^define T : R2 -> R2 by Y^, ^) = {x + x^F^x}, ?)

and T : R2 x R- - R2 x R- by Y(^ .; (.) = (Y(^ ,); ^;
ri is^as in^the statement of proposition (4,2). It is clear
that T == 0^ for each (A, i.e., the oo-jets are equal alons
{x == 0}. A &

For a, e > 0, we define D^, == {{x, (.; |x)|p = 0, |̂ | ^ e,
^| < a for . i= 1, . . . , r, |^ + ^..Fi(^)| > \x\ and

|^ + ^ .F(o;; IA)| ^ |rr|}; note that for given a and e small
enough, D,., == {{x, p; (i)|p == 0, |̂ | ^ e, |^[ ^ a for
i = l , . . . , r and |^ + ^.F(o;; (JL)| >|^|}. Points of D, ,
are sometimes denoted by (re; (x) instead of (a?,0;pL).

Let y^\ be the set otTeal valued functions on D,, g. The
maps r<i>, r\y : ̂  ^ ~> ̂  g are defined, for each a, e >' 0, by :
[^({^/•(^);(x})] n {(^^;(x)|(^,0;pi)eD^J

[^(^ f^ (.); (.})] n {(^ P; ^)|(^ 0; ̂ =; D^F^^^ IA); (AL

==={^(ry/ ' )^ ;^;(A}
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for all fe ^ ̂ . Using the above definitions and the reduc-
tion described under /"., it follows that, in order to prove
proposition (4,2), it is enough to prove.

PROPOSITION (4,3). — For each a, there is an e > 0 such
that F^: ^a.c-> ^a.o restricted to C00-functions which are
flat along {x == 0}, has a unique fixedpoint.

For the proof of this proposition we need a sequence of
lemmas which is stated and proved below.

h) Some lemmas and the proof of proposition f4,3^.
For any vector a e T^o;p.){^ = 0} of the form

a = ^— + ^ai— we define [|a|| === \/aj + a? + . • • + a2.
ox i==i î

If D is some 1-linear function on T^ o-a){^ === 0}, we define
W by

[|D1[ ===̂  jup fa^ ... [k||̂ .|D(ai, ...,a,)|
^,...,^9&0

^€T(.c,0;M^=o^

LEMMA (4,4). — For each a > 0 and each pair of positive
integers h and w, there is an e > 0 such that for any ^-func-
tion f^y^t with flDY(a;; p.) || ^ \x\m, and

llTOr;pL)|l ^ [x^

for all i = 1, . . ., h — 1 in each point (a;; (i) e Da e,
BD^r^)^;^)!! < N".(1-4^.1^.^(0)1) for all

(rr; p.) e D^g;

^e norm o/*t^ i^ derivative Vf{x\ p.) 15 the norm as i-linear
function.

Proof. — We define Fi(.r; (x) === (a? + ^.F^a;); ^). From
the definition of Ly, we obtain that F^pf= f'F^1. For such
compositions it is easy to obtain the following estimate

IDWr1)^;^! < BDW^r1^;^))!!^!^^?^)^;^^
v - ; , ' + iwWT1^^

. \ , • . is=l

where Ci, ..^.,Cfc-:i depend on the derivatives of order
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1 , . . . , A — 1 of Pf1 in (x; (t). We now choose, for some
ei > 0, the constants Ci, ...,C,,_i such that the above
formula is valid for any (a;; y.) e D, ,.

From the definition of D,,^'lit follows that for
some e a , 0 < e , ^ e i we have fl̂ Fi-^a;;^)! = 1 whene-
ver (a;;(t) eD,.^. , ,
^ 0 < eg < s,, is then_choosen so that, for (a;; p.) e D, .,

the .r-coordinate.of.Fr^;^) is, in absolute value,
4 '

^ 1^1 — yl^-EiWI. Now we come back to the estimate
for the norm of D^/Fr1). Applying the above formula
in points (a;; (i)e D,,̂  to any (^-function /e ̂ -̂ , satis-
fying the assumptions of lemma (4,4), we obtain:

BD'VFi-1)^;^)! < (| ̂ -coordinate of F,-i(a;; (i)))"

+ S1 W^ < (l - 1 |Fi(0)| .l^l^y.ta;!'"
î i • . \ ^ /

+ASlqa;|m+k = la;!"'/! - 1 m.lF^I.I.Kl"-^
i=i \ ^ '•y

+ terms of order ^ m + k in a;.

Finally we take e, 0 < e < 53, so small that for |a;| < e,

(l-tlFx(0)|.|a;t't-ly.|a;|m

+ "X C.l.rl̂  < (1 - 4-l.|Fl(0)| W-^.^.
: 1=1

It is then clear that for any (a;; p.) e D^ and any CMunc-
tion fe y^t, _satisfying the assumptions of lemma (44)
we have WfF^x, (A)|| < |a;i'».(l -^-^IF^O)! .ja;!*-1.

^ LEMMA (4,5). — For each a > 0 and positive integer I,
there is an s > 0, such that for any (^-function fey
with BDV(a;;(i)a < | a;!̂ " •('-') for ad i = t, ..., I and all
(a;;(A)6D...,

1 D^f^x; ^)B ^ | x\1-^ •<'-'). (1 - 4-1 .la;}"-1. | Fi(0)|), ,

for all i=l, ...,f and (a;; (A) e D,,,.

Proof. — This lemma follows by induction from lemma (4,4):
First we take ei, 0 < ei < 1 such that the conclusion of
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lemma (4,4) holds with h = I and m == 1. Then we have
for any ^-function fey^^ with ||D7(a;;.(Ji)|| < \x\l+k^-i>
for all i = 1, . . . , I and all {x\ p.) e D^ that

lID^r^)^; ^11 <MI.(I - 4^Ja^.|Fi(0)l)

for all (a;; (A) e D^. Then we take eg, 0 < eg ^ e^ as in
the conclusion of lemma (4,4) with h = l — l and m=l4-/c.
Then the conclusion of lemma (4,5)'holds for functions
f^^^ as far as. D1 and D^1 of (F^/') are concerned.
Going on this way we find the required e in I steps.

LEMMA (4,6). — For any a > 0 and positive integer I,
there is an c > 0 such that for any fe ^g with f | {x=0}=0
and UD1/^; ̂  < ̂ ^'^ for all ' i == 1, . .., I and
(x^) eD^,,

lID^r^)^; pL)|[ ^ l̂ l̂ ^^) for all ,==! , . . . , ;

anrf (^; (A) e D .̂

Proo/'. — We define SF1^ c: ̂  g to be the set of (^-func-
tions /'€ ^e with f\{x == 0} === 0 and

IKD1/-)^; (x)|| ^ j^i+^^-O for all i= 1, . . . , I

and (re; ^) e D^g. From the definition of F^ and
r^r it is clear that there is a continuous flat function
a : R+ -> R+(R+ == [0, oo)) (flat means here that for any n
there is an £„ > 0 such that a(a?) < ^n if x < £„) such
that lor any fe y^ W{r^f) - (r^))(rr; (i)|| < a(rr) for
all i == 1, . . . , f ; we do not exclude that a also depends
on a.

From this and lemma (4,5) it follows that, for e small
enough, r^(^) <= ̂ .

DEFINITION (4,7). — y1^ denotes the closure of y1^
(defined in the proof of lemma (4,6)) in the C^-topology.

Remark (4,8). — By lemma (4,6) there is, for each a > 0,
and > positive; integer I, an ! ! : £<,.< > 0 such that for any
0 < e < e^, r^C^^^c:^^!. Furthermore, ~y\^ is corn-
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pact with respect to the C^-topology. This follows from the
fact that the family of partial derivatives of order ( Z — 1)
of all / 6 y1^ is equicontinuous (compactness then follows
from Ascoli's theorem [I]).

LEMMA (4,9). — Foreach a > 0 there is an e > 0 and
a unique continuous function J e 3F'^g such that for any C^-func-
t i o n / * € *^a.e? which is flat in all points of {x == 0} and
such that \f{x\ \L)\ ^ \x\ for all (^; (i) e D^g, lim {{r^yf)==J
{this is the limit in the CP-topology). l^00

Proof. — With the same methods as we used in the proofs
of lemma (4,4), (4,5) and (4,6) it easily follows that there is
an s > 0 such that for any pair of functions f^fz G ̂  g
with \fi(x\ (i)| < \x\ and |/i(^$ (x) — f^(x\ \^\ < C.|^| for all
{x\ (x) e Da.e (C is a constant ^ 2 depending on /i, f^)
we have |(r<i)jfi)(a?$ (Ji)| ^ |.r| and

• |r4,A^;^)-r^(^;^)| < c.|^|Yl ~^|F(O)|.|^|^
for all (.r; (A) e Da.g.

We shall show that, with e as above, the conclusion of
lemma (4,9) holds. Let f^ e ^^g be a smooth function, flat
in all points of {x === 0} and with | /o(o;; [i)\ < \x\ for all
{x\ (A) e D^g. Let I ^ 2 be some integer; then, for some
0 < e' < e, ^o jD^g.e ^»7g1. We may, and do, assume that
c ' < e a , f (see remark (4,8)) so that we have for ^^(r^)1^,
^|Da,s'6 ^7e1- From the definition o f y ^ , it follows that
l/i^;^)! ^T^l^1 tor \x\ ^ e\ Next we define 0 ^ Q^ ^ 2
to be the smallest constant such that

1^5 ^) —f^ ̂ \ < Cî l̂ l

for all (^$ p.) 6 D^g; from our choice of e it follows that
Ci4-i, i^ < Ci^. In order to show that lim ^ exists, it is
enough to show that lim Ci^==Q» Suppose the contrary:

i, ./•><»
let C === lim / sup C» A > 0; we shall derive a contradiction

N^oo Vi../>N /
from this. r M 1

Take i, / su<ch that Cj j e | -^ C, 2C |» we shall compute
- * L ^ J
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an upperbound for C(+i^+i. From the properties of $ and
e', we know that

l/H-i(^^-4n^;^I <C,,.l^.(l-^-|F(0)|.la;|^)

for ( a ; $ ^ ) e D ^ and \fw{x, ^} — f^{x, ^}\ ^ \x\l+l for
(a;; (A) e Da,g». It is now easy to see that there is some 8 > 0,

[ 1 1depending on C only, such that, for any C^ j e — C, 2C |:
2 J

C,,.M .^-I-IFWI.M^ < (C,,- 8).H

for e' < \x\ < e and

minSc,^J^|.{l-^lF(0)l.|^ < (C^-8).|o;|
( \ M ' / ^ : i

[ 1 1for 0 ^ \x\ < e'. Hence for each i, / with C^j e — C, 2C |
we have Ci+î +i ^ C^ /—8. -1

Now we take some N(8) such that if i, j ^ N(8), then
i j[ i

Q^ < min.]2C, C + -o'S[- Froin the above argument it follows
' .. ^ • : ^ ) ' ^ ' ^ ' • • • • _ ^ ; - ' • ::

that, for any

if\ j ' > N(8) + i,C^ < max.^C.C ~- i8i< C.
f ^ A V

This however leads to ? C == lim / sup C^A < C which is
the required contradiction, N^00 ̂ ^ 7

Finally we have to show that if we take another smooth
function f^ e ^"^g, which i^ flat in all points of {x == 0}
and such that \f(x\ (Ji)| ^ \x\ for all (re; (i) e Da g, then
lim^ == lim^, where /•; == (r^/o and jf, == (r^/o.
l-^oo (>ao

For this on<e defines Q to be the smallest constant such
that \f't{x\ p.) — ̂ ; IA)| ^ C.|a;| for all [x, \L) e D^. From
the properties of e it follows that Q-n ^ Q. The assump-
tion tim C( == C > 0 leads, with the same arguments as
above tor C, to a contradiction (in this case we have to
replace e' by e^ < e^<, which is such that both ^OJD^(«
and' fo | D^ (•' are in y1^). Hence we have litn ft = lim f^

i->w i^'»
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LEMMA (4,10) (== "PROPOSITION (4,3)).— For each a >0
there is an e > 0 such that there is a unique (^'function
f e SF'a, & which is flat along {x === 0} and such that T^{f\ === f.

Proof. — We denote the map (x\ p.) i—>- (x + xle.F{x^ p.); (i)
(see proposition (4,2)) by 0. We take our e such that the
conclusion of lemma (4,9) is valid and such that for any
0 < e' < e there is an integer N(e') such that

O^D,^) ^ D,.,.

It is clear that if there is a function fe 3F ̂  with the
required properties, it is unique (because of lemma (4,9)).
Hence it is enough to show that the « limit-function » J e ^"a.c?
the existence of which was asserted in lemma (4,9), is C°°
(it is cle^r that T ^ ( J ) ==7)* To show this we prove that
for any given integer I ^ 1, J is C^"1.

Let ^o e ^a,e he some C^-function, flat in all points of
{x == 0} and such that | /o(rc; p.)) < \x\ for all (re; pi) e D^g.
Let 0 < e' < min (e,e^) be such that fo\!>a^' e ^7?- We
shall denote T^{ f,} by ^_and r^jD^)' by f,e^
(clearly /l=/(P^). As ^71 is compact, {/^}ilo must

have at least one accumulation point (with respect to the
C/~1 -topology). Because fi converges in the C°-topology,
{fi}^must have exactly one accumulation point in the
C^-topology (if there would be two different accumulation
points, they would have C°-distance zero which is impossible).
Hence {fi}^ converges in the C^-topology and hence
HD^ is C^-1. Finally J is C^1 because F^f === J and
hence the graph of J can be obtained by applying OW
to the graph of f |Da.(».

5. The proofs of the theorems 2, 3 and 4.

Proof of theorem I f orientation preserving case). — From the
results in § 2 it follows that we only have to show that for
any diffeomorphism Y ^ (R\0)->(R1, 0), which is\of the
form Y^-^'rp+S^+a^2^1^-^^ where g is a flat
function, 8 = ± 1, a eR :and.i A ^ 2, there is an orienta-
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tion preserving diffeomorphism <p : (R1, 0) -> (R1, 0) such
that (pY^a;) == x + 8^ + a^-i.

We define Y: R2 -> R2 by

Y(rr, pi) = (^ + 8^ + arc2k~^+ ̂ ), PQ;

^ is defined by (Y^(a?), p.) == T(;r, p.). Now we want a

vectorfield Z == Z(a;, (x) — + —? with Z flat in all points
OX ?)(A

{x = 0} and such that y»(Z) == Z holds in a neighbourhood
of I = {{x, ̂ }\x == 0, 0 < (X ^ 1}. The existence of such a
vectorfield Z follows from theorem (4,1)^

We take Z^ to be the vectorfield on R1, depending on
~ • ;' : • ' ' ^ • ! ' ! • ^

^ defined by Z» = Z(x, p.)— The vectorfield Y is definedr ox

by Y == Y^ (f-\ - ^ = Y(o;, (x) A It is clear that theVw ^t1 b^
function Y is flat in all points of {rc==0}. Yu is defined to

be the vectorfield Y(a?, (JL)— on R1 depending on (JL.
03?

It follows that Y,(Z)=(Z) is equivalent with Y^(Z^)+Yp=Z^
for all (Ji; this last equation is just the equation which was
solved in theorem (4,1).

The diffeomorphism 9 : (R1, 0) -> (R1, 0) is now obtained
from Z by requiring that, for | x\ small, (x, 1) and (y(^), 0)
are on the same integral curve of Z. The fact that
^(Z) = Z implies that <p(YiN) = YoC^)). From this
and the definition of Y it follows that <p is such that

(pYy-1^) =x+ 8xk + ao^1.

To prove theorem 2 for the non-orientation preserving
case it is convenient to use theorem 4, which can be proved
using the orientation preserving case of theorem 2. This
is the reason that we are now first going to prove theorem 4.

Proof of theorem 4. — We have again Y : (R1, 0) -> (RS 0)
of the form Y(a?) === x + ̂ . F(x) with F(0) ^ 0 and. k > 2.
According to theorem 2 ^orientation preserving case) just



NORMAL FORMS FOR'CERTAIN SINGULARITIES 191

proved, there is an orientation preserving diffeomorphism 91
such that 9iY9i~1 === x + ^xk + aa^-1 for some S == ± 1
and a e R. Let X be the vectorfield

^=(sxk+(^^k\^-A^
\ \ 2 / ) oa;

where 8 and a are the same as in the formula for yi^y^1^).
It follows from lemma (2,7) that the {2k — l)-jets of
Pi^Pi"1 anc^ ^t,i are ^he same. Hence we can apply theorem
2 again and obtain 92 such that Vz^t.iVT1 = 9i^9r1 or

yr'^Uyr1^)"1 == ^ or ^rW,i == Y. Hence
X == (y^y^)^ is the required vectorfield.

We shall use the following corollary of theorem 4:

PROPOSITION (5,1). — Let Y : (R1, 0) -> (R1, 0) be a
diffeomorphism of the form ^¥(x) == x + xk.1F(x) with k > 2
anrf F(0) ^ 0. TTien (Ae on?t/ gorm of a diffeomorphism <p :
(R1, 0) -> (R1, 0) which has in 0 e R1 (Ae same co-jet as the
identity and which commutes with Y, is the germ of the iden-
tity mapping.

Proof. — Let X be a vectorfield on R1 such that ^x.i==^
(at least in a neighbourhood of the origin). Let 9 be a (germ
of) a diffeomorphism 9 : (R1, 0) -> (R1, 0) which has the
same oo-jet as the identity. Then there is a (germ of) a conti-
nuous function f^: R1 -> R such that, near the origin,
<p(a;) = 2^x, /y(^)). Clearly <p(0) === 0. 9 commutes with Y
if and only if /y is invariant under Y, i.e., f^{^y{x)) = /y(^)-
As, for each x e R1 close enough to the origin, lim Y1^)

i^—oo
or lim ^V\x) is the origin, /y is invariant under \F if and

l'»-+oo

only if /y == 0. Hence if <p has, in the origin, the same
oo-jet as the identity mapping and if <pY == Y<p holds in a
neighbourhood of the origin, then 9 == identity (in a neigh-
bourhood of the origin).

Remark (5,2). — We proved (proof of theorem 2) that if
T : (R1, 0) -^ (RS 0) has the form

Y(^) = x + 8^ + a^-1 + g{x)
with 8 = ± l , / c > 2 , a e R and g a flat function, then
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there is a C^-orientation preserving diffeomorphism 9:
(R1, 0) -^ (R1, 0) such that yYy1^) == x + 8^ + arc^-1

and such that the oo-jet of 9 in 0 is the oo-jet of the iden-
tity. Using proposition (5,1) it follows that the germ of 9
is uniquely determined by the above two properties : namely
if there were another such 9, say 9, y""^ would commute
with Y and hence it's germ would be the germ of the iden-
tity.

Proof of theorem 2 (orientation reversing case). — We have
now ^F{x) = — x + ̂  + aa^-1 + g{x) with k ^ 2, /c
odd, 8 == ± 1, a e R and g a flat function. We define
YO hy Yo(^) = — ^ + 8^ + arc2^-1. We want to find a
diffeomorphism 9 such that 9Y9'"1 = Yo- From the orien-
tation preserving case and remark (5,2) we know that there
is a unique germ of a diffeomorphism 9: (R^O) -> (R1, 0)
such that 9VF29~1 == Y2 and such that 9 has in 0 the
same oo-jet as the identity. 9 == Yo^Y has also these two
properties. Hence, in some neighbourhood of 0 e R1, 9 == 9,
and hence 9Y9~1 === Yo-

The next lemma will be applied in the proof of theorem 3.

LEMMA (5,3). — Let f: R2 -> R be some function. If
/*(r.cos 9, r.sin 9), as function of r and 9, is C00, and flat
in all points of {r == 0}, then /, as function on R2, is C00,
and flat in the origin.

Proof. — The fact that f, as a function of r and 9,
is C°°, and flat in all points of {r == 0}, is equivalent with:
/IR^O is C00 and (D^Dy//* is continuous and flat for

each i.j: Dr is defined by D^f = x^ —L + ^2 ^d D.)
bf ^f bxl . ^x^

is defined by D^f = x^ —j- — x^ -7-; a continuous function* ^x^ ^x^
g is flat in the origin if there is for each integer I ^ 0 an
si > 0 such that \g{x)\ ^ \x\1 if \x\ < Sr Using the fact

that (x{ + 1̂) — == ^iDr — ^Dy andbx^

(^ + ai) -6- = x^ + ^Dyox^
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one easily obtains that on R^O
^k^-l i-*-./<*-H r\ i \

^= ,1 ̂ ^; ̂  whCTe ^•••^It}

are polynomials in ^, a;2. This implies that also -b,—-/*
^rq bx^

is continuous and flat for all fr, f ^ 0; this implies that f
is C00, and flat in the origin.

The proof of theorem 3. —- From proposition (2,8) it
follows that we only have to prove that if the vectorfield X
bn R2 is of the form

X = f{x^, x^) [2nx^ -b- — 2nx^ ;-b-
L ^a bo;i

+ {W + ̂ Y + ̂  + ̂ k} (x, ̂  + x, ^\}
\ b î ^a;2/J

+j^+X,8
&a^ Sa^

with /, Xi, Xa C^-functions, Xi, Xa flat in 0 e Ra, /•(0) = 1,
8 = ± 1, k > 1 and a e R, then there is a C^-diflfeomor-
phism 9 : (R2, 0) -> (R2, 0) such that

T^) = 7(a;^> ^2) fSTCa^ ^&- — 2TCa;a &

L 6a;2 oa;i

+ {8(^1 + ̂ fc + a(.r! + ̂ )2k} ̂  ̂  + ̂  ̂ V]
\ b î 5^/J

for some smooth function J with J{0) = 1. We define g :
R2 -> R by g{x^ x^) == ^1X2 — x^ and A : R2 -^ R by
A(.ri, x^) = o;iXi 4- rcaXg. Because g and ^ are C00 and
flat in the origin; also ^i—^^x^g{x) and a;(—^ IMI"2/^)
are C00 and flat in the origin; \\x\\2 = ̂  + a|. It is clear
that

X^+^=M-•.[^)(^+^)
, / , / & a \-|+g(^)(^-^J.



^94 FLQBIS TAKENS

Hence we can write X in the form

X = fix^ x^ [27?% ̂ - —2^2 ̂ - + {8(^ + a^Y
L 0 n/g " ' • ' ' 0 Xi

+ a(.ri + ̂  + g(^, ̂ )} (^ -&- + .r, -̂ l,
\ 6a;i S-Ta/J

where g is C°°, and flat in the origin. Now we define X to
be the vectorfield f^.X, or

x = 27txl &^ ~ 2nxa &" + {8^ + •̂  + a^ + ̂ )2k

+ g{xi, a;^)} ( a ; i 6 + ̂  -b\
\ &a;i E)^/

and define

X, ̂  27r^ & - 2nx^ ^- + {8(^ + ̂
i, 0.37^ O^C^

+^l+^k-}-t.g{x^x,)}(xb+^-b-\
\ ^x-^ ^x^]

Now we want to show that there is a unique germ of a C°°-
diffeomorphism 9 : (R2, Q) ^;(R2, 0) such that:

(i) the oo -jet of 9 in the origin is the oo -jet of the identity;
(ii) for each x: x, 0 and 9 (re) lie on a straight line;
(iii) 9^19-1= ^^.
The existence of such a, 9 is proved using polar coordinates

r, 9 (a7i=r .cos6, x^ == r.sin 6). For any 60, we have
that ^,i{6 == 80} == ^{6 = 6o} = {Q == 60}. Hence,
restricted to each {6 == 6o}, we can apply the method of
proof of theorem 2 (orientation preserving case). To show
that 9, thus obtained, is smooth with respect to the polar
coordinates, we only have to take 6 as the second parameter
^2 on the moment where we apply theorem (4,1). 9 is
obtained by integrating a vectorfield of the form

Z(r, t, 6) == Z(r, (, 6) ̂  + ̂

on R2 X R with Z a C'-function of (r, (, 6) and flat
along {r == 0}. Hence Z is also C00 with respect to the x^
x^ coordinates and flat in {0:1 = x^ = 0} (see lemma (5,3)).
Hence 9 has all the required properties.



NORMAL FORMS FOR CERTAIN SINGULARITIES 195

The fact that the germ of <p is uniquely determined by (i),
(ii) and (iii) follows from proposition (5,1) and remark (5,2).

Finally we want to show that <p,Xi = Xo. For any ( we
define <P( == ^i^ <p^i,,t, where 9 is the diffeomorphism
constructed above. From a simple calculation we see that
9t^X,,i9r1 == ^0,1 hence <P( satisfies (iii) above. Both
Q^t ^d ^io,t? ^or ^y ^ moip straight lines through
the origin to straight lines through the origin; hence <P(
maps straight lines through the origin to straight lines through
the origin. As the oo-jets of Xi and XQ are the same in the
origin, the oo-jet of 9^ in the origin is the oo-jet of the
identity; hence <P( satisfies (i) above. From (i) and the
fact that 9( maps staight lines through the origin to straight
lines through the origin, it follows that <P( satisfies (ii).
Hence the germs of 9 and 9^ are equal. From this it follows
that 9( = ̂ ^(9^^ ( for all ( and hence

9^Xi = 9^X1 == Xo.
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