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TOPOLOGICAL COUNTABILITY
IN BRELOT POTENTIAL THEORY

by Thomas E. ARMSTRONG

0. Notation.

If Y is a topological space C(Y) denotes the space of all counti-
nuous real valued functions on Y. In general, by a function on Y
we will always mean an extended real valued function on Y.

If Y is a topological space with subsets A and B we will say that
A is strongly contained in B, and will write A C C B, iff the closure,
A, of A is a compact subset of the interior, B°, of B. A sequence
{A^ : n G 7^} of sets in Y is said to be strongly increasing iff
A^ C C A^+i for all n G Z4'. A family F of sets in Y is strongly incre-
asing iff for any two sets in F there is a third in F strongly containing
them.

A topological space Y is a-compact iff it is the union of coun-
tably many compact sets. Y possesses an exhaustion {A^ : n E Z^}
iff this sequence of subsets of Y is strongly increasing with union Y.
If Y is locally compact it is a-compact iff it possesses an exhaustion.

A topological space Y is separable iff it has a countable dense
subset. Y is first countable iff each point has a countable base of
neighborhoods. Y is second countable iff it has a countable base
of neighborhoods. If Y is uniformizable (i.e. completely regular) it
is metrizable iff it has a countable base for its uniformity. Any
locally compact space is uniformizable, and is metrizable if it is
second countable as a topological space. A a-compact locally compact
space is metrizable iff it is second countable.

The concepts of separability, first and second countability, and
metrizability form the topological countability properties we shall
be concerned with for Brelot harmonic spaces.
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1. Brelot Harmonic Spaces.

In this paper X will denote a fixed Brelot harmonic space. We
recall that this means that X is supposed to be a locally compact,
non-compact, connected, locally connected, Hausdorff space (with
no assumptions of topological countability) ; which is fitted with
a harmonic sheaf 96 = {SCy : U open in X}. Each 3€^ is supposed
to be a vector subspace of C(U). The sheaf g^is supposed to satisfy
axioms I, II, III of Brelot [3]. Axiom I states that if V C U are open
and h ^9€^j, then h \y E 9€y and that if <V^ : a G F} is a set of open
sets with union V and if h is a function on V with h L ^ SCv for

"a ^a
all a G F then h G S .̂ Axiom II guarantees that there is a basis
for the topology on X consisting of open a; C C X which are regular
for the solution of the Dirichlet problem in that if/GC(3o;) there
is a unique Dirichlet solution for/, H^GC(oi), positive i f / > 0 ,
such that H^ =/ and H^E^. For any regular c j C C X a n d
any x G cj the positive Radon measure p^ on 80;, satisfying, for
all /EC(3o?), / / dp^ = H^(x), is called the harmonic measure for
x on 3o?. Axiom III is Brelot's convergence axiom and states that
if U is a domain and {h^ : aE r} is an increasing family of harmonic
functions in U then sup {h^ : aG F} is in S^y iff it is finite at at
least one point in U. One may deduce that if U is a domain and
h > 0 is in SCy, then either h > 0 or h = 0.

If U is open SCy is the set {h E 3€^ : h > 0}, U is said to be
of type 9€ iff there is at least one h G S^y such that h > 0. If U is
a domain of type 9€, 9€^ is a cone which has base

^ ={hege^ : h(x^)= i}.
Axiom III' states that $^ is compact for the topology of uniform
convergence on compact sets in U if U is a domain of typeS^. This
is equivalent to Harnack's principle and to Axiom III. This was esta-
blished by Mokobodski, [13], for the case of second countable X
and by Loeb and Walsh, [12], in the general case. (Brelot has informed
me that Mokobodski has extended his original proof to handle the
general case). Note that because of Axiom II any regular a? C C X
is of type 9€. Consequently any point has a basis of neighborhoods
of type 96.
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A lower semi-continuous function s > — °°, defined on an open
set U in X, is hyperharmonic on U iff s ( y ) > f s dp^ for any regular
a? C C U and any y G a;. A hyperharmonic s is superharmonic iff
it is finite at one point in each component of Y. If s is superharmonic
on U it is integrable for p^ for any regular cj C C U and any x G a?.
Brelot [3] establishes this last fact and all of the other relevant
properties of superharmonic functions. Sy will denote the class of
superharmonic functions on U. Sy is convex cone which contains
the infimum of any finite subset. If F C Sy is an increasing family
then sup F is hyperharmonic. If F C§y is a family which is locally
lower bounded then inf FGS^j. ( < < A " denotes lower semi-continuous
regularization). Sy denotes the set {s ̂ §u : s > 0}. Any element s
of Sy which possesses one harmonic minorant possesses a largest
harmonic minorant hy dominating any other harmonic minorant of s.
The correspondence s -> hy is additive and positively homogeneous
on the cone of a superharmonic functions possessing harmonic mino-
rants. In particular any element of §y has a greatest harmonic mino-
rant hy. If pESy and hp = 0, then p is a potential on U, p is a
potential on U iff h < p and h E 9€^j implies h < 0. %y will denote
the class of potentials on U. If p^ 4- h^ = p^ + h^ with p^ and p^
potentials and h^ and h^ harmonic, then p^ = p^ and h^ = h^. If
s G Sy and hy exists then py = s — hy E%(J. The decomposition
s = hy + py is the Riesz decomposition of s. Countable sums of
elements of ^j are in Sy iff they converge to a finite limit at at
least one point in each component of U. Countable sums of elements
in %u lie in %u as ^on^ as ^Y converge at at least one point in
each component of U. U is said to be of type % iff there is a p G %y
with p > 0. If U is of type %, then U is of type 96. U is of type 96
iff there is at least one s e: Sy with s > 0. U is said to be of type 36-%
iff it is of type 9€ but not of type %. A domain U is of type 36-% iff
^u = ^u = ̂  : x G t° . °°)> ̂  {0 } (h E ̂ u)- we remark that the
notations type 9€, type S are due to Constantinescu and Cornea [7]
and seem to provide a most convenient shorthand.

In classical potential theory the role of negligible sets is played
by sets of capacity 0 or polar sets. Brelot introduced the notion of
polar sets in the axiomatic setting. A polar subset of an open set U
is any subset A of p"^00} for a p G %y. A subset A of U is locally
polar iff for any x €E U there is a neighborhood o?ofx such that A H a?
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is polar in GJ. Brelot [3] shows that if U is of type % any locally
polar set in U is polar in U. The converse is true for any open set U.
A polar subset of U is of p^ measure 0 for any regular a? C C U
and any x G a?. As a result if U is a domain and A C U, then A is
not locally polar when A° ^ 0. Any locally polar set A C U has
the property that if V C U is a domain then V-A is a connected
topological space (i.e. A is nowhere disconnecting). As a result if
V C U is open, U a domain and V ^ U then 3V is not locally polar.
In particular, if the open a? C C U, then 3a? is not locally polar in U.

Constantinescu and Cornea in [7] show that if U is a domain of
type 9€-% and V is an open subset then V is of type % iff U-V is not
locally polar in U. Any open a; C C U is of type %. An open set U
is of type 3€ iff every open G} C C U is of type %.

An open set U is said to possess a pseudo-exhaustion iff there
is a a-compact open subset V of U such that the relatively closed
subset U-V of U is locally polar in U. This is the case iff there is
a strongly increasing sequence of subsets of U, {A^ : n G Z4'} such

00

that U — U A^ is locally polar in U. Any such sequence is called
n =1

a pseudo-exhaustion of U.
Constantinescu and Cornea [7] show that any domain of type 9€

possesses a pseudo-exhaustion hence such a domain differs from a
a-compact by a relatively closed locally polar set. Cornea in [9]
shows that any relatively closed locally polar subset of a domain of
type S€ has a metrizable one point compactification hence is a-
compact. Cornea deduces from this that any domain of type 9C is
o-compact. We will make considerable use of this fact and the metri-
zability of relatively closed locally polar subsets of domains of type 96.

Cornea, in [9], shows that if every point in a domain U of type 96
has a neighborhood which is second countable then U itself is second
countable. Kohn, in [ I I ] , establishes that if a? is a regular domain
such that 3€^ separates points in cj then G} is second countable.
Constantinescu, in [6], deduces that if U is a domain of type 9C
such that any point has a neighborhood a? separated by 9^ then U
is second countable. This is one of the few results which have deduced
a topological countability result in the axiomatic setting.
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2. Topological Countability of Brelot Harmonic Spaces.

The following proposition is our fundamental result.

PROPOSITION 1. - Let V be a domain of type 9C. Let F C U be
relatively closed and locally polar. If K is a compact subset of F
then it is a %^ in U.

Proof. — Since F is metrizable K is a ^5 in F. LJ-F is a domain
of type 9€ hence is a-compact. Let {V^ : nEZ^} be a decreasing

00

sequence of open sets in U with 0 (F H V^) = K. Let {A^ : n G 7^}
n=l

be an exhaustion of U-F. {¥„ — A^ : n GZ^ is a decreasing sequence
of open sets in U whose intersection in K.

The following theorem characterizes when a compact subset of
a domain of type 36 is a ^5, hence characterizes Baire compacts,
purely in terms of connectivity properties.

PROPOSITION 2. — I / Let K be a compact set with contained in
a domain U of type 9€. K is a §^ iff U-K has at most countable many
components.

2/ A point x has a countable basis of neighborhoods iff for
some (hence for any) domain U of type 9€ containing x, U - {x}
has at most countably many components.

Proof. — \1 Let K be compact in U. Each component of U-K
is a-compact since each is of type 96. If U-K has only countably
many components it is a-compact. If {A^ : n E Z4'} is an exhaustion
of U-K then K = F\ U-A., is a gg.

n=l

Let us now assume that K is a §5 in U and that {G^ : n G Z"^}
is a strongly decreasing sequence of relatively compact open sets
in U with intersection K. Let V be a non-empty component of U-K.
(3V H U) C K for V has no limit points in any other component of
U-K. 0 ^ 3V H U for otherwise V would be a non-empty proper
component of the domain U. If n G Z4' and V does not meet 3G^
then V ^ ( V O G ^ ) U ( V - G J . Since V is a domain V n G^ = 0
or V - G^ = 0. Since 0 ^ 3V 0 U C K C G^, V - G^ = 0. Conse-
quently, if V n 3G^ = 0 then V C G^. For any n G Z^, 3G^ is compact
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hence meets at most finitely many components of U-K. For each
n £ Z+ at most finitely many components of U-K are not contained

00

in G^. K = H G^ contains all but countably many components of
n^l

U-K so U-K has only countably many components.
2/ x has a countable basis of neighborhoods iff {x} is a ^5.

x is a ^ in a domain U of type 9€ iff U — be} has at most countably
many components. 2/ follows from the fact that any point in X
has a neighborhood of type 96.

COROLLARY.
i) Any polar point in a ^5.

ii) A domain U of type 9€ is first countable iff no point uncoun-
tably disconnects U.

iii) // X is separable it is first countable,
iv) Let U be a domain of type 9e. Every Borel set in U is Baire

iff no compact in U uncountably disconnects U.

Proof, -
i) follows from Proposition 1, since any point has a neigh-

borhood of type 90.
ii) follows from Proposition 2, since U is first countable iff

each point in a ̂ .
iii) Let X be separable and x G X. Let U be a domain of type 9€

containing x. Let { x ^ , . . . , x ^ , . . .} be a countable dense set in X.
Every component of U — {x} contains at least one Xy so there are at
most countably many components of U — {x}. Thus x is a ^5. Since x
was arbitrary iii) is established.

iv) If every Borel set in U is Baire then every compact in U
is a ^5. As a result no compact in U is uncountably disconnecting.

If no compact uncountably disconnects U then every compact
in U is Baire. Since U is a-compact so is any closed subset. We
deduce that all closed subsets of U are Baire hence that all Borel
subsets of U are Baire.
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PROPOSITION 3. — Let V be a domain such that U possesses a
neighborhood V of type 96.

I/ £iw^ Borel set in 3U ^ Baire.
2/ /^ ̂  topological space U ey^ry poz^r x G 3U has a countable

basis of neighborhoods.

31 Any relatively open set 0 C 3U z'5 a-compact. 0 has at most
countably many disjoint relatively clopen subsets.

4/ // U is compact then every bounded Borel function on 3U
is resolutive for the Perron-Wiener-Brelot method of solving the
Dirichlet problem on 3U.

Proof. -

\1 Will be established if we can show that any relatively open
set 6 C 3U is a-compact. If this is the case then any compact K C 3U
is Baire. Since any closed subset of 3U is a-compact all closed
sets in 3U are Baire hence all Borel sets in 3U are Baire.

Let Q be open in 3U. Let W be an open set in V with W 0 3U = 6.
Let W' be the component of U U W containing U. W' is a domain of
type 9€ and W' H 3U = Q. Since W' is a-compact, 6 is seen to be
a-compact.

2/ Any point x in 3U is a ^5 in 3U by I/. Let <o?^ : n EZ''}.
be a sequence of relatively open sets in U with H (3U H o^) = {x}.

n=l

Since U is a domain of type 96 it possesses an exhaustion (A^ : n E 7^}.
{(j^n — A^ : n G Z^} is a sequence of relatively open sets in U with
intersection {x}. Since {x} is a ^5 in U it has a countable base of neigh-
borhoods in U.

3/ We have established that any relatively open 6 C 3U is a-
compact. Any compact K in 3U meets at most finitely many disjoint
clopen subsets of 6. As a result Q can have at most countably many
disjoint relatively clopen subsets.

4/ U is compact in V. By deleting a non-polar compact from
V-U we may assume that V is of type ^. Theorem 19 of Brelot [3]
guarantees that any continuous function on 3U is resolutive hence
that any bounded Baire function on 3U is resolutive. From I/ it
follows that any bounded Borel function on 3U is resolutive.
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Remarks. - Constantinescu and Cornea [8, Exercise 3.1.8] give
an example of a compact Brelot harmonic space such that one
point does not possess a countable basis of neighborhoods. If one
deletes another point from this space we obtain example of a non-
compact Brelot harmonic space of type 96 with precisely one point
not possessing a countable basis of neighborhoods. This point is easily
seen, in the example, to be uncountably disconnecting in accordance
with Proposition 2.

From Proposition 2 it follows that separable Brelot harmonic
spaces are first countable. When are such spaces second countable ?
_ From Proposition 3 it follows that if U is a domain such that
U has a neighborhood of type 9C then every Borel set in 3U is Baire.
When is 3U metrizable ?

Constantinescu and Cornea [8, Theorem 2.4.4] show that if U
is a domain such that U has a neighborhood of type 96 then any
positive upper semi-continuous function with compact support in 3U
is resolutive. From this it follows that, for any compact K C 3U,Xic
is resolutive. This may be used to give an alternate proof of Pro-
position 3.4).

The rest of this paper deals with various applications of Propo-
sitions 1, 2 and 3. Most of these applications have to do with thinness.
Thinness was first defined by Brelot and found to have a very natural
interpretation in terms of Cartan's fine topology in classical potential
theory. We refer the reader to Brelot [3], [4] or [5]. [5] includes a
very exhaustive analysis of notions of thinness and their properties
in axiomatic potential theories. Three distinct notions of thinness
arise in axiomatic potential theory, all of them coincident in classical
potential theory. The definition of these three types of thinness
that we give below is adapted from Bauer [1]. We refer the reader
to Brelot [3] for definitions and properties of the reduced function
of a positive function / over a set E, R1?, and its lower semi-continuous
regularization R1?.

DEFINITION. — Let U be a domain of type %. Let x G U and
E C U — {x}. Let p be a strictly positive continuous potential on U.

i) E is weakly thin at x iff R^06^) < p(x} for some neigh-
borhood 6 of x.
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ii) E is thin at x iff R^06^) < p(x) for some neighborhood
of x.

iii) E is strongly thin at x iff inf R^Oc) = 0 where B is
J C G 6 G B •

a base of neighborhoods of x in U.

Remarks. — None of these concepts depends on the choice of
p or that p is a potential but only on the fact that p is continuous
at x with p(x) > a Bauer [1] or Brelot [5] show that iii) => ii) => i).
Note that if x ^ E then iii) always holds. Brelot [5] defines a set
E to be hyper-thin at x G E-E iff there is an s G Sy with

lim inf [ s ( y ) — s(x)] = °°
y-^x
y^E

and to be hyper-thin at any x ^ E.
In Proposition 11.10 of [5] Brelot demonstrates the equivalence

of strong thinness and hyper-thinness. It is easy to see that E is
thin at an x € E-E iff there is an s ^S?u with

lim inf [ s ( y ) — s(x)] > 0.
y->x
y^E

One application of our countability results consists in showing
that a polar set is strongly thin at any point of its complement.

PROPOSITION 4. -
I/ Let U be a domain of type %. // Z G U is polar and f> 0

is any function on Z, then R^(x) = 0 if x^. U-Z.
2/ Z is strongly thin at all points of U-Z.

Proof. -
\1 Brelot [3] shows that if p is any non-zero potential then

7 "7Rp vanishes at at least one point in U-Z. R is superharmonic and
vanishes at at least one point of U hence vanishes everywhere. As
a result if a? C C U is regular then R7 vanishes p^ almost everywhere
for any x G a?. It follows that R7 vanishes at at least one point of
each component of U-Z hence that R^ = 0 in U-Z.
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Let x € Z-Z and let p be a non-zero continuous potential on
U. If R^CX) > 0 we assert that {x} is polar. To see this we let y G U
with R^(y) = 0. For any n G Z'' let ^ G^y satisfy ^ > f on Z and

00

^(jQ < 2~". If s = ^ ^ then ^Sy since each ^ ^ R^»
n=l

s ( x ) > S R^OO = °°'
71=1

This shows that {x} is polar.
We now show that R^(x) > 0 implies that x E Z. Since {x} is

polar it is a ^5. Let {<<;„ : ^ GZ'^} be a sequence of neighborhoods
of x strongly decreasing to {x }. Since Z-o^ is polar and since x ^ Z-o?^,
R^ ^"(x) = 0. We assume now that x ^ Z and will show that
R^(x) = 0. Let e > 0. Choose an ^ e§y so that s^> p on Z-^
and s ^ ( x ) < e ' l ~ n for any ^GZ^ If s = ^ ^ then s^§^ If

w = l

z G Z-CL^ then ^(z) > ^ ^(z) > ^ p(z) > p(z). We see that
71=W+1 M = W + 1

e ^^(x) ̂  R^(x) > 0 for any e ̂  0. This contradiction shows that
if R^Qc) > 0, then x G Z. We deduce that R^Qc) = 0 for any x E U-Z.
We may deduce that R^Oc) = 0 for any x e U-Z, hence that R^ = 0
in U-Z for any function / ̂  0 on Z.

2/ The assertion that any polar Z is strongly thin at all points
of U-Z is now immediate.

Boboc, Constantinescu and Cornea establish as Corollary 3.1 in
[2] that if U is a domain of type %, if x is a ^5 point of U, if
E C U-{x},and if s is in <§u then R^Qc) = R^OO. From this it imme-
diately follows that if x is a ^5 point in U-E then E is thin at x iff
it is weakly thin at x. We may also use this corollary to give a diffe-
rent proof of Proposition 4. The following proposition, by Propo-
sition 2, includes the corollary 3.1 of [2] as a special case. In essence,
we have removed restrictions on the point x and put them on the set E.

PROPOSITION 5. - Let U be a domain of type %, x G U and
ECU-<x}. // either i) or ii) holds then R^(x) = R^(x) for any
^u.
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i) E meets only countably many components of U-Oc}.
ii) E is 3^-analytic.

Proof. — If V is the union of {x} with a number of components
of U-{x} then V is a locally compact Hausdorff space with the induced
topology from U. If V is the union of {x} with countably many
components {U^ : n G Z4'} then {x} is a ^5 in V since each U^ is
a-compact.

We wish to construct a union, U, of {x} with countably many
components of U-{x}, such that U has a Brelot potential theory
induced on it from U such that if / ̂  0 is any function on a set
ACU-{x} then R^l{j = (R^)u and R^l{j = (R^v we furthermore
want to ensure that E C U . The main obstacle in constructing U
is ensuring that x has a basis of regular neighborhoods in U. We
will construct such a basis by ensuring that there is a strongly
decreasing sequence {c^ : n CE Z4'} of regular neighborhoods of x in
U with {a?,, H U : n G T^} forming the required basis of regular neigh-
borhoods at x in U. We guarantee that 80?^ C U for all n, and that
the original harmonic measures p n for y G U H o?^ are the harmonic
measures for the potential theory on U.

Let VQ be the countable union of all components of U-(x}
containing points of E. Let {K^ : n E Z^ be a strongly increasing
exhaustion of VQ by compacts. Let o^o C C U-K^ be a regular neigh-
borhood of x. Let Vi be the union of VQ with the finite number
of components of U-{x } meeting 3o?o. Let {K^ : n G 7^} be a strongly
increasing exhaustion of the a-compact Vi by compacts. Suppose,
furthermore, that K^ H V^ = K^ for all n G Z^ Let 0:1 C C ̂  - K^
be a regular neighborhood ofjc. Suppose now that we have constructed
the sequence {Vy}jLo consisting of countable unions of components
of \J-{x}, the strongly increasing exhaustion of Vy by compacts
{K^ : m E Z4"} for each / = 1, . . . , ^ and the regular open sets
•Ic^. : / = 0, . . . , n} such that

i) If 1^7^^ then Vy is the union of Vy_^ with the finite
number of components of U-'bc} meeting 3a?._^.

ii) If 1 ̂ / ̂  n then K^ H V,_i = K^1 for all m G Z''.
iii) If 1 ̂ / ̂  n then < .̂ C C o;,_i - Kj.
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Let ^n+i be the union of all components of U-{x} meeting
3c^ with V^. Let {K^1 \m^T^} be an exhaustion of V^i with
C1 H V, = K^ for all m G Z'. Finally let o;̂  C C ̂  - K^:;.
We now have inductively defined all of these sequences.

Let V = U V^ and let U = VU{x} . V has only countably
M=l

many components. Consequently U is a locally compact Hausdorff
space in which x has a countable basis of neighborhoods.

Let K C V be compact. K is a subset of some V^ and conse-
quently K C K^ for some m^n. For this m, o?^ C C U-K. Conse-
quently, [^ H U] H K = 0. This shows that {c^ H U : m G Z4'}
forms a basis of neighborhoods of x in U which is strongly decreasing.
Let W be a component of U-{x} not in V. For any n G Z\ W H 80?^ = 0
and x e: W, so W 0 <*;„ ^ 0. Since W is a domain 80; „ cannot disconnect
W, so W C a?,,. Since ^ is arbitrary W C F\ o;̂  —{x}. We let

M = l

U ' = U - U = ^ ^ -{x}.
M = I

If V is open in U and does not contain x it is open in U. Let
9€v = 9^v- If v is ^^ in u 2ind contains x then V = V U U'
is open in U and V n U = V. Let 9€y = {h \y : h G 9€y}. If h' E 9^
there is an ^2 with o?^ H U C V. Since 3^ = 9(c^ H V), any A in
SCy w1^ h\y = h' must satisfy h(y) = f h' dp^ for all ^Go^.
This holds in particular for all y G U'. That is, h is uniquely deter-
mined by h1. Therefore the mapping h -> h\y is 1-1, onto, linear
and is an order isomorphism for the natural orders on S^y anc! ̂ v-
The sheaf {9€y : ^ open in U} satisfies Axiom I of Brelot. Axiom II
is easily verified at all points y of U-{x} At x, CB = {o?^ H U : n G Z'1' }
is seen to be a regular basis system for x in U. In fact the harmonic
measures on 3(c^ H U) = 3o?^ are the original harmonic measures
on 3c^. Axiom III is easily verified for any domain V C U. The
only possible question is if x €E V. Here we use the I-I correspondence
between 9€y and ^Cy- ^^a ^ ^^r) is an increasing family in S€y
the corresponding family {h^ : aG r)cgv^ is also increasing. If
y G V with sup h'^(y) < °° then sup h^y) < °° so sup h^ is harmonic

a^r aer aer
in the component of V containing y. Since V is a domain so is V,
hence if sup h'^(y) < °° then h = sup h^ is in 3€y and h1 = h\y E^Cy.

aer aer
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This establishes that we have defined a Brelot potential theory
on U. We now wish to establish the connection between reduced
functions on U and those on U. To do this we need to characterize
superharmonic functions on open subsets V of U. If V does not
contain x then Sy? ^he superharmonic function on V for the potential
theory on U, is seen to be Sy- It ^ ^ V and s € Sy ^en s n^st be
in ^v-'GJ ^en restricted to V-{x} and s(x) = sup {fsdp^ : n G Z'1'}.
Conversely, a lower semi-continuous s on V satisfying these two
conditions is seen to be in Sy- It ^ E V we wish to identify <§y
with a certain subset of Sy where V = V U [U-U]. It may happen
that for an s €Sy, s(x) > sup f sdp^. This is the only thing

n^Z^

which prevents s from lying in S?y ^or ^v-{x} e ̂ v-{;c}- Let s be super-
harmonic on the open set W C U and let 6 C C W be a regular open
set. If we let

5 o n W - 6
s6 = , then s €&\y.

H^ in §
For any s in Sy we let

5 = sup {s^ : n ^ Z + } . s = s on V-{x) and s(x) ̂  s ( x ) .

We note that 5€<§y and 5(x) = sup{^(jc) : n^Z^. Consequently
s\y G Sy- It^is some function in §y we "^^ extend 5 t o V = V U (U-U)
by setting s(y) = sup{/irip^ : ^2 E Z4'} for any ^ e U-U. 5 is in S'y,
is harmonic on each component of U-U and satisfies

s(x) = sup{^(x) : n^Z^}.
n

Consequently we may identify

Sy with {s\y : s^. §v » •s'(x) = ^P •<fa)n(^)} ==

MGZ'1'

= {sup(^ ly : '2 GZ^ : s GoS^}.

We are now ready to find the reduced functions on U. Let
A C U-{x }, / ̂  0 a function on A. We assert that the reduced function
for / over A in U, (R^)u, is equal to R^ I u . Note that

(R^)u = inf {s : s G ̂  : s ^ / on A} .
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If 5 ̂ §u and s ̂ -f on A its corresponding function 5 in Sy satisfies
5 > / on A since s ^ >? on U. Consequently R^ | y < (R^)u- Now
let >?ESy and s ̂ f on A. s^ ̂ f on A-Ci^ for any ^2 so

s = sup{^" : 72 (EZ^

satisfies ^ ^ / on A and also satisfies 5^5. Since

.ly E§5 , R^|y ^(R^)u.

This establishes that R^|y = (R^)u.
We next assert that R^ly = (R^){j. This identity holds at all

points of the open set U-(x} since R^lu = (I^)u on U-^}. We
A A <^^;l^ ^

need only show that R^(x) = (R^)uOc). Since U C U,

(R^)u(Jc) = lim inf (R^)uOO ^ lim inf R^(x) = R^(jc).
y-*-x y->x

ye=\J-{x} y^-{x}

Also

(R^)uOc) = sup {; (R^)u dp^} =
n^T^

= sup {; R^ dp^ } ̂  sup {/ R^ dp^ } = R^(x).
nez'^' ^eseB

(B is a basis of regular neighborhoods of x in U). This establishes that
R" A!A = ^R^^/ 'u —^/^u-

We are now in a position to complete the proof of this theorem.

R^Oc) = (R^uOO = (R^OO = R^^)

since E C V-{x) and since {^} is a ^5 in U. This establishes i).
ii) Let E C U-{x} be 3C -analytic. Let F be a a-compact in E

with R^Qc) = R^(jc). F meets only countably many components of
U-{;c} so

R^Oc) = R^(x) = R^x) ̂  R^(x) ̂  R^x).

This establishes ii).
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PROPOSITION 6. - Let \] be a domain of type % x G U ^zcf
E C U-{x}. // E is weakly thin at x it is thin at x in either of the
following cases :

i) E meets only countably many components of U-{x}.
ii) E is 3^-analytic.

Proof. - Let E be weakly thin at x. Let § C C U be a neigh-
borhood of x such that PE^6(x)<p(x) for some strictly positive
continuous potential p on U. E H § meets only countably many
components of U-{x} if i) holds and E H § is 3^-analytic if ii) is
satisfied. Consequently if i) or ii) hold then R^\x) = R^Oc) < p(x).
This establishes the proposition.

For the sake of completeness we wish to establish Bauer's suffi-
cient conditions for the equivalence of thinness and strong thinness,
Bauer [1, Theorem 4]. He establishes this theorem in the case where
U has a countable basis of neighborhoods. We remove this restriction.
Our theorem depends on the Riesz-Martin representation theorem for
the cone of positive superharmonic functions S?y established in full
generality by Constantinescu in [6]. This proposition is essentially
independent of the rest of the results of this paper.

PROPOSITION 7. - Let U be a domain of type %, let x G U and
E U-{x}. // E is thin at x it is strongly thin at x if either i) or ii)
hold.

i) {x) is polar
ii) Every locally bounded potential p in U with support 0(p)C{x}

is continuous at x.

Proof.. — If the theorem is true when ii) holds it immediately
follows if i) holds, for if {x} is polar and p is a locally bounded
potential with 0(p) C {x} then p is in fact harmonic in U hence,
is continuous at x. In order to prove this theorem for ii) we shall
need to establish the following lemma.

LEMMA 8. - Let U be a domain of type % x E U and E C V-{x\
Let E be thin at x but not strongly thin. Let x be an element of §u
not specifically dominating any potential p with 0(p) = {x}. Then
lim inf s(y) = s(x).

y-^-x
y(EE
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Proof. - We first note that since E is not strongly thin at x,
x E E. We next recall that if s^ , s^ are in Sy, ^ ^ ̂  means that ^
specifically dominates s^ and this is true iff s^ = s^ + s for some
5^§y. By Corollary 3.2 of Constantinescu [6], oS'y possesses a
compact base A for a locally convex vector space topology, T, on
^u. (This topology is a generalization of Herve's topology). S'u ~ Sy
is a completely reticulated vector lattice for the specific order induced
by the cone Sy- ^ ls therefore a Choquet simplex. Every element
•yGSy has a representation as the barycenter of a unique positive
maximal measure "carried" by the extreme points, ^(A), of A. If
s^ and s^ are in SSy with corresponding maximal measures ^i and
ju^ then 5^ <^2 iff A4 ^ ^2 as measures. The elements of $(A) are
either minimal harmonic functions, in A or are potentials with point
support, Herve [10, Theorem 16.2]. If %(^ to the cone

{p G %u '• 0(P) = W

then p E ^(A) i f f p E $(%^ n A). On ^(A)-^ the mapping p ^(f>(p)
is a continuous projection onto U such that U possesses the quotient
topology under 0. p € Sy is in S '̂ iff ^, the representing measure
on {(A) for p, satisfies ^({(A)^"1^)) = 0. Consequently, ^ESy
specifically dominates no p in ^w iff /^((^{.x}) = 0. This is the
case iff inf {^^"^(S)] : 5 G B = 0} for some basis B of regular
neighborhoods of {x} strongly contained in U.

Now let 5' be an element of §y specifically dominating no
element of S^' Let {o^ : n E 7^} be a strongly decreasing sequence

00

of regular neighborhoods ofx with 0:1 = U and ,̂ ^^'^(^i)] < °°.
/ i=i

For any n G Z'', let ^ = X^-i^ ,̂. Then ^ = S (^ - ̂ +i) and
" "=1

s = Z 4(A) ^rf^ ~^n+i )* we assume that
w = l

lim inf [ s ( y ) - s(x)] = 5 > 0
y-^x
y^E

and show that E is strongly thin at {x}. This will establish the lemma.
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Since s(x) < °° we must have

£ ^p(^(^-^i)<°°.
If s^ = j pd^n ^hen lim ^(x) = 0. Let {v^ : n G Z"1'} be a sub-

^(A) M^oo

00 /»

sequence of {^ : ^ G Z 4 ^ } such that ^ J p(x)dv^ < °°. Let
w = 1

% = ^(A) pd'" and let ? = s, % = ^(A) pd^ vn) '

Then % G ̂  for all n e Z'' and 7E §y. ? < 5 so ?(x) < oo. We assert
that lim inf [T(y) -7(x)] = 00. To see this we first pick n^ so that

y - ^ x
j / G E

oo /»

^ ^(x) < §. For any n E Z , s - s^ = j ^ pdfJi, is
M = y i o + l ^(A)^)"1^)

harmonic in a;^ hence is continuous at x. As a result,

lim inf [s^(y) — s^(x)] ̂  5.
y-^-x
y^E

Thus, for each n ^=. Z+,

lim inf[5^)-%0c)]>§.
^-^
j /GE

We see that •• -»
lim inf [^(y) -W] > lim inf ^ (%(^) -^(jc)) - ^ ^(x).

.K-*^ ^-^^ | w = l | n=K+l
yeE ^eE L -

If K > HQ then

lim inf [T(y) - W] > ^ lim inf [%0) - 7^x)]
y->x n=l y^x

yG.E y^E
- 5 > K - 6 - 5 = ( K - 1)6.

Since K > n^ is arbitrary, lim inf [T(y) —"s^x)] = °°. This is true
y->x
y^E

only if E is strongly thin at x. This contradiction establishes that
lim inf s ( y ) = s(x).
y-^x
v£E
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Proof of Proposition 7. — We assume that ii) holds and that
E is thin at x. If x ^ E then E is strongly thin at x. Consequently
we may assume that x ^ E . There is an •y€ESy with

lim inf s ( y ) > s(x) > 0.
y-^x
y^E

Let 0 + h G 3^ with h(x) = lim inf s(y). \f s = s ^ h then ./ is
y->x
y ^ E

locally bounded and lim inf s\y) > s ' ( x ) . Let s = j pdv represent
y->x ^(A)
y^E

s ' as the bary center of a positive measure v on {(A) where A is a
compact base of <§y. Let

s. = pdv ^ 5 , s^ = / ori^ ̂  .y.1 V^} ^ - ) 2 J^^-i^ p

Since 5'ji is a potential with support {x} and is locally bounded it
is continuous at x. It follows that lim inf s^(y) > s^(x). s^ does not

.V-*' X

y^E

specifically dominate any potential with support in {x }, consequently E
must be strongly thin at x by the previous lemma. This establishes
the proposition.

Our final result is an application of Proposition 3 to demonstrate
the existence of a strong barrier at a regular boundary point of a
domain whose closure has a neighborhood of type %.

DEFINITION. — Let U be an open set in X with z G 3U. A barrier
in U at z is a superharmonic function s > 0 with domain a? H U,
for a? some neighborhood of z in X, such that lim sup s{x) = 0.

x->z
xG<jj n u

An cj-barrier in U at z, for a neighborhood a? of z, is a barrier
in U at z, whose domain includes a? H U, which satisfies lim inf s(x) ̂  p

x-^
xeajnu

/or a// ^ CE 3a? H U /or ^om^ real p > 0.

^4 strong barrier in V at z is a barrier s in U at z with domain
a; 0 U, for some neighborhood co o/ z, ^c/z ^/za^ 5 ^ a b-barrier for
any neighborhood 8 of z with § C C a?. Equivalently s is a strong
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barrier at z iff for some neighborhood co of z, s is an ^barrier, and,
for all neighborhoods 5 of z with 5 C C a?, s is bounded away from
0 on (co - 6) 0 U.

Remarks. — The existence of a barrier for an open set U at a
boundary point is a necessary and sufficient condition for the regu-
larity of z as a boundary point Brelot [3, Theorem 22]. The use
of a strong barrier makes the proof of regularity somewhat simpler.
The proof of the following proposition is simply an extension of
the method of proof used by Brelot for that theorem.

PROPOSITION 9. — Let U be a domain whose closure has a neigh-
borhood of type 96. Let the point z G U possess a barrier in U.
There is a strong barrier in U at z.

Proof. — Let h be a barrier in U at z. Let a; be an open set
containing z with a? H U C domain(A). By Proposition 3, z has a
countable basis of neighborhoods in U. Let {6^ : n^Z^} be a
strongly decreasing sequence of regular neighborhoods of z in X
such that {6^ H U : n G Z'1'} is a basis of neighborhoods of z in U,
and such that 6^ C C a?. The strong barrier we will construct will
have domain 6 ^ H U. We will inductively construct a decreasing
sequence {s^ : n € Z'1'} CS^^y, and a subsequence {§(w) : m^=.Z+}
of {S^ : n E Z4'} satisfying :

i) For any neighborhood 5 of z with 5 C C 5^ and for any
m CE Z+ there is a real p(6 , m) > 0 such that s^ ^ p (§ , m) on
U n (5^ -5).

ii) lim sup s^(x) < 2"^ for all m e Z+.
JC-+-.Z

j c e u n s ^

hi) Sy^ = ^_^ on [5^ — §(w)] H U for all m G Z^

If we have constructed these sequences, the sequence {^ : m^.Z+}
is eventually constant on any compact K C U H 5 ̂ . s = lim Sy^ is

m-»-oo

easily seen to be in Syna an^ 5 <s sm ^or a^ w E ^+* If 5 C C 6^
is a neighborhood of z there is an m such that §„(,„) H U C 5 0 U.
s = s^ on [§i - 8^]nu so ^p(§ , m ) > 0 on [6^ - 5] 0 U.
Since 5^5^ for all m, lim sup s(x) = 0. Therefore ^ is the desired

x->z
x^6^ n u

strong barrier in U at z.
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To establish the theorem we only have to construct the sequences
{s^ : m € Z^ and {8^ : m € Z^.

Let K( l ) be a compact subset of (35 i) H U such that if

0 (1)= 0 8 i ) n U - K ( l ) then H^ (z) < —

6.
For a large enough \i > 0, 5i = ^ = \^h + H has the property
that lim inf s ^ ( y ) > 1 for all x G ( 3 5 ^ ) H U . We assert that s^ is

y ̂ x
^ e u n 6 i

bounded away from 0 on [§i — 6] 0 U for any neighborhood 6 of z5 i
with 8 C C 8 i . This is because H is bounded away from 0 in
81 — W, where W is a relatively open set,in 81 such that K ( 1 ) C W
and W is compact in U. Since h must be bounded away from 0 on
any compact in a? H U it is bounded away from 0 on W. Conse-
quently ^i is bounded away from 0 on [81 — 8] H U for any such 8.
That is 5'i satisfies i). Since

lim sup s,(x) == lim sup [\h(x) + H^ (x)] < 0 + -'
x-^-z x-*-z •'t7Vl} 2

^e6 i n u jce6i n u

ii) is satisfies, iii) is vacuously satisfied when 8(1) = 8r
Assume, for the induction step, then s^ and 8(m) have been

constructed satisfying i), ii) and iii). Choose 8(m + 1) so that

8(m+ DnUC^CU-^).

Choose K(w + 1) compact in [98 (m 4- 1)] H U so that if

6(m + 1) = ([38 (m + l ) ] n U ) - K ( m + 1)

then H61 (z) < -• Pick X^+i > 0 so large that if
—Q (w+1) ^

4- — \ ti -I- /^'~'m Tj5(w+l)^+1 - ̂ i h + 2 H^^

then lim inf t^ (x) ̂  2-^ for all ^ E [38(m + 1)] H U.We note
x^-y

, x e u n 6 ( w + i )
that lim sup t^i (x) < 2-(w+l) and that t^ is bounded away

x -> z
jce6(m+i)nu
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from 0 on any [§(m + 1) - 6] n U if 6 C C 6(m + 1) is a neigh-
borhood of z in X. Let

^ on [6^ - §(m+ l ) ] n u

^m+i A ^ in § ( w + l ) n u

Then s^ ^S^y, ^+1 < s^ and ^i satisfies i), ii) and iii) of
the induction hypotnesis. This completes the proof of the induction
step hence establishes the theorem.

We remark that this proof did not depend on the fact that U
was a domain but only on the fact that {z} was a ^ in the topo-
logical space {z} U U. This is true iff any compact neighborhood of
z in X meets at most countably many components of U. Conversely
if there is a strong barrier in U at z then {z} is easily seen to be a
§< i n { z } U U.
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