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EMBEDDING OF OPEN RIEMANNIAN MANIFOLDS
BY HARMONIC FUNCTIONS

by R.E. GREENE* and H. WU*

A real-valued function / on a Riemannian manifold is called har-
monic if A/ = 0 where A is the Laplacian associated to the Riemannian
metric of the manifold. The purpose of this paper is to prove the
existence on any connected non-compact Riemannian manifold of
dimension n of 2n + 1 harmonic functions which taken together
give a proper embedding of the manifold in (2n 4- 1 )-dimensional
Euclidean space R2"'1'1. This result is conceptually related to the
theorem of Behnke and Stein that every open Riemann surface is a
Stein manifold since one expects the behaviour of harmonic functions
and that of holomorphic functions to be closely related on a complex
manifold of (complex) dimension one. On the other hand, in higher
dimension the existence of proper embeddings by harmonic functions
contrasts strongly with the fact that openness of a Kahler manifold is
far from being a sufficient condition for it to be a Stein manifold.

The proof given here of the existence of proper embeddings by
harmonic functions is divided into the following steps : § 1, the proof
that at each point of a Riemannian manifold there exist harmonic
functions defined in a neighborhood of the point which form a local
coordinate system near the given point ; § 2, the proof, using results
on approximation of locally defined harmonic functions by globally
defined ones, that every open Riemannian manifold admits an embed-
ding by harmonic functions into R2""^ ; and § 3, the proof that such
an embedding can be found that is also a proper mapping. The argu-
ments used in § 2 are based upon methods developed by Whitney [21].

(*) Research partially supported by National Science Foundation grants GP-
27576 (first author) and GP-34785 (second author). The second author was a
Sloan Fellow during the preparation of this paper.
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The arguments of the present paper can be used to prove that
any real analytic manifold M, compact or non-compact, with a real
analytic Riemannian metric has a real analytic (proper) embedding in
some Euclidean space, thus providing a new proof as well as a gene-
ralization to the non-compact case of a well-known theorem of
Bochner [2]. To obtain this result in case M is non-compact, one need
only observe that by the theorem of Petrovsky (see, e.g., [15, p. 225])
harmonic functions on a real analytic manifold with real analytic
Riemannian metric are necessarily real analytic so that the proper
embedding by harmonic functions constructed in § 3 is in this case
real analytic. On the other hand, if M is a compact real analytic
manifold with real analytic Riemannian metric, then the non-compact
manifold M x R (with the product real analytic structure and the
product metric, this metric being thus real analytic) has as noted a
proper real analytic embedding in some Euclidean space. The compo-
sition of this embedding of M x R with the real analytic embedding
i : M -> M x R defined by p -> p x 0 is a real analytic embedding
of M in a Euclidean space. (An extension of Bochner's result to
non-compact manifolds has been given by Royden [20] and Malgrange
[25] using methods different from those of the present paper. The
more difficult problem of finding real analytic embeddings of real
analytic manifolds without assuming that the manifolds admit real
analytic Riemannian metrics has been solved for compact manifolds
by Morrey [13] and for both compact and non-compact manifolds
by Grauert [7]).

Once it is known that a given real analytic manifold admits a
proper embedding in some (finite-dimensional) Euclidean space, the
Weierstrass approximation theorem may be applied to show that the
manifold has a real analytic embedding in any Euclidean space in which
it has a C°° embedding (see [7 ; pp. 470-471]). A corresponding remark
applies to the question of real analytic proper embeddings. Thus the
dimensionality requirements are not a point directly at issue in real
analytic embedding problems. In the case of embedding by harmonic
functions, the dimensionality .requirements are of significance since
no harmonic function analogue of the Weierstrass approximation
technique indicated holds in this case.
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1. Harmonic local coordinates.

PROPOSITION 1. — If M is a Riemannian manifold of class C00 and
dimension n and ifp E M is an arbitrary point of M, then there exists
an open neighborhood U of p and a collection of (necessarily C0)
real valued functions h^ , . . . , / ? „ on U such that

a) AA,(<7) = 0 for all q E U and i = 1 ,. . . , n.
b) ifH : U -> R"^^ /m^^H(^)=( /^^^) , . . . , / ^„^) )eR n

/or ^ E U ^AI H has a nonsingular Jacobian at p.

Proof. — Let (x^ ,. . . ,x^) be a C°° local coordinate system
defined in a neighborhood of p. If 3€ denotes the real vector space
of germs of harmonic functions at p, then there is a linear mapping
K: 9€p -> R" defined by

w>-(^-'9x,
9h_

p ' ' 3^
) • hese,

For specified functions /^ , . . . , / ; „ , nonsingularity at p of the
Jacobian of the associated mapping H is equivalent to nonsingularity
of the n x n matrix

/ 3/^ x ; = 1 , . . . , M
v 9x^ p ) / = 1 , . . . , M

and hence is equivalent to the linear independence in R" of the
vectors G{ h ̂ ) , . . . , ff(h^), where A, = the germ of A, at p. Thus to
establish the proposition it suffices to show that the subspace ff(3€p)
of R" has dimension n or equivalently that J5(9€ ) = R". Suppose on the
contrary that ff0€p) ̂  R". Then there would exist (c^ ,. . . , »„) E R"

n

such that for every (j^ , .. . ̂ ^^O^p) ^ ^i = °- In that case'
1=1

every h^SOC ) would have 0 derivative at p in the direction
n 9
^ a, — . Hence the proof of the proposition will be complete if

1 = 1 w! —>•
it is established that for every vector V ̂  0 in the tangent space of
M at p there exists a harmonic function h defined in a neighborhood
of p such that ~^h =fc 0.



218 R.E. GREENE AND H. WU

The existence of such harmonic functions is implied by a fact
that was understood though not proved in detail in classical potential
theory (cf. [6]). Expressed in physical terms, this fact is the observ-
ation that if C is the geodesic emanating from p with tangent ^ then,
provided that q is close enough to p along (the positive direction of)'
C, a unit charge at q exerts a force on a test charge at p which has a
nonzero component in the direction of .̂ Using the constructions
which make up the method of the parametrix, it is possible to formulate
and prove a precise version of this general observation and thus to
reduce the existence of a locally defined harmonic function satisfying
V A ^ O .

The following discussion will briefly outline the required cons-
truction using the notation and results of [19 ; Chapter V] (cf. [22]),
to which the reader is referred for further details. Note that the case
n = 2 requires special consideration, as a consequence of the fact
- logr is the natural potential on the plane whereas r2-rl plays the
corresponding role for n > 3. Only the case n > 3 will be discussed
here ; the desired conclusion in case n = 2 can be deduced by similar
methods (replacing r2-" by - log r) or can be obtained immediately
from the existence of local uniformizing variables, i.e., the existence
of local isothermal coordinates, on any two-dimensional Riemannian
manifold ([4]).

If D is any sufficiently small neighborhood of a point p E M, then
there is defined on D x D - {(x , x) | x G D} a C°° function j(x , y ) , the
elementary kernel ("noyau elementaire"), which has the properties that
it is harmonic in the first variable (when x ^ y ) and that for each fixed
y it satisfies in the distribution sense the equation A^Qc ,y)\ = = 6(y)
where 8(y) is the Dirac distribution aty. (Thus 7 is", up to tĥ e addition
of a C°° function, the potential of a unit charge at y in the classical
theory). Assume that D^ is a neighborhood of p chosen to have
compact closure in M with D, C D and to be convex in the sense that
any two points in D^ are joined by a unique minimizing geodesic,
which lies in D^ . Then the kernel 7 has the further property that if x
is sufficiently close to y, x ^ y , x , y G D ^ , then the derivative of 7
with respect to motion of x toward y along the geodesic from x to y
is nonzero. In fact, given K > 0, there exists an e > 0, such that if
the distance from x to y , x , y E D^ , is less than e but x ^ y then the
^-derivative of y(x , y ) with respect to arc length along the minimizing
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geodesic from x to y is greater than K in absolute value. To see that
the elementary kernel behaves this way, note that it is explicitly
given as follows :

+ °° /»
j ( x , y ) = o j ( x , y ) 4- ^ j co(x , z) A *^ (z , y)

m = i '2€D

where
1) ^(x , y ) = r2~n(x , y ) x a C°° function on D x D, which is

nonzero for x = y , r(x , >0 denoting the Riemannian distance from x
to y
and

2) ^i (x , ̂ ) = — A^ o?(x , ̂ )

^m^^)=/ ^(^^) A *^_i(^,>0 m > 2 .

Using from [19], Lemma 1 of § 28, Lemma 6 of § 27, and Lemma 4
of § 27, it is easily verified that the differentiation of the 2 / term of
the expression for 7 along the geodesic from x to y produces a result
of order of magnitude at most that of r3"". On the other hand, x-
differentiation of cj(x, y ) along this geodesic produces a result of
order of magnitude precisely that of r1""^, y ) since a) o;(x, y ) is
the product of ^""(jc, y ) and a (nonzero, for x = y ) C°° function of
x and y and b) the indicated derivative of r2~n(x , y ) is exactly
(n — 2) r1""^, y). Thus the x-derivative of j(x , j0 with respect to
arc length along the geodesic from x to y becomes infinite when x is
sufficiently close to y . That this derivative becomes infinite as x -> y
uniformly in y follows from the fact that the relevant estimates involve
only constants which can be chosen to vary continuously with the
metric or equivalently continuously with respect to variation of y .

—>•
It follows from the observations given that if V is any vector

^= 0 in Mp.and C is the geodesic from p satisfying C(0) = p, C'(0) = V
then for sufficiently small IQ > 0 the function q -^ y(q ,C(^)) is
defined and harmonic in a sufficiently small neighborhood of p and
~^h |p + 0. n

Remark. — Proposition 1 is actually a special case of a general
theorem due to Lipman Bers, to the effect that one can obtain local
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solutions of a linear elliptic equation Pu = /with prescribed derivatives
up to order m — 1 at a single point, where m is the order of P ([23 ;
Lemma 5.1] and [24 ; p. 228]). However, we have included the above
proof for the special case at hand because it is relatively simple and
elementary.

2. Embeddings by harmonic functions.

Throughout this section and the following one, M will be a
connected non-compact Riemannian manifold of class C°° and dimension
n> 2.

Let 3€(M) be the topological space of harmonic real-valued
functions on M with the coarse C° topology, i.e., the topology of
uniform convergence on compact subsets of M. Let C°°(M) be the
space of C°° real-valued functions on M with the coarse C°° topology,
i.e., the topology of uniform convergence on compact subsets of M
of functional values and values of derivatives of all orders. Since an
harmonic function on M is necessarily C°°, there is an inclusion i :
ge(M) S C°(M).

LEMMA 1. - The inclusion mapping i : 9€(M) ~> C°°(M) is a
homeomorphism of 3€(M) onto a closed subspace of C°°(M).

Proof. — This lemma is equivalent to the following standard
properties of harmonic functions, the first of which follows from
the second, the second being a special case of results of Friedrichs
and GSrding (see [15 ; p. 210]) :

a) If a sequence of harmonic functions converges uniformly on
compact subsets of M, then the limit of the sequence is an harmonic
function.

b) If a sequence of harmonic functions converges uniformly on
compact sets, then the derivatives of the members of the sequence
converge uniformly on compact sets to the derivatives of the limit of
the sequence, o

C°(M) admits a complete metric which induces its topology
([14 ; p. 22ff.,] [15 ; p. 150]). Since 96(M) is homeomorphically
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included as a closed subspace in C°°(M), the induced metric on3€(M)
induces the topology of3€ and is complete. In particular, the Baire
category theorem holds in 9€(M) and hence also in the finite products
(with product topology) ^(M) = 3€(M) x • • • x^M) (k factors).

DEFINITION. - Let P be a differential operator on M. A function
f : K -^ R defined on a compact subset K of M is said to satisfy
Pf = 0 on K iff is the restriction to K offunction f^ defined on some
open subset of M containing K and satisfying Pf^ = 0 on that open
subset. In particular, a function f : K -> R is said to be harmonic on
K if f is the restriction to K of a harmonic function defined on some
open subset of M containing K.

LEMMA 2. - // K is a compact subset of M such that M - K has
no compact components, then every function f : K -> R which is
harmonic on K is the uniform limit on K of harmonic functions
defined on all of M. In particular, if p, q EM, p ^ q, then there is a
harmonic function h on M such that h(p) =^ h(q).

Proof. — A linear elliptic operator P on M is said to have the
unique continuation property if any two functions u^ : U -> R,
u^ : U -^ R defined on a connected open subset U of M which
satisfy (1) Pu^ = 0 and Pu^ = 0 on U and (2) u^ = u^ on some
open subset V of U necessarily satisfy (3) u^ = u^ on all of U. Not
every elliptic operator has the unique continuation property as shown
by Plis [17]. However, Aronszajn [1] and Cordes [5] have proved that
all second order elliptic operators (with C°° coefficients) and in parti-
cular the Laplacian on M do have this property and in fact an even
stronger condition of the unique continuation type than that required
here. A related theorem which admits a much simpler proof and which
also implies the present unique continuation property is given by
Protter [18]. The first statement of the lemma is thus a consequence
of the following result of Lax [11] and Malgrange [12] (see also [15 ;
pp. 233-241] for a detailed discussion of the real analytic case,
wherein the unique continuation property is automatic) :

If P is a C°° elliptic operator on a connected non-compact C°°
manifold M and if its adjoint P* has the unique continuation
property, then, for every compact subset K of M such that
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M — K has no components with compact closure, any function
/ : K -> R which satisfies P/ = 0 on K is the limit uniformly
on K of functions h defined on all of M and satisfying Ph = 0
everywhere on M.

The second statement of the lemma follows immediately from the
first since the function which is 0 at p and 1 at q is harmonic on the
set {p , q} and M - {p , q} is connected, o

LEMMA 3. — For each point p E M, there exist harmonic functions
h^ , . . . , / ? „ : M -> R such that the mapping

q -> (h,(q),...,h^q))^R\ q(EM ,

is a diffeomorphism onto its image in a neighborhood of p.

Proof. — According to Proposition 1 of § 1, there exists a
neighborhood U of P together with harmonic functions h\, . . . , h'^
on U such that q -> (h[(q) , . . . , h^(q)) is a diffeomorphism of U
onto its image. Choose a neighborhood U^ of p with L^ compact,
U^ C U, and M — U^ connected (a geodesic ball of sufficiently small
radius around p , for instance). Then Lemma 2 implies that there exist
harmonic functions h^ , . . . , h^ : M -> R approximating h [ , . . . , h^
on U^ arbitrarily closely. From Lemma 1 it follows that the derivatives
9h.
—- , /, / = 1 , . . . , n at p relative to a fixed local coordinate system
OXj

(x^ , . . . , x^) around p can be made arbitrarily close to the correspond-
3/L / 3/L \

ing derivatives at p . Since the matrix ( ——) /, / = 1 ,. . . , n is
Qx. \ 9x. /

nonsingular at p by hypothesis, h^ ,. . . , h^ can be chosen so that the

matrix (— L ) i, f = 1 , . . . ,n is also nonsingular at p. These h ' s
Y 9x• /

satisfy the requirement of the lemma by the inverse function theorem. Q
Let K be a compact subset of M. A C°° mapping F : M -> R^ is

said to be an embedding of K if F | K is injective and if F^ is injective
at every point of K.

LEMMA 4. — Let K be a compact subset of M. There exist a
finite number of harmonic functions h^ , .. . , h^ : M -> R such that
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the mapping M -> R/ defined by q -> (h^(q) , . . . , h^q)) is an
embedding of K.

Proof. — According to Lemma 3, there exists a covering of K
by open sets to each of which there are associated n harmonic functions
on M, which functions together define a diffeomorphism of that
open set onto an open subset of R". Choose a finite subcover
{Uy | / = 1 ,. . . , k} of such an open cover of the compact set K. The
union of the sets of harmonic functions associated to each open set
in the subcover is a finite collection of harmonic functions, say
h^ , . . . , h^. The mapping q -> (h^ (q) , . . . , h^(q)) has an injective
Jacobian at each point of K since at each point of K some subset of
n of the h^ , . . . , h^ defines a diffeomorphism in a neighborhood of
that point. Notice that on the same grounds this mapping is injective
when restricted to any one of the U.'s, / = 1 ,. . . , k. ^

k
Now consider the compact set K x K — U CU; x U;). For each

i = 1 * '

(p , q) in this set there exists by Lemma 3 a harmonic function h
such that h p ^ ( p ) ̂  ^p,qW' Then there are open neighborhoods U ,
U^ of p and q respectively such that for any x G U and y G U

h^^x) ̂  h^^y). The sets Up x U^ , (p , q) G K x K - ̂  (U, x U,)
k

are an open cover of K x K — U (U, x U,). Let U x U , / = 1 , . . . , m,

be a finite subcover. Then the functions /? , 7 = 1 , . . . , m together
with h^ , . . . , h^ define an injective mapping of K into pnk+m : if
p, q are two distinct points of K then, if some U^ contains them both,
they have distinct images under one of the h^ , . . . , h^ whereas if no
U. contains them both, they have distinct images under one of the
/z since then necessarily p E U and q ^ U for some /. Thus the
finite set h^ , . . . , h ^ , h ,. . . ,h of harmonic functions

• 1 ' ^1 •fn * ^ HI
satisfies the condition required in the lemma, o

The following two lemmas are a version of the projection method
of Whitney [21] (see also [10 ; pp. 118-125]).

LEMMA 5. - Let F : M -> Rk, k> 2n -{- I , be a C" mapping
with component functions F ^ , . . . , F ^ . Suppose that F has the
property that F^ is injective at every point of a compact subset K of
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M. Then the set of all a = (a^ ,. . . , a ^ _ ^ ) € R^"1 5uc/! r/iar rAe C00

mapping F° o/ M m^o R^~1 defined by
q -^ (F^) - a, F^) ,. . . , F^(^) - a^ F^))

/m (F^ infective at every point of K /zfl5' complement of measure
zero in Rk~l.

Proof. - The linear map P^ : R^ -^ R^"1 defined by

(^i, . . . ,^) ^ (^i -^i^, . . - ,^- i -^-i^)^! , . . . ,^)€R\

has kernel consisting of the set of all scalar multiples of the vector
(04 ,. . . , f l f c_ i , 1) '- in fact, this map can be interpreted geometrically
as projection along this vector onto the (k — 1 )-dimensional subspace
of R" defined by y^ = 0. The map (F°)^ : TMp ^ R^, p E M, is
noninjective if and only if the kernel of P ,̂ has a nonzero intersection
with F^(TMp) and thus if and only if (a^ ,. .. , a ^ _ i , 1)G F^(TMp).
(Here the tangent space of Rk at each point is identified with Rk

itself in the usual fashion).
Let U be any neighborhood of K ; then the mapping of

{ ( p , i ; ) l p e u , i ; e T M p }
into R^ defined by (p , v) -^ F^v is C°° and its domain is a manifold
of dimension 2n < k. Thus its image has measure zero in Rk (see, for
example, [19, p. 10]). Hence the image of {(p , v) I p € K , v € TMp}is
of measure zero in Rk. Note that this image is closed under scalar
multiplication. Thus the fact that it has measure zero implies that its
intersection with the hyperplane defined by y^ = 1 has (k — 1)-
dimensional measure zero in this hyperplane. Thus the set of

a = (^i , . . . , ^ _ i )

such that F" has (F"% noninjective at some point of K is of measure
zero in R^"1. a

LEMMA 6. - Let F : M -> R\ k > In + 2, be a C°° mapping
wth component functions F^ , . .. , F^. Suppose that F is an embed-
ding of K. Then the set of all a = (a^ ,. . . , a^_ i ) € R^"1 such that
the C°° mapping F° of M ^o R^"1 defined by

q ^ (F^)-^F^),...,F,,_^)-^^F^))



EMBEDDING OF OPEN RIEMANNIAN MANIFOLDS 225

is an embedding of K has complement of measure zero in R^ ~ l .

Proof. — In view of Lemma 5, it suffices to show that the set of
a^Rk~l such that F0 | K is not injective has measure 0 in R*"1. Now
F°(p) = F°(q), p , q G K, p ^ q, if and only if F(p) - ¥ ( q ) ̂  0 is a
scalar multiple of (a^ , .. . , f l ^ _ i , 1). (Here F(p), F(^) are considered
as vectors in R*). Let U be an open neighborhood of K. The mapping
(U x U - {p x p | p E U}) x R ->• R^ defined by

( P , ^ X ) -^ X ( F ( p ) - F ( ^ ) ) , p ^ G U , X G R

is C°°. Since its domain is a manifold of dimension 2^ 4- 1 < k, its
image has measure zero in R^ (again by [19, p. 10]). A fortiori, the
image of ( K x K - { p x p | p G K}) x R also has measure 0 in Rk.
This image is closed under scalar multiplication. As in the proof of
Lemma 5, its having measure zero in R^ then implies its intersection
with the hyperplane y^ = 1 has (k — 1 )-dimensional measure zero.
Thus the set of A = (^ , . . . , a ^ _ i ) such that F° is noninjective on
U has measure zero in R^ -1 . D

For each compact subset K of M, let S(K) = the set of mappings
F : M ->• R2"''1 in ge^'^M) = ^(M) x . . . x 9€(M)(2n + 1
factors) which are embeddings of K, i.e., @(K) is the set of C°° mappings
of M into R2"'1'1 which are embeddings of K and which have their
component functions harmonic on M.

LEMMA 7. - // K is a compact subset of M, then §(K) is an open
dense subset of SC2" +1 (M).

Proof. - The set of C° mappings M -^ R2"^ which are embed-
dings of K is open in (^(M) x • • • x C°°(M) ( 2 ^ + 1 factors) in the
product coarse C°° topology ([14 ; pp. 33-34, the proof of Theorem
3.101). The openness of ^(K) inge^'^M) follows then from the
fact that the inclusion ; : ^^(M) -> C°°(M) x • • • x C°°(M) is a
homeomorphism onto its image by Lemma 1.

To prove that S(K) is dense in ge^'^M), note that according
to Lemma 4 there is a mapping H^ G^e^M) of M into R1 which is
an embedding of K. For any HGge^'^M),

H ® Hi : M -> R2"''1 ® R1 = R2"-^^
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is an embedding of K belonging to^e2^1^. Let the component
functions of H be h^ ,. . . , h^^ and those of H, be ̂  ,. . . ,^ .
Then repeated application of Lemma 6 implies that there exist real
numbers ^., 1 < / < 2n + 1, 1 </ < / which can be chosen arbitra-
rily close to 0 such that the mapping in^e^^CM) defined by

q ^ ( h , ( q ) - t ^,W,/^)- f S^/, . . . ,
/ - I ,= i

^i^)- Z ^i,/^/)
/ = !

is an embedding of K (cf. [8 ; p. 35]). The fact that the {'s may be
chosen arbitrarily small immediately implies that this embedding of K
may be chosen as close (in the coarse C°° sense) to H as desired, a

PROPOSITION 2. - //S(M) = the set of mappings H in ^"^(M)
which have the properties

a) H is infective on M and
b) H^ is infective at every point of M,

then &(M) is dense in ̂ "^(M).

Proof. - Let {K, | i = 1 , 2 , 3 , . . .} be a sequence of compact

subsets of M with K, C K,.^ for all / and ^ K, = M. Then

S(M) = H00 g(K.) :< = i *

Clearly «(M) C H g(K,). On the other hand, if H G ^ g(K.) then
1 1 i=l

H is injective on M because any two points p, q G M lie together in
some K, and H | K, is injective for all ; by assumption. Similarly, such
an H must have H^ injective at every point of M since every point of
M lies in some K^..

For each /, S(K,) is an open dense subset o{3€2n+l(M) (Lemma
7). Since the Baire category theorem holds inSC^^^M),

S(M) = ^ §(K,)

is dense in ^"^(M). n
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3. Proper mappings by harmonic functions.

A C°° mapping / : M -> N of the connected non-compact
Riemannian manifold M into a Riemannian manifold N is called proper
if, for every compact subset K C N, /"^(K) is a compact subset ofM.
If/ : M -> N is an injective proper mapping then/is a homeomorphism
onto its image : to verify this fact, observe that the proper mapping
/ : M -^ /(M) necessarily extends to continuous bijective mapping
/+ : M+ -> /(M)+ of the one point compactification of M to the
one point compactification of /(M), /+ mapping the distinguished
point (at °°) ofN^ to the distinguished point of/(M)4'. The continuous
bijective mapping /+, being a map of a compact space to a Hausdorff
space, is necessarily a homeomorphism, and hence / itself is a homeo-
morphism.

In order to use the approximation theorem for harmonic func-
tions (Lemma 2) to construct proper mappings of M into Euclidean
space by harmonic functions, a general way to construct compact
subsets K of M with M — K having no closure compact components
is needed :

DEFINITION. - Let K be a compact subset o/M. Then the compact
hull of K, denoted by K" is the union of K and all the components
of M — K which have compact closure.

The following result follows from standard topological arguments
([15 ;p.234]) :

LEMMA 8. - // K is any compact subset o/M, then K' is compact
and (.K'V = K". // Ki and K^ are compact subsets o/M and K^ C K ^ ,
then KI C K:2 .

LEMMA 9. - Let {CJ ; = 1 , 2 , 3 , . . .} be a collection of compact
connected subsets of M such that

a) C^ U C,^ = 0 if i, ̂  z, .

b) ;/ K is a compact subset of M then C .̂ 0 K = 0 for all but a
finite number of i = 1 , 2 , 3 , . . . .
Then there exists a collection {K^ \k = 1 , 2 , 3 , . . . } of compact
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subsets of M such that for all k K^ = K^, K^ C K^i, /or ^zcA /

K^ 0 C, == 0 or C, C K^, fl/zd U K^ = M.

Proof. - Let {K^ I ̂  = 1 , 2 , 3 ,. . .} be a collection of compact

subsets of M with K^ C K^i and ^ K^ = M. Define

K,=K^U(^C,),

where 1̂  = 0 | C, 0 K^ ^= 0>. Then set K^ = (K^)\ Since K^' H C, = 0
for all but a finite number of fs, 1̂  is a finite set and K^ is compact.
Hence by Lemma 8 K^ is compact. Clearly K^ C K^+1 since K^' C K^+ ^ .
Hence again by Lemma 8 K^ C K^ + 1 .

Now suppose C, H K^ ^= 0. Then since the C/s are disjoint,
either

a) C, 0 K'^ ^ 0, in which case C, C K.•o *o
or

b) C,^ U (K^ - K^) ̂  0 but C,^ 0 K^ = 0, i.e., C,^ intersects a
closure compact component of M - K^ but does not intersect K^ or
any of the C,, ? G 1^. In this case, it follows from the connectedness
of C, that C, is contained entirely in any component of M — K^
which it intersects. Thus C, is contained in a closure compact
component of M — K^ and hence is contained in K^.

LEMMA 10. - Let n = dimension M. There exists a collection of
n + 1 (countable) families {C{ \ i = 1 , 2 , 3 . . .}, / = 0 , 1 ,. . . , n, of
compact connected subsets of M, \^ith the following properties :

a) For each j = 0 , 1 ,. . . , n, C{ 0 c{ = 0 if ^ ^ ^ .

b) For each j = 0 , 1 ,. . . , n and every compact subset K of M,
Cj H K = 0 for all but a finite number of fs.

c) For all f = 0 , 1 ,. . . , n and i = 1 , 2 , 3 ,. . . ;/ U is any
connected open subset o/M containing C{, then U - C\ is connected.

n / +00 .̂
d) U ( U CU = M.

/=o \ i=i V
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Proof. — An appropriate collection can be obtained by the
following standard construction (cf. [16, p. 61]) : There exists a
(countable) locally finite ^-dimensional simplicial complex homeo-
morphic to M ([3]). Let S be such a complex and h : S -> M a homeo-
morphism. For each 7, ; = 0 , 1 ,. . . , n, let o{ , a [ , . . . be the /-
dimensional simplexes of S numbered arbitrarily (without repetitions)
and p\, p\,. . . be the barycenters of o[ , o\,. . . , respectively. Define
the C,7 to be the image under h of the closed star of p\ in the second
barycentric subdivision of S. It is then easily verified that the C,7 have
the required properties.

LEMMA 11. - Let W, \] = 0 ,. . . , n, i = 1 , 2 , 3 , . . . } be the
collection of compact connected subsets o/M obtained in Lemma 10.
Then for each f G {0 ,. . . , n} and each sequence{a^ \ i = 1 2 , 3 , . . . }
of real numbers, there exists a harmonic function f. : M -> R such
that fy(p) > a, for all p E C\.

Proof. - Consider a fixed; € {0 , . . . , »} . Let{KJ fe= 1 , 2 ,3 ,...}
be a collection of compact subsets of M satisfying the conclusions of
Lemma 9 for C, of that lemma = the present Cj, ; = 1 , 2 , 3 ,. . . .
Set D^, k = 1 , 2 , 3 ,. . . , equal to the union of K^ and all those
Cj contained in K^ + ^ — K^. Then, for each k = 1 , 2 , 3 ,. . . , D^
is a compact set ; also, M - D^ has no components with compact
closure, because no C\ separates any open set containing it and no
component of M — K^ has compact closure.

Define a sequence {j3^ I / = 1 , 2 , 3 ,. . .} of real numbers by

ft{ = max a, .
i 9 C< C K,L-, ^ î

Then the function which is j3{ + 1 on K^ and (3^ -h 1 on each C{
contained in K^ — K^ is harmonic on D^ since K^ and these (finitely
many) C,7 are disjoint compact subsets on M. Thus by Lemma 2 there
exists a harmonic function /^ : M -> R which satisfies the inequalities

I AI (?) - j37! - 1 I < - for all p E KI

l^ i (p ) -^ - 1 I <- tor all p G D ^ - K i .
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For k > 1, define h^ inductively as follows : The function which is
/^_i on K^ and j8^+i -•- 1 on each Cj contained in K^+i — K^ is
harmonic on D^. Let ^ : M -^ R be any harmonic function which
satisfies the inequalities

l ^ ( P ) - ^ - i ( p ) l < — for all p E K^

l^(P)-^i - I K ^ F for all p E D , - K , .

The existence of such an h^ is again guaranteed by Lemma 2.
The sequence {h^ : M -> R} converges uniformly on compact

+00 0

subsets of M : if K is any compact subset then, since U Kj^ = M

and K^ C Kj^ +1 , there exists a RQ such that K C K^ . For all p G K

and fc > ^Q , | ^+1 (p) — h^(p) \ < ""̂ 77 from which uniform conver-

gence on K follows. Thus the sequence {h^ : M -> R} converges to a
harmonic function on M by Lemma 1. Put

ff = lim /^ , / E {0 ,. . . , n} .

If Cj is contained in D^ - K^ , ̂  > 1, then for all p e C '̂

l^(P)-<+i-ll<^-

and for any k > ̂

|^(P)-^)|< i -7-
^fcn+l

Thus f^p) > % +1 for any p E C^ C D^ - K^ . Similarly /,.(?) > j3{
for any p E K ^ . It follows then from the fact that every Cj is either
contained in K^ or in some D^ — K^ that for all f = 1 , 2 , 3 ,. . . ,
/.(p) > c .̂ for any p € C{. o

PROPOSITION 3. — There exist n + 1 harmonic functions on M
•y^cA rtar r/2^ mapping ofM into R"4^1 obtained from these functions
as components is a proper mapping.
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Proof. - If for each / one takes the sequence a, of Lemma 11
to be 1 , 2 , 3 , . . . then the functions fj ,/ = 0 ,. . . , n, of that lemma
have the required property. The properness of the mapping of M into
R^ defined by p -> (/o(p) , . . . , / „ (?) ) follows easily from the
facts that

a) for any compact set K C M, C,7 n K = 0 for all but a finite
number of pairs 0', /) E Z x {0 , . . . , n}.

b) (j VJ a = M
/ = 0 i = l l

and
c) for each /', lim / inf. ff(p)\= + °° (from Lemma 11).

l~^+oo VpecJ /

THEOREM. - Any connected, non-compact Riemannian manifold
M has a proper embedding by harmonic function in R2"'1'1.

Proof. - Let p -> ( / ^ ( p ) , . . . , ̂ +i(P))E R2r l+l be the in-
jective immersion of M in R2"^ by harmonic functions, the existence
of which is guaranteed by Proposition 2. Let / • , / = = 0 , . . . , n be
n 4- 1 harmonic functions satisfying Proposition 3. Then the 3n 4- 2
harmonic functions /o , . . . , / „ , h^ , . . . , /z^+i together define a
proper embedding of M in R3"''2 : p -^ (h^p) ,. . . , /z^^ (p),
/o(p) , • . . , /^(^))^ R3^2. By a more careful choice of the functions
fj , it can be arranged that the projection technique of Lemma 7 of
§ 2 can be applied to obtain a proper embedding R2"^ (cf. [10 ;
pp. 121-125]). Specifically, given the functions h^ , . . . ,^+1' one

defines for each / G {0 , . . . , n} a sequence {aj I ; = 1 , 2 , 3 , . . .} by

a{ = max/ 2 s u p / max \h^(p)\\,i\.
\ peC\ \ l < f c ^ 2 w + l ) )

Then for each j G {0 , . . . , n} let fj be the harmonic function provided
by Lemma 11 applied for that / and with the sequence

{aj;' = 1 , 2 , 3 , . . .} of the Lemma being the sequence

{a{ | i = 1 , 2 , 3 , . . . } just defined.

Now the functions fj taken together define a proper mapping of
M into R"+1 since .̂ > i on Cj. Moreover, as before the functions



R.E. GREENE AND H. WU232

/o , . . . , / „ , h^ ,. .. , ^ 2 n + i together define a proper injective im-
mersion of M into R3^2, which is again as before necessarily an
embedding of M. The argument by repeated application of Lemma 7
which was used to prove Lemma 8 shows that real numbers ^,
1 < r < 2w 4- 1, 1 < 5 < ^ 4 - 1 can be chosen as close to 0 as desired
and such that the mapping F : M -> R2"41

p w + i n+i
q ^ Wq)- S SiA^)-A(^)- S ^n.M^

s=l J = l

n+1 w + 1
••-,W- S ^ i,̂ ,,+,(<?) ̂ i(<?)- ^ f,,,̂  A,,,^),

^ = 1 ^ = 1

n+1

••-^(^)- Z ^+i.,^+i(^))
^ = 1

is an injective immersion of M. Choose such ^ with I ̂  I < ———

for all r, s. Then for q C Cj the fact that f^(q) > a{ implies that

ffW-'l S/.i.^n^)^^-
^ = 1

1 . , , . . . . 1 , 1- (n + 1) ——— sup. max | /z^(p) I > ̂  - - a{ = - a{.
n ' 1 peC,7 K f c < 2 n + l

That F is a proper mapping now follows from the fact that for each
/ a\ -» 4- oo as i -> + °° together with the fact that only finitely
many of the C{ j = 0 ,. . . , n, i = 1 , 2 , 3 , . . . have a nonempty
intersection with any given compact subset of M.

COROLLARY. — On any connected non-compact Riemannian ma-
nifold M there exists a nonnegative C00 strictly subharmonic function
T : M -> R such that T'^IO ,a}) is a compact subset of M for all
a G R. (A function is by definition strictly subharmonic if its Laplacian
is everywhere positive).

Proof. - Let H : M -^ ̂  be a proper embedding of M by
m

harmonic component functions h^ ,. . . , h^. Set r = ^ /z,2. Then r
i =1
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clearly has the property that r-1^ ,a}) is compact by all a E R since
{(^•i ,. . . , x^) € Rw |x2 4- • • • + x^ < a} is compact and H is proper
by hypothesis. Moreover, r is strictly subharmonic : Let (x^ , . . . ,^)
be Riemannian normal coordinates at a point p G M. Then

^ip=S _9L
a^2

" I 7\~ m I
s ^(^?) h/ = ! L / ^ - A ^J/ = 1

-^ 7^" (Qhi \h V 82A' \\
- .S 2 ( ,1^+ A••S^^„))^^^^Ip /= ! u^/ |p

" a2/?.OT " /9h

(^l)2-^ £ i- since V/=i ,=iv^/ / = ! ^2 b

= A/2j^ = 0 for all z.

Since some set of n of the functions /?,. form a local coordinate system

in a neighborhood ofp, not all of the derivatives a/z,
a "̂ ,i = 1 , . . . , w,

/ = 1 , . . . , n are zero. Thus AT I > 0. a
The existence of a nonnegative C°° strictly subharmonic function

with compact sublevel sets on any connected non-compact Riemannian
manifold is the harmonic function analogue of the existence of a C°°
strictly plurisubharmonic function with compact sublevel sets on a
Stein manifold. The existence of such a function on a Stein manifold
follows from the existence of a proper holomorphic embedding of the
Stein manifold in some C'" by a process whose analogue in the har-
monic case is the process by which the Corollary just given is derived
from the previous theorem.

The subharmonic functions which satisfy the conditions of the
Corollary are subject to certain geometric restrictions. For example,
if M is complete but has finite volume then such a function cannot
be (uniformly) Lipschitz continuous on all of M ([9]).
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