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ANALYTIC FUNCTIONS
IN A LACUNARY END
OF A RIEMANN SURFACE

by Zenjiro KURAMOCHI

Dédié a Monsteur M. Brelot a I’occasion
de son 70€ anniversaire.

Let R be a Riemann surface and {R,}(n =0,1, 2, ...)
be its exhaustion. We suppose Kerékjarto-Stoilow’s topology S
is defined on R + B, where B is the set of all ideal boundary
components. Also we suppose Martin’s topology M is defined
over R — Ry, + A as follows:

‘ _ K(z’ pl) . K(Z, P2) .
dist (py, pa) = SUP 4R S T K(z, pal°

P, Pz € R — Ry -+ A, where K(p,, p) =1, po e R, — Ry
and A 1s the set of the ideal boundary points. We denote by
A, the set of all minimal boundary points in A. Let p be
a boundary component. If there exists a sequence {z} in
R — R, such that z-°-p (convergence relative to S) and
z, -2 p (relative to M), we say p lies over y. We denote
by V(p) the set of Martin’s points over p. Let G be an
end of a Riemann surface R with null boundary. Let

Fi=12 ..)F,nF,=0 for i )

be a compact continuum in G such that {F;} clusters
nowhere in R and G =G — F(F =Y Fi) 1s connected.

i

We call G' alacunary end. Let p be a boundary component
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of G. If there exists a determining sequence v,(p) of p
such that dv,(p) is a dividing cut and

lim min G/(z, ) > 0: g€ &,

n € bqn(p)

we say F is completely thin at p, where G'(z, ¢,) 1s a Green’s
function of G'. We proved.

Tueorem 1 [1]. — Let G be an end of a Riemann surface R
with null boundary. Let F be a completely thin set at a boundary
component y. If there exists an analytic function

w=1[(z:26eG =G—F
such that its value falls on the w-sphere and

sup n(w) = ny < 0,

then A; N V(p) consisis of at most n, number of points,
where n(w) 1is the number of times w 1is covered by G'. The

purpose of the present paper is to extend Theorem 1.
Let U(w) be a, lower semicontinuous function and

UGw) < 5z [ U2 GE, w) ds

on

for any circle C in D, we call U(w) a quasisubharmonic in
D, where G({, w) is a Green’s function of C.

Lemma 1. — Let Q be a domain in R with a relative boun-
dary dQ consisting of at most countably infinite number of
analytic curves. Let E be a compact set on Q of positive capa-
city. Let w = f(z) be an analytic function in Q + E and
{Q.3}n=0,1,2, ...) be an exhaustion i.e. Q, is compact in
Q and ¥Q, consists of a finite number of analytic curves. Let
nd(w) be the number of points in f1(w) N Em: Em = {z:

dist (E, z) < —{ Suppose there exists a number m, such
that sup nd (w) = N < o and dist (f(Q, — E,), f(E)) > 0

for any n. Let u(z) be the harmonic measure of E relative to
Q and put U(w) = ) u(z): f(z) = w. Then U(w) is quasi-

subharmonic in C(f(E)) and U(w) < N.
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Proof. — Let E,: m=1,2, ..., be a closed set such that
E, < E,, dist ®E,, E) > 0, E.{E and ©oE, consists
of a finite number of analytic curves. Let {Q }:n=1,2, ...
be an exhaustion of Q — E in the direction of 2Q — E
satisfying conditions.

a) 9Q, — E,, is compact in Q and (Q, N E,) consists
of a finite number of components for any n and m and
Q /Q—E as n— .

b) 0Q, NdQ =20 N E
and 9, N Q NE=Q NnE for any n.
c) Q! — E?,,osz,,—- E‘,ﬁfﬂ

for any n. Since f(z) is analyticon Q, — E, by a)
© > n= sup n(w)

in f(Q,) — f(E,), where n(w) is the number of points in
Q, — E, lying over w. Let wu,(z) be harmonic measure
of E relative to Q,. Then wu,(z) 7 u(z). Let Q' be a
domain such that Q' < Q;, Q NnE,=Q nE, Let
Q' 7 Q.. Then sup |u,(z) — u'(z)] on Q — E, < sup u,(z)
on 3Q — E, - 0, where u/(z) 1s a harmonic measure of E
relative to Q'. Hence for any ¢ > 0 we can find a domain
Q" <= Q, suchthata') Q' N E,=Q, nE,. V)f(oQ" — E,)
intersects itself at a finite number of points w;, w,, ..., w,
¢'). Any subarc of f(0Q" — E,) 1is covered only once by
k

Q" — E,, except Y w;, and
1

€

[u.(z) — u'(z)] < s in Q — E,.
Hence by a), V'), ¢) f(0Q' — E,) divides C(f(E,)) into a
finite number of domains ©,, w,, ..., w,. Let n(w) be the
number of points in Q' — E, lying over w. Then n(w) = n,

in o; and n(w) jumps 1 in crossing f(dQ'). Let D be a
circle in C(f(E,)).

Case 1. D 1is contained in o;, then
Ulw) = Zu'(z)  (») ={(x)

1s harmonic in D.
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Case 2. D = (o, + 0,y + f(dQ")) n D. Suppose
Ny 2 N

Then ng,; = n; + 1. There exists a domain G’ (or sum of
domains denoted by G’ also) of n, leaves of disks and
another domain G” of one leaf such that f(G") = w,; N D.
Put U"(w) =2Zu'(%): f(z) =w: ze€G. Then U"(w) 1is
harmonic. Put U”(w) =u'(z): w =f(z) : 26 G" and U"(w)=0
on D — w;;. Thensince u'(z) =0 on 3Q' and U"(w) =0
on dw; "D by (dwy; N D) <= f(oQ — E,) and

do, N f(E,) = 0.
U”(w) 1s continuous and subharmonicin D and
U'(w) = U"(w) + U"(w)
i1s continuous and subharmonic in D.

Case 3. D — f(Q') consists of a finite number of domains,
in this case similarly as before U’(w) 1s continuous and subhar-
monic. Put U'(w) =0 in C(f(E,)). Then U'(w) 1s conti-

nuous and subharmonic in C(f(E,)). Now

0 < Uyw) — Uw) < Suyfz) — w(z) < n* 5=

in f(Q)—f(E,). Let <-—0. Then U'(w) uniformly
- U,(w) mn f(Q,) — f(E,) and U,w) 1is continuous and
subharmonic in C(f(E,)) by putting U,(w) =0 1n C(f(E,)).
For any given number n by (c) there exists a number m(n)
such that

dist (fPE,) — f(E)) < dist (f(Q, — E,), f(E): m > m(n).

Then f~(w) N Q, (for wef(E,) and m > m(n)) consists
of only points in E,, whence f1(w):wef(E,: m > m(n)
consists of at most N number of points. By u(z) < 1,
U(w) < N in f(E,). Since U,(w) is continuous and subhar-
monic in G(f(E,)), by the maximum principle U,(w) < N
im C(f(E,)). Let m - o. Then U,(w) 1s continuous and
subharmonic and < N in C(f(E)). Let n — . Then
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U,(w) / U(w) by a) and U(w) 1is lower semicontinuous and
< N in C(f(E)). Evidently

2nfU Cw)db

for any circle C in C(f(E)). Hence U(w) is quasisubhar-
monic and < N 1n C(f(E)).

Lemma 1 is very simple but interesting. For example
we apply it to the theory of value distribution. Then we have

PROPOSITION. — Let w=1{f(z) be an analytic function in
0 <)r <7 < such that |f(z)] < and f(e®) covers
[w| =1 ny tzmes as 0 varies from 0 to 2r. Then f(w):

|w| < 1 consists at most m<< ’—19—> number of points in
r-* < |z] < 1. *

In fact,let Q = {1 > [z| > r} and E = {|z| = 1}. Then

. _log[z[ . ..
u(z) =1 Tog r Let z(: =1,2, ...) bea pointin
r-* <z <1
such that w = f(z,). Then u(z) > « and
Ulw) = Zu(z) < no.

Hence we have the proposition.

Levma 2. — Let Q be adomainin R — R, and let
Fi=12,...)
be a compact set clustering nowhere in R. Put
Q=Q—F:F=2XF,

Let 9(%) be a non negative continuous function on 2Q — F.
Let U(z) be the least positive harmonic function in Q' such

that U(X) = ¢(¢) on 2Q — F. Then

U =52 [ (035 G(t, 2) ds,

on

where G(g, z) is a Green’s function of Q'.
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Put Q = (Q" nR,) —F. Let U,(z) be a harmonic func-
tion in Q such that U,(z) = ¢({) on 0Q —F) nR,, =0
on (F n2Q)+ (AR, n Q)+ (F n Q). Then U,(z) 7 U(z).
Let G,(%, z) be a Green’s function of Q,. Then

_1 d
Uyfs) = 5= f@ oo #0) 55 a8, 2) s

. 0 0
Since o G, (¢, z) on G(, z) on 2Q, we have Lemma 2.

Let D, © D, be two domains. Let U be a positive harmo-
nic function in D;. We denote by rU the greatest subhar-
monic function in D, vanishing on 9D, not larger than U.
Let V be a positive harmonic function in D, vanishing on
9D, except at most a set of capacity zero. We denote by sV
the least positive superharmonic functionin D; larger than V.
Then the following are well known.

rU and sV (for sV < «©) are harmonic and rsrU = rU
and srsV = sV.

Let U be minimal in D,. Then if rU > 0, srU=1U
and rU s minimal in D,.

Let V be minimal in D,. If sV < o0, rsV=YV and sV
ts minimal in D,.

If U, 77U, rU = lim rU,.

In the sequel we suppose R 1s a Riemann surface with
null boundary and Martin’s topology M 1is defined over

R—Ry,+A by K(zp) = %, where p, 1s a fixed

pointin R, — Ry and G(z, p) 1sa Green’s function of R — R,.
We remark there exist consts. M and N such that
M> G(z,p) > N>0 in R—R,. Let G be an end in
R — R, and let G’ be a lacunary end such that

G =G—F:F=2XF,.
Degree of irregularity 3(p)(p € G + A;) at p. Let G'(z, q,)

(g0 1s a fixed pointin G’ N R, ) be a Green’s function of G'.
We define 3(p) as follows:

3(p) = Iim G'(z, ¢0): o € G N R,

zZ2—>p

We see at once 3(p) > 0 for pe G’ and 3(p) > O(p € A,)



ANALYTIC FUNCTIONS IN A LACUNARY END 359

if and only if there exists a sequence {z} such that G/(z, z) —
a positive harmonic function. Let &'(p) the one defined
with respect to G'(z, ¢o). Then since there exists an exhaustion
{R,} such that dR, n F = 0, there exists a const. K such
that

Ii( 3(p) < ¥(p) < K3(p) for p €A,

Let p' and p? in A,. If there exists a sequence of curves
{v.+} =1, 2, ...) with two end points p} and p? such
that p!—> p!, p} — p* and v, tends to the ideal boundary
of R and

Iim min G'(z, ¢,) > 0,

i=o zZEY;
we say p' and p* are chained. Let p® and p™. If there
exists p!, p?, ..., p® ! such that p/ and p/+' are chained:
1=0,1,2, ..., np —1, we say p® and p™ are kindred.
It is clear if p' and p’ are kindred, p' and p’ lie over the
same boundary component. Kindredness does not depend on
the choice of ¢,.

Definition of G(z, p) and G'(z, p): pe G + A,.

Lemma 3. — Suppose Martin’s topology ts defined on
R — RO + A)
G isanendin R — R, and G = G — F be a lacunary end.
Let G(z, z) and G'(z, z) be Green’s functions of R — R,
and G’ respectively. Then :

1) Let {z} be any sequence such that z—> pe G + A,.
Then G(z, z) converges to a uniquely determined positive
minimal harmonic function in R — Ry, denoted by G(z, p)

and Gz, p) = «K(z, p), where «—2n / f 2 K(z, p)ds
bRobn
and N’ = min G(z, py) < « < M’ = max G(z, p,).

z€0R, zedR,
2) Let {z} be a sequence such that 5 —>peG+ A, and

G'(z, z) - G/'(z, {z}).
Then G'(z, {z}) =PprG(z, p), witx 0 < B <1 and where

the operation r concerns domains R — Ry and G'. Let {z}
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be a sequence such that z —> p e G + A, and
G'(z, g0) - 3(p) > 0.

Then G'(z, z)—> a uniquely determined positive minimal
harmonic function denoted by G'(z, p) and

~—

G'(z p) >

rG(z, p),

where M = max G(z, ¢)
T €0Ry, +1

Proof of 1. — Let {z} be a subsequence of {z} such that
G(z, z;) — a harmonic function G(z). Then

G(z)/M' < K(z, p).
By the minimality of K(z, p), G(z) = «K(z, p). On the other
hand, by the compactness of dR, 2 G(z) ds = 2.

< OR, n

Hence aan/[ :—nK(z, p)ds. Now {z} 1s an arbi-
' OR,

trary sequence for which G(z, z) converges. Hence
G(z, z) - a uniquely determined harmonic function denoted

by G(z, p).
Proof of 2. — Let {z} be a sequence such that G'(z, z)
— a harmonic function G’(z, {z}). Then by 1)
G'(z, {z}) < G(z, p)

and we have G'(z, {z}) < rG(z, p). By the minimality of
rG(z, p) G'(3, {z}) =PprG(z, p): 0 < B < 1. Let {z} be
a subsequence of {z} such that G'(z, z/) converges and
lim G'(z, ¢o) = 8(p). In this case B attains the greatest value

B* given by
3(p)[rG(go; P)

Now {z} 1s an arbitrary subsequence with
lim G'(z, qo) = 8(p).

Hence G'(z, %) - a uniquely determined positive minimal
harmonic function in G’ — p denoted by G'(z, p). Now
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lim G'(z, q0) > 22 Glgo, p). Henee

G p) > 2 Glgo, p) > %%)er(qo, p) and gt 20N
Thus we have 2).

We shall discuss the behaviour of Green’s functions of a
planar domain. Let Q be a domain in the z-sphere such
that Q has a Green’s function G(z, p). Let ¢ be a fixed
pointin Q and ¢(f)) be aneighbourhood of ¢ in Q and put

3(p) = lim G(z, t,) : p € Q. Then 3(p) is upper semicontinuous
__ z>p
in Q and 3(p) < max G(z, t,). We see 3(p) > 0: pedQ

ze0u(l)
if and only if p 1s irregular. We introduce Martin’s topology
over Q + A by K(z, p"): pM e Q + A with K(t,, p¥) = 1.
By Brelot’s theorem [2] there exists only one point p™ on p
for 3(p) > 0 and p“ is minimal. We denote by p™ = ¢(p).
Then also this implies ¢(p) is continuous at p with 3(p) > 0.
Clearly K(z, p¥) 1s continuous with respect to p“. Hence
K(z, ¢(p)) 1s continuous at p with 3(p) > 0 and we
denote p™ by p simply in the following. Let {z} be a
sequence such that z — p, G(z, t,) > g, > 0. Then there
exists a subsequence {z} with G(z, z}) > a harmonic func-
tion G(s). Then G(s) < - K(s, p): M= max Glz, 1,). By
0 ze€du(ty
the minimality of Kz, p) G(z) = «K(z, p):)() < a < 0.
Let {z} be a sequence such that z — p, G(z, &) — 3(p).
Then we see easily G(z, z) — a harmonic function
G(z) = «K(z, p) and « is the maximal value and G(z) is
the limit of {G(z, z)} such that z — p and

G(z, z) = Iim G(w, 2)
w->p
for any z. We make G(z) correspond to p and denote it by
G(z, p): pedQ:38(p) > 0. Thus the domain of definition of p
of G(z, p) is extended to Q + {ped2Q: 3(p) > 0}: This
fact means G(z, p) is upper semicontinuous with respect to p.
Let peQ with 8(p) > 0. Then by K(t, p) =1 we have
G(z, p) = 8(p)K(z, p). Let u be a positive mass distribution
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over Q 4 {pedQ: 3(p) > 0}: Then a potential
[Gz, g)du (g) and 3(gu(q)

are defined well. Then we have

Lemma 4. — 1) Let {z} be a sequence such that z — p
and G(z, z) = a harmonic function G(z, {z}). Then

G(z, {z}) < G(z, p).

2) Let ¢(p) be a neighbourhood of p, then there exists a
const. L such that G(z, p) < L on C¢(p).

3) Let U(z) be a potential U(z) =j;iG(z, q) dw (q9) and
f dp(q) < oo.
If Gz p) < U(z), lim [ du(q) > 1:

lp) = Yz = pl < .

Proof. — 1) 1s evident. We shall prove 2). Let {z} be
a sequence such that G(z, ¢) — 8(p) and z — p. Then
G(z, z) = G(z, p). Let ¢'(t,) = {z: |z —t| < r'} such that
¢ (t,) € Q. Let G'(z, z) be a Green’s function in Q — ¢/(,).
Let Hi(z) be the least positive harmonic function in

Q — ¢'(t)
such that H(z) = G(z, 5) on 3¢'(¢)). Then
G(z, z) — Hi(z) = G/(3, ).

Since d¢'(f,) 1s compact, H;(z) - H(z), where H(z) is the
least positive harmonic function in Q — ¢'(¢,) such that
H(z) = G(z, p). Whence G’(z, z) - a uniquely determined
function denoted by G'(z, p). On the other hand, there exists
no singular minimal point on planar domains (this is equi-
valent to there exists no bounded minimal positive harmonic
function). Whence sup G(z, p) = . But

sup H(z) < max G(z, p).

z2€d(ty)
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Hence G'(z, p)>0. Let ¢(t) = {|{z—&|<r} such that
r>r and ¢(t) < Q. Now

min G'(z, z) = N; > N' = min G'(z, p)

z€dv(ty) z€0v(ty)

and max G(z, ) = M; > M = max G(z, p). Clearly

z€0v(ty) z€du(ty)
M > N;, G'(z z)/N; and G(z, z)/M;

have log singularities with coefficients 1/N; and 1/M; respec-
tively and G'(z, z)/N; = G(3, z)/M; on d¢(t)). Hence by
the maximum principle and by letting 7 - o we have
G'(z, p)/N’" = G(z, p)/M in Ce(t)). Let Q= z-sphere — ¢'(t,)
and let G(z, p) be a Green’s function of Q. Then

G(z, p) > G/(, p)-

Clearly there exists a const. L such that
LN'/M > Gz, p) > G5 p)

on Co¢(p). Hence L > G(z,p) on Ce(p) for any neigh-
bourhood ¢(p). Hence we have 2).

Proof of 3). Case 1. pe Q. Let ¢(p) = {z:]z — p| < 1/ny}
such that ¢(p) = Q. Then G(z, q) = G'(3, q) + H(z, ¢q) or
G(z, q) according as gqe¢(p) or q¢¢(p), where G'(z, q)
1s a Green’s function of ¢(p) and H(z, ¢) and G(z, ¢):
q ¢ ¢(p) are least positive harmonic functions in ¢(p) such
that H(z, q) = G(z, q) and G(z, ¢) = G(z, ¢) on d¢(p).
Since for any ¢ and any neighbourhood ¢(q) there exists
a const. L(q, ¢(¢q)) such that G(z, q) < L(q, ¢(q)) on Ce(q)

and since d¢(p) 1is compact, there exists a const. L such

that H(z, ¢) < L and G(z, ¢)(qg¢ ¢(p)) < L on

on(P) < ¢(p): Ny > ny.
Hence :

G'(z, p) < G(, p) = [ &'(5 9) du(q)
+ ﬁ@ H(z, q) du () + [, G(z, q) dut (g)
< Ji G5 @ de (@) + L [ du in o,(p).
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Let H,(z): n> ny, be a harmonic function in ¢(p) — ¢,(p)
such that H,(z) =0 on d¢(p) and =L" on dy,(p):

L' =L [dp. Then U() < [, (s 9)de(g) + Hyfa) on
d¢,(p). Since G’(z p) =0 on zw(p)

< J G5 0 4 0) + B
on d¢(p) + dv,(p). G'(z, p) is harmonic and

S G2 0) i (g) + H,(3)
1s superharmonic in ¢(p) — ¢,(p). By the maximum principle
and by letting n— o G'(z p) < j;(p) G'(z, q) du (¢q). This
implies 1 < ﬁ(p) dp (¢). Now ¢(p) 1s arbitrary and

lim j;n(l’) d[)- 2 1.
Case 2. pedQ. In this case p 1is irregular. Let qgedQ
and G(z, ¢) > 0. Then by definition
G(z, q) = hm G(z, ¢),
where ¢ € Q, ¢, — q, G(g, t,) — 8(q9) = lim G(z, t,). Hence

z>q
G(z, q) = 8(¢)K(z,q): K(t, g0 = 1. Since the greatest sub-
harmonic minorant of Green’s potential (in ordinary sense) = 0,
we have by

Gz, p) < jgmanq+ﬁ)zqdw>

z, <ﬁQGz ) L.e.
5 p) < [, 39K zq@u

Now 38(q)u(g) 1s a canonical representation, hence

8(p) < 8(g)u(q)
and 3(p) < ﬁn(l’) d(3(q)u(¢q)). On the other hand, 3(q) 1s

upper semicontinuous. Hence limﬁ(p) du(q) > 1.
n n

Suppose an analytic function in a lacunary end G :

G=G-—F
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of a Riemann surface R with null boundary such that
w=f(z):ze G

falls on the w-sphere. We investigate the behaviour of f(z)
and the structure of A;. Then

Tueorem 2. — Suppose f(G') does not cover a set E of
positive capacity. Then:

1) Let {z} be a sequence in G' such that z—>peA,
and lim G(z, ¢o) > 0. Then f(z) — a point not depending on
the choice of {z}. We denote it by f(p).

2) If Ay 0 V(p) consists of at most countably infinute

number of points {p;} and 3(p) > 38 > 0 for any i. Then
f(p) = f(p;) for two kindred points p, and p; in A, N V(p).

Proof of 1). — The complementary sct of E relative to the
w-sphere consists of domains. Let Q be the one containing
f(G). Let G*(w, w, be a Green’s function of Q. Then
G*(f(z), (%)) = G'(z, z). Consider a sequence {z} such that
z—>p and limG'(z, ¢) > 0. Assume f(z) has two
limiting points tl,: l=1,2,t #t on Q-+ 2Q. Then we
can find two subsequences {z) of {z!} such that z' —> p,
f(z) —-t, G'(z, z)—a harmonic function GYz) in G
and G"(w, f(z})) — a positive harmonic function G(w, {f(z})})
in Q —¢. Then by Lemma 4

(1) 0 < G'(z) < G¥(w, {f(2)}) < G(w, 1) : w = f(a),

where G“(w, t,) is the function defined in Lemma 4. Now

by Lemma 3.2, G'(z) = auf™G(z, p): 0 < o, < o, whence
(2) G¥(z) = bG¥(z): 0 < b < 0.

Let ¢(t) be a neighbourhood of ¢, such that

o(ty) N op(ty) = 0.

Then by Lemma 4 G“(w, t,) 1s bounded in Cg¢(t). Whence
by (2) and (1) G¥(z) and G?*(z) are bounded in G’ and
GY(z) = G*(z) = 0. Thisis a contradiction. Hence we have 1).
Because the following fact is well known : Let o be a domain
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tn a Riemann surface with null boundary and let U(z) be a
bounded harmonic function in o with U(z) =0 on dow,

then U(z) = 0.
For the proof of 2) we use following :

Prorosition 1. — Let {z} be a sequence in G' such that
5—>p, f(z) > w* e Q +0Q satisfying.
a) G'(z, z) - a positive harmonic function G'(z, {z}) in

G.
b) G*(w, f(z)) = a positive harmonic function G*(w, {f(z)})

in Q — w*. Let EG’(z, {z}) be the least positive super-
harmonic function in Q larger than G'(z, {z}). Then

EGI(Z’ {z})

is minimal in Q@ — w* and = aG¥(w, w*): 0 < « < 1.
In fact by Lemma 4

G'(z {=}) < G*(f(z), {f(=)}) < G*(f(2), #*)
and by the minimality of G*(w, w*) E*:G'(Z, {z}) = «G*(w, w*)
and EG’(Z, {z}) 1s minimal in Q — w*.
Prorosition 2. — Let {z} be a sequence % — peG + A
such that G'(z, qo) = 3(p) > 0. Then by Lemma 3
G’(Z: zi) - G'(Z, P): G(z7 zi) g G(Z’ P)-
By 1) of Theorem 2 f(z) — f(p) and by Lemma 4
G'(z p) < Tiil?lG“’(W, f(z)) < G*(w, f(p)):
peA + G, 3(p) > 0, f(z) = w.

Proof of 2) — By 1) of Theorem 2 f(p): pie Ay N V(p)
is defined. Let p, and p, be two points chained. Assume
f(p1) # f(pz). We can find a circle

C={w:lw — fp)] < 5 f(p) — flpall}

and C N if(p,) = 0. By the definition there exists a
i=1

sequence of curves y, with endpoints z; and z2 such that



ANALYTIC FUNCTIONS IN A LACUNARY END 367

z}.—ipl, zﬁl’»pz and G'(z, ¢o) = 8, > 0 on vy,. Whence
f(z) = f(pa), f(z) > f(ps). Consider f(y,). Then f(y,) inter-
sects C for n > n,. Let w, be one of intersecting points
with f(z,) =w, and z,ev, Since C 1is compact, there
exists a limiting point w* of {w,}:

w*e Q4+ 0Q, w* N 2 f(p) = 0.

Hence we can find a subsequence {z,} of {z,} such that

Zn S Ymy Zm—>P, [(2.) > w* and G'(z, z,) > a positive
harmonic function G'(z) < G*(f(z), w*) by Proposition 1)
and G(z, {z,}) > a positive harmonic function G(z) in

R — R, by f;ﬂoa(}z)ds=2n.

Suppose Martin’s topology is defined over R — Ry + A by
K(z, p): K(pp, p) =1 and p,e R; — Ry,. Then G(z) 1is
represented by a canonical distribution over A; N V(p),
re. G(z) = ¥ aK(z, p;), where 3 a,= G(p,) < . By
Lemma 3 K(;, p:) = G(z, p)l«(p) and

G'(z) < G(z) = 3 (a/x(p))G(z p) < N1 ¥ aG(z, p),

13

where N < a(p) and N = min G(z, p,). Put
z€0R,

Ui(z) = X (afa(p))G(z, p).

Then U,(z) 7 G(z). By proposition 2

0 < G'(a) < rGla) < 2 &1z, p)

(M/N') /3(Pz )G (= p) < (M/N'3) 3 aG/(z, p)
< (M/N'3) 2_ aG¥(, F(p)

where M = max G(z, q,) : w = f(2).

2€0Rp 4y

By proposition 1

N

BG (z) = «G2(w, w*) < (M/N'8) Y a,G*(z, f(p)) < .
Now w*eC and C n ¥ f(p) =0. G’(w, w*) has mass at
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w*  on the other hand, the term on the right hand has no
mass at w*. This contradicts 3) of Lemma 4. Hence

f(p) = f(p:) and f(p) = f(p,)
for kindred points p; and p;. Thus we have 2).

0

Tueorem 3. — If the spherical area of f(G') < oo, then:

1) Let {z} be a sequence in G' such that z—>p and
him G'(z, q4)>0. Then f(z) - a point not depending on the
choice of {z}. We denote it by f(p).

2) Let p' and p* be two chained points Then f(p*) =f(p®).
Hence f(p') ={f(p ) for two kindred points p' and p’.

At first we define R and G as follows. Since spherical
area of f(G') < o, we can find a number n, such that
spherical area of f(G' n (R — R,)) < —2 and 3R, N F =0.
Ewvidently f(G' n (R — R,)) does not cover a set E of
positive capacity. Now f(z) is analytic on dR,,

G n(R—R,)
consists of a finite number of components Gj, ..., G; and
dR,, consists of 2R}, ..., dRk. We can find an arc T

on dR} such that f(T;) is a simple arc,
f(T) N f(T) =0:0#]
and 3 f(I') "nE=0. Let # be the whole w-sphere.
Put # = # — Nf(T). Connect #' with G ..., G,
at an adequate side of f(I';) with T; of G; so that
k
#' + 2 f(G)

may be a connected covering surface. By deforming R,
k
# + 36

can be considered a domain and # + G n (R — R,lo)
can be considered an end G of another Riemann surface R

with null boundary. Now 3G consists of oR,, — E T,
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and the other side of f(T;)(j =1, 2, ..., k) where #' and
G; are not connected. Put G' = #' 4 (G’ n (R — R,)).
Then f(z) can be continued analytically into #' by putting
f(z) = projection of z over sw-sphere, which we also denote
by f(z):zeG'. Let p, and g, be pointsin G' n (R — R,).
Then Martin’s topology M will be defined over G. Then
M-top. and M-—top (given originally on R — R, + A)
are isomorphic on (R — R,) + A and the minimality does

not change. Also let G'(z, g,) be a Green’s function of G’ :
dR, N F =0, there exists a const. K such that

G'(z, q0)/K < G’(Z, Go) < KG'(z, qo)

in G n(R—R,) and k8(p) < §(p) < K&(p) for peA,,
where §(p) is defined in G’ relative to §,. Put

*Gl - Gl - E:T"

then f(*G') doecs not cover a set E of positive capacity,
where Eg 1s the set of # over E.

Proof of 1). — So long as we investigate f(z) in a neigh-
bourhood of the ideal boundary of R, we can consider *G’
instead of G'. Then we have at once 1) by 1) of Theorem 2.

Proof of 2). — For the purpose we consider only

G n(R—R,)

such that spherical area of f(G' n (R — R,)) < _}
GnR—-R,)

consists of a finite number of ends. Let °G be one of them
and put °*G' =°G — F. Let °G'(z, ¢q;) be Greens function
of °G’. Then there exists a const. K such that

1 ’ LraXi ! /
3) g G <G < K q)

in G n(R—R,), where ¢, and ¢, G' n R, ;.
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Hence lim min*G'(z, ¢)) > 0 for {y,} defining chained-

n z€Y,
ness of points. Hence for simplicity we denote °G, °G/,
°G'(z, ¢o) by G, G’ and G'(z, gq;).
By Evans’s [b] theorem there exists a positive harmonic
function U(z) in G’ = G — F such that

1) Uz) =0 on 3G + F, D (min(M, U(z)) = 2xM,

f'iuwazh
20, on

for almost L < oo, where Q= {ze G : U(z) > L}.
2) U(z) > © as z-> B inany

Gs = {ze G :G'(3 q) > 3}:

3 > 0. Q. consists of at most countably number of domains.
Let Qp be one component of Q;. Then Qj 1s a domain

mm a surface with null boundary, whence sup U(z) = oo.
z7€Q),

» by 1) we see by length

k1
4
and area’s method there exists a sequence L;:1=1,2, ...
such that L, / o and spherical length of

Since spherical area of f(G') <

fQy) =¢—0 as ©—> oo.

Let {y,} be a sequence of curves defining the chainedness
of p, and p,. Then lLim min G'(z, q,) > 0, and there

n zZEY,
exists a subsequence {y,} of {y,} such that

min G'(z, q,) > & > 0.

2€Yy,

Since v, — boundary of R, by 2) for any given L, there
exists a number m(L;) such that U(z) > L; on

Ym: m > m(Ly).
Hence for any L, there exists m(L;) such that
QLI‘ = Ym: M > m(Ll)

and there exists only one component Q/(y,) of Qi such
that Q(y,) ® vy, where Qi(y,) depends on v, '
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By Evans’s theorem there exists a harmonic function V(z)
in G such that

1) V(z) =0 on 3G, D (min (M, V(z)) = 2xM,
f 2 V(z) ds = 2=

on
b §

for M, where Dy = {ze G: V(z) < M}.

2) V(z) > as z — boundary of R. Similarly as U(z),
there exists a sequence M; such that spherical length of

fEDy, N G) =¢; >0
as J— . Since Q(y, = hm Q(y,) N Dy, there exists
a number M; such that Q,f(;m) N Dy; v, Put
Qi {(Yn) = Qi(Yn) O Du,
Since Q; (v, 1s compact boundary of
F(Qy(yn)) = FQy(Yn))
and the spherical length of f(d3Qii(y,)) < & + ¢;. [(dQi;(vn)

divides the w-sphere into a number of domains GY, G}, ....

J
there exists only one domain with spherical area

> 4r — (e + )™

Since the spherical length of f(3Q(ym) < & +¢; < %,

We denote such domain by G. Then since spherical area
of f(Qrn) < 5 f(Qra) nE=0 and  f(Q)(x.)

is contained in a semisphere and the spherical diameter of
f(¥m) < spherical diameter of f(Qi(yn) < & + &;.

Letj — oo.

Then spherical diameter of f(y,) < &. Let 2z, and 2z}
be endpoints of vy, Then fzL—f(p;) and [z2—f(p,) as
m—> . Let m - oo andthen ¢ — . Then f(p;) = f(p.)
for chained points p, and p,. Thus we have 2).

Tueorem 4. — Let G > G be two ends of a Riemann
surface R with null boundary and let G =G — F be a



372 ZENJIRO KURAMOCHI

lacunary domain. Let E, be a compact set of positive capacity
in G — G. Suppose an analytic function f(z) in G —F
and there exists a neighbourhood ¢(E,) of E, with the property :
f(z) is univalent in ¢(E.), f(G — F — ¢(E,)) does not cover
E = f(E,) (clearly E s of positive capacity). Let wu(z) be
a harmonic mesure of E, with respect to G — F — E,. Sup-
pose Martin’s topology M s defined over R — R, -+ A.
Let G'(z, qo) be a Green’s function of G’ and let B

S(p):peG + A, = lim G'(3, q): ¢ € G N R,.

2—>p
Then by theorem 2 f(z) — f(p) for Zi"‘n‘[* p and

lim G'(z;, ) > 0.
Then
1) Let {z} be a sequence such that zi—£>peA1 and
lim G'(z, qo) > 0. Then f[(z)— f(p) and there exists a uni-
quely determined connected piece o over |w —f(p)| < r
such that f(z) € w for 1 > 1, and f(z) — f(p).

2) Let u(p) = hm u(z) peA,. Let {z} be a sequence such
X
that z—>p and u(z) — u(p) > 0. Let G(z, z) be a
Green’s function of . Then G“(3, z) — a unique positive
minimal harmonic function G“(z, p) and

ulp) = [ u(®) 3 G, p) ds,

on
where d'w s the part of dw such that

f@le) = {w:|w —f(p) = r}.

3) Let w be a point and let p,e A, with 3(p) > 0 and
flp)=w and let ¢eG =G —F —E, with f(g)=w.
Then ’

Zu(p) + Zu(q;) < 1 for any w.

Case 1. wye E. Let 0 < r < dist (s, f(d¢(E,)) (> 0 by
the univalency of f(z) in ¢(E,)). The part of G — F — E,
over |w — wo| < r -consists of a most countably infinite
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number of domains (connected pieces). Let {w’} be the set
of connected pieces contained in ¢(E,) andlet w;:1=1,2,..
be pieces except {w’}. Then o, N¢(E,)=0. By the
assumption, there exists no point z in G — E, — F such
that f(z) = w,. Further let p e A,, then for any sequence
{z} with z — p, there exists a number ¢ such that
z ¢ ¢(E,) for @ > i,. If there exists a point peA; such
that 38(p) > 0, f(p) = w,, there exists a certain o;
containing z, (in this case clearly w, 1s an irregular point
of the domain = w-sphere — f(G — F — E,). Let « be
one of {w;}. Then by ¢(E.) N f'(w) =0 1itis proved simi-
larly as Lemma 1 U®(w) = Zu(z): f(z) = w, z € w.

Case 2. wy ¢ E. The part of G — E, — F over
[w — wy| < dist (E, w,)

consists of connected pieces ot = 1,2, ...). In this case o;
does not tend to E, by the umvalency of f( ) in ¢(E.).
In both cases it 1s sufﬁclent to consider only o;:1=1,2, ...
Let o be one of {®;}. Then ® is compact or non compact
in G—E,—F and d0» consists of '@ and d%» such that
fRe) = {w: |w —wy| =r} and 30 = dw — d'w. Then
u(z) is harmonicon ?'® and > 0 on ?d'w — F and u(z) =0
on 92w and U®(w) 1s quasisubharmonic in |w — wo| < r

and by Lemma 1.
2 Up(w) < Uw) < 1.

Proof of 1). — There exists a const. K such that

14 1 !
KG'(z, go) > u(z) > K G'(z, qo)
in G n(R—R): R, — ¢.

Hence without loss of generality we can suppose

u(z) > 8 >0

and |f(z) — wo| < x. Suppose a connected piece o — z,.

2
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Then by Lemma 2
1 d
u(s) = g [ u() 3 Go(8, =) ds

where G“({, z) 1s a Green’s function of .
Let G*(w, m) be Green’s function of |w — wy| < r. Then

by G(f(a), f(z)) > Gz 2)
(4) = GU(f(C), fla) >

= GV(L, z) > 0

on dw. Let w,=w N R, then o, 7. Hence by consi-
dering ®, we have similarly as Lemma 2

fb u(®) = GU(f(%), f(2)) ds
Ie)

= U(n) —

|jw—wy|=r on

G*(n, f(z)) ds.

On the other hand, there exists a const. K’ such that

a w Ii w
(5) 5& G (7]3 W) < K on G (7)1 WO)
on
[n — wol =1 for |w — wy <%-
Hence

(6) 3 < ufz) = 2%[3 u(®) o GV(L, =) ds
< %f Ue(wy + re®) d6 < K’

. K’ .
Assume there exist m<> ~—) number of connected pieces

w,:1=1,2, ..., m contalnlng at least one z of {z}.
Then by (6) and 1 > 3, U®“i(w)

i

ms < é_K'ngww 1 re®) do < K.
T

This 1s a contradiction. Hence there exists at least one o
containing a subsequence {z} of {z}. Let {z[} be a
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subsequence of {z} such that u(z)) > a(>0), G*(z, z/) > a
harmonic function G°“(z, {z/}).

Then by (4), (5), (6) and by Lebesgue’s theorem

(M 0<5 < liimu(z)—hmi—tcf (c)b—G"’(C 2) ds

= 5 [ w0 = 6, 4y ds

GOz, (=) > 0
Put o' =w Nn(R—Ry). Then o < w. Since o — o’
is compact and G¥(z, z/) < G(z, z{) is uniformly bounded
on o —w' for ¢ > 1, the convergence of {G“(z, z)}
implies G“/(z, z/) - a positive harmonic function G*'(z, {z})
and

and

G(z, {z}) = S G (2, {z})

where G®(z, z) and G(z, z) are Green’s function of «’
and G respectively. We suppose Martin’s is defined over
R—Ry>G. Now o = R— R, and by Lemma 4

G»(z, {z/}) = arK(z, p): 0 < « < 1.
Hence 0 < G“(z, {z;'})-—“dS’K(Za p) and rK(z, p) and

G*(z, {z/}) 1s minimal (where r 1is relative to R — R,, o';
s relative to o, o’) (8). Assume there exists another connected
piece o* containing a subsequence {z;} of {z}. Then as
above we can find a subsequence {z;} of {z;} such that

(for r, s relative to R — Ry, o*, o*, with

o* =o* n (R —Ry))
9) 0 < G**(z, {z;}) = srK(z, p) and rK(z, p) > 0,
It 1s well known for minimal function V(z) in R — R,
if rV > 0 (relative to R — R, and D) rV(z) =0 (rela-
tive to R — R, and CD for any domain D in R — Ry).

Hence (8) contradicts (9). Thus there exists only one connected
piece o contains z for 1 > .

Proof of 2). — Let z be a sequence such that z —> p,
lim u(z) = u(p). Then im G(z, o) > %{L) > 0. Hence by
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(1) of this theorem 2z is contained in the only one connected

piece o and by (8)
10)  ulp) =g [ ult) G () ds

and G“(z, {%}) is the function when the value
G»(z, {z})[srK(z, p),

(with r relative to R — Ry, o' and s relative to o, o)
attains the maximal value and the function G'(z, {z}) is

uniquely determined. We denote it by G“(z, p). Thus we
have 2).

Proof of 3. — For peA; and u(p) > 0, there exists
a uniquely determined connected piece w(over |w — f(p)| < r)

containing a sequence z —>p and lim u(z) > 0. In this
case we say « contains p.

Case 2. wy ¢ E. Let o be a connected piece over

-;— dist (wo, E).

[w — wo| <

Let p,eA;: f(p) =w, be a point contained in . Then
G”(z, p)) 1s m]nlmal and < G¥(f(z), wo) = lim G”(f(z), f(=))-

Let gq; be a pointin o such that f(g;) = woj Then G“(z, q;)
is minimal in o and < G*(f(z), w,). Hence

Gr(f(), ) > 5 G7(E, p) + 3 G g
Clearly  u(q)) = 5- f —-Gwc ¢) ds. Hence by (10)

mn.ﬁLWprmggmam» > X u(p) + 3 ulg)-

i

Summing up over all connected pieces over [w — wo| < r.

Then by ¥ U®i(w) < U(w) <1 we have
(12) 1> Yulp)+ S
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Case 1. wy € E. In this case there exists no point ¢; in
such that f(q;) =w,. It is sufficient to consider w;, w,, ...,
remarked at the top of Theorem 4. Hence similarly as case 2)
we have

(12) 1 > 2 u(p,).
Thus we have 3).

Tueorem b. — Let G be an end of a Riemann surface with
null boundary. Let G' be a lacunary end: G =G — F.
Let f(z) be an analytic function in G' and on dG. If f(G')
does not cover a set E of positive capacity, or spherical area of
f(G') < oo, then there exists a const. K not depending on w
such that

=3(p) < K,

where f(p;) = w and p, € A,.

Proof. — Suppose f(G') does not cover a set E of positive
capacity. Let » be w-sphere. Let T' be an arc on 3G
such that f(I') is a simple arc and f(I') " E =0. Put
J'"' =7 — f(I'). Then we can connect J' with G’ at T
(at adequate side of f(I')) so that we may have a prolonged
surface G ="+ (G—F) and G4 7' may be an end
of another Riemann surface R with null boundary. Let
Ey be the set of 7 over E and put

G =G—Ey: Ey c 7.

For the case [spherical area of f(G')] < o, we can define G,
G’ and R as above (see the proof of Theorem 3). Hence f(z)

can be continued analytically into G. Then since f(z) is
univalent in neighbourhood ¢(Ex), 1 > U(w) = 3 u(z):

f(zi)ZW:ziEGla

i

where u(z) is a harmonic measure of Ey relative to G'.
Since 3R, N F =0, there exists a const. K such that

-I%sz, %) < u(d) < KG'(, ¢) in (R—R,) nG:

G n R,,,0 - o,
15
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where G/(z, ¢,) is a Green’s function of G' = G'. Now

f(G') does not cover E. Hence by Theorem 4 we have
Theorem b.

Cororrary 1. — Suppose spherical area of f(G') < co.

1) Let py, ps, ... be kindred points of py. Then there exists
a const. K(defined in Theorem b) such that Y, 3(p;) < K.

2) If F =2ZXF, is completely thin at p, then A, N V(p)
consists of at most m points (with:
K

m:<:—8— 8 = lim min G/(z, ¢,)

n

on dv,(p) < K).
1) Is evident by Theorem 3 and 4.

Proof of 2). — Let peA; n V(p). Then there exists a
path TI' tending to p. T' must intersect dr,(p), where
1,(p) 1s a determining sequence of p and or,(p) 1s a divi-

ding cut such that lim min G'(z, ¢) > 8, > 0. Whence

n o z€0u,(p)
3(p) = 8,. Also any two points in A; N V(p) are clearly
chained. Hence by Theorem 3 and 1) of corollary 1 we have 2).

CororLLary 2. — Suppose f(G') does not cover set E of
positive capacity and A; N V(p) consists of at most countably
infintte number of poinis p; with 8(p) > 8, > 0.

1) Let py, psy - .., pm be a set of kindred points. Then there
exists a const. K such that m<< ?K—>
0

2) If F s completely thin at p, then A; N V(p) consists
of at most m points, where m s the integer given in Corollary 1.

By corollary 1 and 2, we have at once :

CororrLary 3. — Let G be an end of a Riemann surface
with null boundary. Suppose ¥ is completely thin at p.

1) If the harmonic dimension of p is countably infinite

(this ts equivalent A; N V(p) consists of countably infinite
number of points) and 3(p;) > 8, > 0, then there exist no
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analytic functions in G’ = G — F such that f(G') does not
cover a set of positive capacity.

2) If the harmonic dimension of p 1is infinite, then there
exist no analytic functions in G’ with spherical area of

f(G)) < co.

Remark. — The ameliorations of this paper appear [6].
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