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HOMOGENEOUS SELF DUAL CONES,
VERSUS JORDAN ALGEBRAS.

THE THEORY REVISITED

by J. BELLISSARD* and B. IOCHUM

Introduction.

The study of ordered linear spaces has a very long history. We
know that ordered structures are closely related to measure theory.
In fact many Banach lattices are known to be If spaces for a suitable
Borel measure [12, 35, 36, 40, 49].

On the other hand we know how to extend the integration theory
to non commutative algebras by studying the states on C*-algebras
(for instance [20, 46]). Therefore, it is not surprising to find connec-
tions between algebras and ordered linear spaces.

Two years ago A. Connes [19] made this relation very precise
in the case of von Neumann algebras, using the results of the Tomita-
Takesaki theory [53]. Let JIt be a von Neumann algebra on the
Hilbert space H, fo be a cyclic and separating vector for OTZ-, A^
the modular operator of the triplet (3Tl,H, ^o). A Connes [18],
H. Araki [8] and U. Haagerup [25] introduced the cone

9\ == {A174^^}"-" (See also [58, 59])^o ^o
and in [19] Connes proved that 9" is characterized by three pro-
perties : self duality, facial homogeneity, and orientability.

A cone H+ is self dual in H if HT = {^ G H/<$, t?> > 0 VT? G H^.
H'1' is orientable when the quotient of the Lie algebra of the cone

* On leave from: "Universite de Provence" and "Centre de Physique Theo-
rique, CNRS, Marseille".
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by its center, is a Complex Lie algebra. V^ is facially homogeneous
if for any face F the operator Pp — P ^ belongs to the Lie algebra
of H+ , PF being the orthogonal projection on the closed linear space
spanned by F.

This last property was very novel, and an interesting question
was to characterize facially homogeneous self dual cones in a finite
dimensional space. It was proved [1, 11, 24] that this class of cone
is exactly the class of transitively homogeneous cones. A finite di-
mensional self dual cone is transitively homogeneous if its group
acts transitively in its topological interior ([37, 38, 44, 45, 55, 56]).

Therefore the 15-years old papers of E.B. Vinberg (see [55, 56])
gave a classification of such objects by constructing a one-to-one
correspondance between this class of cones and the class of formally
real Jordan algebras.

Recall that a commutative (but not associative) real algebra
Oil is Jordan if the product satisfies a(a2b) = a2(ab), a , b G OTI.

n

A Jordan algebra is formally real if ^ a? == 0 implies a^ = 0 for
alii (see [16,28]). I = l

The classical representation theorem proved by P. Jordan, J. von
Neumann and E. Wigner [33] says that there are five classes of irre-
ducible such algebras: M^(R), M^(C), M^(H), V^, and M^. Here,
M^(K) is the set of self adjoints nxn matrices with elements in the
field K ; R , C, and H are respectively the real, complex and qua-
temionic fields. V^ is the algebra of spin factors, generated by
a\ 4- b(f) with /G FT and b(f) b(g) 4- b(g) b(f) = 2 </, g ) 1
[54]. M^ is the exceptional algebra of 3x3 self adjoint matrices
with coefficients in the Cayley algebra (see [16, 23, 28]).

The transitively homogeneous self dual cone associated to a
given class is then the set of positive elements of the Jordan algebra,
with the Hilbert structure given by the natural trace.

The question arises of generalizing these results in the infinite
dimensional case. In this direction the work of A. Connes is a precise
guide. The paper of E.M. Alfsen, F.W. Shultz and E. St^rmer [7]
defines and investigates a "good" class of Jordan Banach algebras,
whose norm satisfies, for arbitrary a, b:

i) IÎ H < \\a\\ ||6||,
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ii) lla2!! = Ml2

iii) Ha2!! < \\a1 + b^\\

which these authors propose to call JB algebras in analogy with B*-
algebras. The analogue of a C^-CW*-) algebra was called by D.
Topping [54] a JC (JW)-algebra and is a norm (weakly) closed Jordan
algebra of self adjoints operator on a complex Hilbert space. As a
consequence [2], M^ is excluded from the class of JC algebras.
This special class is in fact very well known [21, 29, 30, 31, 50, 51,
52].

In the work we present here we have restricted ourselves to the
simplest case of a JB algebra 3TC, with a finite faithful normal trace.
A trace is defined to be a state ^ on OR. such that ^p((ab)c) =
= (p(a(bc)), a, b E j]̂ ,. We characterize the cone associated with
positive elements of 3TI by three properties: self duality, facial homo-
geneity, and the existence of a trace vector (see definition 3.1). In
fact we expect that the presence of a trace is useless. But for technical
reasons, due to the absence of Tomita's theory for JB algebras, we
prefered at first stage to assume the existence of a trace vector.

We must indicate that the connection between formally real
Jordan algebra with a trace and cones in a infinite dimensional Hilbert
space, was already given by G. Janssen in 1971 [29]. Therefore the
ideas developed here are already known. However, since it seems to
us that facial homogeneity is a very crucial property in the category
of cones, we prefer to give a self consistent exposition of the results.

In the first section we recall some elementary facts about self
dual cones: faces, group and Lie algebra of the cone, the ideal center
introduced by W. Wils [57], the direct integral decomposition theory
[14,42].

In section 2, we give useful information about facially homo-
geneous self dual cones. In particular we give a detailed analysis of the
set of faces. The most important difficulty comes from the fact that
the closure of a face is not known to be a face, although this is known
to hold for any example constructed. However we show that it is
enough to restrict our attention to "completed" faces F such that
F = F11.

Section 3 is devoted to the study of trace vectors. The main
result is that a trace vector is an element of F © F1 for any completed
face F.
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Section 4 gives a spectral theorem for hermitian elements belong- ?
ing to the Lie algebra of the cone. This is the main tool used in the
sequel. Unfbrtunatly the existence of a trace is crucial for the proof,
for technical reasons. However we believe this theorem to be true
in any facially homogeneous self dual cone (it holds for orientable
cones).

The techniques used in this theorem have been known for a
long time. The spectral theorem can be found in essence in the classical
book of F. Riesz and B. Sz.Nagy [43]. It can also be found in H.
Freudenthal [22, 39]. The idea of the crucial theorem 4.1 is due
to W. Bos [15] and the essential steps in the proof can be found in
G. Janssen [29]. The consequences for the Lie algebra of the cone
(theorem 4.6) and for the transitive homogeneity (corollary 4.8)
are due to the authors, and generalize the techniques previously deve-
loped in [11].

Section 5 is devoted to the construction of the JB algebra of
a homogeneous self dual cone with a finite trace. We adopt the for-
malism of [7]. The main original idea of this chapter is to use the
property of the trace vector which is cyclic and separating for the
hermitian part of the Lie algebra of the cone.

Section 6 proves the converse theorem. Given a monotone
closed JB algebra JK with a faithful finite trace, we construct a
self dual cone canonically associated with 3TI. The main difficulty
comes from the characterization of the faces, (necessary in order
to get facial homogeneity).

In the last section we give additional information. We prove
that any unitary operator leaving the cone invariant is given by a
Jordan isomorphism of the associated Jordan algebra. We give also
without proof a representation of J1Z as a direct integral of JB-
factors, in analogy with the von Neumann case. In fact the most
useful property comes from the fact that OTI can be represented
as a subspace (not a subalgebra) of the hermitian operators on a Hilbert
space.
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1. Self dual cones.

Let H be a Hilbert space. With F a subset of H, let F* be
the dual set of F defined by

F* = { $ e H / < ^ 7 ? » 0 Vr? G F} (1.1)

F* is a weakly closed convex cone in H. A subset H4^ is a self dual
cone if it coincides with its dual. There is a useful characterization
of self dual cones:

LEMMA 1.0. — Let H+ be a closed convex cone in the real Hilbert
space H. The following are equivalent:

i) H-' is self dual in H.
ii) For all $ m H there exists a unique decomposition called

the Jordan decomposition of ^ such that

s = r - r , r^H^rir^o (1.2)
Proof. — i) =» ii) : let ^ be in H and ^+ b6 the projec-

tion of ^ °i1 H"^. Then by a classical argument ([26], [41]),
r = y - $ E (H^* = H4 and <^, f-> = 0. If ^ - F and
rf — 77" are two decompositions of ^ then

nr - ̂ ii2 = <r - ̂ +, r - rr> = - <r,T?-> - (r^, r> < o.
Hence ^+ = ff and S~ = '*?"'•

ii) => i) : Suppose that S = F - F ^ (H^* and g ^ H^
Then 0 «r , £> = <F , F - F> = - lini2 Hence S; = ^ ̂  H+,
a contradiction. Suppose that S^H"" and $ ̂  (H"^)*. If 77 is the pro-
jection of { on (H^)* by the same argument as above 77 - ̂  E (H^)**
and < 7 7 - ^ , 7 y > = 0. By Hahn Banach's theorem (H')** = H^,
then ̂  == T? - (77 - f) is a decomposition of ^ and by hypothesis
77 — $ = 0 hence a contradiction. D

From now on let H'' be a self dual cone in the complex Hilbert
space H. The following proposition is well known (see for instance
[8],[19]).

PROPOSITION 1.1. - Let H3 be the space H+ - H^
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i) H1 is a real Hilbert space and H+ is self dual in tf.

ii) H = tf © f H1 ^d rte map J : Si + ^2 —" Si - ̂ 2 ^ ^ H1

^ a^ antiunitary involution in H.
iii) For any face F o/ H^ the set

F^^CH-^ ; < S , r ? > = = 0 Vr?GF} (1.3)

is a weakly closed face of H"^, called the orthogonal face of F.
Let < be the ordering defined by HT^ in H1. We recall that F is

a face in the convex cone HT^ if and only if F is a cone and 0 < rf < ^,
$ E F implies T? E F. Such a set satisfies F = (F - H^ H H^ For F
a face, let Pp be the orthogonal projection on the closed subspace
spanned by F. Clearly since H1 is closed, Pp commutes with J.
Therefore Pp can be restricted to rf.

LEMMA 1.2. - Let F be a face. Then

a) Fu= (F-H^HH^
b) The following are equivalent:

i) 7?GF 1

ii) 77 E H+ and PpT? = 0
iii) 77 G H"^ a^rf Ppiry = 17

Proo/ - a) By definition (F-H^* = - F1 and if o denotes
the polar then
F-^ = (F - H^00 = (F - H^** = (- F1)* = {{ E H ; <$, F1) < 0}
Therefore (F-H^) 0 H"^ = F11.

b) i ^ ii): If $ E tf , Ppf G F~F. Therefore there is a
sequence (.^n m F-F, converging to Pp^. Since r? G F1

(PF^, r?) = lim <$„, r?) == 0«
Because { is arbitrary, PpT? = 0.

ii) ^ i ) : I f ^ G F < 7 ? , ^ = < 7 ? , P ^ > = ( P p 7 ? , $ > = 0

i) ==^ iii) : immediate.

iii) =» i): If $ E F then ^ E F11. Using the equivalence of
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i) and ii) we have PpiS == 0- Therefore

<^>= <£,(Ppi7?>= 0 and T? G F1 n

COROLLARY 1.3. — For any face F m H^

F1 -Pp^ HH^ (1.4)

DEFINITION 1.4.
i) // A is a subset of H^ the smallest face containing A

is denoted by <A>.
ii) ^ G HT^ (5 a ^Mfl^f interior point if <^>1 = 0.

iii) $ £ H+ f5 a w^afc unit order if <^> = H+.

Remarks. — The definition i) is meaningful because any inter-
section of faces is a face.

— It is clear that any weak order unit is a quasi interior
point. It is not known if the converse is true at least in self dual cones.
However we have that:

— The existence of a quasi interior point in H+ is equi-
valent to H4^ is of denumerable type (see [19] def. 5.6).

- In a finite dimensional Hilbert space, a quasi interior
point is a weak order unit, (and also an order unit, or an interior
point).

PROPOSITION 1.5. — // H is separable, the set of weak order
units is dense in H^

Proof. — Since H is a separable metric space, H'1' is also a
separable and metric subset. Let thus (^)^eN ^e a dense countable
subset of the unit ball in H"". Then

S = S 2-" S. ^ H+

n

and 0 < ^ < 2" S . V n G N

Therefore {^}^C < g > and < $ > is dense.
Now let S bs a weak order unit in H^ and for n £ N* put

[^."S = ^GH^-^ < i ? < « $ j (1.5)
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Any element 17 in this order interval is also a weak order unit, since
(77) == < f > . Therefore the set

Y = = U -^.^l" I n J

contains only weak order units, and is dense in H4', because < ^ >

is dense in H'1' and for any 77 E < ^ > , 17,, = 77 4--^ E Y and. 77,,-̂  77.
D

Remark. — There exist non separable self dual cones in which
there is an order unit. Indeed, choose tf = R © h where A is a non
separable real Hilbert space, and H4-= {(^, S) E tf/^o > 11^11}.
Then, (1,0) G H3 is an order unit of H-".
However, any maximal family of mutually orthogonal vectors of
I-T has only two elements. Therefore f^ is of "denumerable type"
([19]).

LEMMA 1.6 ([13]).- Let f be a quasi interior point in H4'. Then
the set 0^ = {(PF - Ppi) $ ; F a face of H^ is total in tf.

Proof. — Let 77 be a vector in tf orthogonal to 0^ and let
i? = ̂  — 17" be its decomposition. If F = <77+>, then by the
lemma 1.2

( P F - P F l ) ^ = ^ + + ^ E H +

^d 0 = (77, (Pp - P^) ^> = (^+ + n- , f>

Since <$>1 = 0 , if = 77- = 0 and 77 == 0. D

If there exist non trivial closed subcones K,L of H4' such
that V^ == K © L, then it is easy to see that K and L are faces
satisfying K1 = L. We say that H+ is decomposable (resp. inde-
composable) if there exists (does not exist) a face F ̂  {OLH^
such that H^ = F ® F1. If such a face exists we call it a split face
of H4^ ([4]).

The set of bounded operators J?(H) leaving ^ invariant is
denoted by W).

For AE^H^, A* E W) and if F is a face, A-^F) is
also a face.
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LEMMA 1 .7 .— Let P be an orthogonal projection in ^(H4^).
Then P commutes with J and PHT^ is a self dual cone in PH.
Moreover

PH^PHr^ (1.6)

Proof. — Immediate. D

We define GHH4) to be the group of bounded invertible ope-
rators A on H, such that A and A~1 are elements of ^(H^)
and ^(H^ to be the subgroup of GLCH^ whose elements are uni-
tary operators.

PROPOSITION 1.8. -Let UEZKH-") be such that U < S > C < ^ > ,
§ E H^ Then U = 1

Proof. - (see [19] lemme 5.4). a

Let (W) = {§ E^(H)/^6 C GLOI^.WC R}. The elements
of (D(H4') are called derivations of H'1'. The following characteri-
zation of (SXft^) can be found in [19]; although the proof is made
for facially homogeneous cone, it works in any self dual cone. (see
[17] and also [47]).

PROPOSITION 1.9.
i) (D^) is a weakly closed Lie algebra in J?(H).

ii) 5 e fiXH"') if and only if

< S , r ? > = 0 S^^H^ implies < § S , T ? > = 0 (1.7)
The following definition is needed (see [5,57]).

DEFINITION 1.10. - The ideal-center Z_+ of (H.H^ is the
H

set of bounded operators T such that

3 c ^ > 0 , -a^<TS<o^ V ^ e H + (1.8)

We have then the following results ([13], [57]) where [ , ] denote
the commutator.

THEOREM 1 . 1 1 . — For an orthogonal projection P in -@(H),
the following are equivalent:
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i) Pez^.
ii) PH+ C H+ and (1 -P) H+ C H+.

iii) [P, J] = 0 and [P, P^] = 0 V^ e H+.
iv) PEC^ED.
v) P G Center of (DOf).

vi) F = PH+ is a split face.
vii) P ^ extremal in Z^. = {T G Z^+/ 0 < T$ < S , S ̂  H^.

COROLLARY 1.12 ([13,42]).

i) T E Z^. wzp&?5 T = T*.

ii) T G Z^+ y and only if any spectral projection of T is in
z^

iii) Z^ = {P^^ , { ^ H^'n {J}' where ' denotes the commu-
tant. In particular Z.-+ C fi)^).H

iv) Z^+ ^ ^A^ real part of an abelian von Neumann algebra.
v) I^ is indecomposable if and only if Z + = R1.

H

vi) rf is a lattice (for the ordering defined by H^ if and only
if Z + is maximal abelian.

n

Associated with the abelian von Neumann algebra generated by Z^+
there are direct integral decompositions of H, and also, of H^ (see
[42] for the definition).

THEOREM 1.13 ([42]). - Let H be a separable Hilbert space, H+

be a self dual cone in H. Then there exists a standard Borel space g,
a Borel positive measure v on g, v-integrable fields H(?) of Hilbert
spaces, H^?) of seld dual indecomposable cones, J(^) ofantiunitary
involutions and an isomorphism a of Hilbert spaces such that:

i) a(H) ==/^ H(?) dK?)

ii) aOT = f'H^n A/0)
^

iii) aja-1 = f J(?) ^(U
(1.9)

iv) aZ +a~1 ^ ^^ multiplicative algebra

^eal^'1')
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COROLLARY 1.14 ([40]). - // H+ defines a separable lattice order-
ing then H+ is isomorphic to L^(g , v) for a suitable standard Borel
space g, and Borel measure v.

In the sequel we will need only transformations of H"^ which
commute with Z , + . Therefore we call symmetry any element of

H
^UCH ) commuting with Z +, and the set of symmetries is denoted
by S^). In the same way, we denote by GL^tT) the subgroup
of elements of GLQff^) commuting with Z , + .

H

2. Homogeneous self dual cones.

For simplicity, H will be a separable Hilbert space in what
follows. In [19], A. Connes introduced the following definition.

DEFINITION 2.1. — Let H be a Hilbert space and H^ be a self
dual cone in H: H"1' is called facially homogeneous if for any face
F, the operator

NF = PF - Ppi (2.1)
is a derivation of H^

Note that a self dual cone H4, such that H3 is a lattice, is
facially homogeneous by corollary 1.12. So all L^(g, v) are facially
homogeneous. In the finite dimensional case, a self dual cone is fa-
cially homogeneous if and only if it is homogeneous in the ordinary
sense [11] (see [55, 56] and our introduction for the definition of
homogeneity). For this reason we will in the sequel write homogeneous
for facially homogeneous.

LEMMA 2.2. — Let FT be a homogeneous self dual cone, and
F be a face. Then :

i) PpH^ C W
ii) F^P^
iii) Pp =P^i and F11 = P F H +

Proof. - i) [1] e^F-^Ej?^) for all r E R and

Pp = s - lim e^^ E ^(H^ (JW) is weakly closed).
t —> 00



38 J. BELLISSARD AND B. IOCHUM

ii) follows from the corollary 1.3.
iii) [13] P = P^j. - P^ = N^j. - N^ CCDCH^ and P is a

projector. Therefore W C H+ and if ^ C HT", { = P$, Pp^ = 0
and P i S = 0 thus { == 0 (Lemma 1.2). Since H4^ is generating,
P = 0. a

Remarks. — As far as we are concerned with facial projections
the previous result allows us to restrict ourselves to the faces F such
that F = F11. We called them completed faces and we denoted by
^(H^ the set of such faces. Therefore one has F G ^(H^ if and
only if

PFH+ = F (2.2)

Clearly a completed face is closed.
It is not known whether every closed face is complete in a homo-

geneous self dual cone but in the finite case it is known that:
A face F satisfies F = F11 if and only if the natural order induced
on H/p_F == {x 4- F—F/xEH} is archimedean. There are conter-
examples in three dimensions (See [32]).

The previous result shows that if $ is a quasi interior point in
H^ then <^> is a total set in H.

PROPOSITION 2.3. — Let H^ be a homogeneous self dual cone.
Then either dim H = 1 or ^(f^) is not reduced to {0} and Hr\

Proof. - Let $ be in tf and £ == ^+ - ̂ ~ be its Jordan de-
composition. If SiOf) is trivial then either <$+>ii is {0} or it is
H^ Therefore, either {+ == 0 or ^~ = 0, and consequently the
order in H3 is total.

Let now ^ and ^2 be two linearly independent vectors in
H1. Then, without loss of generality we can choose $ > { - > 0
and ||$j| = 11^11, since the order is total. Therefore

o-ii^ii'-iiy2- <^ -£2^+^>
and ^ - ̂  G (^ 4- ^>1. On the other hand 0 < ̂  - ̂  < ̂  + ^
This implies ^ = ^ which contradict our hypothesis. Therefore
dim-, H = 1. au
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LEMMA 2.4 ([27]). - Let H4^ be a homogeneous self dual cone.
If F G ^(H^ rt^z F is a self dual homogeneous cone in PpH.

Proof. - F == PpHT" C^ proves that F is self dual (Lemma
1.7). In order to prove the homogeneity we need the following lemma :

LEMMA 2.5. - Let }f be as above. Let F and G be faces
of H\ such that [Pp , PJ = 0. Then [Pp , P^i] = 0.

Proof. - If $ G PpP^iH"^ then P^f = 0 by hypothesis. Since
H+ is homogeneous the lemma 2.2 shows that ^ is also in H\ There-
fore (lemma 1.2) {; = P..J.S. H^ being generating:

PF P^i = P^i Pp^i and P, P^i = P^ P,.

Proo/ o/ the Lemma 2.4 (end). — Let G be a face in F. Then
G is also a face in H^ and N^^CD^); moreover P^ commutes
with Pp. Therefore by lemma 2.5, N^ commutes with Pp, and

N^ (F - F) C F - F , ^NG F C F \/t G R

(Note that F-F is closed because F is self dual in PpH).

In particular N^Pp = N^/p ^ ®(F). Now let G^F be the
orthogonal face of G in the cone F. We have that

G^F = G1 0 F
because { G G^F implies ^ G F and < { , G > = 0 . Since G1 and F
are completed faces, then G1 and F are self dual cones in the closed
subspaces they span. Thus (use Proposition 1.0):

G1 H F - G1 H F = (G1 - G1) 0 (F - F)

and consequently, P^ = P^ = P^ A P^ = P^ p^
which proves that F is homogeneous because

N / = = N P = P — P i Q^G/F "G'F ^ F G^F"
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COROLLARY 2.6. - Let H^ be as above. If H is separable, for
any face F e g^) there exists ^ E H" such that <S> = F.

Proof. - Apply the Proposition 1.5 to F. D

LEMMA 2.7. — Let H^ 6^ a homogeneous self dual cone and
{F^ be any family of completed faces in H^ Then F = n F is
also a completed face.

Proof. - Clearly F is a closed face, and F C F11. On the other
hand, FT being homogeneous, Pp = P 11. Therefore

^^Fll-^i va

and { E F11 implies Pp^ = S, hence $ e F^ == F^.Va. Thus:
F11 C n F^ = F. a D

DEFINITION 2.8. — Let V^ be a homogeneous cone and {F^J
be any family of completed faces in H^. Then A F^ is defined
to be n F^, a^d V F^ ro 6^ the smallest completed face containing
all the F^.

LEMMA 2.9. — Z^ HT^ 6^ fl5 above. For any family of completed
faces {F^}^ m H'1' rt^/i

Y(F^) = (A F,)1 (2.3)

In particular F v F1 = H^

Proo/ - Clearly
(UF^ { T ^ e H ^ a ^ e C o n v C U F 1 ) , 0 < T 7 < ^ }

a " a "

Therefore V F1 = (UF1)11.
a a a a

Now ^(UF^ is equivalent to: f E H+ and < $ , ^ > = 0 Va,
V^ C F^ a and to: ^E F^ == F^ Va.

Therefore <U F1)1 = A F . Da a a

The following is a generalisation of [9]. Theorem 4.1. for homo-
geneous self dual cones.
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COROLLARY 2.10. - The set ^(H^, ordered by inclusion, and
with the operations A , v , 1 is an orthocomplemented lattice. This
lattice is distributive if and only if H1 is a lattice.

Proof.- Clearly ^(W) is an orthocomplemented lattice. Suppose
that H1 is a lattice, then the algebra generated by (PF^FGS^H^ ls

abelian by corollary 1.12. Let F, G e g?^) then F = F A G ® F A G 1

because all faces are split faces. Thus F + G = F A G ® F A G 1 ® F 1 A G
and PF^ = Pp PG + PF P^i 4- Pp,i Pc == PF + PG - PF PG . So
I-PF^G -(I-PFKI-PG)^^ and FVG^F^G^F+G.
The application F —> Pp is an isomorphism between ^(H^ and
the projectors of Z,.+ which are distributive lattices.

Suppose tf is not a lattice, then there exists a face F in
^(H^ such that FeF^H^ Let ^ W and S^FeF 1 ,
(1 - N^,) f = ^+ - S~ the Jordan decomposition of (1 - N^) ^
(cf. 2.1) and G = ^+)11. If 77 € F A G then PpT? = T? and
(77, F> = 0. Hence <r? , r> == <^ (1 - N^) $> = 0 and
T? G <^>1 0 (S4-)11 = {0}. In the same way F AG1 = {0}. Thus
(FAGmFAG^ {0} and FA(GvG1) = F A H + = F so ^(H^
is not distributive, n

PROPOsmoN2.11.-Zer H4^ be a homogeneous self dual
cone. H^ is no lattice if and only if there exists two non trivial com-
plemented faces F and G such that [Pp,, P/J ^ 0.

Proo/ - Using theorem 1.11 and corollary 1.12, if H is not
a lattice, we can find ^ G }^ such that P<^ ^ Z^+. Since H'1' is
homogeneous, P^n = P^^ ^ Z^+ and therefore F == (^e ^(H""),
H'^^FeF1 . Let r? be a vector in ^ such that 7 ? ^ F © F 1 . That
means: N^77 = (Pp, 4- Pp,i) 17 ̂  17.
Let ^ — r?" be the Jordan decomposition of (1 — N^77, and G be
the face (r?'1')11. Then G is completed and P^ does not commute
with F; for, in the other case we would have (lemma 2.5)

0 = N^ N2^ (1 -N> = N^N^^ - rr) = N2^^ + r?-)

and lemma 2.2 implies rf == rf~ = 0.
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If tf is a lattice, then corollary 1.12 says that any facial pro-
jection is in Z + and any two of them do commute, ojn

PROPOSITION 2.12. - Let g be a standard Borel space, v be
a Borel positive measure on g and ?—> H^?) be an integrable
family of self dual cones. Then H+ = / H^?) A<?) is homogeneous

y

ifand only if H^?) is so for almost every ? m g.

/^oo/ - See [14]. D

PROPOSITION 2.13. - Let H'1' &6? a homogeneous self dual cone.
Then 8 e (DOT) if and only if Pp 6 Ppi = 0 , VF G g?^) or
equivalently if and only if Np 5 Np = N^, 5 N^,, VF G ^ff^).

Proof. - See Proposition 1.9 and the properties of faces in a
homogeneous self dual cone. a

3. Finite homogeneous self dual cones.

DEFINITION 3.1. — In a self dual cone H^, a trace vector is a quasi
interior point ^ such that U ̂  = ^ VUGS^) . A homo-
geneous self dual cone tT is of finite type if it contains a trace vector.

Remark. — There exist cones without trace vectors even in the
class of facially homogeneous cones, for instance if H + =9 > ^
where M is a type Ill-factor. °

In this section H4' is of finite type. The following can be par-
tially found in [13].

PROPOSITION 3.2. — For ^ being a quasi interior point, the
following are equivalent:

i) ^ is a trace vector.
ii) 6^0 =5*^o, V5GCW).

i11) [ S ^ S J ^ ^ O , V 5 , = 6 ? E6W).
iv) [NF,NJ^ =0 , VF.GEW).
v) ^o = ^. VFEW).
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Proof. -
i) ^ ii) : because 8 - 8 * 0 (SOT) and ^<6-6<l) G S^)
ii) =^ iii) =^ iv) are immediate.
iv) =^ v) Let F and G be completed faces. Then (see Prop.

2.13) 0 = Np[Np , No] ̂  = N2^ N^(1 - N2?) ̂ .
Let $ == {+ — S~ be the Jordan decomposition of (1 — N2,) ^ and
G = <^+> l l G ^(H-^). Then iv) implies

o = N^(I - N^K, = N^Njr - D = N^r + r).
Therefore ^+ = ^~ == 0 and v) is proved.

v) ^ i) : Let K^ be the cone : K+ = n pep1

Fe ^(H4')
By hypothesis So^K^; moreover, K + = TrH4^ with TT = A ^ N2

F€E l9'(H )

Therefore TTH'' C ̂  and K'' is self dual in K = TTH (lemma 1.7).
The two following lemmas are needed.

LEMMMA 3.3. - Let G be a face in K'', G= <G>11 be the com-
pleted face generated by G in H" .̂ Then P^GZ^+.

Proof. - It is easy to see that VF E ^(H^ N^G C G; thus
<S!PGI N^ P^) == 0, $, T? G H". Which implies P^L Pp P^ == 0,
n E H+; then Pp P^r? = P^ Pp Pfir?, ry G H+ thus [Pg, Pp] = 0.

Now returning to the corollary 1.12, the lemma is proved, o

LEMMA 3.4. - For any face G in V^ such that P^ € Z + we
have

P^ = G^HK^

Proof. - From P^ H+ = G11 and [P^ , N2,] == 0 for all
F € ^(H^ we find P^ K^ C G11 H K^. Conversely

P^CG11 0 K^ = G11 n K+ C P^ K+ since P^ = P^n. o

Proo/ of Proposition 3.2 (end). - From the previous results,
we conclude that the completed faces of K^ are exactly the restriction
to (intersection with) K^ of central faces of H4. Therefore, any
closed face in K^ is a split-face and K"1' is a lattice by Corollary 1.12.
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If now U is a symmetry of H^ U commutes with TT because
UN^, U"1 == N^p. Therefore U leaves K^ invariant, and also any
face of K^. By the Proposition 1.8, U/ + = 1, which proves that
U S o - S o .

COROLLARY 3.5. — The set of trace vectors 1C1' is a self dual
cone which induces a lattice. (This result was already given in [6]).

COROLLARY 3.6. — V^ is indecomposable if and only if K^
is one-dimensional.

PROPOSITION 3.7. — Any finite dimensional homogeneous self
dual cone is of finite type.
See for instance [1, 55].

4. Spectral theorem.

The spectral theorem is one of the main tool in many algebraic
constructions. It can be seen either from the algebraic point of view
by mean of the functional calculus, or from the ordered space point
of view by the method of Riesz and Nagy (see [43]). It is not therefore
surprising to see connections between these two aspects.

The following theorem 4.1, in this form, is due to Bos who
communicated his proof to us. But it can be found in very close form
in [29]. However because of the importance of this construction
in the sequel we have found useful to give an extensive proof.

Let OTI = (D^H^) be the set of self adjoint derivations of H"^
and

^L\ = {8 GOT! ; 0 < 6 < 1}. (4.1)

OTZ is a weakly closed real linear space, and therefore OTZ^ is a weakly
compact convex set in OTt.

$o being a trace vector, let [0,So] be the order interval it
defines. If 0 < S < ^ then 11^11 < IIM and [O.So] is also a
weakly compact convex set in rf.

THEOREM 4.1 ([15]). - The map < ^ : 5 —> 6^ is an order
isomorphism from OTC4' onto [0 , $o].
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The proof requires four steps.

1) <p is injective :

LEMMA 4.2. — Let ^ be a quasi interior point of H'1'. ^ is cyclic
and separating for JH in H1.

Proof. — The cyclicity comes from the Lemma 1.6 and the
homogeneity of H"^ Now let 8 be in 3TC such that 5$ = 0. Then
e^ ^ == ^ Vr € R. Since 8 is a derivation, 0 < 17 < S implies
0 < e^r] < { , ^ € R. By the spectral theorem, this is possible only
if 817 = 0. fo being quasi interior < { > is total in H^ therefore
8/^ = 0 and 8 = 0. a

2) ^(31ZpC[0,^]:

Let 8 be a positive derivation. If 8^0 = {+ — ^"~ we put
F == (S^11. Then
0 > <^o - - D = <So . Ppi 8So> = <So , Ppi5 (PF + Ppi) ̂

=<^,Ppi8PFiSo»0
(Recall that ^ is a trace-vector and 8 is a derivation). Therefore,
$o being quasi interior S~ = 0. In the same way (1 - 8) ̂  E H4^
and the desired result holds.

3) Extremal points of [0, ̂ ] :

LEMMA 4.3 ([29]).- ^ is an extremal point of [O.^ol if and
only if there is an F G g?(H4') ^c/z rW S = PF So-

Proof - Since ^ is a trace-vector, Pp^o e [0, ̂ l (P^P- 3.2).

^ PFSO=^I ^O-cO^ ^h Si ,S2 ^ [O,^] ^d 0 < a < l
we find Ppi^ = Ppi^ = 0. Therefore Si = Py^i < PpSo and
^2 = PF^ ^ PpSo which is possible only if Pp^ = ^ = ^. Thus
PF^O is extremal, o

Now we need the following :
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LEMMA 4.4. - T? e [~^ , SJ ^ ^d o^ f/ rf , rr E [0, $o],
w/w^ T^ — rf~ is the Jordan decomposition of rf.

Proof. - Indeed if F = (r^)11 then 0 < Pp7? = ̂  < Pp^ < ̂
and 0 < - P^IT? == rr < Pp^o ^ So- D

Proof of Lemma 43 (end). — Therefore let $ be an extremal
point in [0, $J; we have

S = \ (So - (So - 2S» and ^ - 2$ C [-^, ̂ 1

So S = \ (So - (So - 2S)') + ̂  (So - 2S)-

and because $ is extremal, S = (So - 2S)" = - Pp (So - 2f)
where F = <(^ - 2S)+>1. Thus: S = PpSo- D

4) <^ is onto :

<p is clearly a linear weakly continuous map. Therefore ^(OII?
is a weakly compact convex subset of [0,^o]. On the other hand
the extremal points of [0,^o] are in (^(jn^p because:

PFSo^1^)^^)

, 1 + N.where 5p = ———L

The Krein-Milman theorem shows that:

[0, Sol = ConvExt[0,^] C ̂ (^p C [0, ̂ ] n

COROLLARY 4.5. — 5 is extremal in OTI^ if and only if there
exists a completed face F such that 8 = 5 p.

Such points are called /ac^/ derivations.
This result was already known by A. Connes for the orientable

cones ([19]). The main tool of this section is then the following.

THEOREM 4.6. - Let 8 be a self-adjoint derivation. Then there
exists a unique family {S^}^p of self-adjoint derivations such that:
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i) VX e R , 3F^ such that 8^ = 8^.
ii) X—^ F^ is increasing.
iii) if a = Inf spectrum (8) a^d A = Sup spectmm (8) then

8^ = 0 for X < a, 8^ = 1 for \> b,
iv) y ^ X , 8^ 8^ weakly.

/»&+o
v) 8 = f Xd5^.

»ft+0

-'a-0^/»_n

Remark. — We expect the corollary 4.5 and the theorem 4.6
to be true in any homogeneous self dual cone. Unfortunatly we are
not actually able to prove it if there is no trace-vector in H+.

proof. — By means of the theorem 4.1 it is sufficient to prove
such a theorem in [0, $oL

Let X be a real number, and F^ be the completed face gene-
rated by (X$o - ̂ + • If ^ > 1 then (\^ - ̂ ) > (X - 1) $o > 0
and if X < 0 , (X^o - ̂ ) < 0. Therefore we can restrict ourself to
the case 0 < X < 1, for which (X^o - S)* G [0, Sol-

LEMMA 4.7. — The map X —> F^ is increasing.

Proof (see [29]). — If p. > X then, since ^ is a trace vector:

^o - S = (Pp. + Ppi) ((^ - X) So + ̂ o - S)^- \
= Pp^ [(/x - X) („ + (X^ - OT + Pp^ [0" - X) So - (^o - S)-l

= T?l ^ T?2 - '73

with T^ £ F^ and 17̂  , ^3 € F^. Therefore since Fj^ is self dual,
the Jordan decomposition of T^ — ^ 3 is ^+ —r)~ where ^.T?" €F^.
So ^o - $ = (r?i + i?^ - 77-, i?i + T^ > 0, i?- > 0 and
^~, T^ + T^) = 0. Thus:
(^o - ̂ + = ^i + ^+ > T?i = (^ - X) P^S, + (X^ - ̂ + > (X^ - ̂ +

which proves the lemma. D
Now the remainder can be proven by the Riesz and Nagy's method

(see [43]). We find:

^^^o.



48 J. BELLISSARD AND B. IOCHUM

But the relation Pp ^ = Sy ^ completes the proof of the theorem
4.6. ^ ^ ^

The following corollary completes the equivalence between
homogeneity and facial homogeneity in the infinite dimensional case.
(See [11]).

COROLLARY 4.8. - Let $ be in Y = U - ̂  , n ̂  then

there is a unique positive operator A in GLg^) such that ^ = A^Q
(GLo(H4') ac^ topologically transitively on H^.

Proo/ - If ^ E Y we can find ^ G N such that

^o<^^o

Therefore ^ can be written as follows:

E'^/^t.
Now, Pp ^o = (1 — PF-O fo anc^ ^e ordinary spectral theorem allows^ \
us to write:

^jf^^r/1^0-^^<*n ^

•/!/" ^-/l/n' ^

/•",l/2Log.^ /•"<
^l/n ^ JV|n

= r^^^pF r^/^^'rfd-pFi)^
</l/n \ J\ln r^

^^Log^6p^

Since the exponent is a self adjoint derivation, the existence of A
follows, n

The uniqueness and the topological homogeneity come from
the two next propositions:

PROPOSITION 4.9 ([29]). — 77;̂  stationary subgroup of ^o into
GL^HT) is S^).

Proof. - Let A E GLo(H'1') leaving ^ invariant. Then A
leaves [0,$o] invariant, and therefore maps extremal points onto
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extremal points; for all F e S?^) there exists F^ € ^(H4),
such that APpfo = FFA^O (lemma 4.3). Thus for any face in ^(H"")

(APpSo , APpifo) = (APpSo , A(1 - Pp) So>

= < P p ^ o . ( 1 - P r ^ ) ? o > = 0 >
from which we deduce, since So is quasi interior, PpA*AP i = 0.
Therefore if S > 0 then A*APpiS€F1 and A*A commutes with
any facial projection. It consequently belongs to Z +.

H

From this, it follows that the polar decomposition of A is

A = U|A| = |A|U

where |A|EZ^+C3Il and UESCH^. Since So is a trace vector
and $o = ^o == 1-^1 So» using the lemma 4.2, |A| = 1. a

PROPOSITION 4.10. — Any trace vector is a weak order unit.

Proof. — In the separable cone H'1', the set of weak order units
is dense. Let S be a weak order unit and for any real X, let us put

F. = <(^o - S)')11

As in the lemma 4.7, X —> F^ is increasing, therefore X —> Pp is
also increasing, and X —> Ppi is decreasing. We put :

^=1^' PO=A PF^

By definition, 0 < (^ - X-^)- = - Ppi(̂  - ̂ -1 S)

thus 0<Ppi^ ^X-'PpiS
\ A.

and P^o = l̂un P^ = 0.

Since ^ is a trace vector,

P^o = l̂un P,^o = h^m (PF^ + P^i) ̂  = ^.

Therefore, the family of derivations 6p = 2~l(1 + Pp - Ppi)
is increasing and converges strongly as X —>• °o to ^

S.^-'d +P.-Po).
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Since OTI is weakly closed, it is strongly closed and 6 „ € OIL More-
over

8^0=^.
Therefore 6« = 1 (lemma 4.2) and P« = 1.
Since 0 < P^ (X$o - S), one has 0 < Pp^ < X Pp^ So ^ ^o •

Therefore: VX € ft, P^ € <^o> and S = P-S = lim Pp^ e <io>
which proves that <(o> = H'*' because ^ is an arbitrary weak order
unit.

5. Jordan algebra associated with H\

Now we come to the first main result of this paper, the cons-
truction of the Jordan algebra associated with a homogeneous self
dual cone and a trace vector.

Before to do this we need some definitions. As good references,
see [7, 16,28].

DEFINITION 5.1. — A JB algebra OTC is a Jordan algebra over
the reals with identity element which is a Banach space with respect
to a norm satisfying the requirements

i) 11^11 < \\a\\ \\b\\
ii) I I^H = H a l l 2 a, bC^t

iii) Ha2!! < l l^+fc 2 ! !
A JB algebra OTI is monotone complete if any increasing bounded
net has an upper bound in ^\L.

Remarks. - Note in passing that axiom i) is redundant ([6]).
An equivalent requirement ([48]) is obtained by replacing i), ii)
and iii) by ii) and \\a2 -A2!! < Max (Ha2!!, H^H) . Because J1Z is
a JB algebra, OTC is an order unit space with positive cone
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on^ == { f l G O u / a & e o n ; a=b2}
This justifies the introduction of increasing net.

A normal states p is a positive linear form on Oil such that
p(1) = 1, and such that for any decreasing net {^cJaeR ^a ^ 0
implies p(dy) ^ 0.

A set S of states is full if it is convex and a > 0 in 3TC if
and only if p(a) > 0 Vp € S. For S a full set of states ([3], Prop.
II. 1.7); one has

||a|| = sup |p(fl)|.
pes

If b C J1Z, we define: U^ and L(b) by

U^(fl) = {&a6} = 2b(ab) - b^a

L^(a) == ba.

Then U^OT^) C ̂ + V6 G OIZ< and p& = P ° U& is a positive linear
normal map if p is a normal state. We say that a set S of states is
invariant if p —> p^ maps S into the cone U XS for all 6E3TC.\-^o

In [7], there is the construction of what is called the "envelop-
ing algebra" WL of OTI. It is the smallest monotone complete JB
algebra containing 3TI and contained in OTZ-**. In fact 3Tt can
be identified with the bidual OTI** equipped with the Arens pro-
duct and the usal norm (cf. F.W. Schultz : On normed Jordan algebras
wich are Banach dual spaces and [6]). In particular 3TI has a full
invariant set of normal states defining "weak" and "strong" topo-
logy. Then, monotone, weak and strong convergence coincide on
monotone nets in OH.

DEFINITION 5.2. - Let 3TI be a monotone complete JB algebra.
A finite trace on OTI, is a normal state ^ such that V a . & G O U

^p((ab)c) = ̂ p(a(bc)).

^p is faithful if ^p(a2) = 0 implies a = 0.

Remark. — If OTZ. is the Jordan algebra of the hermitian part
of a von Neumann algebra the two definitions of trace agree.



52 J. BELLISSARD AND B. IOCHUM

LEMMA 5.3. — Let ^L be a monotone complete JB algebra
with a finite faithful trace </?. Then the set

s = = { ( p o u , / f f e o n , ^)== 1}
is a full invariant set of normal states.

Proof - Vx ejlZ , <^(U^(jc)) = ^(2a(ax) - a^x) = ̂ x).
Therefore Jn^ being convex, S is convex.

If x = x^ — x~ is the polar decomposition (spectral theorem in
3K,) of x in Oil with ^+, e~~ the idempotents such that e^ x^ = ̂ +,
^- x- == x-, ^jc- = 6?- ̂ + = 0 and if co(x) > 0 Vo; G S then
0 < <^(U _ (A:)) = - <p(x~) < 0. Since ^ is faithful x~ = 0 and
x = ̂ + E OTZ^; S is invariant because

<^(U, U^x) == ^((2b(bx) - b^a2) = ^(2(^6) (to) - (fiWx)

= ^p((2b(ba2) - a2b2)x) == ^(U,(^)x)

which is in U XS since lL(a2) € JH4'. o
\>o

THEOREM 5.4. — Let H be a Hilbert space, W' be a homo-
geneous self dual cone in H, with a trace vector ^. Then the set
3TC of self adjoint derivations of H4^ has a canonical structure of
Jordan algebra defined by:

(5i° 82) So -MiSo 5i ,5,eCTr

Moreover with its natural Banach norm, 3U ^ a monotone complete
JB algebra. The state

^o^——^^,)

^ a finite normal faithful trace, and the positive cone 3TZ-'1' for the
Jordan structure coincides with the positive self adjoint derivations.

Proof. — 1) From the spectral decomposition we deduce for
6 ^JIZ,

/»fr+0 /»6+0 /»6+0
5 = J \d6, and S2^/ ^SF,/ ^PF,,^O

^a - o A -fl - o a ~0 AL
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ftb+0 /»ft+o /•&+0 -5 ̂ = L.x ̂  .L ̂ \ ̂ = L^ ^
/»&+o ,= f.-^''\{.

Therefore 0 < 6^0 < II 6 II2 So
If 6 ^ , 6 2 GOTI, then

5i 5^ So = 5, 8, ̂  = 2-1 ((5, + 8,)2 ̂  - 6^0 - 52^)
which implies:

- 2-1 (||6 j|2 + IISJI2) So < 5i 82 So < 2-1 ||5, + SJI2^

There exists consequently a unique element 81 ° 5^ in Oil such
that

(6! 0 6 2)So = 6 l 5 2So (theorem 4.1).

2) The product (61,62)—> 6, o 5^ is bilinear by construc-
tion; moreover 6^ ° 63 == 63 ° 6, and

61 o ((6, o 6 ^ ) o 62) So = 5i o (8, o 61)62 So = (5i ° 5i)° (61 o 6^) So

because, by 1) 6^ o 6^ = ^ 1 ^ d S p commutes with 6, for
^a^+O x

the ordinary product.
Therefore the product o defines a Jordan structure.
3) The spectral formula

/>&+o
8 0 8 = \2d8y

^a-o ^

shows that ||6o 6|| = Max (|&|2 , |a|2) = ||6||2 and 6 o 6 > 0 for the
order of operators. Conversely if 6 > 0 the spectral theorem shows

/»||6||+0 /»116||+0
that 6 = I Xd6p , then 6 = 6'o 8' with 6'= / \l'2d8r,.JQ- \ JQ- \
Therefore positivity does not depend on the two algebraic structures
on OTI. Finally:

— 63 ° 6^ < 6, o 6, — 6^ o 6^ ^ 6, o 8^

which proves that

1 1 6 , 0 5, - 6 2 o 6 J I < M a x ( | | 6 , o 6 J I , ||6,o5j|).

WL is thus a JB algebra for its norm operator topology.
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4) Since OTZ, is weakly closed in the bounded operators, Wi is
a monotone closed JB algebra. Now the state a?,: is a trace because^o
c^((5^ o 5,) o 8,) = <^ , (8, o 5,) o 6^) = <^ , 6^ g, 5^)

= <$o » 5i ° (52 ° 83) So> = ̂  (5i ° (82 ° ̂ 3))

where we have used repeatedly the definition of o and the fact that
8f == 5?. o?^ is faithful by lemma 4.2. D

Remark. - If 0 € JTC then ^(^(5)) = <^,08e^) =
^^o^W- So the set S = {c^/ ^(6) = HSH- 2 <^ 6^) where
$ € <^o>} is a full invariant set of normal states on OTI by the theorem
4.1 and lemma 5.3.

Therefore, the weak topologies of OH as JB algebra as well as
operator algebra on H coincide.

Some other results can be useful. For instance:

PROPOSITION 5.5. - Let 8 be in WL. Then 6 is an idempotent
in the• JB algebra OTZ if and only if it is a facial derivation.

Proof. - If 5p is facial derivation then clearly:
^O^FP^O^F^MO thus S F O S F ^ S F

Now it is not hard to see that any idempotent 5 in 7VL is an extremal
point in 311̂ . Indeed if 80 6 = 6 then (1 -5)o (1 -6) = 1 -g
and if § = a 6 i + ( 1 - 0 ) 6 2 with 61 , 8^ G ̂  and 0<a< 1, then

U,_,(5) = 0 = a\J,_,(8,) + (1 -a )V,_s(^)
Therefore U,_5(5 , )=0 , that is 5, = U^S,) < U^d) = 6 o 6 = 6
(see [7] Corollary 2.10). Therefore 5, = 8 and the corollary 4.5
proves the proposition. D

PROPOSITION 5.6. - The center Z(OTT) of the JB algebra ^
is equal to the ideal center of Z +, and coincides with the center
of (W).

Proof. - Recall that 6 commutes with 5' if [L(5), L(5')]= 0.
The center of OTC is then the set of element of J1Z commuting with
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any element of 01Z. In [7] it is proved that 6 G ZCOTI) if and only
if UJ6) = 6 Va E Wt such that a2 = 1.
But or G OTI and a2 = 1 is equivalent to a = 26 p - 1 = Np where
5p is an idempotent (use the Prop. 5.5).

On the other hand:

UNp(8) So = (2Np o (Np o 6) - (NF o Np) ° 6) ̂  = (2N2^ - 1) 6$o

= UpSU^o- with U p = 2 N ^ - 1

where we have used the properties of the traces. Therefore
UNp(5) = UpSlI? and, using the tehorem 1.11:

6 E Z(OTl) is equivalent to: . Up 6 == 6 Up VF E g^)

• [S,PF] = 0 V F G W)
. 6 G Z ^

. 5 E Center of fiXH'^). n

6. The homogeneous self dual cone of a JB algebra.

Let us now come to the converse. In this section OTC is supposed
to be a JB algebra monotonically closed with a finite faithful
trace <^.

The support of a normal state a? on OH is defined as in the
von Neumann case. Let OTZ^ = [a G J1Z / o^(\a\) = 0}. OTI^ is a
JB ideal by the Schwarz inequality, and it is monotone closed because
co is normal. Therefore, there is in OTZ^ a greatest idempotent
denoted by 1 — e ^ . Clearly, by the spectral decomposition in 3TI,
OH^ == Ui_^OIt. Now, co is a faithful normal state on 3Tl^, be-
cause if a E U^(JIZ) and co(|fl|) = 0, then 0 < \a\ < IHI (1 - ̂ ),
which implies a = 0, since \a\ = U^(|a|).

^ is called the support of co.

THEOREM 6.1. - There exists a Hilbert space H, a self dual
homogeneous cone HT1" in H wth a trace vector ^ such that OTc
coincides with the JB algebra of self adjoint derivations of 1-T.
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Proof. - 1) Construction of V^:
Since <^ is a faithful trace, there is a separable prehilbertian

structure on JIZ defined by:
(a, b) = ^p(ab),

Let rf be the real completion of Oil, H a complexication of tf,
and FT be the closure of CHZ^ in H3.

LEMMA 6.2. - H+ is self dual in H.

Proo/ - (See [29]).

Ifa^yft^ and 6 E 3^ then
^(ab) = ^((a1/2)^) == ̂ /W/2)) = ^1/2(6)) > 0.

Therefore by completion H^ is included in its dual.

If a E OTI and H = (^2)1/2, ^ = 2-l(|fl| ±a\ then
by spectral theorem la l .a 1 ' , ^" are in OT^ and < a + , a ' ~ > = 0 . Since
^(06) =^((a + -a- ) (& + -&-))<^(( f l + +a-) (6 + +6-) ) =(^(|a| |&|)
0<^(( |al - \b\^<^((n ^
Therefore a—>\a\, a^ are continuous maps with respect to the
Hilbert topology. By extension, if ^ G H1 is in the dual of H'*', then
0«$ , r>== - lim2 <0 and F == 0. a

2^ 77?e structure of the faces of HT^:

THEOREM 6.3. — 77^ wa^ ^ —> ( e ) is an order isomorphism
of the set of idempotents in 01Z- onto ^(H^. For every idempotent
e in m, P<^> = U^ wrf P^>i = U,_^.

LEMMA 6.4. - The operators L(a): 6 —>ab and U^: b —> {aba}
defined on OTI can be continued as bounded self adjoint operators
on H. Moreover a —> L(a) is an isometric linear map from J1Z into
R(\f)\ and a '—> \J^ is a continuous map.

Proof. - L(a) is densely defined on H1 and is symmetric because

V a , 6 , c E O T C (b,L(a)c)=^(b(ac))=^((ab)c) = <L(a)&,c>
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L(a) is bounded on H because the set S = {<^ U^, b EOTI}
is full, OH = tf and:

|^(U,(a))| |<fc|L(^)|M = sup —^2^- = sup —r^2——= 11^)11 wr&e=jn 1^(^)1 6e;m ll&ll v /

Therefore, a —> L(a) is linear and isometric from 3TI to fW).
Finally Vy = 2L(a2) — L(a)2 which completes the proof, a

COROLLARY 6.5. — If e is an idempotent in OTI, U^O^) 15'
the closure of the face (e} generated by e in HT^.

Proof. - If OTC is special (i.e. aob = 1~^(ab-\-bd) for some
product in 01Z), then: U2^) = {&{6fl6}6} = {^flft2} == U^(fl).
Since this is a polynomial identity in less than 3 variables which is
linear in one of them, by the Mac Donald's theorem [28, p. 41] this
identity holds in any Jordan algebra. If e1 = e then U^ = U^.
Finally: OH4' is the face generated by 1, and U^OIZ4') = (e). Since
Ve is a projector U^H"^) = <i>. a

LEMMA 6.6. - Let S 6e ^ H^ and e be an idempotent of
Oil. The following proposition are equivalent:

i) U , S = S
ii) U i _ , S = 0

iii) < ^ ( 1 - ( 0 > = 0

iv) L Q O S - S

Proof. — i) =^ ii) =^ iii) are immediate.
iii) ===^ ii): For any a CE JR4 ,

< S , U i _ , ( f l ) > < | | a | | < S , U i _ , ( 1 ) > = = H a l l < S , 1 - ^ > = = 0

Since OH4-- ̂ + = rf, we have U^O) = 0.
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ii) =»i): Since U^ G Oil4- for all 6 in CTZ, choosing
6 = (1 - e) + \e with X E R
U,S = X2^ + X(1 - U, - U,_,) S + U,_, S

= X2^ + Ml -U, - U , _ ^ ) S > 0 VXE R.
This is possible only if $ == U^ ̂

i) «==^ iv): Because of the formula L(e) = 2~ l(1 + U - U, )
L(^)S == S implies

I I S I I 2 = < ^ L ( ^ ) f > = 2-1(||$||2 + ||U |̂|2 - l|Ui_,SI|2)

and U^ $ = $ (U^ is an orthogonal projection).
Conversely U^ = f impUes U , _ ^ { = 0 and LQ?)$ = $. n

flroo/ of Theorem 6.3. — If e is an idempotent in OTC, the
previous lemmas imply that < ^ > = < 1 - ^ > 1 is a completed face.
Conversely:

(i) Let $ £ H+ and e^ the support of the state
^:a-^W\-2 <S ,L(f l )$>

Then < S , L ( ^ ) S > = I I S I I 2 = 2-1(|IS112 + IIU.^II2 - IIUi_^112),

which groves that $ == U^.(S) and ^ G <1 - ̂ >1 == <"^>; thus
< $ > C < ^ > .

(ii) Let X be a positive number, we have:

(X1 - f) = (XI - ̂ +- (X1 - ̂ )- in tf.
Therefore by i) we can define the idempotent e^ = e^_^+. Then
for all X > 0, X^ == XU,J1) > U^(X1 - {) = (X1 - ̂ + > (X1 - {)
and $ > X(1 - ̂ ), X > 0. Therefore 1 - ̂  E <^> VX > 0. On
the other hand, as in the lemma 4.7, X < /A implies e^ < e . There-
fore, if X 4' 0 then e^ ^ CQ since monotone convergence coincides
in JH and in H^, on monotone nets. Then:

1-^e<I>•
(iii) Now, using the lemma 6.4

0 ̂  U^ = U^ U,̂  = Ĥm U^O - XI) = ̂  - (XI - ̂  < 0.

Thus U,^ - 0. Therefore U,_^ = ^, ^ < 1 - ̂  and
^ G (1 - e^) by corollary 6.5. So for any ^ € H^ there exists a
unique idempotent ^ in ,7K such that <^>C (1 - e^C <^) C (<>}.

Using the following lemma, the theorem is proved, a
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LEMMA 6.7. — For any face F in H^ there exists an idempotent
e^ such that F = (Cp), Pp = Ug , Sp = L(^p) f5 a derivation of
H4' fl^zrf H+ is facially homogeneous.

Proof. — Since F == U ( r ] ) the family 17 —^ (17) is an in-
T^eF

creasing net. Moreover, 0 < r]^ < 17 ̂  ^ F implies (lemma 6.6)
Ui-^(^i) = 0 and U^(r^) = r^.

Therefore, by the definition of e^, ̂  < ̂  and 17 —^ ^^ is an
increasing net of idempotents. Let

€v = V ^ = 5 — lim €„F 7?eF T? TiGF r?

(clearly e^ belong to OH since OTC is monotone closed). Now if
S € U^ (H-^) == <^> then (lemma 6.4) ^ = lim U^(£) and therefore
^ e IT7^> = F.T^er

Conversely^ $ e F implies _^^ < e^ and Uep ^ = S. So
F C Uep H"^ C F, which proves that F = (7p) and Pp = Uep.

It remains to prove that Sp is a derivation. Using the propo-
sition 2.13 this is a consequence of the identity V^L(e)V^_^. = 0
for all idempotent e ' in ^L (Use Mac Donald's theorem), a

Remarks. — The lemma 6.7 shows that in H^ the closure of
a face is a face and ^(H"") = {F/F face of H"'}.

— Up == 2N^. - 1 is a unitary such that
UFH+ = (2^-1) C H+ if Pp = V,

3) Self adjoint derivations:
From now, H^ is self dual and homogeneous.

LEMMA 6.8. — For any a in OK, L(a) is a self adjoint deri-
vation of HT1".

Proof. - Comes from the identity U^ L(a) U,__^ = 0, valid
for all idempotent e in 3TC, Proposition 2.13 and Lemma 6.4. a

LEMMA 6.9. - Any vector in H4' belonging to [0,1] is in fact
in TVL^ and 1 is a trace vector in H4'.
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Proof. — [0,1] is a "weakly" compact convex set as well for
the topology of H+ as for the topology of WL^. Using lemma 4.3,
and the fact that extremal points of Wi\ are idempotents, we see
that if we assume 1 to be a trace vector, then [0,1] and OTI^ have
same extremal points. Monotone convergence being the same in OTI
and H'̂  the result follows.

It remains only to prove that 1 is a trace vector:
Since < 1 > = OTZ^, 1 is a weak order unit and therefore it is a quasi
interior point in H^ VF^ E S^H4), F = (e) and using theorem 6.3

N2^ 1 = (PF + Ppi)1 == (U, + U,_,) 1 = ^ + 1 - ^ = 1
The proposition 3.2 asserts the result, a

LEMMA 6.10. — Let 5 be a self adjoint derivation of H^ Then
there exists a unique a E OH such that 6 = L(a).

Proof — We can restrict ourselves to the case for which 0 < 8 < 1
Then, a = 61 e [0,1]^+ = [0,1]^+ (use theorem 4.1); and therefore
L(a) 1 =61. Because 1 is separating (Lemma 4.2), 5 == L(a). D

LEMMA 6.11. — The map a —^ L(a) is an order and JB-isomor-
phism between OTI and CD^(H'1').

Proof. — Clearly a —^ L(a) is linear and isometric (lemma 6.4).
Now if a > 0, <6, L(a)b) = rf>(b(ab)) = ^V^a)) > 0 for any b
in «^. Therefore L(a) > 0.
Finally by the definition of the Jordan product in ©^(HT^) (theorem
5.4) : L(a) o L(b) 1 = L(a) L(b) 1 = L(a)b = ab = L(ab) 1. a
This completes the proof of theorem 6.1.

7. Some other results.

The following statements can be useful, in order to complete
our knowledge of homogeneous cones.

LEMMA 7.1. — Let OU be a monotone closed JB algebra and
Z(JK) its center. If <^ and ^ ar^ ^° finite normal faithful traces
on OTI, then there exists an h E J1Z4' n Z(3Tl) such that for all
a E OR-, </?i(a) = ^(ha).
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Proof. — Similar to the von Neumann algebra case ([20, 46]):
Suppose that (^1,^2 are not normalized traces (^=^,(1)~1^,
are normalized) and that <^ < ̂  (otherwise, compare <^, and
^i 4" ^2)- These traces induce two prehilbertian structures on OTC

< f l , & > , = ^ ( ^ ) , \\a\\\ < \\a\\\

If H, = JIZ"'"^ then H^ C H^ and H^ C H^. There exists
AC ^(H^) such that 0 < A < 1 and < a , & > i = <A^, b)^ a . ^ E H ^ .
Since V a . f r E J n ^ , ( a , b ) ^ < ( a , b \ , the same holds for a, b
in H^. Self duality of H^ implies 0 < A^ < {, for all { G H^.
Thus A G Z ^ + . If A = A(1), then by Prop. 5.6 and lemma 6.9,
h G Oir" H Z(CTl); thus for all a E OH,

<^(a) = < 1 , f l > i = < A , a > 2 = ^(Aa) a

The following proposition is to be conferred with theorems 3.2 and
3.3 of [19]. (See also [34]).

PROPOSITION 7.2. - Let JTl be a JB monotone closed algebra
with a finite faithful trace, and T^ the homogeneous self dual cone
of ̂ . Then VC SQ^) if and only if U can be restricted on Wt
as a Jordan isomorphism leaving Z(3Tl) invariant.

Proof. - Because [0,1]^+ = [0,1]^ (lemma 6.9), and because
UESOHT^), [0,1]^ is invariant by U. U being invertible, e is
an idempotent if and only the same holds for V(e), since idempo-
tents are extremal points of [0,1]. Moreover e^e^ = 0 is equiva-
lent to e^ + e^ is an idempotent; thus U(^i) U(^) = 0.
Using the spectral theorem in<W; we find:

U(a2) = V(a)2 Vfl G JIZ
and U/OTZ is a Jordan isomorphism, which leaves the center of JK
invariant because U commutes with H, if e G Z(JH) (using the
fact that U e S^), Proposition 5.6, and lemma 2.11 of [7]).

Conversely, let a be a Jordan isomorphism of Oil leaving
Z(0flt) invariant. Then <^o a is a trace if </? is. Using the lemma 7.1,
we can find h E Z(Wy- such that ^(a(a)) = </?(Afl) VaGOIZ.
But if ^ E Z(3IQ, a(a) = a. Therefore ^(a) = (^(Aa) for all a C 31Z.
Z(3K) is now the real part of an abelian von Neumann algebra,
and ^p/Z(W) is a probability measure on the spectrum of Z(3TC).
That means that ^p(a) = ^>(ha) VaEZ^) and h = 1. Therefore
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^ is invariant under a. Clearly, a can be continued on rf. Inva-
riance of <p under a says that a is a unitary operator on rf. Since
a(a2) = a(a)2, a^D C ̂  and a(1) = 1. Therefore a E S^).

D

PROPOSITION 7.3. - Z^r WL be a monotone closed JB algebra
with a finite faithful trace ^ Then, there exists a standard Borel
space g, a positive Borel measure v on g, a fields ^—^3Tt(?)
of Jordan algebras which is v-integrable such that:

i) OK is Jordan isomorphic to f CHl(?) dv{^)

ii) Z(31l) is Jordan isomorphic to L^, (g, v)
iii) /or v-almost every ^ , JK(?) is a JB /acror.

Sketch of the proof. - Using the representation theorem given
in Section 6, WL is the hermitian part of (SXf^). Because H, H"^
are decomposable with respect to Z^+ (= Center of (DQ^) = 2(3^)),
the same is true for 3K.
Now, if 6 is a derivation so is 5(?) for almost every ? ([14, 42])
and OTl(0 is well defined. Since for a.e. ?, H"^) is indecompo-
sable, therefore Z01Z(?)) = R1n^ ahnost everywhere and OTZ>(0
is a JB factor, o
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