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THE POULSEN SIMPLEX

by J. LINDENSTRAUSS, G. OLSEN*
and Y. STERNFELD

1. Introduction.

In 1961, E.T. Poulsen published a paper in which he constructed
a metrizable Choquet Simplex S in which the extreme points 3^S
form a dense set. It is evident that Poulsen's elegant construction
has many degrees of freedom and thus it seemed as if there are many
different simplices in which the extreme points are dense. Surpri-
singly it turns out that such a simplex is unique up to an affine
homeomorphism. We call this unique simplex the Poulsen simplex.

We discovered the uniqueness of the Poulsen simplex after reading
Lusky's paper [8] on the uniqueness of the Gurari space. Our proof
of the uniqueness uses the same idea which Lusky used in [8].

Once we know that the Poulsen simplex is unique it is of course
of interest to study its properties in some detail. The uniqueness
proof presented in section 2 is arranged so that it shows in addition
that the Pouslen simplex S has a strong homogeneity property:
Any affine homeomorphism between two proper faces F^ and F^ of
S can be extended to an affine automorphism of S. In section 2 we
show also how a slight modification in Poulsen's construction enables
us to prove that the Poulsen simplex is universal in the following
sense. Any metrizable simplex can be realized as a closed face of S. It
is easily verified that the homogeneity and the universality property
combined characterize S among the metrizable simplices.

* Partially supported by NAVF the Norvegian Council of Science and
Humanities.
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In section 3 we examine the topological nature of 3^S. By
using a deep result from infinite-dimensional topology we show that
3^S is homeomorphic to the Hilbert space l^ . Many topological
properties of 3^S can be proved in a simple way directly (without
using its homeomorphism with /^ )» some of these properties are
exhibited in the beginning of section 3.

The notion underlying the uniqueness proof of Lusky as
well as the uniqueness proof which we present in section 2 is that
of a representing matrix of a simplex space and more generally of
an arbitrary separable predual of Li(^i), which was introduced and
studied in [7]. In section 2 we do not however use this notion
explicitely. This is done in section 4 where we characterize those
matrices which represent the Poulsen simplex S (or more precisely
the space A(S) of affine continuous functions on S). We also prove
in section 4 a general stability theorem for representing matrices
ofpreduals of L^ .

The Poulsen simplex is evidently the opposite to the most simple
and well behaved simplices, i.e. the simplices whose extreme points
form a closed set (these are the probability measures on compact
Hausdorff spaces K , the so called Bauer simplices). We exhibit in
section 5 some other aspects in which the Poulsen simplex is the
opposite to the Bauer simplices. In particular we give a necessary
condition for a matrix to represent a Bauer simplex and compare this
result with the result of section 4. It is hoped that by investigating
representing matrices it will be possible to classify in a quantitative
and meaningful way simplices which are between the two extreme
cases (i.e. Bauer simplices on the one hand and the Poulsen simplex
on the other hand).

The paper ends with a brief discussion of the Gurari space. We
indicate how some of the results proved in sections 2-5 can be modified
so as to apply to the case of the Gurari space.

2. Uniqueness, homogeneity and universality.

For the proof of the uniqueness and homogeneity of the Poulsen
simplex we use the notions of "partition of unity" and "peaked
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partition of unity" in A(K)(1) where K is a simplex. We say that
{^.}" C A(K) forms a partition of unity if e, > 0 for all i and
n
^ €, = 1 (i.e. the function identically equal to 1). And {^-}^
1=1
is a peaked partition of unity if in addition ||^,|| = 1 for all i.

LEMMA 2.1. — Let K be a metrizable simplex, let F be a closed
face of K, and let {e,}^^ C A(K) be a peaked partition of unity
such that each e^ has a peak point(2) in F.

Then there exists an affine continuous projection Q from K
onto F so that e^ = e^ o Q /ora// 1 < i < M .

proof. — Let 5, € 3^F be peak points of ^ , 1 < i < n, and
define an affine continuous projection P from K into F by

Pfc== £ e,(k) s, f e G K .
1=1

Clearly
^ = ^ o p l < f < ^ z (1)

Let E denote the completion of the linear span of F. Since
F is compact it is closed in E. Define ^ : K—> c(E) (= the non-
empty closed convex subsets of E) by

y/(/0 = P-^pfe) n F k e K .
Then V/ is a convex map. Since P maps K onto a finite di-

mensional face, P is an open mapping, thus ^ is lower-semi-
continuous. Now id/F is an affine continuous selection for V//F.
From Lazar's selection theorem ([5] cor. 3.4) it follows that there
exists an affine continuous selection Q for ^ which extends i d / F .

Clearly Q is a projection. By the definition of ^ we get that
P o Q = P, hence by (1) we get that ^, o Q = ^ ° P o Q = ^ ° P = 6?,
for 1 < / < n and the lemma is proved. Q

LEMMA 2.2. - Let S be a metrizable simplex with 9^S = S.
Let F be a proper closed face of S, /^r {^?,}^ C A(S) be a peaked

(1) A(K) is the linear space of affine continuous functions on K.
(2) i.e. e^ takes its maximum in K at a point of F.
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partition of unity, let {f,}^ c A(F) be a partition of unity, and
n

let {a,}^i be nonnegatives with ^ a^ = 1 so that
1=1

^• /F=/ ,+^/^ , Ki<n.

Then, for each c > 0 there exists a peaked partition of unity
W^ C A(S) so that

^, /F=/ , , Ki<n+ 1,
and

l l ^ - ( ^ + ^ ^ i ) l l < e , 1 < ^ < M .

Proof — Let {5,}" C 9^S be peaks of {^-}^ respectively.
Choose n + 1 distinct points {^J^/ m 9<?S\F as follows:

first let ^+1 e 3^S\F be such that

l^(^i)-^(i ^ ^ ) l < ^ for Ki^n. (1)
w

This is possible since 3^S\F is dense in S, and ^ a^sj^=• ^- Next
7=1

for 1 < / < n if s^ ^ F set .̂ = 5y and if .̂ G F choose .̂ G 3^S\F
with

|^(r,)-^,(5,) |<6 for K z < ^ . (2)
Set

F'= conv(F, / i , . .. , ^+1).

Observe that {5,}^. C F'; hence by Lemma 2.1 there exists a pro-
jection Q: S —^ F' with ^, o Q = ^,, 1 < i < .̂

Define the g^s, first on F' by

^./F = /;. 1 < i < ^ + 1
and

^,a,)=6,, K f , / < ^ + 1.

The g\s are well defined since {^}^1 H F =0. Now extend the
g\s to the whole of S by setting g^(s) = g,(Q(s)), s E S . Clearly
{ î-},"4!1 is a peaked partition of unity, and ^./F ==/,.. Since
.̂ o Q = e^ and .̂ ° Q = g^ we get that
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\\€i-(gi + ̂ +i)ll = Ik,- (8i+ ̂ n+r)!!^
= max l^(^)-(^+^-^+i) (^)l <e

K/<n+l

by (1) for / == ^ + 1 and by (2) for 1 < / < n. n

We shall prove now the uniqueness and homogeneity of the
Poulsen simplex. As stated in the introduction, the proof is a modi-
fication of a technique due to Lusky [8].

THEOREM 2.3. — Let S^ and S^ be metrizable simplices with
3 .̂ == s, for i = 1,2. Let F, be a proper closed face of S, ,f = 1,2,
and let ^> be an affine homeomorphism which maps F^ onto F^ .

Then </? can be extended to an affine homeomorphism which
maps S^ onto Sp

Proof. - Let {^n^\» ^Vn^=i be sequences of unit vectors
whose linear span is dense in A(Si) and A(S^) respectively.

We shall construct inductively peaked partitions of unity
{^m^i^^i) and ^ /m^lcA(s^ m = = L 2 , 3 , . . . , / > m
with the following properties:

n
There are non negatives {a^^^=1 ? m = L2, . . . with ^ a^ = 1

for each m, so that

^ ei,m = ei,m+l "j" ^.m em+l,m+l

^1 ) j i,m ~ •^w+l ai,m ^m+l^+l

for l < z < m , m = l , 2 , . . . and / > m 4- 1

(ii) <^(^))=^) ^F,

l < f < m , m = l , 2 , . . . , / > m

("O 11^-<+.11<2- /

("i') \\fim - ̂ 11 < 2-7

1 < i <m , m = l , 2 , . . . , / > m .

For each w > 1 let E^ (resp. F^) denote the linear span
of {Or=i (resp. {/Mi). Then
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(iv) For each integer n > 0 there exists some m > 0 so that

rf(^,E^)<2-" forall 1 < k < n.

(iv') For each integer n > 0 there exists some m > 0 so that
d(<yk^m)<l~n ^aU l ^ k ^ n .

Let e\^ = 1 and /^ = 1. Assume that {e^}^ and {f/^}^
have already been constructed for k = 1 ,2 , . . . , m and k<j<m
so that (i) - (iii') holds whenever defined and (iv), (iv') holds for
some integer n.

By [7 Theorem 3.1] there is a subspace E^.^ of A(S^) iso-
metric to /^ so that E^CE^ and d(x^E^) < 2-^ for
all 1 < k < n + 1 .

Since the function 1 belongs to E^, it follows from the Michael-
Pelczynski lemma (cf [7 p. 179 & 186] that there exist non negative

k

^1,^=1 ^ = m , m + l , . . . , m + r - l with S a^ = 1, and peaked
. 1=1

partitions of unity {e,^CA(Si) for fc = w, m + 1 , . . . , m + r - 1
so that

^m = ̂ ,m + ,̂m ^+l,m+l 1 < Z < m

^•^ =^,^! ^^fc^+i^i l < ^ < f c , m + l < A ; < m + r - l
Put ^^ = e^ for /: < w, and e[^ = .̂ ^ for

k = m -4- 1 , . . . , m-\- r- 1,
for every 1 < i < k and k < / < m + r. Then (i) and (ii) are valid
up to m 4- r - 1, and by the choice of E^+^ (iv) holds for n 4- 1.

We pass now to A(S^). {^^ o ̂ +/ is a partition of unity
on F^, (not necessarily peaked) and for 1 < i < m we have

G/^^i^^Cwi0^
From Lemma 2.2 it follows that for each e > 0 there is a peaked
partition of unity {/;.}^1 C ACS,) so that

fi(s) = c^ (^p(s)) for 5 £ F, 1 < / < m + 1
and

"C. - <^ + ^^^i)!! < e for 1 < »• < m.
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Hence, if we take e < l"2^^, and define

C^i^ K ^ m + 1
^•w+l ^ ^m+1 i ^•w+1
^w ~ • '^w+l i,w •'w+l.w+l

^•w+1 __ ^ w + l i ^w+1
•'I,! "~• /l,2 ' ^1,1 •'2,2

it follows that \\f^l-f^\\<2~m for 1 < < < A ; and A; = l,2,.. . ,m.
In a similar manner we construct the vectors f[ ^ for 1 < i < k
k = m + 2 , . . . , m + r and fe < / < m + /' so that (iiT) holds for
/ < m + r — 1.

We now interchange the roles of A(S^) and ACS^). By [7,
Theorem 3.1] we find a subspace F^+^ of A(S^) so that
F^CF^^,F,^, is isometric to C^^, and

^^F^.^)<2-('I+1) for K f c < ^ + l .

We proceed as before, first constructing f[^ and then e^. In this
way we ensure that (i) — (iii') are still valid for all relevant indices
and that (iv') is also valid for n 4- 1. This completes the inductive
construction.

Put now e, ^ = 1m e\^ and f, ̂  = ^lm f[^, for

1 < i < m m = 1,2, . . . It is clear from (iv) and (iv') that the
linear spans of {^}^i^i and {f^^i^^i are dense in A(S^)
and A(S2) respectively, and from ( i )—(f ) and (ii) it follows that

ei,m ~ ei,m+l ' ai,m em+l,m+l

ff.m = Ji.m+t ' ai,m Aw+l,w+l

for 1 < / < m, m = 1 , 2 , . . . , and

^mO^^W^ s ^ F ^ 1 < f < m , m = 1 , 2 , . . .

It follows that the relations T .̂ ̂  = ̂  ̂  define an isometry
from A(S^) onto ACS^). Since T maps ls^ to Is , we get that
T*/S2 is an affine homeomorphism which maps 83 onto Si.
Since ^((p(5)) = Te(s) for all 5 E F^ and e E A(S^), it follows
that T*/S^ is an extention of <^. o
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COROLLARY 2.4. - Let F ^ , F^ be closed faces of the Poulsen
simplex S (0 i=- F, ^ S z == 1,2) ^d let ^\ be the faces comple-
mentary to F , ( f = l , 2 ) . Then F[ is af finely homeomorphic to
F'^2-

Proof. — In the following we let i = 1,2. Let

A, == {f lEA(S) ; f l /F , = 0}.
Then A, is an order ideal of A(S), hence A, is a simplex space.
It follows that the set K, = {p C A,* | p > 0, ||p|| < 1} is a compact
simplex. Let r,: S —> K, be the restriction map. We let Jc, be the
characteristic function of F,.. Then by [1, Theorem 11.3.7] 1 —jc,
is an afflne l.s.c. map. By Edward's theorem we have for all s E S

(1 -Jc,)(5) = sup {a(5) ; f lGA(S) , f l /F , =0 , 0 < a < 1 -x,}.

Since (1 -jc,)-^!) == F; we get \\r,(s)\\ = 1 iff s e F;. Let
K,' = {p G K, I Up I I = 1} then K^ is the complementary face of
{0}. By [1, Theorem 11.6.17] it follows that r,/F,' is an affine
homeomorphism. But ^(9^S) = 8^K,, so 3^K, is dense on K^..
Hence by the preceeding theorem there is an affine homeomorphism
^ which takes K^ onto K^ so that <^(0) = 0. Hence the map
(r^/P^)~1 o ^ o ( r ^ / F [ ) is an affine homeomorphism which takes
F[ onto F^. D

We turn now to the universality property of the Poulsen simplex,
showing that any metrizable simplex K can be realized as a face
of it. We prove this by repeating the constructions of Poulsen, the
only difference being that instead of starting with an interval as Poulsen
did, we start with the given simplex K . The uniqueness theorem
ensures to us that the final result of the construction does not depend
on the simplex we started with. This result was essentially proved
by Lusky [9] by different arguments.

THEOREM 2.5. — Let S be the Poulsen simplex, and let K be
a metrizable simplex. Then there is a face F of S which is afflnely
homeomorphic to K and a w* continuous projection P of norm 1
on A(S)* so that PS = F and (I - P)S is affinely homeomorphic
to S.

(We identify in an obvious way S with a subset of A(S)*).
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Proof. — Let K be a compact simplex in a Banach space E.
Let {^}^=i denote the unit vector basis in l^ , let E^ = span {^}?=i
and let ?„ be the obvious projection from E ® l^ onto E © £„. We
identify K with the set {(^,0}; ^ E K } C E ® / ^ and ^ with the
vector ( 0 , e ^ ) E E ® ? 2 . We construct inductively a sequence
{z,J^i C E © ^ and a sequence of compact simplexes {S,J^ so
that

2.6 S^i==conv({z^^US^)^=0,l,2,... (K == So)

2.7 S , C E ® E ^ M = 0 , l , 2 , . . .

2.8 a^^A m>n
2.9 P«S,=S^ m>n

2.10 For each c > 0 there is an n such that every point in
S^ has distance at most e from 9^S^.

Assume that {^}^i and {S^i have been constructed so
that (2.6) - (2.9) hold (for n < m) and that each point of S^ has
distance < 2-fc from S^^w- Choose points {.^J^i in Syy, so
that each point of S^ has a distance < ^'"^'^ from the set
{^•.i. Put

^ = 3^ + 2-<^3) ̂ ,, ^ l , . . . , /

Sm+i = conv (S ,̂ , Zi , Z^ , . . . , Z,) ; = 1 , . . . , / .

Then (2.6) - (2.9) hold up to m +/ and (2.10) holds with / = 2-< fc+l>.
This completes the inductive step in the construction.

Let S= U S^. Then S is compact and convex. Every x E 9 ^ S ^
Yt— 1

belongs to 3^S. Indeed assume that x ± y E S. Then x ± P^y ES^
for m > n and hence by (2.8) and (2.9) P^y = 0. Consequently
y = 0. Hence 3^S is dense in S. We show that S is a simplex.
Let A^ = {/o p^/E A(S)} n = 1,2^. . . Since {/o p^ con-
verges pointwise to / for every / G A(S) it follows from the Lebesgue
convergence theorem that /° ?„ —^ / weakly and hence A(S) = 0 A^.

"=1

Since U A^ has the Riesz interpolation property A(S) has the weak
Riesz interpolation property and hence S is a simplex (see [1 Corollary
11.3.11]). Consequently S = S the Poulsen simplex. Clearly K == SQ
is a face of S .
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Let P be the projection from E ® l^ onto E defined by
P(u,v) = (M,O). Then PS = K . Put

A == (I-P*)A(S) = (/eA(S); //K = 0}.

This is an order ideal in A(S) and since {x*;x* € A*,x* > 0, ||x*|| < 1}
can be identified with (I-P)S (cf [1 Corollary 11.6.17]) we get that
(I—P)S is a simplex. Since obviously 3^(1—P)S is dense in (I—P)S
we get that (I—P)S is affinely equivalent to the Poulsen simplex.

o
The homogeneity and universality properties stated in theorems

2.3 and 2.5 also characterize the Poulsen simplex. Actually even a
weaker homogeneity property suffices.

THEOREM 2.11. — Let SQ be a metrizable simplex which contains
all the metrizable simplices as faces, and which has the property
that for any two faces F^ and F^ of SQ with dim F^ = dim F^ <oo
there is an af fine homeomorphism r of So onto itself with r(F^)=F^.
Then SQ is the Poulsen simplex.

Proof. — By our assumptions, SQ has a face FQ which is affinely
homeomorphic to the Poulsen simplex S. Let F be any finite-dimen-
sional face of SQ . Again by our assumptions there is an automorphism
r of So so that r(F)CFo. Hence r(F) C FQ = I^FQ C 3^ and
therefore also F C 3^Sp. Since So, as any metrizable simplex, can
be represented as 0 F^ where {F,,}00 is a suitable increasing

n= 1 ___
sequence of finite-dimensional faces we deduce that 3^ So = So i.e.
that So is the Poulsen simplex.

3. Topological identification of the extreme boundary.

From the definition of the Poulsen simplex, and its properties
proved in section 2, it is possible to derive some topological properties
of its extreme boundary. Let us mention some of them and show
how they follow. In this section we denote by S the Poulsen simplex,
and by 9^S its extreme boundary.

1. The interior (relative to 8^S) of each compact subset of
3^S is empty.
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Let K C 8^S be compact, and assume that intK =^ 0. Hence
there exists some open 0 ^ U C S so that int K = U H 3^S. Since
3^3= S, int K = U H 3^S is dense in U. Let F = conv K, then
F is a face of S which contains the open subset U of S, which
is impossible.

2. Every polish space (= separable complete metric space) is
homeomorphic to a closed subset of 8^S.

This follows from the result ofHaydon [4] that every polish space
is the extreme boundary of some metrizable simplex K and theorem
2.5 of section 2.

3. 9^S is homogeneous. Moreover, for each pair of homeo-
morphic compact subsets K^ and K^ of 9^S there is an auto-
homeomorphism of 3^S which maps K^ onto K^.

This follows from theorem 2.3, and the observation that
F, = conv K, i = 1,2 are affinely homeomorphic faces of S .

4. 3^S is arcwise connected by simple arcs.
Let ^, s^ be any two points in 3^S. By 2., 3^S contains some

simple arc / with end points say ^ , t^. By 3. there exists an auto-
homeomorphism h of 3^S which carries {^^i onto {.s1,}^.
Hence h(l) is a simple arc in 3^S with endpoints s^ and s^.

All these properties suggest that 3^S is homeomorphic to l^.
This is indeed the case. It is a simple consequence from a deep result
in infinite-dimensional topology.

Let Q denote the Hilbert cube [-l,!]^, and let P denote
its pseudo-interior P = {(x^ , x^ . . .) € Q: \x^\ < 1 n = 1,2,. . .}.
It is a well known result of Anderson that P is homeomorphic to
/2 (see e.g. [2]).

THEOREM 3.1. — Let S be the Poulsen simplex. Then there exists
a homeomorphism h of Q onto S which maps P onto 9^S.

For the proof of theorem 3.1 we use the terminology and results
of [2].

Let F denote the n cube [-1,1]", and let K C ̂  be an
infinite dimensional compact convex set. C(P,K) denotes the space
of continuous K valued functions on P with the compact-open
topology.
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DEFINITION 3.2. ([2] p. 161). - A subset B of K is said to be
a T set if for each n = 1 ,2 , . . . the set C^ = {/G C(P,K): /[I"] CB}
is dense in C(I",K).

By [2] cor 4.3 p. 161, if B is a Gg T set, and B C 3^K
then there is a homeomorphism h of Q onto K with h[P] = B.
Since the extreme boundary of a metrizable compact convex set
is always a Gg, theorem 3.1 is a consequence of the following lemma:

LEMMA 3.3. -Let S denote the Poulsen simplex. Then 3^S
is a T set.

Proof. — For an integer k set

3.4 G ^ = x G S : if x= ^ ( y ^ - z ) , y , z € S then ||3;-z|| < 1 J .
K }

(where ||. || is the norm in a fixed Banach space containing S).
Clearly G^ is open in S and

3.5 (^ G. = 3,S
k=l K e

It follows that for each pair n, k of integers C^ is open in
C(P,S) and that C" = r^ C" Hence, lemma 3.1 will follow

"c5 k=l ^k
from the Baire category theorem and the following lemma.

LEMMA 3.6. - Let S be the Poulsen simplex, and let k be
a positive integer. Then G^ is a T set in S; i.e. C^ is dense in
C(P,S) for all n>l. k

To prove lemma 3.6 we shall need the following simple obser-
vation.
3.7. If K is a simplex, and X is a compact subset of 8^K with

^ ___
diameter X < — then F = convX is contained in G^.

K

Indeed, since K is a simplex, F is a face of K . Let x G F. Hence,
if x = -. ( y + z ) y , z C K then y , z C F.

Since diameter F = diameter X < —, it follows that ||y—z|| <—k ' k
i.e. x G G^.
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Proof of Lemma 3.6. -Fix n and k. Let /GC(P,S) and
e > 0 . We shall construct a ^ e C^ with \\f(t) - g(t)\\ < € for

k 1
all r € P. We assume, as we clearly may, that c < — • We realize

K
I" as an ^-simplex in R" and denote it by A^ ; I . I will denote
the usual norm in R".

Let 5 > 0 be small enough so that ||/Vi) - f(.tz)\\< el3 for
\t^ — t^\ < 8. Let L = {LJ^ be a simplicial partition of A^ with
diameter L, < 6 for all 1 < i < /.

Denote by {t,}^ the set of vertices of L, and let {s/}^
be distinct points in 3^S with || /Vy) — s^\\ < e/3 for 1 </ < m.

Set
F, = conv {Sf : tf EL,} 1 < i < / .

and
F={F,}^.

Clearly, since s. € 3^S, the complexes L and F are combi-
natorially and topologically equivalent.

We also have F, C G^ for all 1 < i < /. Indeed, let s^, s^ C F,;
then
11^- ̂ || < \\s^-f(t^)\\ + ||/(^) -/(^)11 + 11/(^) - ^11

<e/3 + e/3 + e/3 < -•k

since r. , t. E L, and diameter L, < 6. Hence

diameter {^.: ty e L,} < — and by 3.7 F, C G^./c

Let g be the canonical mapping of L onto F. Then g(tf) = 5y,
and ^ e C^ .

Let ^ be any point in A^. Assume t E L, and ^.€ L,. Then

|r--^,| < 5, and \\gW - g(t^\\ < -|- Hence

\\f(t)-gW\ < ll/(0-/(r,)ll + \\f(tf)-g(tf)\\ + llg(r,) -^(011
<e/3 4- e/3 + e/3 < e.

and the lemma is proved. D
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The fact that 3^S is homeomorphic to /^ does not charac-
terize S among the metrizable simplices. Consider for example the
tensor product S ® S of S with itself (in the sense of Lazar [6]).
As observed in [6] there is a natural homeomorphism r of the car-
tesian product S x S into a proper subset of S ® S. We have
3^(S ® S) = r(3^S x 8^S) and thus it is homeomorphic to /^ x /^,
i.e. to /2. On the other hand 3^(S® S) = r(S x S) =^= S ® S and thus
S ® S is not the Poulsen simplex.

4. The representing matrices of A(S).

In this section we characterize the Poulsen simplex S by a pro-
perty of the representing matrices of A(S). Besides, we prove a
general fact concerning a stability property of representing matrices
of preduals of L^ , which has no direct connection with the subject
of this article.

We refer the reader to [7] for the definition and properties of
a representing matrix of a predual of L^.

Let A = {a, „} 1 < i < n n = 1,2.. . be a matrix. For each
n > 1 and 1 < i < n we define inductively a sequence {P^}^
of reals as follows:

4.1 Pf = 6 , , for \<Kni,ti •»•
and

P^-S ^/-i fin for / = n + 1 , ^ + 2 , . . .

Observe that P^ = a,^ and that if S ci,n = 1 for all n > 1 then
n ' ' i=l

also S ?,?„ = 1 for all l,n> 1.
i=i
It is perhaps worthwhile to give a probabilitistic interpretation

of P^. We associate to A = {a^ „} a Markov process on the positive
integers by letting a, „ be the probability to pass from n + 1 to
i, 1 < / < n. Then P^ is the probability to hit first i among the
integers 1 , 2 , . . . , / ? if we start from /.
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For n, / > 1 let P^ be the vector defined by

4.2 P^==(P^P^..-^,0,0,. . .)

Let L denote the subset of l^ defined by

4.3 L = {x = (x^x^x^..,)ei^. H x l l i == 1, x^>0 n == 1 ,2, . . .}

THEOREM 4.4. — Z/^/ A = {fl, „} &^ a matrix with S ^i „ = 1
i= i

for all n > 1. A represents A(S), S rt^ Poulsen simplex, if and
only if the vectors {^}ni>\ are dense in L. (in the l^ norm).

Proof. — Assume that A represents A(S) with S the Poulsen
simplex. By the definition of a representing matrix there exists for
every n a peaked partition of unity {^«}^ in A(S) so that

4-5 ^.n = ̂ n+l + ^i.n ^+l,n+l K I < H < °°

and so that the {e^}^^ span all of A(S).

Set x, = H [s'.e, ̂ (s) = 1}. It was proved in [3] that x, is
a single point, that x, €E 3^ S, that the set {x^ ^ is dense in 3g S,
and that
4.6 P;̂  -e^(x,) i < n , I , n = 1 , 2 , . . . .

Let a = (a^ ,a^ , . . . , a^ ,0,0. . .) be a (finite) element of L,
and let e > 0. Pick an element s^ G S for which ^, ^(^) = .̂,

n
1 < i < 7i, (e.g. take s^ = 2, fl,p, where p, is a peak of .̂ „,
1 < i < yz). l=l

Since {^JJ^ = 3^S = S there exists an / > 1 such that

£ l^^)-^J^)|<ei.e.||a-P^||i=t k,-P^|<e and we
1=1 ' ' i=i
done.

Assume conversely that the {f^'s n,l = 1,2 . . . are dense in L.

The metric rf(.y, 0 = 2 2~"S 1^,«(5) - ̂ ,«(01 induces the
yi=l i=l

topology of S.
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Let s € S and c > 0 be given, and let n be such that
00

^ k 2-^ < e. Set a, = e^^s), I <i<n and
k=n

a == (fl4 , 0 2 . - . • , ^ ,0 ,0 , . .)e L.
Since for every integer A the vectors P^ , / = 1 ,2 , . . have all coor-
dinates beyond h equal to 0 our assumption implies that for every
h the set {P^} m > / z , / = = l , 2 . . . is dense in L. In particular there
exist an m > n and a n / s o that ||a-P^< e. Let 5'G S satisfy
^, „, Cs1') = a, if l < f < ^ and e^^s9) = 0 for n<i<.m. It
follows from 4.5 that e, ^ ( s * ) '== e^ ^(s) for 1 < / < n and hence
also e. ^ ( s ' ) = e. ^(s) for all 1 < / < k < n. Consequently

^,5') == S 2-^ 21 1^) - ^^(^)1 < S ^.2-" < e.
fc==w 1=1 ' ' k=n

By 4.6 and our choice of m and /

2 \e^(sf)-'e^)\=\\a-PlJ\,<€.
i=i

Consequently by 4.5, ^ |^, ^(s9) — e, ^(x^)| < e for all k < m
and hence

d(̂ ) = S 2-^ ̂  \e^) - e^(x,)\
k=l i=l

+ t 2-^t 1^,(^)-^J^)1
fc=l+W 1=1

<e § 2-^4- ^ ^ <2e.
k=\ k=m+l

It follows that d(s,Xf)<3e. Since x / E a ^ S we deduce that 3^S
is dense in S i.e. S is the Poulsen simplex, n

Our next theorem shows, that if two matrices are close in a
certain sense defined below, then they both represent the same Banach
space.

THEOREM 4.7. - Let A = {df „} be a matrix representing a predual

X of Li. £^r B = {b^} be another matrix with ^ j^J < 1

/or every n. for which ^ §l^-6,J<oo. fhen B ^o
represents X. w-l l=l
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Proof. - Set €„ = H Ifl,^ - &,^| then ^ ^ < oo. Let
i= l ' ' n=l

{e^ „} be the elements in X corresponding to A (i.e. which satisfy
4.5). We construct vectors

{e^} 1 < f < n, j = n, n 4 - 1 , ^ + 2 , . . . n = 1,2,. . . so that

(i) ^ = .̂ ^ for 1 < i < n

(ii) ^^i^.^i^i for / > ^ + 1 .

It is easily seen that the e\ ̂  ' s are uniquely defined by (i) and
n

(ii). We claim that for all n and / > n ̂  \\e\^ - e\^\\ < e^ Indeed,
1=1

let / > 0 be an integer, for / = n we get

t Kn - 0 = S Kn - ,̂̂ 1 - &." CL".l"
1=1 1=1

M

== Zj ll^i.n ~ ^i,w+l — ^i.n en+l,n+l^
i=l
n

== 2j l l ^ l , W + l '̂  ^1,71 ^W+1 ,W+1 — ^1,W+1 — ^l,/! ^M+l^+ l ' l

'=1

= H 1^ - b^\ . 1 1 ^ + 1 , « + l l l ^ ̂  = Cy.

f= l

Let us see now that if our inequality holds for some n < /,
then it holds for (n — 1) too:
w-l n-l
V 1 1 ^ ^ /+1 II == V il^7 -4- h p1 — f^1 h ^ / + 1 1 12Li ^i,/!-! - ^i.yi-l" L ll^,w 1 ^w-1 en.n ei,n ~ ui,n-\ en,n^

f=l (=1

^Kn-C^ "S^-1 .11<«-^11
1 = 1 (=1

^S'l^-O^/-
1=1

Consequently, for each n, and 1 < i < ^ the sequence
{e^ ^}°1^ converges to some element /,. „ of X .

It is clear that /, „ =/^i + ^/,,+i,n+i, and that {^^^
is an admissible basis of /̂ °. Hence F^ = span {/,. ^}^^ is isometric
to /̂ °, F..CF„+1, and U F^ is a predual of L^ represented by the«=i
matrix B. Therefore, to conclude the proof we have to show that
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X = 0 F^. Let /=S X , ^ , ^ e X . Recall that ||/|| == max |X,|,
"=1 ^ ' Ki'<n

and that €,„ - /,„ = £ (e^ - e^). Hence
/="

II/- £ \/(,J = lit \^,,n -fi,n)\\ < 1 1 / 1 1 I 11^ -//,J
1=1 1=1 1=1

== 1 1 / 1 1 £ f \\e^ - e^\\ < 11 /H ̂  e, -^ 0.
i=l f=n ' ' /=» "-*00

D

5. Comparison with Bauer simplices.

In this section we compare the Poulsen simplex with the Bauer
simplices i.e. simplices whose set of extreme points is closed. It is
evident from the definitions that the Poulsen simplex is in a sense
the direct opposite to the Bauer simplices. Naturally this is also re-
flected by other properties, of the simplices themselves, and of the
corresponding spaces of continuous affine functions.

As usual we denote the Poulsen simplex by S and B will
denote any Bauer simplex.

DEFINITION 5.1. ([1] p. 164). - A simplex K is said to be prime,
if for any two closed faces F^ and F^ with K = conv (F^ U F^),
either K = F^ or K = F^.

Clearly, a Bauer simplex is never prime. But for S we have:

PROPOSITION 5.2. - The Poulsen simplex is prime.

Proof. — Assume S = conv (F^ UF^) where F, are closed
faces of S. Then 3^S C F^ U F^, and hence

S = 3 ^ S C F i U F 2 . Thus S = Pi or S = F^. a

DEFINITION 5.3. — An ordered space A is called an antilattice
if max (a, b) a, b G A exists if and only if either a < b or b < a.

In ([!]) Th 7.15) it is proved that a simplex K is prime if and
only if A(K) is an antilattice. Hence we have:
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PROPOSITION 5.4. - A(S) is an antilattice, ̂ hile A(B) is a lattice.
The difference between S and B is reflected in the nature

of their representing matrices too. In section 4 we have shown that
a matrix A = {a, „} represents A(S) if and only if the P^s are
dense in L. For Bauer simplices we have:

n

PROPOSITION 5.5. - Let A = {a^} be a matrix mth ^ a, „ = 1
i= i

for all n. If A represents a C(K) space then for each integer k

.'"".(s/;."-.?,".̂ )-0
uniformly in /.(*)

Proof. — Let {^. ,J^ n=i be the elements of C(K) correspond-
ing to A = [a. „}, (i.e. satisfying 4.5). Let x^ = r^ {x € K:C{ ^(x) == 1}

' n=f *
i = 1 ,2 , . . . and set

U^={jcEK:^^)>e}.

It has been proved in ([3] lemma 12) that
lim max diameter U. == 0 for all e > 0.n-^oo i<i<w ' ^

It follows that the sequence /„ == Zl e^(n>k) converges
1=1

pointwise to 1 ^ . Indeed, if x f {x,}^, let 6 > 0 be such
Vi.J|=i •-1

that d(x,x,)>8 for 1 < f < k. Let e > 0, and let HQ be big
enough so that max diameter U/6^ < 6 for n > n,,. Then

Ki<fc ' °
x ^ U^ for ^ > ^o i.e. ^,^(x) < -; and hence f^(x) < e.

* ' K
Clearly 0 < max e,^ < /„<! , and max e^(Xj) = f^(x^) = 1

for 1 < / < fe. It follows that h^ = max e. „ converges pointwise
Ki<fc '

to l{xi}k= t00' Hence gn = •/w - Aw tends to 0 P0111^^ on K-
We claim that g^ —> 0 uniformly on K. To prove this it is

sufficient to show that g^ > g^^, and then to use Dints theorem.

(*) The class of simplices for which the conclusion of 5.5 holds contains
other simplices besides the Bauer simplices. It consists exactly of those simplices
a for which each boundary measure representing a point of ITa has at most
one atom. See [11].
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Let x € K.
/ k k \

8nW - ̂ i+lOO == (S ei,n(x) - S ^+l00,)
i=l f=l

- ^max ^OO- max e, n+iW}
\l<i<k ' Ki<k ' I

Now
k k / k \
Z ^.nW - Z ei,n^W = (S fl^) ^l^+l^)
/=! 1=1 i=l

And if max e^(x) == ^ ^(x) then

i^fc ^w(^) - i^fc ^"+l(x) == ̂ ^ ^/i+i^) +fl^ ^i^+i^))

- ̂ ^ ^^i(^) = ̂ ^i +a,^ ^1,^1 W - ̂ ^ e^+i^)

< ̂ o,^!^) + %^ ^+1,^100 - ^io,^i (x) = %,« ^+1,^100

Hence
/ ^ \

^«(^) - g«+lOQ > ( S ^M) ^+1,^1 (x) - ̂ n ^+1,^1 ̂ ) > 0-
"i^l

By 4.6 P^ = e^ ^(Xf), hence if we put x = ̂  in g^(x) we get

0 = lim^ (x,)== lim (^ ^^(x,)- max e.^x^))
n-><» w-^o0 v^^ ' Ki<k ' '

-(s/-'"-,?,".^)
uniformly on /.

Given a triangular matrix A = {a, „}, let P(A) denote the
subset of /i defined by P(A) = n ({P^ ^) (closure in l^).

k^-1 '

The following proposition follows from theorem 4.4 and Pro-
position 5.5.

PROPOSITION 5.6. — Let A be a non-negative triangular matrix
n

with ^ Of „ = 1 for all n. Then A represents A(S) if and only
1=1

z/ P(A) = L w/nfc if A represents A(B), rA^M P(A) is the set of
unit vectors of l^.
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6. Some remarks on the Gurari space.

Most of the results of sections 2-5 have analogues in the setting
of the Gurari space.

The Gurari space G is a separable Banach space with the follow-
ing property:

For each two finite dimensional Banach spaces E C F, every
isometry T:E —^ G, and every e > 0 there exist an extension T
of T to F so that

(1 -e) ||x|1 < IITxIl < (1 +e)J|jc||,x G F.

Lusky proved recently that the Gurari space is unique. The
following theorem follows easily from results stated in the works
[8], [9] of Lusky, and clarifies that the role played by G among
separable preduals of L^ is similar to the role of A(S) where S is
the Poulsen simplex among separable ordered preduals of L^ .

THEOREM 6.1. — A separable predual of L^ is the Gurari space
if and only if the extreme points are w^-dense in the unit ball of
its dual.

The existence of the Gurari space, as well as its universality
among separable preduals of L^ first proved by Wojtaszczyk [12]
(cf. also [9]) can be proved in a manner which is very similar to the
proof of theorem 2.5.

We state this result on the Gurari space formally and then show
the minor changes which have to be made in the proof of 2.5.

THEOREM 6.2. — Every separable Banach space X "whose dual
is an L^(p) space is isometric to a subspace of the Gurari space G
on which there is a projection of norm 1.

Proof. - Let E = X* and K = B(E) the unit ball of X*.
Proceed with E and L as in the proof of 2.5, with "L-ball" instead
of "simplex" in each place, and with S^+^ = conv(± { ^ w + i } U S ^ )
instead of (2.6) there. In the inductive, step one should also put
S^+, = conv (S^, ± Z i , ± z^ , . . . , ± z,) instead of

S^+, = conv (S^ , Zi , . . . , z,) there.



112 J. LINDENSTRAUSS, G. OLSEN AND Y. STERNFELD

Acting in this manner, we end up with an L-ball S C E © l^,
with 9^S dense in S. Hence, by theorem 6.1, S is the unit ball
B(G*) of the dual G* of G, and G thus can be realized as the
space of continuous affine symmetric functions on S (and X as
the space of such functions on K).

Let Q be the natural projection of E ® l^ onto E. Then
QS = K, and T/ = / o Q is a simultaneous extension operator from
X to G. Thus the restriction operator g —> g/K defines a (norm
one)-projection of G onto X. n

Concerning the representing matrices we have the following
characterization of the Gurari space with proof and notation both
as in theorem 4.4.

THEOREM 6.3. — A triangular matrix A represents the Gurari
space if and only if the vectors {± P^}^ ̂  ̂  are norm dense in the unit
ball of ^.

As for the topology 8^B(G*), the results of section 3 holds:

THEOREM 6.4. - Let G be the Gurari space. Then there exists
a w*-homeomorphism h of the Hilbert cube Q onto B(G*) which
maps P onto 3^B(G*).

The proof is the same as that of theorem 3.1. The only difference
is that observation 3.7 has to be stated now in the following form:
If B is the unit ball in a dual L^ space and X is a compact subset of
3^B with X n (-X) = 0 and diam X < l / k then F = coiiv (X U -X)
is in Gj^. This is true since F is a face of B.

In one point however there is a difference between G and A(S),
S the Poulsen simplex. Recall that a (norm one)-point x in a
Banach space X is called smooth if there is a unique x * GX* with
\\x*\\ == 1 and x * ( x ) ^= 1. The set of smooth points is a dense Gg
in the unit sphere of any separable space X.

Lusky [8] proved the following transitivity property of G: if
x and y are smooth points in G then there exists an isometry of
G onto itself which carries x to y.

This is false in A(S): Let /, g e A(S) be such that 0 < /, g < 1,
/"^(l) and ^(l) are single points, with /"^O) a 2 dimensional
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face and ^(O) a 3 dimensional face. Then / and g are smooth
points in A(S) and there is no isometry of A(S) which maps / to
g. Indeed suppose T is such an isometry. Since 3^S is connected,
either T or -T is positive. Hence T/= g would imply that T*/S
or (—T)*/S maps a face of S onto another face of different
dimension, which is impossible.
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