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THE GENERAL COMPLEX CASE
OF THE

BERNSTEIN-NACHBIN APPROXIMATION PROBLEM

by S. MACHADO* and J. B. PROLLA

1. Introduction.

Throughout this paper X denotes a Hausdorff topological space,
and A C(X ; K), where K = R orC, denotes a subalgebra. A vector
fibration over X is a pair (X, (F^)^x)» where each F^ is a vector space
over the field K. A cross-section is then any element / of the vector
space Cartesian product of the vector spaces F^, i.e.,/= (/OO^ex-
A weight on X is a function v on X such that v(x) is a seminorm over
F^ for each x E X. A Nachbin space LV^ is a vector space of cross-
sections / such that the mapping x €E X '—> v(x) [f(x)] is upper semi-
continuous and null at infinity on X for each weight v E V, equipped
with the topology defined by the family of seminorms of the form

H/ll, =sup { v ( x ) [ f ( x ) ] , x ^ X } .

For simplicity, and without loss of generality, the set V is assumed to
be directed, i.e., given u, v E V there is w E W and t > 0 such that
u(x) < t ' w(x)andv(x) < t - w(;c), for all x EX.

Throughout this paper W C LV^ denotes a vector subspace which
is an A-module, i.e., if a G A and g G W, then the cross-section
ag = (a(x)g(x)\^^ belongs to W. In this context, the Bernstein-
Nachbin approximation problem consists in asking for a description
of the closure o fWin LVoo. Let P be a closed, pairwise disjoint covering

(*) Research supported in part by a grant from FINEP (Financiadora de
Estudos e Projetos).
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of X. We say that W is f-localizable in LV^ if its closure consists of
those / E LV,» such that, given any S E P, any v E V and any e > 0,
there is some ^E W such that v(x) [f(x) — g(x)] < e for all x E S.
The strict Bernstein-Nachbin approximation problem consists in asking
for necessary and sufficient conditions for an A-module W to be P-
localizable, when P is the set P^ of all equivalence classes Y C X mo-
dulo X/A. We recall that the equivalence relation X/A is defined as
follows. For any pair x, y € X, x is equivalent to y modulo X/A if,
and only if, a(x) == a(y) for all a E A.

In [7], the sufficient conditions for localizability established by
Nachbin (see e.g. Nachbin [6]) were extended to the context ofvector-
fibrations, and a fortiori to vector-valued functions, in the case of
modules over real or self-adjoint complex algebras. In this paper we
extend the results of [7] to the general complex case, at the same
time getting stronger results. We extend the results of [7] in the same
way that Bishop's theorem generalizes the Stone-Weierstrass theorem.

2. Definitions and lemmas.

In this section we collect all pertinent definitions. As we said in
the Introduction, W C LVoo is always an A-module.

D E F I N I T I O N 1. - Let Sl^ be the set of all fundamental weights
on R". (See [7], pg. 302.) We denote by Sl^ the subset ofSl^ consist-
ing of those a? E ?2^ which are symmetric, i.e., (^(t) = a? ( 1 1 1 ) for all
re FT, where \t \ = (|rJ , . . . , jrj), if t = Oi , . . . , t ^ L e i r ^ be
the subset of ̂  consisting of those 7 C ̂  such that 7^ G ̂  for all
k > 0. We denote by ̂  the intersection 1̂  n Sl\. Notice that ̂  C ̂
and similarly F^ cr\. Here i2^ denotes the subset of all a? G ?2^ such
that \u\<\t\ implies cj(u)>oo(t) for all u, t^fV1 and then
rf = Pi nnf .

D E F I N I T I O N 2. — Let P be a closed, pairwise disjoint covering
of X. We say that W is sharply P-localizable in LV<» if, given f G LV^
and i; E V, there is some S E P such that

mf{| | / - -^ | | , ; ^ E W } = i n f { | | / | S - ^ | S | | , ; ^ E W } .
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D E F I N I T I O N 3. — For each v E V and each 6 > 0, we
denote by L(W ; v , 6) the set of all cross-sections f G LV^ such that,
for each equivalence class Y C X modulo X/A, there is g G W such
that\\f\\ -g\Y\\,<8.

D E F I N I T I O N 4. — Let 6 be the class of all ordinal numbers
whose cardinal numbers are less or equal than 2 1 X I , where |X| is the
cardinal number of X. For each aE6, we define a closed, pairwise
disjoint covering Py of X. For a = 1, P^ = {X}. Assume that P^ has
been defined for all r < a. We consider two cases.

a) a = r + 1, for some r E 6 ; let S G P^. De/m^ Ag = {a e A ;
a I S is real valued}. Consider the partition of S into equivalence classes
modulo S/(Ag | S). The partition Py is then defined as the collection
of all such equivalence classes, as S ranges over P^ .

b) // a has no predecessor, define x ^ y i f , and only if, x and y
belong to the same set S^. E P .̂ for all r < a. The partition Py is then
defined as the collection of all equivalence classes modulo the above
equivalence relation.

This defines P^ for all a EG, and Py is a refinement of P^, for
T < a. This construction is taken from Bishop [I], who attributed it
to Silov. In Bishop [I], it is shown that there exists an ordinal p €6
such that P p ^ i = Pp» ^d each SEP^ is anti-symmetric for A, i.e.,
for a G A, a | S being real-valued implies that a \ S is constant. In fact,
given an anti-symmetric subset K C X, for each a G 6 there is Sy E Py
such that K C S y . Hence, each S E P^ is a maximal anti-symmetric
set for A. The collection of all maximal anti-symmetric sets for A is
denoted by 3K^. So we have P == 3C^.

D E F I N I T I O N 5. - We say that the A-module W is sharply loca-
lizable under A in LV^ if, given f G LV^ and v E V, for each a G 6 there
exists an element Sy E P^ such that :

a) Sy C S^ for all r < a,

b)inf{| | /-^ ;geW}=inf{ | | / |S^-^ |SJI , ; ^ E W } .

Remark. - Since P^ = 30^, W is sharply localizable under A
in LV^ implies that W is sharply 3<^-localizable.
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D E F I N I T I O N 6. - We say that a subset G(A) C A is a set of
generators for A, if the subalgebra over K of A generated by G(A) is
dense in A /or the compact-open topology of C (X ; K) ; a^rf we say
that a set of generators G(A) C A is a strong set of generators if, for
any a € @ fl^d any S E P^, rt(? 5(?r (Ag H G(A))| S ^ a 5^ of gene-
rators for the algebra Ag |S. (Recall that Ag = [a G A ; a\S is real-
valued}.) For example, the whole algebra A is a strong set of genera-
tors for A. Also, if the algebra A has a set of generators G(A) consis-
ting only of real-valued functions, then G(A) is a strong set of gene-
rators for the algebra A.

Similarly, a subset G(W) C W is a set of generators for W if
the A-submodule of W generated by G(W) is dense in W for the topo-
logy of the space LV^ . Let us call G(W)* the real linear span of
G(W).

L E M M A 7. - Let A C C ^ ( X ; R ) be a subalgebra containing
the constants Given an equivalence class Y C X modulo X/A, and
a compact subset K C X, disjoint from Y, there is b G A such that
0 <b < 1 , b ( y ) = I for ally eY,andb(t) < I for all t ^ K.

Proof. - Choose y^ G Y. For each t G K, there is a^ G A such
that a^Q) + a^t). Define ̂  G A by the following

b,(x) = 1 - (a,(x) - a,(y^ll \\a, - a,(y^
for all x E X , where for each/G C^(X ; R), ||/||x = sup {1/001 ;
x G X}. Then 0 < b, < 1 ; b,(y) = 1 for all y G Y ; and b,(x) < 1,
if a^x^a^Q) ; in particular, b^t) < 1. The collection of open
sets U^ = [x E X ; b^x) < 1}, for t G K, is an open covering of the
compact set K. By compactness, there are ^ ,. . . , ̂  E K such
that K C U^ U . . . U U^. Now b = (b^ + . . . + b^)/n has all
the desired properties.

L E M M A 8. - Let A C C ^ ( X ; R ) be a subalgebra containing
the constants. For each equivalence class Y C X modulo X/A, let
there be given a compact set Ky C X, disjoint from Y. Then there
exist equivalence classes Yi , . . . , Y^ C X modulo X/A such that
to each 5 > 0, there correspond a^ ,. . . , a^ E A with 0 < a, < 1 ;
0 < a,(t) < 5 for all t G K^., i = 1 , . . . , n ; and a^ + . . . + ̂  = 1 .
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Proof. — Let P^ be the set of all equivalence classes Y C X
modulo X/A. Select one element Y^ in P^ and let P be the col-
lection of all Y G P^ such that Y 0 Ky^ 0. For each Y E P ,
let &y E A be given by Lemma 7; choose real numbers ry and
•SY such that 0 < sup [by(x) ; x E Ky} < ry < Sy < 1. Put
By = {x G X ; fry 00 > ^Y }. for each Y E P . Clearly, Y C By , so that
the collection {By ; Y G P}is an open cover of the compact set Ky .
By compactness, there are Y^ , . .. , Yy, in P such that the finite collec-
tion {B^ , . . . , B^ } is a cover of Ky , where B, = By with Y = Y, ,
/ = 2 ,. . . , n. For each index /, appeal to Jewett [3], Lemma 2, to
get a real polynomial p, with p,(l) = 1 ; 0 < P{ < 1 ; 0 < p^t) < 6
for all 0 < t < ̂  ; and 1 - 6 < p^t) < 1 for all s, < t < 1,
where ^ = ry and 5, = 5y with Y = Y^.. Consider g^ = p,(6,),
where 6 .̂ = &y with Y = Y^., for i = 2 , . .. , n. Define a^ = g ^ ,
^3 = (1 -^)^3.--- ^ == 0 - <?2) (1 -^3) • • • ( I -8n-^Sn' This
technique is from Rudin [9], item 2.13, For i = 2 ,. . . , n, it is easily
seen that 0 < a^ < 1, and ^(x) < g^x) < 6 for all x E K,, where
K, = Ky with Y = Y,. Moreover, we have

\>a^ + . . . + ^ == 1 -(1 -^)0 -^3) • • • ( I - ^ )>0 .

Let ^ = 1 - (a^ + . . . + a^). Then 0 < ^ < 1 and
^i + • • • + ̂  == L Let x G B^ U . . . U B^ be given. There is some
index / e {2 , . . . , n} such that x E B,. Then 1 > g^.(x) > 1 - 5,
so that we have

a^x) + . .. + a,(x) = ! - ( ! - - g,(x)) f] (1 - g,(x)) > 1 - 6 .
»=2
i^/

That is, a^x) < 8 for x e B2 U . . . U B^ D Ky^ , Q£'D.

Remark. — The above two lemmas embody techniq..^ of peak
sets and peaking functions in the present context.

Notice the occurence of the unavoidable basic real analysis detail
in the proof of Lemma 8 above : it is the very simple Lemma 2 of
Jewett [3J.
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3. A solution of the Bemstein-Nachbin
approximation problem.

T H E O R E M 9. —Suppose that there exist sets of generators
G(A) and G(W), for A and W respectively, such that :

1) G(A) consists only of real valued functions ;
2) given any u G V , ^ ,. . . ,^ G G(A), and ^EG(W), r/^re

^^ ̂ ^ i » • • • ^N E ̂ A), with N > ^, fl^d a? G n^ such that

vW [g(x)] < ̂ (a^(x) , . . . ,^(x),. . . ,a^(x))

for all x EX.

TTze^ W is sharply localizable under A in LV^.
We first remark that, since G(A) consists only of real valued

functions, p = 2 and P^ = P^, where P^ is the closed, pairwise disjoint
covering of X into equivalence classes modulo X/A. Hence, all that
we have to prove is that W is sharply P^-localizable in LV^. The proof
will be partitioned into several lemmas, and to state them we need a
preliminary definition.

D E F I N I T I O N 10. - Let us call B the subalgebra of C^(X; R)
of all functions of the form q(a^ , . . . , ^), where n > 1 ,
a^ , . . . , ̂  G G(A), and q E C^(R" ; R) are arbitrary.

L E M M A 11. — Assume that G(A) consists only of real valued
functions. Let / G L ( W ; i ; , X ) . Then, for each e > 0, there exist
& i , . . . , b^ E B, a n d g ^ , . . . , g^ E G(W) such that

I m r

^- S ^ < X + 6 .
i = 1 III;

T^oo/ - For each Y E P ^ , there exists Wy EG(W)* such that
v(x) [f(x) - w^(x)] < X + e/2, for all x E Y. Let us define
KY = { ^ e X ; i;(0[/0) - WyO)] > X + e/2}. Then Ky is compact
and disjoint from Y. Since the equivalence relations X/A and X/B are
the same, we may apply Lemma 8 for the algebra B. Hence, there
exist equivalence classes Y ^ , . . . , Y^ C P^ such that to each S > 0,
there correspond h^, . . . , /^ E B with 0 < /z, < 1 ; 0 < h,(x) < 8
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for x E K,, where K, = Ky^ for i = 1 , . . . , n. Moreover,
h^ + . . . + / ! „ = 1 on X. Let us choose 6 > 0 such that wM6 < e/2,
where M = max {||/- w,|^ ; i = 1 , . . . , n}, and v .̂ = Wy with
Y = Y, for i = 1 , . . . , n. Let w == A^ + . . . 4- A^. We
claim that v(x) [f(x) - w(x)] < \ 4- e, for all x € X. Indeed,

^00 [/OO - w00] < S Wt;(x) [/(x) - w,(x)]
< = = i

for all x E X. Now, if x E K, then A, (x) < 6, and therefore

A,00i;(x)[/(x) -w,(;c)] <6 ||/- w , | | ^ < 6 M ;

on the other hand, if x ^ K,, then the following estimate is true :

h,(x) v(x) [/(x) - w,(x)] < h,(x) (X 4- 6/2) .

Combining both estimates, we get

v(x) [f(x) - w(x)] < nU8 + (X + e/2) (h^(x) + • • • + h^(x))

<X + e .

Since each w, G G(W)*, there exist & i , . . . , b^ E B and g ^ , . . . ,
^ EG(W) such that w = & i ^ + • • • +6^.

L E M M A 12. —Suppose that the hypothesis of Theorem 9 are
satisfied. Given v G V, & E B , ^EG(W) and 5 > 0, r/^ ^ w E W
such that || w - bg\\^ < 6.

Proo/ - Suppose that b = q ( a ^ , . .. ,a^). Given v E V and
^ G G(W) there are a^ ^ , . . . , a^ E G(A), where N > n, and a? G ̂
such that v(x) [g(x)] < ^(a^x), . . . ,^(x),. . . .^N^)) for all x EX.
Define r G C^,(RN ; R) by setting r(t) = q(t^ , . . . , ^) for all
^ = (^ , . . . , ^ , . . . , t^) E R^ By hypothesis a? e ft^; hence
(^(R^R) is contained in Cco„(R N ;R) and ^R^ is dense in
Ca;„(RN ; R). Given 6 > 0, we can find a real polynomial p € ^(R1^)
such that ||p - r\\^ < 8. From this it follows that ||w - bg\\^ < 5,
where w = p(a^, . . . , ̂  , . . . , a^)g G AW C W.
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L E M M A 13. -Suppose that the hypothesis of Theorem 9 are
satisfied. Then, for each f E LV^ and v G V we have

d=mf{\\f-g^ ; ^ € W }

=sup {inf {||/ | Y-^ |Y| | , ; ^ e W } ; Y G P ^ } .

Proof. - Clearly, c < d, where we have defined
c = sup {inf {11/IY -g\Y\\, ; g E W} ; Y E P^}.

To prove the reverse inequality, let e > 0. For each Y E P^, there
exists gy E W such that v(x) [f(x) - g^(x)] < c + e/3 for all
x E Y . Therefore, /E L(W; i;, c + 6/3). By Lemma 11 applied
with \ = c + e / 3 and e/3, there exist 6 , , . . . 6 (E B and
^i - • • ^m e G(W) such that:

I m ii

^- Z W\ < (C+6 /3 )+6 /3 .
/ =! IL

By Lemma 12 applied with 6 = e/3m, there are cross-sections
H / i , . . . , w^ E W such that || w, - 6,^. ||̂  < e/3w. From this it follows
that ||/ - g ||̂  < c 4- e, where ^ = v^ + • • . + w^. Since g G W,
rf < c 4- e. Since e > 0 was arbitrary, d < c, as desired.

Proof of Theorem 9. - Let /E LV^ and i; E V be given. Let Z
be the quotient space of X by the equivalence relation X/A, and let
7r : x —> z be the quotient map. By Lemma 1 of [7], the map

z E Z ̂  ll/lTr-^-^lTr-^z)!!,

is upper semicontinuous and null at infinity on Z, for each g E W.
Hence the map defined by

^(z^inftll/lTr-^-^lTr-^II^EW}

for all z G Z, is upper semi-continuous and null at infinity on Z too.
Therefore h attains its supremum on Z at some point z. Consider the
equivalence class Y = TT-^Z) modulo X/A. On the other hand, the
supremum of the map h is by Lemma 13 equal to d. Thus, we have
found an equivalence class Y C X modulo X/A such that

inmi/-^ll, ; g ^ W} = inf {| | / |Y -g\Y ||, ; ^ G W } .

By Definitions 2 and 5 and the remark made before Definition 10, the
module W is sharply localizable under A in LV^,.
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Remark. — Theorem 9 above is a strengthened form of Theorem 2
of [7]. It reduces the search of sufficient conditions for sharp localiza-
bility to the search of fundamental weights in the sense of Bernstein
in FT, i.e., to the Finite Dimensional Bernstein Approximation
Problem.

T H E O R E M 14. — Suppose that there exist sets of generators
G(A) and G(W), for A and W respectively, such that :

1) G(A) is a strong set of generators for A ;
2) given any v E V, ^ ,. . . , a^ E G(A) and g G G(W), there

exists CL? G ̂  such that v(x) [g(x)] < ^(\a^(x) \ , . . . , \a^(x) |)
for all x EX.

77!̂  W ^ sharply localizable under A f^ LV^.

Proof. — Let a G 6. Assume that for each r < a we have found
an element S .̂ G P^. such that

a) S^ C S^ for all p. < r ;

b)inf{| | /-^ ; ^ G W } = i n f { | | / | S , - ^ | S J I , ;^CW}.

Fzr^ case. a = r 4- 1 for some r € 6. By the induction hypothesis
there is S .̂ G P^. such that a) and b) are true. Let A^ be the subalgebra
of all a G A such that a \ S^ is real-valued. By Theorem 9 applied to the
algebra A^. | S .̂ and the module W | S^- there is a set Sy E P^ = P^ +1
such that

inf 1 1 / I S - ^ I S H , == inf ||/|S^ -^|SJI,
^ew ^ew

On the other hand, Sy C S^., by construction.

Second case. The ordinal a E 6 has no predecessor. Define
S^ = H {S^ ; r < a}. Then S^ e P^ and S^ C S^ for all r < a. Assume
that inf {|| /1 S^ - g | S^ ||̂  ; g C W} < ^, where we have defined
d = inf {|| / - g ||y ; g E W}. (The case d = 0 is trivial.) There exists
g C W such that || /1 S^ - g |S^ ||̂  < rf. Let U C X be the open set
{ r e x ; v(t) [f(t) - g(t)} < d}. Then the complement of U in X
is compact, and Sy C U. By compactness, there exist r^ <• • -<r^ <a
such that X\U C (X\Si) U . . . U (X\S^), where S, = S^ with r, = T.
However, since S ,̂ C . . . C S^ , it follows that S^ C U, a contradiction
to b), because r^ < o-.
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Remark. — Theorem 14 above implies the case N = n of Theorem
3, [7]. Indeed, if A is self-adjoint, and G(A) is a set of generators for
A satisfying the hypothesis of Theorem 3 of [7], with N = n, then the
set ReG (A) U ImG (A) is a strong set of generators for A satisfying the
hypothesis of Theorem 14 above, since Sl^ C Sl^ , and | Re a | < \a \,
I \m a \ < | a \, for any complex number a = Re a + i\m a.

Our next theorem reduces the search of sufficient conditions for
sharp localizability to the One-Dimensional Bernstein Approximation
Problem.

T H E O R E M 15. — Suppose that there exist sets of generators G (A)
and G (W), for A and W respectively, such that :

1) G (A) is a strong set of generators for A ;

2) given any v G V , a E G(A), and g E G(W), there exists
7^r\ such that v(x) [g(x)} <j(\a(x)\)forallx€X.

Then W is sharply localizable under A in LV^ .

Proof - Given any v E V, ̂  , . . . ,^ C G(A), and g E G(W),
there are 7, G 1̂  such that v ( x ) [g(x)] < 7, (1^001) tor all x e X,
/ = 1 , . . . ,n. Define a; on R" by ^(t) == [j,(t,) . . .T^)]17" tor
all r = (r^ ,. . . , ̂ ). Then a? G ̂  by Lemma 1, § 27, [6]. Obviously,
o?(r) = a?(|r |) for all r e R". Hence, a? e ̂  . By Theorem 14, W is
sharply localizable under A in LV^,.

Remark. — Theorem 15 above implies Theorem 6 of [7]. Indeed,
the same argument used in the previous remark applies here.

4. Sufficient conditions for sharp localizability.

T H E O R E M 1 6 . — (Analytic criterion). - Suppose that there exist
sets of generators G (A) and G(W) such that :

1) G (A) is a strong set of generators for A ;

2) given any v E V, a E G (A), and g G G (W), there are constants
M > 0 and m > 0 such that v (x) [ g ( x ) ] < M^10^' for all x E X.

Then W is sharply localizable under A in LVoo.
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Proof. - The function y(t) == Me - w l r l defined for all t e R,
belongs to F\ by Lemma 2, § 28 of [6]. It remains to apply Theorem
15 above.

T H E O R E M 17.— (Quasi-analytic criterion). — Suppose that there
exist sets of generators G (A) and G (W) such that:

1) G (A) is a strong set of generators for A ;
2) given any v G V, a € G (A), and g E G (W), H^ Aave

f (M^)-^ = + o o
m= 1

wAere M^ = ̂  g \\^ for m = 0 , 1 , 2 , . . . .

Then W f5 sharply localizable under A m LV^ .

Proof. — Define 7 on R as the proof of Theorem 9, [7], and
then apply Theorem 15 above.

T H E O R E M 18 .— (Bounded case). — Suppose that there exist sets
of generators G (A) and G (W), for A and W respectively, such that :

1) G (A) is a strong set of generators for A ;

2) given any v E V, a G G (A), and g G G (W), rt^ function a
is bounded on the support ofv [g].

Then W is sharply localizable under A in LV^ .
Proof. - Let v E V, a G G(A), and ^ E G(W) be given. Let

m > sup i\a(x)\ , x E S}, where S is the support of the function
v [g] ; and let M > || g ||y. If 7 is the characteristic function of the
interval [— m, m} C R times the constant M, then 7 E 1̂  and
v (x) [g (x) ] < 7 ( \a (x) |) for all x € X. It remains to apply
Theorem 15.

5. Vector-valued functions.

The above Theorem 18 generalizes Theorem 4, § 2 of Kleinstuck
[4], which in turn was a generalization of Theorem 4.5 ofProlla [8],
and the result of Summers [10].
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Indeed, consider the case in which F .̂ = E , for all x E X, where
E is a locally convex space ; V is a directed set of upper semicontinuous
positive functions on X ; and we take the Nachbin space LV^o to be
CVoo(X;E), i.e., the vector space of all continuous functions
/ E C (X ; E) such that vf vanishes at infinity on X, equipped with the
topology given by the seminorms

11/IL.p = sup {v(x)p(f(x)) ' , x E X}

when i; E V and p E cs (E), the set of all continuous seminorms on
E. In this case Theorem 18 reads as follows :

T H E O R E M 19. - Let W C CV<^ (X ; E) be an A-module. Suppose
that there exist sets of generators G (A) and G (W), for A and W respec-
tively, such that :

1) G (A) is a strong set of generators for A ;

2) given any v G V, p E cs(E), a E G(A), and g E G(W), the
function a is bounded on the support of the function vp (g).

Then W is sharply localizable under A in CV^ (X ; E).

C O R O L L A R Y 20. - Let W C C V ^ ( X ; E ) be an K-module.
Suppose that every a G A is bounded on the support of every v E V.
Th en W is sharply localizable under A in CV^ (X ; E).

Proof. - The set A is a strong set of generators for A. Since
the support of v contains the supports ofx •—^ v ( x ) p ( g ( x ) ) for any
continuous seminorm p G cs (E) and any g E W, we may apply
Theorem 19 with G (A) == A and G(W) = W.

C O R O L L A R Y 21. — (Kleinstuck [4]). — Assume the hypothesis
of Corollary 20. Then for every f ^. CV^ (X ; E),/ belongs to the closure
of W in CV^ (X ; E) if, and only if, given any v E V, p E cs (E), e > 0,
and K E 3C^ there exists g E W such that v (x) p (f(x) - g(x)) < e
f o r a l l x ^ K .
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Proof. — By Corollary 20, W is sharply localizable under A in
CV^ (X ; E). Therefore, W is sharply 3C^—localizable, i.e., given
/G CV^ (X ; E), v E V, p E c5(E), there is some maximal antisym-
metric set K G S^A such that

inf {I I / - g\\^p \g e W} = inf {||/|K - ̂ |K||^ ;g E W} .

This formula generalizes that obtained by Glicksberg in the case of
Bishop's Theorem (see [2.]), and from it there follows the desired
conclusion.
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