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FAMILIES OF FUNCTIONS DOMINATED BY
DISTRIBUTIONS OF ^-CLASSES OF MAPPINGS

by Goo ISHIKAWA

Introduction.

A subsheaf Q) of the sheaf S^ of R-valued C°° functions over an
open subset Q in R" is called a sheaf of sub C^-rings of <^n if, for each
open subset U of Q, for each h^, . . . ,^e^(U) and for each C°°
function T on R^ the composition T o(hi, .. .,hy) e<?o(U) also belongs
to ^(U).

Our problem is to establish certain conditions for «finite
presentability » of the sheaf of sub C^-rings ^y of <^n, which will be
called the family of functions dominated by the distribution of ̂ -classes of a
C00 mapping / :Q-^Q' into an open subset ft' of R1', and is defined as
follows.

At first, for each point x e ft, we take the proper ideal

^ = (/l,x-/lW, • . .,/p..-W».^c

of ^ = <^n < » where ^ is the i-th component of /. Then we define ^j-
by

^(U) = [h e ̂ n(U); ^, x c ^/. x ' for all x e U}
= {h 6 <^(U); h^-h(x) e^^, for all x e U},

for each open subset U of Q. This restriction h c 3>f(V) on a function
A is an analogue (in the case n^p) to the condition of R. Moussu-J.-
Cl. Tougeron [7] that df^/\ ' ' ' A dfp A dh = 0 (on the regular locus of
/) in the case n > p . We note that Qj- = S^ if and only if / is an
immersion.

In [5], J. N. Mather introduced the notion of ^-equivalence of map-
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germs. The ideal ^y^ =/?(^v(v)).<^c represents the contact ofgraph(/)
with Q x {/(x)} at (x,/(x)) in Q x Q'.

Our problem is closely related to the problem of composite
differentiable functions originated by G. Gleaser and treated by J.-C1.
Tougeron, J. Merrien, J. J. Risler, E. Bierstone-P. D. Milman and many
authors. In fact, an interesting application of a work of J. Merrien [6]
appears in § 2. However notice that our treatment of functions and
mappings is local not in targets but in sources.

In § 1, we exactly formulate our result — Theorem 1.7. This theorem
shows that a partial investigation of Q)y is reduced to the structure of
certain sheaf of ideals J^ of ^ or ^J of (9^. Combined with the deep
investigations on sheaves of ideals of ^ by H. Whitney, B. Malgrange,
J. Cl. Tougeron and many authors (cf. [4], [9]), a merit of Theorem 1.7
would come out.

We treat, in § 2, a key proposition (2.2) for the proof of Theorem 1.7.
Proposition 2.2 seems to be interesting in itself.

We prove Theorem 1.7 in §3.

The author would like to thank Professors M. Adachi, S. Izumi and
M. Shiota for valuable suggestions and encouragements, and would like to
thank the referee for helpful advice.

1. Main result.

Let D be an open subset of R". We denote ^ = ̂  (resp. (9 = 6^) the
sheaf of germs of R-valued C°° (resp. analytic) functions on Q. Each stalk
^ of € is an R-algebra with the unique maximal ideal m^, that is, germs

with zero target. We write m^ the ideal Q m^ of oo-flat germs. For each
/£N

open subset U of Q. and each x e U, n^j ^ means the canonical mapping
<^(U) -> ̂  defined by taking of germs of functions at x .

Let T be a subset of ^ ^ for a point x e Q. We denote <T> the set
of compositions T o k of a C00 function T on Rr with a germ
k : Q, x -> R'' of a C°° mapping with components ^ e T (1 ̂ f ^ r ) .

DEFINITION 1.1. — A subset T of ^^ is called a sub C^-ring of ̂  ^ ;/
<T> == T. A sub C^-ring T of ^ ^ is finitely generated (resp. formally
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finitely generated) if T = <fei, . . . ,k<,> (r^sp. Tc<fc^ .. . ,^>+m^) wfr/i a
finite system of elements k^, . . . , kg of T.

Remark 1.2. — Compare the definition of sheaves of sub C^-rings of
(^Q in Introduction with that of sub C^-rings. Futhermore, we can define
the category of C^-rings (see [I], for example). Typical examples of Cu-
rings are ^, ̂  = ^/m^ and <f(U) (U is an open subset of Q).
Naturally we can also define the notion of sheaves of C^-rings. A sheaf of
sub C^-rings of ^ is just a subobject of the sheaf of C^-rings ^.

Let 2 be a sheaf of sub C^-ring of ^.

DEFINITION 1.3. — We call a subset S of D(U) for an open subset U of
0 a system of generators (resp. formal generators) of D over U if for each
point 5c of U,^ = (n^8)) (^sp.^ c <7i^(S)>+m^), w/im? ̂  15
the stalk of ^ over x . We say that Q) is finitely generated (resp. formally
finitely generated) as a sheaf of sub C°°-rings at a point q of 0 if 2 has a
finite system of generators (resp. formal generators) over an open
neighborhood of q in 0.

DEFINITION 1.4. — The sheaf of relations of elements h^, . . . , h^ of
^(U) for an open subset U of Q is the kernel of the canonical
homomorphism h^^^e -> Q)^ induced by the C°° mapping
h = (Tii, . . ., hg) : U -> R^, which is a sheaf of ideals of h*^^e. We say that
Q) is finitely presented as a sheaf of sub C^-rings at a point q of Q, if there
exists a finite system of generators h^, . . . , h^ over an open neighborhood U
of q in Q. such that the sheaf of relations of h^, . . . , h^ is of finite type at
q as a sheaf of ideals of h^^^e.

Remark 1.5. — (1) The condition that Q) is finitely generated at q is
different from that ^ is finitely generated.

(2) If Q) is finitely presented at q, then there is a natural isomorphism

/i*^/(gi,...,^).^^^^

(of sheaves of C^-rings) over an open neighborhood U' of q, where
h = (/?„ . . . ,^) : LJ ' ^R 6 , /i,e^(U')(l^'^) and g, e ̂ ^(IT)
(l^^s).

Let n (resp. Q') be an open subset of R" (resp. W} and /: 0 -^ 0' a
finite C00 mapping (/is finite if, for any point x e Q , <^ is a finite
^Q',/(V) -module via f^ : (T^,) -^ ̂ ,).
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In order to formulate Theorem 1.7, we define an auxiliary sheaf of
ideals ^y of <^n from the family of ideals ((^f,x)xesl (see Introduction) by

(1.6) ^/(U)= H n^ ^(A^,,),
X 6 U

for each open subset U of 0, where AJ(O^r^n) is the r-th Jacobian
extension of an ideal I of 8^ :

A J = I + f d e t ^ — ^ r ) ; ^ e I , 1^\< . . . <^nV^.
\ Wp • • '^i^ )

We can regard ^y as an infinitesimal version of 2j-. Further we define a
sheaf of ideals ^ of 0^ by

^(U)=^(U)n^(U),

for each open subset U of f2.

THEOREM 1.7. — Assume that f is analytic. Then, for a point q of Q
with the rank of Jacobian df(q) ^ n — 1, ^ following conditions are
equivalent to each other :

(A) ^f is formally generated by a finite number of analytic sections over
an open neighborhood of q (as a sheaf of ideals of <^o).

(B) 3>f is finitely generated by analytic sections at q (as a sheaf of sub
C^-rings of ^).

(C) 3)f is finitely presented by analytic sections at q.
Furthermore, the condition (A) is also equivalent to one of'the followings :
(A') ̂  is of finite type at q (as a sheaf of ideals of O^).
(A") For each point q in a neighborhood of q, ^ ̂  is finitely generated

as an ideal of ^.

In Theorem 1.7, the restriction on the rank of the Jacobian o f / a t q is
essential. Without this restriction, the relation between e^y and Q)f seems
to disappear.

2. Inverse images of sheaves of ideals
by a non-singular vector field.

Let 0 be an open subset of R", D a C°° vector field, ^ a sheaf of
ideals of <^Q and q a point in Q,. Throughout this section, we use these
notations.
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An element g of S^ is called Dq-regular if (D^)(^) -^ 0 for a non-
negative integer fe, where D^ is the element of S^q obtained by
operating k times the derivation D^ to g .

We put, for each open subset U of 0,

(2.1) (D-^HU^D-WU)) (^o(U)).

Notice that the presheaf D~1^ is a sheaf of sub C°°-rings of S^.

The following proposition treats of structure of D~1^.

PROPOSITION 2.2. — Suppose that D is non-singular at q, that ^ is
formally generated by a finite number of analytic sections over an open
neighborhood of q and that ^\ contains an analytic Dq-regular element.
Then there e x i s t s a finite s y s t e m of generators
AI , . . . , he e (D'^OJ) n ^n(U) of D~1^ over an open neighborhood
U of q mth the following properties :

(1) For each open subset U' c U and each ^ e D^^IT), there exists
a C°° function T on an open neighborhood of A(U') such that ^ = T o h in
U.

(2) The sheaf of relations of h^, . . . , hg is of finite type.

This proposition will be used in the proof of (A) => (C) of
Theorem 1.7.

To make the assertion of Proposition 2.2 more clear, we mention
several observations.

Remark 2.3. — Suppose that D is non-singular at q.
(1) If D~1^ is finitely generated at q as a sheaf of sub C^-rings, then

^ is of finite type at q.
(2) If (D~1^ is finitely generated, then ^ is finitely generated.
(3) Suppose that J^^m,°. Then (D"^)^ is formally finitely

generated if and only if ^ contains a D^-regular element.
(4) If J^ c m^ and ^ ^ {0}, then (D-1^ is formally finitely

generated, but is never finitely generated.
(5) D'^0} is finitely generated.
(6) Even if ^ contains an analytic D^-regular element, the C°°-ring

(D~1^ is not necessarily finitely generated (see Example 3.7).
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The rest of this section is devoted to the proof of Proposition 2.2.

Firstly we prepare several necessary lemmas.

LEMMA 2.4. — Let U' (resp. V) be an open subset of R" (resp. R^),
and H' : U' —> V be a proper finite analytic mapping. Then \ve have

H^^V')) = H^OQf,

\vhere H'*(^(V')) 15 ̂  s^ of elements h e ^(LT) SKC/! that, for any
y e V, /z — H'*(fe) fs co-flat at W~1^) /or som^ k e ̂ '(V) depending on
y '

For the proof of Lemma 2.4, see [6] and [8].

Let A denotes ^R'i-i^ for a point ^'eR""1 .

LEMMA 2.5. — L^r P = Z ^/s J ^e a polynomial mth coefficients
j=o

bj 6 A (0 ̂ 7 ̂  s) and mth a variable t . We define F^ e A[r] (/c = 0,1,2,. . .)
fc^ 3Ffc/3r = ^.P anrf F^^^o} = 0-'\{t=0}

r___L
^o s + k + 1 - i(1) F. = Z ——.——,——:^s+fc+l-l.

V boW + 0, ^M there exists T^ e ̂ -i+os+i^ (fe=0, l ,2 , . . . ) suc/i r/ia?

(2) Ffc = TfcO(xi-Xi(5 ' ) , . . . ,x^_i-x^_i(5 ' ) ,Fo,Fi , . . .^3,),
(3) ordo^ -> 4- oo (as /c-^-hoo),

wA^r^ ordoT^; means the supremum of r such that T^ o e m^.

LEMMA 2.6. — Z^ Ffc fo^ 05 above. Then \ve have a formula

(1) F,F,= ^(——+l}b^,.,P^„ (/c,i^(U+^5+l).
i = l \ K + Z M-(-l/

Further there exist rational numbers Pj^, (fc, K ̂  0, /c + M = m), /or ^n^ m,
sue/I ^^r

(2) fcoF.+^i = S P..̂ Fu, (m^25).
k,u^0,k+u=m
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Proof. — It is clear that

S(P^u)/8t = F f c - ^ - P + r^.P.F, = (F,.r"+F,.^).P
s / 1 1 \

= S ——————+———-——}bits+k+u+ l- iP.
t ^ O V + f c + l - l 5 + M + l - l /

Thus, integrating with t , we have

^u = Z ( , , . 1——:+—————-1——^^s+k+u+l- i .i=o \ s 4 - f e + l — ( s + M + l — i /

which is just (1). Let ^,u be indeterminants. From (1),

^.^•-Hj.^;^-]^-^1-
Now, if the system of equations of (Pk,u)

E f——+-'-)?», ..=°' (K'<s),
t+u=m\^+' "+'7

..L(^+T+"+^^)pt••'=l'
has a solution (P^ „) (?» „ e Q), then we have the equality (2) for this
solution. Hence it is sufficient to show that the (s+1) x (s+l)-matrix M,
(k,i) component of which is l / (k+i- l) + l /(m-fc+i+1), belongs to
GL(s+l,Q) when m S? 2s. In fact,

A ^(t')4(m+2t+2)!(m-t)! 2^1 .~| ,detM = n[(2o,(2^i)!(^-^ n (-.)J > o.
Proof of Lemma 2.5. — As &o ls invertible in A, we have, by

Lemma 2.7(2),

(*) F^.+1 = Z ^0 'Pfc, uFfcFu, (^ > 2s),
k,u^0,k+u=m

for some P^ y e Q. Now, for k and u with k, u ^ 0, k + u = m for
sufficiently large m, F^ or Fy can be represented as a quadratic
homogeneous polynomial of ¥[ s with smaller indices i with coefficients in
A using (*) again. Substitute this for F^ or F^ in (*). If we iterate this
operation, we have polynomials T^ (m= 0,1,2, . . . ) such that the orders of
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them increase to infinity when m -> oo , and that

F^+i = T^(FQ,FI, ...,F3,), (m^2s).

Thus if we take T^ as ^m+s+i regarding as an element of <?Rn- i+(3s+no ,
then the conditions (2) and (3) of Lemma 2.5 are satisfied.

To show that a certain mapping is injective, we prepare the following
lemma which is not hard to see.

LEMMA 2.7. — Let P e C[z] be a polynomial of degree s . Then the
mapping (p : C -> C^1 defined by

(P(Z) = ( [ z pw dt, r tp^ d t , . . . , r rvo) dt)
\Jo Jo Jo /

is injective.

We need a lemma on the sheaf of relations of a mapping of a certain
type.

LEMMA 2.8. - Let U (resp. V) be an open subset of R" (resp. R^). Let
H : U —> V be an analytic mapping which have a proper injective
complexification He : tl -> V . Then the kernel of the natural homomorphism
H*<^v -> <^u (of sheaves of C00-rings) induced by H is of finite type as a
sheaf of ideals of H*^v •

Proof. — Since He is proper, the direct image (Hc)^(^o) °^ ^o ls a

coherent fi^-module. Furthermore, since the inverse images by H and
He of a point in H(U) are coincident, it is easy to verify that H^(^u) is
a coherent 0^-modu\e, taking real and imaginary parts of generators of
(Hc)^(^o)- we take the ^v-homomorphism a : ̂ v -^ H^(^u) and the
^v-homomorphism P : ̂ y -^ H^(<^j) induced by H. Now kera, which
is the sheaf of ideals of germs of analytic functions vanishing on H(U), is
coherent. Thus, by a theorem of Malgrange ([4], Theorem VI.3.10), ker P
is an <?v-module of finite type. We consider the following commutative
diagram

____, y® ___ . TJak/j(p \ . e>——> yf ———> H (o\) ——^ ©u

i U <i
0 ^ ker P|H(U) ———^ ^V|H(U) ——> H^(<?U)|H(U)

where ^ is the sheaf of relations of the components of H, and the second
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and third columns are isomorphism of ringed-spaces over the
homeomorphism H : U -> H(U). Hence ^ is a H*(<^v)-module of finite
type.

Proof of Proposition 2.2. — There is an open neighborhood U of q
such that D = S / S x ^ for a system of analytic coordinates x ^ , . . . , x^
over U centered at q. From assumption, shrinking U if necessary, ^
is formally generated over U by some elements
g ^ , . . . , g^ e ̂ (U) n ^n(U). Let go be an analytic D^-regular element
of ^. By the preparation theorem, we may assume that go is a monic
pseudopolynomial with coefficients in (S(n(\J)) of degree s in x^ after we
take U smaller, where n : U -> R""1 is the projection to the first (n— 1)-
components. By the division theorem,

gi = Qigo + Z A,,x^, (K^w),
j= i

for Q,e^(U) and A^.e ^(7i(U)), ( l ^ f<w, 1 ̂ '^s), taking U smaller
again if necessary. If we put

s

PO = 80. Pf = 80 + Z A^-7, (1 ̂ f^m) ,
j= i

then Po, Pi, . . . , ?m e ̂ (U) n ^(U) also generate ^ over U formally,
and each P, is of the following type :

(1) Pi == < + Z B,^-7, (O^i^m)
j= i

where B^e^Oi(U)).

Now we define an element P^ (0^f^m,k=0,l,2, . . . ) of (D^JQOJ),
for each point g of U, by

(2)
fD(Fi)=(^-x„(5))k.P,,
[F?ki{^=^^)} = 0.

As D = 819x^ Fi is well defined. Further we put

W = (x,-x,(q), .. . ,x^-i-x^_i(5), F^(0<f^m,0^fe^3s)) : U -^ R"

where e = n — 1 4- (w+l)(3s+l), and for q = g, H = W. Then we
shall show that
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(3) : If one takes the open neighborhood U of q smaller if necessary,
then for each open subset U' of U,

(H^)*W)r 3D-^(U').

For the definition of (^^^(^(R6))', see Lemma 2.4.

We will prove Proposition 2.2 supposing (3). At first we see that

(4) H is a finite analytic mapping.

This is obvious because already (x^ .. . ,x,_i,Fo.o) is finite. Next we
see, for a complexification He : 0 -> 0' of H, that

(5) He is injective on a neighborhood of q in 0.

In fact, for

<D = (xi, . . . ,^- i ,Fo,o ,Fo, i , . . . ,Fo,J ,

°c^ •' C", q --> Cn+s has an injective representative by Lemma 2.7.
Moreover since He is finite, there exists an open neighborhood V of
Hc(U) in C6 such that

(6) He : 0 -^ V is proper,

if we take LJ smaller if necessary. Further for each open subset U' of U,
there exists an open neighborhood V of H(U') in R6 such that
H]U : U' -> V is proper. Thus we can apply Lemma 2.4 to this case, and
we have

(H^)*(^(V)) = (H^)*(^(V'))\

By definition,

From (3),
(H^)*w»r = (iwwv')r.
(H^ywR6))" ^(D-^OJ'),

and since each component of H belongs to (D'^XU), we have

(D-^XU')^^)*^^')).

Hence we know that

(D-^U'^H^WV')).
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If we put all components of H as h^, . . . , Ag, then we have the first part
of Proposition 2.2.

From (5) and (6), we can apply Lemma 2.8 to H . Therefore, we have
the rest of Proposition 2.2.

There remains to show the assertion (3). From (5), it is sufficient to
prove that

for any open subset U' c U, each element ^ of D'^OJ')

(7) satisfies, for each q e U', that ^ = T o H at q modulo m?

with a C°° function T on R6.

Let q e U'. Then (D^ e ̂ . Thus there exists a system of elements
Ci , . . . , € „ , of ^ such that

(D^= ^ c,P, at q, mod.m00.
1=0

We denote by c, e <^ (= Sq/m^) the Taylor series of c^, and put

00

ci = E ^fc(^-^(5))-(^-^(5))\
k=0

where x '= (x^, . . . ,x^-i) and c^Oc'-x^)) e .^-i^. We have an
equality

——^ m °°
(^^ Z Z ^(^-^(5)).(^-^(5))fc.P<•

i = o fc = o

in ^RM^. We expand P( for x^ — x^Cq) and apply Lemma 2.5, for
qf=n(q). Then there exists a system of C°° functions T^
(0^f^m,k=0,l,2, . . . ) on R6 such that

F ^ = T , f c O H 9 at q,
ordo T^ -^ oo (fe-^oo).

w oo

The sum ^ ^ ^ik^ik has a meaning as an element of ^p^o- Denote
i = o k = o

this TI , and take T^ e ̂ (R6) with (Ti)o = T^ .
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We see that there exists a C°° mapping T^ : R6 -> R6 such that

W = T2 o H at q.
In fact,

EW) = (^-x^.p, = i ̂ (-^(^-^p,,
j=o V/

thus we have that

F^ = Z ffk-^))^ mod. ker D,.
j=o V/

As ker D^ = ,̂-1 ̂  c= ^^, there exists a function r| e ̂ (R6) such that

F& = Tio(;Ci,...,^-i,F,,(0</<fe)).

This shows the existence of 13.

By the above arguments,

^ W 00 /*

^ = £ Z ^(^-^(5)). (^-^(5))'?,^, mod. ker D,
i=0 k=0 J '
/ m oo \

= £ £w., .w.
\ i=0k=0 /

Hence
^ = TI o W at 5, mod. [(ker D^) + w^°]

= TI 0 T^ 0 H.

Thus there exists a C°° function T on R6 such that

^ = T o H at 5, mod. m?.

This proves (7), therefore (3). This completes the proof of Proposition 2.2.

3. Proof of Theorem 1.7.

In this section we give the proof of Theorem 1.7 owing to
Proposition 2.2, and mention several notes.
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Firstly we remark that, from the naturality of notions defined in § 1, it is
sufficient to prove Theorem 1.7 in a convenient system of coordinates.

The following observation has a key role in the proof of Theorem 1.7.

PROPOSITION 3.1. - Let Q be an open subset of R", and f: Q, -> R"
(n^p) a finite C°° mapping of the following type :

f = (x!? • • '^n-iJw ' ' - ^ f p ) '
Then 9'-^'-

Proof. — Consider the subsets of ft

V , = { g 6 f t ; (8jfi/8xi)(q)=0, (1 ̂ j^u,n^i^p)},

(u=0,l,2,...) and a filtration of ft :

ft = Vo 2 Vi 2 V; 2 ... 2 V,, 2 • • • .

We see that q e V,, if and only if

^,, £ (xi-x^q), .. ̂ x^t-x^^q^-xM)^1)^

and that this condition is equivalent to that

A,^,, £ (Xt-x^q),.. .^^t-x^^qUx.-xM)^1)-^-

Hence we have immediately explicite discriptions of ^y and Q r :

(3.1.1.) ^(U)

{ ^W1 '\

= fce^o(U);^ vanishes on V,+i, (u=0,l,2,.. .U,
n J

(3.1.2) ^(U)
f ^/t t= ^e^n(U);—,^- vanishes on V^+i, (u=0,l,2,.. .).'>,
I w J

for each open subset U of Q . Thus we have in particular that

^=(3/^)-^.
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Proof of the first half of Theorem 1.7. — Let qefi, with rank
df(q) ^ n — 1. There are systems of analytic coordinates on open
neighborhoods of q and f(q) respectively such that / is of type as in
Proposition 3.1. Thus, it is sufficient to prove in the case of Proposition 3.1
and q = 0.

Put D == 8 / S x n . We see that ^y,o contains an analytic Do-regular
element. In fact, as / is finite, fi(0,Xn) — ./i(0,0) is not identically zero, for
some f , (n^f^p) . For such f,/,e^(Q) = D'^^O) by Lemma 3.1,
and the element (Df^e^f^Q is analytic and Do-regular.

Thus we can apply Proposition 2.2 to the case ^ = ^y, and we have
the implication (A) => (C). Obviously (C) => (B). For (B) => (A), we
refer to Remark 2.3 (1).

So as to complete the proof of Theorem 1.7, we proceed to consider the
conditions (A), (A') and (A") of Theorem 1.7 in a rather general
framework.

Let Q. be an open subset in R". Let M be a subsheaf of ^-modules
of <fn. We define a subsheaf of ^-modules ^to of ^o by

^r°(U) = ^(U)n^(U),

for each open subset U of Q.

Now we introduce the following seven conditions for M :

(Al) For any point x e Q , there exist sections gi, .. . ,^r °^ ^
over an open neighborhood U of x such that g : (9[^ -> ^"[U is
surjective, that is, M^ is of finite type.

(A2) For any point x e Q , M^ = ^.^,x-
(A3) For any point x e Q , M^ c ̂ .̂  + ^.w^.
(A4) For any point x e Q, there exist sections g ^ , . . . , gy of ^i over

an open neighborhood U of x such that g : <^j -> Ji^ is surjective, that
is, M is of finite type.

(A5) For any point x e Q , the ^ ̂ -module M^ is finitely generated.
(A6) For any open subset U of Q, M{\S) is closed in ^o(U) with

respect to the C°° topology.
(A) For any point x e D, there exist an open neighborhood U of x

and a finite number of elements g i , . . . , gr of ^"(U) such that for any
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point x e U,
^ C (g,^ . . .,g^).<^ + <x.W^.

PROPOSITION 3.2. — The following conditions for a subsheafofS^modules
M of <^n ar^ equivalent to each other :

(A), (Al) & (A3), (Al) & (A2), (A2) & (A6), (A2) & (A5) & (A6),
(A3) & (A5) & (A6), (A2) & (A4).

Though this proposition is a collection of known results, we give an
outline of the proof to assure ourself.

Proof. — As 3P\ is faithfully flat over fi^, we have the implication
(A)=>(A1) (cf. [4], III.4). Trivially (A) implies (A3). A theorem of
Malgrange ([4] Theorem VI. 1.1') verifies (Al) & (A3) => (A2) and
(A1)&(A2)=>(A6). Obviouly (A2) implie§ (A3) and (A5). For
(A3) & (A5) & (A6) => (A2), we discuss by induction using the fact that,
under the condition (A6), if My, is generated by gi, . . . , gr-i» 8r over

Sy, and formally generated by g ^ , . . . , gr-1, then g ^ , . . . , g^_ i
generates My, over <?„, according to the idea of [3] Lemma 27. The
implication (A2) & (A5) & (A6) => (A2) & (A6) is trivial. For
(A2)&(A6) => (Al), we use a method of Tougeron (see [4]
Theorem VI.3.10, for example). Clearly

(Al) & (A2) => (Al) & (A3) => (A),
(Al) & (A2) => (A4) and (A2) & (A4) ==> (A).

Thus we have required equivalences of the seven conditions.

Remark 3.3. - (1) If / is finite (more generally, if the ideal ^f,q
contains w^ for all qeCl), then ^(U) (see (1.6)) is closed in <?n(U)
for each open subset U of Q. Thus in this case the condition (A6) is
satisfied for M = ̂ .

(2) The condition (A), (A') and (A") in Theorem 1.7 are (A), (Al)
and (A5) respectively for M == ̂  in an open neighborhood of q.

Let us consider the condition (A3) for ^.

Let / be a coherent sheaf of ideals of OQ, and D an analytic vector
field over Q. We define a sheaf of ideals /^, (r=0,l,2,...) of S^ by

^o,r(U) = [k 6 ̂ (U); V(Dlk) 3 vfi ly'A O^rl,
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for each open subset U of ft, where ^ Ty/ is a coherent sheaf'of'ideals
j=o

defined by

(^ D<AU) = fi iW(U))V^(U),

for each open subset U of ft, and V(.) is the zero locus. Notice that
/O^Q, which is independent of D, is the sheaf of germs of C°° functions
vanishing on the zero locus of / . Further we put, for each open subset
U ^ f t ,

^,r(U)=^D..(U)n^(U).

LEMMA 3.4. — With the same notation as above, we have

/D,r,x c / ^ ' ^ x + w?, (r=0,l,2, . . .) ,

for each point x e ft.

Remark 3.5. — Let /: ft -̂  ft' be a finite analytic mapping, and q e ft
a point with rank df(q) > n — 1. Then, by (3.1.1), we know that
^f=/o,r. / == (D/i,...,D/^).^, for some D and r locally at q.
Thus, for such ^y, the condition (A3) is satisfied.

Proof of Lemma 3.4. - We will show that /o,r,x^x = / ^ x ' ^ x by
the induction on r, where 3F ^ = SJm^ and, by the natural
homomorphisms ^ -> ̂  -^ ^^, we regard 9'\ as 6^-module and ^~
module. In the case r = 0, the assertion follows from a theorem of
Malgrange ([4] Theorem VI.3.5.) which states that /^^^x equals to
the set of infinite jets of germs of C°° functions vanishing on the zero locus
of / .

Assume r > 0. We consider an exact sequence

0 - /^x - /^xJL^/ Z D</Y ,
\J=0 /D,0,x

where \|/(fe) is defined to be D;(fc) modulo ( ^ l y / ] for each
\j=0 /D,0,x

fee^,r-i,x' Note that i|/ is certainly a homomorphism of ^-modules.
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Now we have a commutative diagram

0 - /^ ® y. -> /^-^® ^x J^L. L/ ̂  D.yY ^ ̂
\ \ j = 0 /D,0,x/

U 4 U
o- .̂.v.̂ c ^ .̂.-i,.<.̂  JL ^c/fz D^Y .̂ c

\ J = 0 /D,0,x

where ^ is defined by vJ/(fe) = D;(k) modulo [ ̂  ^y^o^-^x for

each ke^r-i.x-^C^ ^x)- Since ̂  is flat over ^, in the above
diagram, the first row is exact and each column is isomorphic. Using the
equality in the case r = 0, we have

fzD</T .^=fzi>/) .^,
\J=0 /D,0,.x \J=0 »/D,0,x

and by the assumption of induction,

D.r- l ,^*^ x — aTD^-l,^'^ x -

Clearly / o ^ x ' ^ x ls contained in the kernel of \Jir. Hence we have that

v <3f r~ ^<B <a?'
'ar^x-^jc c <7D,r..y•t;rJC»

and the reverse inclusion is obvious. Now the inclusion of Lemma 3.4
follows immediately from the equality / ^ x ' ^ x = < /S rx -^x -

Proof of the second half of Theorem 1.7. — Let / and q be as in
Theorem 1.7. By Remark 3.3.(1) and Remark 3.5, the conditions (A6) and
(A3) are satisfied for M = ̂  on an open neighborhood of q. Thus, by
Proposition 3.2, the three conditions (A), (Al) and (A5) for M=^f
in an neighborhood of q are equivalent to each other. Hence, by
Remark 3.3.(2), we have that the three conditions (A), (A') and (A") in
Theorem 1.7 are equivalent to each other.

Theorem 1.7 is now proved completely.

Here is a case where the equivalent conditions of Theorem 1.7 are
satisfied.

COROLLARY 3.6. - Let f\ ft -̂  ft' be a finite analytic mapping. If the I-
jet extension //: Q -^ J^Q.O') of f is transverse to Z^O.n') except at


