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THIN SETS IN NONLINEAR POTENTIAL THEORY

by L. I. HEDBERG (1) and Th. H. WOLFF (2)

1. Introduction and main results.

Let L^R^), a > 0, 1 < q < oo denote the space of Bessel potentials
f=G^g, geLW, with norm ||/||̂ =||̂ -, and let L^R"),
p -h q = pq be its dual. Here G, is the Bessel kernel, best defined as the
inverse Fourier transform of G,(^) = (l+l^l2)"^2 . As is well known
(A. P. Calderon [7]), when a is an integer there is a constant A so that

/ r \i /4
A-1!!/!!,,^ E \Wdx] ^A||/||,,,

VO^IPI^ajR^ /

and thus L^ coincides with the Sobolev space variously denoted H01'4,
W?, etc.

We shall be interested in the case aiq ^ d , when the functions in L^
are not in general continuous. Their lack of continuity can be measured by
a set function called (a,^)-capacity which is most conveniently defined by

C^(E) = inf^ ^Ac;^0,G, * g^l for all x eE^

This definition is meaningful for arbitrary E (= R^, because

G.^(x)= f G^x-y)g(y)dy
JR^

is always defined (^ -h oo) when g ^ 0.

0 Supported by the Swedish Natural Science Research Council.
(2) This work was done while an NSF post doctoral fellow at the University of Chicago.
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Classical potential theory is closely associated with the space L^ or
more generally L^, 0 < 2a ^ d , and C^ 2 is nothing but a slight
modification of Newtonian capacity (or logarithmic capacity for d = 2). In
fact, for 0 < 2a ^ d, C, 2 is classical capacity with respect to the kernel
G2,, and for 0 < 2a < d this kernel has the same singularity as
the M. Riesz. kernel R2<x0c) = N201"^.

The concept of a thin (effile) set is fundamental in potential theory. A
set E c: R*1 is called (a,2)-r/nn at a point XQ if the following equivalent
statements hold.

(A) There exists a positive Radon measure (A (briefly, \ie^+) such
that

G^ * \i(xo) < liminfG2a * n(x).
X-^XQ

xeE\{xo}

(B) flca^SOC^))^<oo. Here B,(xo) = {x;\x-x,\<6}.
Jo ° °

The equivalence of (A) and (B) is the content of the Wiener criterion.
See e.g. Landkof[23] for 0 < a ^ 1, Fuglede [14] for the extension to
2a ^ d .

Let e^(E) == {x; E is (a,2)-thin at x}. Thus e^(E) contains the
exterior of E, and in general, part of the boundary 8E. The set e^(E)
has the following important properties.

THE KELLOGG PROPERTY. — C^2(En^a,2(E)) = 0 for any E c R^.

THE CHOQUET PROPERTY — For any E c R^ and any £ > 0 there is an
open G c= R4 such that ^(E) c G and (^(E^G) < e.

See Brelot [5,6], Choquet [9], Fuglede [14]. Clearly the Kellogg property
follows from the Choquet property.

Our purpose is to generalize all these results to (a,^)-capacities,
1 < q ^ d/a. Before we can formulate these results and discuss earlier
work in this direction we have to recall a few more facts about (a,^)-
capacities. It is in the nature of things that for q ^ 2 the role of the
potential G^ ^ \i will be played by a nonlinear function of H,
G, * (Ga^n)^1, called a nonlinear potential and denoted v^q. The
following results are known.
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Let E <= R'1 be an arbitrary set with finite (a,^)-capacity. Then there is
^e^^E), the exterior capacity measure, such that

(a) u(E)=C.,,(E).
b) (G.*u)"-1 =geL<'(Rd), and

gvdx= (G.*u)"dx=C^,(E).
J

(c) VS^Oc) = G, ^ (G, * ̂ ""^x) ^ 1 on E, except, possibly on a
set of zero (a,^)-capacity, i.e. (a,^)-quasieverywhere ((a,^)-q.e.) on E.

W ^,q ^ 1 everywhere on supp ^.

Moreover, there is a constant M such that for any ^.^M^
(e) supV^(x) ^ M sup V^(x).

x e supp H

Choquet's capacitability theorem applies, so for Borel or Suslin sets E
(/) C..,(E) = sup{C,,,(K);K(=E,K compact}.

Furthermore, if E is Borel (Suslin)
te) C.,,(E)1/" = sup {u(E); u € ̂ +, supp u<=E, ||G. * u||,,< 1}.
(h) C.,,(E) = sup {u(E); u 6 ̂ +, supp uc=E, sup V;,,(x)< 1}.

x e supp u

In view of this the natural generalization of (A) is the following
statement about a set E c= R^ and a point X o e R ^ .

(C) There exists a pe^4 ' such that

V^(xo)< liminf V^(x).
X-.XQ,X(=E\{XQ}

Another possibility is the following.

(D) There is a [ l e J / ^ such that V;̂  is bounded, and

V^(xo) < liminf V^(x).
x-^co,xe\{xo}

It turns out that the natural generalization of (B) is

^ fyC^EnB^o^Y-1^
( ) Jo I——8————; T< 00 .

Unfortunately (C), (D) and (E) are not equivalent in general. In
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addition to the obvious implication (D) ==> (C) the following are known :

(C) o (D) o (E) for 2 - a < q(^dlai)'a

(D) => (E) for 1 < q < 2 - a

a

(E) ^ (D) /^r 1 < ^ < 2 - ^ .

The reason for the difficulty is that for q > 2 — — there are estimates
d

A.J;(^)'-.-f.V,.)<A,J;(^y-\-^,

(Xbut for 1 < q ^ 2 — — only the lower estimate is true. To see that thed
upper estimate breaks down it is enough to take \\. to be a point mass,
since this gives V^ = oo.

As a consequence extensions of the Kellogg and Choquet properties to

the case 1 < q < 2 — — have been lacking.a

We shall show that (E) is the good choice of definition for an (a,g)-thin
set, and prove that the Kellogg and Choquet properties are true in this
strong sense. Furthermore, we shall show that (C) (and (D)) can be
replaced by a modified statement which is equivalent to (E). The main new
tool is an inequality which gives a characterization of the positive measures
in IZg^R^). To state the results precisely we set

w^^-fY^^Y"1^-'' ~ Jo I y'^ 1 s
Like V^, W^ is a lower semicontinuous function of x . In fact, for
. . P/^B^Y-1^ .any §o > 0, ^ — is continuous.

J s o V ° / °
By the above estimate there is A > 0 so that W^(x) ^ AV^(x),

and thus W .̂, ̂ i ^ A V^ d\i = A (G, * ̂  dx. The new result is

that the converse inequality is true, although the pointwise estimate is false.
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THEOREM 1. - Let ne^, a > 0 and 1 < q ^ d/a. 77i6?n there is
A > 0 50 rW

j ( G . * ^ d x < A f w ^ d n .

r
COROLLARY. - H e ̂ + n L^R^) if and onty ^ W;̂  ̂  < oo .

•/

DEFINITION. - A set E c= R^ is (aL,q)-thin at x e R^ if aq ^ d and

fYC^EnB^y-1^
JoV^-——J T^5

6?^(E) = {xeR^ E is (^,q)-thin at x}.

THEOREM 2 (The Kellogg property). - Let a > 0, 1 < q ^ rf/a. TTi^n
C^(^,(E)nE) = 0 /or anj; E c R^.

Theorem 1 makes it possible to develop nonlinear potential theory
r rusing W^ d\i instead of V^ ̂  as a generalized energy, and W^ as

a nonlinear potential. In this way one can extend the Choquet property.

THEOREM 3 (The Choquet property). - Let a > 0, 1 < q ^ d/a.
Then for any E c= R^ and any £ > 0 there is an open G such that

^(E)cG and C^(EnG) < £.

We also obtain an equivalent formulation of thinness in terms of W^.

THEOREM 4. - Let a > 0, 1 < q ^ rf/a. A set E c= R^ is (a,^)-t/»n
at XQ e E y and on^ if there is [x e ̂ + suc/i r/iar

W^(xo)< liminf W^(x).
x-^XQ,xeE\{xo]

These results have a number of consequences which we formulate in the
next section. In section 3 we prove theorem 1, and since theorem 2 can be
deduced quickly from theorem 1 in the case when E is capacitable or, say,
Borel, we give the deduction although theorem 2 is a consequence of
theorem 3. Finally in section 4 we develop the potential theory for W;
which is needed to prove theorems 3 and 4.
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Numerous references to earlier work on potentials of L^ functions and
nonlinear potential theory by D. R. Adams, B. Fuglede, V. P. Havin, V. G.
Maz'ja, N. G. Meyers, Ju. G. Resetnyak, and others are found in the
earlier papers [17-21] of the first author. (a,^)-thin sets were defined in [17]
and independently by Adams-Meyers [2]. The relations between (C), (D)
and (E) we proved in [2] (and partly in [17]) except for a slight extension
given in [1]. The definition of (a,^)-thin sets given here was proposed by
Meyers [25], who also studied the associated (a,^)-fine topology and

N A
properties of the function W^. In the case 2 - - < q ^ - the Kellogg

d a
and Choquet properties were proved in [17].

The results given in section 3 are due to Wolff; the results in section 4
were found subsequently by Hedberg.

Throughout the paper A denotes various constants, whose value can
change from one line to the next.

The second author is grateful to Peter Jones for drawing his attention to
these problems and for valuable conversations.

2. Applications.

The main result in [20] was that all closed sets F c: R^ admit so called

(m.^)-synthesis for any positive integer m and any q > 2 — - • It was
d

pointed out there (and in [18]) that the result would follow for q > 1 if the
Kellogg property could be proved for all (m.^)-capacities, q > 1. Thus,
we can now state that result. We refer to [20] for the precise definition of
the traces /Ip.D^lp.

THEOREM 5. — Let q > 1, let m be a positive integer, let F c: R^ be
closed, and let fe L^R4). Then fe LW) if and only if D^/lp = 0 for
all multiindices k , 0 ^ |k| ^ m — 1.

More precisely, if 0^1?"= 0, 0 ^ k ^ m — 1 (in particular if
feL^y)) then for any e > 0 there exists a function w, 0 < w < 1,
such that supp w is compact and does not intersect F, and such that
w/eL0 0 , and ||/-<||̂  < e.

Of course, all the consequences of this result which were given in [20]
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for q > 2 — . can now be extended to q > 1. We do not repeat these

corollaries here.

We can now also solve a problem left open in [17]. Thus the following
theorem extends theorem 7 in [17]. See also the survey [19].

THEOREM 6. - Let a > 0, q > 1, E c= R^, and S c E. Then the
following are equivalent.

(a) C^(SnG) = C^(EnG) for all open G;
(b) For some T| > 0, C<^(;5nG) ^ r|C^(EnG) for all open G;

(c)^M-,...x.E..,^f^^>.,

(d) C^(^(S)\^(E)) = 0;
00 ^(E) = e^(S);
(/) C^(^(S)nE)=0.

Remark. — In the terminology of Choquet [10] a subset S of a set E is
called C^-representative for E if (a) holds.

Proof. — The implications (a) ==> (b) => (c) ==> (d) and (a) => (e)
are trivial, (d) implies (/) by the Kellogg property. (/) implies (a) by the
implication (D) => (E) of section 1. In fact, if (/) is assumed, it follows
that the capacitary potential for S (which is known to be bounded) is
^ 1 (a,^) q.e. on E, which gives the result.

As in [17] we can apply Theorem 6 to solve a problem on rational
approximation. See also [19]. Let K c: G be compact, let Lf(K) denote
the subspace of LP(K) consisting of functions analytic on K°, the
interior of K, and let RP(K) be the closure in LP(K) of the rational
functions with poles off K. Then R^K) is a subspace of L^(K), and it
is well known (Havin [16]) that R^K) = L?(K) for 1 < p < 2.

THEOREM 7. — Let 2 ^ p < oo. The following are equivalent :
(a) R^K) = L?(K);
(b) K is (l,q)-stable,'i.e. if (peW?(R2) and (p = 0 on K^ then

(peWKK-);
(c) Ci.,(G\K) = Ci,,(G\K°) for all open G;
(d)C^9K^e^(KC))=0.
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For p = 2 the equivalence of (a), (b) and (d) is due to Havin [16]. The
equivalence of (b) and (c) is due to T. Bagby [3]. Havin's result was

extended to p < 3 (i.e. q>l---\ in [17; Th. 11 and Cor. 2, p. 316];

this was in fact the motivation for the introduction of (a,^)-thin sets. What
is new is the extension of Ravin's result to all p < oo . The equivalence of
(c) and (d) and other conditions which we omit is an immediate
consequence of theorem 6.

Let / be a function which is defined (a,^)-q.e. Then / is called (a,^)-
quasicontinuous if for every £ > 0 there is an open set G such that the
restriction f\Qc is continuous as a function on G''. / is called (^q)-finely
continuous at a point XQ if it is defined there, and if for all e > 0 the set
Kc = {^l/00-/0co)l^£} is (a^)-thin there.

It is known that'every (a,^)-quasicontinuous function is (a,^)-fmely
continuous (a,^)-q.e. This result is due to Fuglede [13]. See also [17]. It is a
general result of Brelot [6; Theorem IV: 7] that the Choquet property
implies the converse. (We are grateful to T. Kolsrud for pointing out this
fact.) Thus we have the following theorem.

THEOREM 8. — A function is (oi,q)-quasicontinuous if and only if it is
(Qi,q)-finely continuous (a,^)-q.e.

An application of this result is given by Kolsrud in [22].

3. The main inequality.

For the proof of Theorem 1 we shall use subdivisions of R4 into
dyadic cubes. For each n ^ 0 we subdivide R^ into non-intersecting
cubes of side 2 ~ " , so that each cube in one generation is split into 2^
cubes of the next generation. Q and Q' will always denote such dyadic
cubes. The volume of Q is |Q|, its sidelength is <f(Q), and ^(x)
denotes the characteristic function of Q. The cube concentric to Q with
sidelength 3<f(Q) is denoted Q. Finally, the unit cube is denoted Io.

As is well known there are constants a and A so that

G,(x) ^ AM'-', 0 < \x\ ^ 1,
and

G,(x) ^Ae-^, M > 1.
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See e.g. Stein [26]. Note that 0 < a < d since we are assuming
o^ ^ d , q > 1.

Set
ft^x) = IxF-^, 0 < \x\ < 1 ,
ft , (x)=0, | x |^ l .

Our first observation is that it is enough to estimate

f (ft^^Ac.
j^

In fact, for any fixed n,

G, * p(x) < A(ft, * n(x) + f e-^ d^(y))
J\x-y\>\

^ Aft, ^ n(x) + A ^ ^-^^^^(Q).
^(Q)=2-"

Thus

(G, ^ ^(x) ^ A(ft, ^ H)^(X) + Af ^ ^^^^(Q))^
V(Q)=2-" /

^ A(ft, ^ H)^(X) + Af ^ ^-.dist(x.Q)Y 1

V(Q)=2-" /

f Z e-^^^Qr}
V(Q)=2-" /

^ A(ft, * ^Y(x) + A ^ ^-^^^^(Q)^,
(Q)=2-"

so that

(G^^rfx^Af (ft,^p)^x+A ^ n(Q)^
JR^ JR^ ^(Q)=2-"

But if n is chosen so that l~n^/d < 1/2, we have for

,.Q, /(Q)-2-: W.M-^(-^»)'-'^AH(Q).-',

so that

fw^= S f W^H^A ^ H(Q)^
J ^(Q)=2-" JQ ^Q)-2-n

which proves the assertion.
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Secondly, we observe that it is no loss of generality to assume
supp H c: IQ . In fact,

| (ft,* ^Ydx = f ( S f ^(x-y)d^y))pdx
J^ JR^W^I JQ /

xeQ

^ A f I: ( [ ^(x-y^d^dx.
JR^(Q)=I \JQ /

r / r \p r
It follows that it ^(x-y)d\i(y)) dx^ A W^^, then

JR^JQ / JQ

| (ft, * p^dx ^ Z f W^^ ^ A [w^n.
JR^ <'(Q)=l JQ J

It is easily seen that

ft. * HW < f i,̂ ^ < £ 2<"+l><<'-a»n(B,-„(x))
J|x->.|<l I-'1"}'! n=0

^ A E ^^^(x),
^(Q) ̂  l ^^

and that

W.M - f Wr ̂  A £ 2--.V(B,-.(,)r.
JO \ ° / ° n = l.A s (-^.r^.

''(QX1 Vv^ /

So

JW^A^,^.A^^|

-Lj.W)'————

It is thus enough to prove

(*) [ f z <f(Q)flt-d^l(Q)xQ(x)Ydx<A ^ ^(Q)a-d^l(Q))p|Q|.
JloV(Q)^l / <'(Q)^1

Our argument is rather similar to Hansson's proof of the strong type
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capacitary inequality [15]. We first prove a lemma. We set

^W^Q)-^).

LEMMA 1. - Let s > 0, n ^ 1. TTi^n /or any dyadic cube I ,

£ fc(Qy £ fc(QyiQi < A £ ^Qr^iQi.
Q' c 1 Q c Q' Q c I

Proo/. — If n = 1 the left hand side is

£ fc(Qy £ fc(Q)IQI = A £ ^Qy £ ^y(Qr
Q' c: I Q c: Q' Q' c= I Q c Q'

^ A £ ^QWQ') £ 2 - " a ^A £ ^QT^IQI.
Q' <= I 2-"^^(Q') Q' c: I

If n > 1, first assume Q' = Ip. Then, by Holder's inequality there
are e, e' > 0 so that

£ &(QriQi=A £ fc(Qr-^((^(Q)
Q c IG Q c ̂

H — 1 S

^ A ( £ fc(Q)n-l+Y(Q)c(+£^i(Q)y~l+sf £ ^(Q)"-6'̂ ))"^5

VQ^o / \Qcio /

^ A f £ ^^^^(Q/^y"1^^)"^^-.
\Q <= lo /

Multiplying by ^(lo)5, and observing that

^n+s = bd^^^oY^ ^ £ ^Qr^^Q)^6,
Q^^

we find
n-i

n(V Z &(Q)"|Q|<A(S fc(Q)'•+V(Q)<'+t)''^s^(To)A^-
Q c to \Q c ̂  /

^ A £ ^(Qr^^Q)^6.
Q ^ I O

Replacing IQ by Q' we obtain by homogeneity

^QT^QT £ &(Q)"|Q|^A £ ^^^^(Q)^6.
Q <= Q' Q c Q'
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Now divide by ^(Q')8 and sum over Q' c= I, obtaining

£ fc(QT £ fc(QriQl ^ A ^ ^QrvcQ)^6 ^ ^(Q-»-
Q'c l Q(=Q' Qd Q ' : Q c Q ' c = I

^ A ^ ^Qr-iQi,
Q c = l

which proves the lemma.

We can now prove (*). It is clearly enough to prove

f fz fr(Q)Y^A $: fc(Q)W
Jlo VxeQ / ^(Q)<1

Let p = n + s, n = integer, 0 < s ^ 1. Then

f f £ fc(Q)Y ̂  ^ A f I: fc(Q^) . . . b(^)( S fc(Q)Y rfx.
JlQ \xeQ / Jlo Q^3. . . ^ Q , 9 x \xeQ /

For fixed Qi, . . . , Qn we split the sum over Q according to which
Q/5 are inside or outside Q. The case Q c Qi has to be considered
separately. For the others, look at

f E &(Qn)...&(Qi)f £ fr(Q)Y^
J Q^3 ... = , Q l 9 x \Q^Qc=Q^i /

< A ^ b(Qn)...fc(Q^i) £ fcCQ)5

Qn=> ^Qfc+l Q^Qfc+ l

£ fc(Q.)...&(Qi)IQI,
Q ^ Q^ ... =, Ql

which by repeated application of the lemma is ^ A ̂  b (Q^IQI.
Q

For Q c: Q^ we have

f £ ^(Q.)...fc(Qi)f £ fc(Q)Y^
j Q n ^ ^Ql V e Q ^ Q i /

= £ fc(Qn)... fc(Qi) f f £ fc(Q)xQ(x)Y^.
Qn^ ^Ql JQi \Qc:Qi /
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By Holder's inequality the integral over Qi is

^IQil^ff £ ^QW^^^iQj1-^ ^ fc(Q)|Q|Y
\ jQ lQc=Ql / V Q ^ Q I /

^AIQJ1-^ £ ^i(Q)^(Q)flty^A|QJl-s(^(Q,)^(QOa)5

\Q ^ Qi /

=Afc(QOS |QJ.

Thus the left hand side is
<A £ ^•••^^(QO^IQil.

Qn => • ^ Ql

Again repeated applications of the lemma show that this is

<A£fc(Q)^|Q|.
Q

This proves Theorem 1.

In the case of Borel sets Theorem 2, the Kellogg property, now follows
from Theorem 1 and the following lemma.

LEMMA 2. — If there is a Borel set E without the Kellogg property then
for any e > 0 there is a compact Eg c= E such that C^(Eg) > 0 and

fyc^E.nB^y-1^
Jo I,———¥^———) -S^8 foral1 X 6 E £ -

Proof. - Set (a^C^EnB^x))^-1 8-1 == C(E,8,x). Suppose that
r1

C(E,8,x) d5 < oo for all x e E n ^,,(E) = E', and C^(E') > 0.
Jo
Then for some (large) £o > 0 there is an E c E' such that

C(E^,8,x)d8 < £o, and C^(E^) > 0. By Choquet's theorem we
Jo
can assume that E is compact. We choose Eg so that
C, /E^ n Bg(x)) > 0 for all x e E and 8 ^ 0 . Let

T1
W(x) = C(E^,8,x)d8, and let a be a point of E^ with

W(a) > sup W(x) — e/4. Then choose y > 0 with
xeE^

f lC(E^,8,x)d8>W(a)-£/4.
Jy
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If p < y is small enough, then for all xeBp(a),

| 1 C(E^,8,x) rf8 > W(a) - £/4 > sup W(x) - 3£,
^ -E^ 4

so p C(E^,8,x) d8 = W(x) - f ' C(E^,8,x) d6 < ̂ .
Jo Jy 4

Let E , = E ^ n B p ( a ) . Then Eg is compact, C^(Eg) > 0, and

f1 C(E,,8,x) d6 < 3£ + C^(Bp(o))^-1 f1 8<01^-^-1)-1 d8 < e
Jo 4 JY

if p is small enough.

Proof of Theorem 2. — If the property fails, choose Eg by the lemma.
Let H be its capacitary measure. Then

P(Es) = f V^4i = f (G. * n)̂ x ^ A f W^n.
JEe JR4 JE,

But by property (h) on p. 163 ^E.nBgOc)) < C^(E^B^(x)), so

^^r^-'^T'^'for "E-
Thus V^* dn < Aen(Ee) which is a contradiction if A£ < 1. The

Kellogg property follows.

Remark. — John L. Lewis has given a different, simpler proof of
Theorem 1, obtaining the good-^ inequality

|{x;R. * n(x)>C^}| < C2£|{x;R. * \i(x)>^}\
i f / r °° /ff\\^/p ')+ rUo ^"^^^'y} >^(

where Ci and €3 are positive absolute constants and ^ > 0 and
0 < e < 1/2 are arbitrary.

Remark added in April 1983. — Per Nilsson recently observed the
inequality

U°° ^V^
A-^R, * H) ^(x) < (8a-d^(B,(x)r-g-) ^ A(R, ̂  n)(x),
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where # denotes the Fefferman-Stein « sharp » operation. Theorem 1
then follows from the Fefferman-Stein inequality for the sharp function.
See Ada Math. 129 (1972), 137-193, Theorem 5.

Nilsson also noticed that Theorem \ means that the positive cones in
IA, and in the Besov space Bp^ coincide. See J. Peetre, New thoughts on
Besov spaces. Duke University, Durham, N. Q, 1976, Theorem 4 in Ch. 8.

4. Nonlinear potential theory revisited.

We shall use the dyadic cubes Q and expanded cubes Q of section 3.
For any such Q we let (po be a C°° function such that XQ ^ <PQ ^ XQ-

We write (RQ d[i == p(q>Q). As in section 3 one easily finds that there are

constants A, ^\ and ^ such that for ue^'^

A- E (-J&r^) < W:,.M, A E (-^Y\M.
f(^w\ VWJ / W)^2 v^ /

We set ^(x) == S f-^^Y 'CPQM, and
wwv^ /

f^.,^=^(H).

The reason for introducing the functions (pp is that in this way we get a
lower semicontinuous ^. By Theorem 1 we have

A-1 J^%da ^ fv^dp = f(G. * ^Ydx ^ A f^,^.

In the classical potential theory of Gauss, Frostman, H. Cartan, etc.,
the energy of a measure \i plays a fundamental role. In our situation,
where we use Bessel potentials, the energy of a measure ^ in Ji^ n L2., is

100 = \GI. * M^ = f(G« * ̂ rix.

In the nonlinear situation, the generalized energy,

I(H)= fv£.^== f(G,*n)^x
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plays a similar part, although the difficulties mentioned in the introduction
arise. Here we shall show that using the equivalent functional

^(\i) = j 'W^ d[i as the energy one can develop nonlinear potential

theory in a way which completely parallels the classical theory as exposed
in e.g. Carleson [8,ch.III] or Landkof [23, ch. II]. In particular the

a
problems associated with the number q = 2 — — disappear.a

This programm is carried out in a series of propositions. These may be of
some interest in themselves, but our motivation is that they lead to proofs of
Theorems 2,3 and 4, and we carry the theory as far as we need to achieve that
goal.

In what follows a and q will be fixed, and we usually drop those indices.

We have J^(^) = |^4i= ^ ^(Q)^01^1"^^ which we
J ^(Q)^l

abbreviate by writing
^(H) = Z a^^Y.

^(Q)<1

For a compact K we now define the capacity ^^q(K) = ^(K) by

^W = sup^OOiHe^K),^) ^ 1},

or equivalently

<^(K)-1 = in^JW-^HeJ^K)},

where we denote {[i e M + (K); [i(K) = 1} = M^ (K).

^(•) is extended to arbitrary sets as an outer capacity in the usual way :

<€(G) = sup {^(K); K compact, K c= G} if G open.
^(E) == inf{^(G); G open.G => E}, E arbitrary.

By Theorem 1, C,^ and V^q are equivalent capacities, i.e.

A-1 C^(E) ^ <,,(E) ^ AC^(E).

PROPOSITION 1. — Let K c= R^ be compact. Then there is a
ye^(K) which minimizes J^(-), so that ^(y) = ^(K)1-^.
Moreover i^^q(x) ^ ^(y) (a,^)-q.e. on K.
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Proof. - Only the last assertion needs proof. Suppose ^(x) < ^(y)
on a subset of K with positive capacity. Then there is an e > 0 and
a compact

F c K n {x; ̂ (x^j^y)-^

such that ^(F) > 0. Let reJ^F) and ^(x) < oo, and set

H 6 = ( l - 8 ) y 4 - 8 T , 0 ^ 8 ^ 1,

so that ^^(K), and thus J^g) ^ j^(y). This leads to a
contradiction. In fact, consider

^(Hs) =^(Y+8(T-y)) = E ^(Y^+S^^-yCcpQ)))^
^(Q)^l

By the mean value theorem

(Y((PQ)+8(T((pQ)-Y((pQ)y
= 7(^0^ + 8^((PQ)-Y((pQ))p(Y((pQ)+^Q(T((pQ)-Y((pQ)))p-l, where

0 < ^ < 8 .
Moreover

0 ^ Y(<PQ) + ^Q(^((PQ)-Y((PQ)) ^ Y(<PQ) + T((PQ).

Thus

^(^5) = ^(Y) + 5pEaQ(T((pQ)-Y((pQ))(Y((pQ) + ̂ (r^-Y^Qy.

Now the sum of the absolute values is majorized by

^(Y^+TCcpQ)^ ^ A^(y) + AJ^(T) < oo.

It follows that we can let ^Q -^ 0 in the sum, and obtain

^(Hs) = ^(Y) + S^ZaQT^YCcpQ^-1 - £aQY((pQn + 0(8)

= ^(Y) + 8p( (^dT-^Y))-^) < ̂ (y) - 8pe + 0(8) < ̂ (y)

if 8 is small enough.

PROPOSITION 2.- ^7^(x) ^ J^(y) ^^r^w^r^ on suppy.

Proof. - Suppose ^(xo) > ^(y). Then ^T^x) > ^(y) on a
neighborhood G of XQ. If XQ e suppy, then y ( G ) > 0 . But by
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proposition 1, ^(x) ^ J^(y) q.e. on K, and thus a.e. (y), whence

the contradiction ^Y dy > ^(y).

If ^6^ is a signed measure, u = u + — u _ , such that
^(u+-(-u_) < oo we define

^(x)= ^ a^W2^)^^
<'(Q)<1

^00= [^da= $: aQ|n((pQ)r
J ^(QW

Let E,, = {x; /)r^(x)>?lor /)r^++ ^-(x)=+oo}.

PROPOSITION 3. - With the above notation ^a.^) ^ —^(n) /or an^

compact K c E^.

Remark. — We have not proved that

<^(E,) = sup {^.,(K); K c= E,, K compact},

so we cannot immediately replace K by E), in the proposition. But since
Choquet's capacitability theorem applies to C,^ (see e.g. [24]), and since

^
C^ is equivalent to ̂ , we have ^ (E^)^ .^ (a ) . It is of course

not difficult to prove that Choquet's theorem applies to ^ q as well. Cf.
[23, ch. II].

Proof. - First let [i e M + , and let CT be a probability measure with
^(a) < oo and supp CT c E^. Then

X ^ j-T^CT = SaQu((pQ^-1 CT((PQ) < ̂ (H)1/^^)1^,

thus J^(CT)1-4 < ^-^^(a).

Choosing CTK as extremal measures for compact subsets K of the open
set E^ we find

^(E,) = sup ^,(K) = sup ^(CTK)1-4 ^ ^-^(a).
K c E^ K c E^

It follows in particular that ^({^;^W=oo}) = 0.
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Now we let ^ be a signed measure, and we let K c E^. By the above
we can assume ^+-^- < oo on K. If OK again is the extremal
probability measure for K we find in the same way

X ^ J ̂ doK = ̂ [^(^[^-^(^aK^Q) ^ ̂ ^(OK)^,

which proves the proposition.

PROPOSITION 4. - Let K be compact. Then

^(K) = m{{^([i)^e^+,i^^(x) ^ 1 (a^)-q.e. on K} .

Proof. - By the argument in the proof of Proposition 3

^,,(K) ^ inf {^(n); H e M +, ̂ (x) ^ 1 q.e. on K} .

But the capacitary measure y^, normalized so that

YK(K)=^(K),

gives ^^(x) ^ 1 q.e. on K by Proposition 1.

PROPOSITION 5. - Let K be compact. Then

^.,(K) = sup {n(K); H e M + (K), ̂ (x) ^ 1 on supp ^} .

Proq/1 - Equality holds for [i = y^. Suppose pe^'^^),

^r^(x) ^ 1 on suppn. Then J^(p) = [^^^^ ^(K), so that

f
H(K) ^ ^K^ = SaoYK^/'^^Q) ^ ^(YK)1^^^)1^

^^(K)1/^^)1^,
and H(K)<^(K).

PROPOSITION 6. - If [i G e^+ anrf ^(n) < oo, then i^^ is (a,^)-
quasicontinuous, i.e. for any e > 0 r/im? 15 an open G mth ^,,(G) < e
such that ^loc is continuous on G ' .

proof. - ^(x)= ^ aQHCcpQ^-1^^).
^(QXl
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Set

^W= Z ^WCPQM,
2-"^(Q)^1

so that ^^ is continuous. Then

](^-^) ̂  = ^ ^((pQ^ = £„ -^ 0 as n ̂  oo .
J ^(Q)^2-"

Let
E,={x;^(x)-^(x)>)i}.

Then as in the proof of Proposition 3, ^^(E^) ^ f^~qf-n' Let £ > 0,
oo oo

choose nj -»• oo and ^ -^ 0 so that ^ ^/^n < E - Set G = (J E^.,
j= l J 7=1 J

so that G is open and ^^q(G) < £. Then, outside G we have

0 ^ ^(x) - ̂ (x) ^ ^/ for all j, so ^ converges uniformly to

^^(x), which proves the proposition.

In the next two propositions we extend Proposition 1 to arbitrary sets.
Cf. Maz'ja-Havin [24, Theorem 5.5].

PROPOSITION 7. — Let G be open mth ^a,,(G) < oo. Then there is a
measure y e ^ ^ ( C j ) such that

^W > ̂ (Y) = ̂ (G)1"' (°̂ ) - q-c- ^ G •

Remark. — As we shall see later in Theorem 4 the inequality is true
everywhere on G.

Proof. — Let K^ ^ G be compact sets such that as n -> oo, ^(KJ

tends to sup ^(K) = ^(G), and let y^e^^K,,) be the corresponding
K cG

capacitary measures. By weak compactness there is a subsequence {y^.}
that converges weakly to ye^^G) with ^(y) < liminf^(yn).

If m < n, then

1/2 (Y. + Vn) e ̂ .+ (K^), and thus ^(l/2(y, + y^)) ^ ^(y,).

As w , n - > o o , ^(yj and ^(y^) decrease to ^(G)1"". It follows from
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uniform convexity (Clarkson's inequalities, Clarkson [11]) that

•^(Ym-Y,) = 5;OQlYm(<PQ) - 7nW -̂  0 .

Choosing e > 0 and letting n -> oo we find

•^(Ym-Y) < l""infjr(^_yj < g
W-* 00

for w large enough, and thus lim ^(y,-y) = 0. It follows easily from
m~' 00 -

Proposition 3 and the remark following it that a subsequence {iT1"-,}
converges to ^(x) q.e., thus that ^(x) ̂  ^(y). Then y has to be a
probability measure, and the proposition is proved.

PROPOSITION 8. - Let E be an arbitrary set with 0 < < ,̂ (E) < oo
Then there is a ye .<,-*-(£) such that M

,̂,00 ̂  ^(Y) = ̂ ,(E)1 -" (a,̂ ) - q.e. on E.

Moreover ^,(x) < ̂ (y) ewr>'w/iere on supp y.

Proq/: - Let G,, G, => E, be a decreasing sequence of open sets

such that G,77<=G,, E=HG,:, and ,̂,(G,) ̂  <,,(E), and let

Y.e^^G,,) be the corresponding capacitary measures (Proposi-
tion 7). If m < n then ^(yj ̂  ̂ (y,), and l/2(y^+y,) e^̂ G,,;), so
^(l/2(Y,n+y,,))^(yJ. Again ^(y^-y,)-»o by Clarkson's inequali-
ties, and there is a y e M + (E) such that ^(y^-y) ̂  0 as m -^ oo. That
^00 ̂  ^(Y) q.e. on E and ̂ (x) ̂  ̂ (y) on supp y follows easily as
before.

PROPOSITION 9. - Let E be an arbitrary set with 0 < %'. (E) < oo.
Let_ u fre the measure constructed in Proposition 8, but normalized so that
"(E) = ̂ ,«(E). r/ien n(S) < ̂ ,,(EnS) /or an^ 5ore/ set S.

Proq/: - First suppose E is open. Let {FJ? be compact subsets of
E such that the corresponding capacitary measures u, with
u«(F,) = ̂ (F,,) converge weakly to u. Let K be a compact subset of
S. Then o, = U.IK satisfies ^"(x) < 1 on supp o, c K n F,, so

Hn(K) = o,(K) < ̂ ,,(KnF,) < ̂ .,,(SnE).

7
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By weak convergence it follows that p(K) ^ ^(SnE). Since S is Borel
it follows that \i(S) ^ ^(SnE).

Now let E be arbitrary. Let V be an open neighborhood of S n E
such that ^(V) < ^(SnE) -+- e, for some £ > 0. Let {GJ be open
sets containing E such that ^(Gn) -> ̂ a,^) and such that

S n G,, c= V. Let ^ be the capacitary measures for G^, and suppose
^ -^ weakly. By the above ^(S) < <^(SnG,.)
^ ^,4(V) < ^(SnV) + £. The lemma follows.

PROPOSITION 10. — Let E be an arbitrary set. Let XQ e e^q(E) n E, let
e > 0, and suppose that ^^(EnG) > 0 for all neighborhoods G of XQ.
Then for every sufficiently small G the (normalized) capacitary measure \i for
E n G satisfies ^(xo) < £ and iT^{x) ̂  1 (a^)-q.e. on E n G.

Proof. - By definition ^(xo) ^ A ^ (2n(d-a4)^l(B2-n(xo)))p-l.
n=0

Choose £' > 0 and choose N so large that

^ (2n(d-^^(EnB2-n(xo)))p-l < £'.
n=N

It follows from Proposition 9 that if G c= Bz-NQco), then

-r^(xo) ^ Af^1 2"(<<-a<i)(p-l))^(EnB2-N(xo))p-l + A£' ^ 2A£',
\n=0 /

if N is large enough. Here we have used the observation that convergence
of the series

f (^-^^(EnB^-nCxo))^-1

n=0

implies that lim (2N(d-a9)^(EnB2-N(xo)))p-l = 0 incase a^ < d, and
N-»oo

that lim N^^Er^-N^o))^1 = 0 in case o^ = d .
N-»oo

Proof of Theorem 3. — We can now copy Choquefs original proof [9]. See
also [17]. Let E c= R4, and let {0^}^° be an enumeration of all rational balls
(i.e. 0^ = {x;|x-xj<rj ;with x^ and r^ rational) that intersect E. Let
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^ be the capacitary potential for EnO^, if ^(EnO,.) > 0, so that
^.(x) ^ 1 q.e. on EnO^, and set A^ = {xeEnO^^(x)<l}. Set
A^ = E n 0^ if ^(EnO,,) = 0. Then, by Proposition 10,

^ (E)c=(extE)ufQAnY
\ i /

(We shall see below in Theorem 4 that equality holds.)

Let E > 0. Since i^n(x) ^ 1 ̂ ' e ' on E n ()„ and since ,̂ is
quasicontinuous, there is an open CD,,, ^0,4 (^n) < c2 -n , such that i^n^
is continuous on co^, and ^(x) ^ 1 on E n O ^ n c o ^ . Set

( 00 \ _ / °° \

F = E n P) (o; , so that F = E n (°| c< . Then G = (Fy has the
n=l ) \n=l /

required properties. In fact, ,̂ is continuous on F and ^n(x) ^ 1 on
FnO, , so it follows that ^(x) ^ 1 on FnO^, and thus
F n An = 0. Thus ^(E) c (Fy. Moreover

(Fy n E c: Fc n E c= Q co^, so ^^((Fy n E) < 8, q.e.d,
i

In order to prove Theorem 4 we need one more proposition. Since we are
interested not just in measures \JL with bounded i^^ or finite ^(|i), we
have to replace Proposition 3 with the following.

PROPOSITION 11. — Let [i e jy + . Then

U^W>U)^^^).

Remark. — This estimate is false for V^ q if 1 < q < 2 — — • In fact,

in this case V^ = + oo if p is a point mass. The estimate was proved for
VS,,, q > 2, by Adams-Meyers [2; Prop. 4.4], and extended to

q > 2 — — by Adams-Hedberg [1; Lemma 4]. For q = 2 it is of course
a

classical. See e.g. Carleson [8; Theorem III.5]. The observation that
^^qW < °° (a,^)-q.e. is due to Meyers [25; Theorem 2.1] and the proof
given here (and in [1]) is just a modification of his proof.

Proof. — It is enough to prove the estimate for W^. Let y be the
capacitary measure for a compact subset K of {W^ > ̂ }, normalized so
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that y(K) = ^(K). To simplify the proof we assume that K c: B^(0).

Let xesuppy , and set M^(x) = SUB ̂ ( _ 5 w ) ' Then

^W= f1 f^^^Y 1 dr- ̂  AM^W1 W^(x) ^ AM^W1,
Jo \ r / r

since W^(x) ^ A^^x), and ^^(x) ^ 1 on supp y. Thus

supp Y cr {AM^W1 > ?L} = {M^(x) > f^-y 'I •
I W J

By a well-known covering lemma (see e.g. Stein [26; Ch. I. 1.6]) one can
cover supp y with a union of balls B, = B,.(Xf) so that the balls

- B^ = B,./5(Xf) are disjoint, and

H(1/5B,) , /XV- 1

Y(B.)

It follows that
/A\4"1 /I \ /A\4"1

^,(K) = y(K) ^ Ey(B,) < - En .B, ^ . n(l),
i V^ / i V / V7 1 /

q.e.d.

Remark. — One can avoid having recourse to the balls , B, by

appealing to the deeper covering theorem of Besicovitch [4]. What we have
proved is enough for the proof of Theorem 4.

Proof of Theorem 4. — In one direction the theorem follows from
Proposition 10, and (in case C^(EnG) = 0 for all neighborhoods G
of Xo) from the observation that if E is thin at XQ , then there is an open set
containing E\{xo} which is also thin at XQ .

The proof of the converse follows Adams-Meyers [2; Theorem 5.1]. See
also Frostman [12]. (The proof given in [17] requires W^ to be bounded.)

Let XQ € E c= R4, and suppose there is a [i 6 M + such that

lim inf W^(x) - W^(xo) = n > 0.
x--xo,xeE\{xo}
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We claim this implies that XoG^(E), i.e.

F S^-^-^C^EnB^o)^-1 8-1 d8 < oo .
Jo

We first observe that the assumptions imply that for any e > 0 and
r > 0 there is a y e ^+(B(xo,r)) such that W^Xo) < e and

lim inf W^x) ^ 1.
x-»xo,xeE\{xo}

To see this let r > 0 and set ^ = ̂ ^. Let |x-Xo| < r- Then

^(Bs(x)) = n(B,(x)) if 8 <^ so

W^fx) - W^fx) = F ̂ (^^-^(Ba^-1^v 7 v / J,/2 §(^)(P-D § '

which is a continuous function of x. Thus

lim inf W^(x) - W^(xo) = lim inf W^x) - W^(xo) = T| .
X-^XQ, x e E\{XQ} X^XQ, x e E\{XQ}

On the other hand W^(xo) -^ 0 as r -^ 0, so we can choose r so small
that W^(xo) < r|e. Now choose y = ri1"4^.

With this Y we let p < r and set y? = y|^, y = ̂  + y;. For

|x—Xo| < - we have

^^L^r'̂ ii'̂ r'f-^
,^(,^)>y-^^

.Af^K^Y-^AW.M.AW.M.A..
•Jp \ " / "

But W^(x) ^ A^W^x) +WT'P(x)), s o o n B^(xo) n E we have

W^Cx) 5? —— W^(x) - W^'P(X) ^ —— - Ac > —— if p and e areA! 2Ai 4Ai
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small enough. By Proposition 11

^(Bp/^nE) ^ Ayp(l) = Ay(Bp(xo)).

This proves the theorem.
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