Annales de l'institut Fourier

Detlef Muller
 Estimates of one-dimensional oscillatory integrals

Annales de l'institut Fourier, tome 33, no 4 (1983), p. 189-201

http://www.numdam.org/item?id=AIF_1983_33_4_189_0
© Annales de l'institut Fourier, 1983, tous droits réservés.
L'accès aux archives de la revue «Annales de l'institut Fourier» (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

$\mathcal{N u m d a m}^{\prime}$

ESTIMATES OF ONE-DIMENSIONAL OSCILLATORY INTEGRALS

by Detlef MÜLLER

1. Introduction.

If U is an open domain in $\mathbf{R}^{\boldsymbol{k}}$ and if f is a smooth, real valued function on U, one may define the associated oscillatory integral as

$$
\mathrm{E}_{f}(\vartheta)=\int_{U} \vartheta(x) e^{2 \pi i f(x)} d x
$$

where ϑ belongs to $\mathscr{D}(\mathrm{U})$, the space of testfunctions on U.
When f has the form $f=\sum_{j=1}^{n} \eta_{j} \psi_{j}$, where the $\psi_{j} \in \mathrm{C}^{\infty}(\mathrm{U})$ are realvalued functions and η_{j} are real parameters, one is interested in the asymptotic behaviour of $\mathrm{E}_{\mathrm{n}_{j} \psi_{j}}(\vartheta)$ as $\left(\eta_{1}, \ldots, \eta_{n}\right)$ tends to infinity, for several reasons.

For example, if μ is a smooth measure on a smooth submanifold of $\mathbf{R}^{\mathbf{m}}$, and if the support of μ is sufficiently small, then the Fourier-Stieltjes transform $\hat{\mu}\left(\eta_{1}, \ldots, \eta_{n}\right)$ may always be written as $\mathrm{E}_{\Sigma \eta_{j} \psi_{j}}(\vartheta)$ for certain functions ψ_{j} and ϑ.

Good information about the asymptotic behaviour of such FourierStieltjes transforms is needed to solve the synthesis problem for smooth submanifolds of \mathbf{R}^{m} (see e.g. [7]). And, as Professor Y. Domar has pointed out to me, such knowledge would also yield information about the decay at infinity of solutions of partial differential equations (see e.g. [5]).

As far as I know, satisfactory aswers to the above problem have only been given for oscillatory integrals $\mathrm{E}_{\sum_{n_{j} \psi_{j}}(\vartheta) \text { with }}$

$$
\Sigma \eta_{j} \psi_{j}\left(x_{1}, \ldots, x_{k}\right)=\sum_{j=1}^{k} \eta_{j} x_{j}+\eta_{k+1} \psi_{k+1}\left(x_{1}, \ldots, x_{k}\right)
$$

which correspond to surface carried measures (see [2], [4], [6]). In some sense, the other extreme is the case where $\Sigma \eta_{j} \psi_{j}$ is a function of only one real variable, which corresponds to measures on curves. For this case, we will prove some quite general results.

2.

Let $\psi \in \mathrm{C}^{\infty}\left(\mathrm{I}, \mathbf{R}^{n}\right), \psi=\left(\psi_{1}, \ldots, \psi_{n}\right)$, where $\mathrm{I} \neq \varnothing$ is some bounded open interval in \mathbf{R}. For $\xi, \eta \in \mathbf{R}^{n}$ let $\xi \cdot \eta$ denote the Euclidean inner product on \mathbf{R}^{n}, and correspondingly let

$$
\eta \cdot \psi(x)=\sum_{j=1}^{n} \eta_{j} \psi_{j}(x)
$$

Further let

$$
|\eta|:=\max _{j}\left|\eta_{j}\right| \quad \text { for } \quad \eta \in \mathbf{R}^{n} .
$$

Define the torsion τ of ψ by

$$
\tau(x)=\operatorname{det}\left(\psi_{j}^{(i+1)}(x)\right)_{i, j=1, \ldots, n}=\operatorname{det}\left(\psi^{\prime \prime}(x) \psi^{\prime \prime \prime}(x) \ldots \psi^{(n+1)}(x)\right),
$$

where ψ is regarded as a column vector and $\psi^{(k)}$ denotes the k-th derivative of ψ. At least for $n=2$ we have $\tau(x)=k(x)\left|\psi^{\prime \prime}(x)\right|^{2}$, where k is the torsion of the curve $\gamma=\{(x, \psi(x)): x \in I\}$ in \mathbf{R}^{n+1}. Let

$$
e(t)=e^{2 \pi i t} \quad \text { for } \quad t \in \mathbf{R}, \quad \text { and } \quad e(g)=e \circ g
$$

for $g \in \mathbf{C}^{\infty}(\mathrm{I}, \mathbf{R})$. If $\psi_{0}(x)=x$ for $x \in \mathbf{R}$, then for $\vartheta \in \mathscr{D}(\mathrm{I}), \eta_{0} \in \mathbf{R}$ and $\eta=\left(\eta_{1}, \ldots, \eta_{n}\right) \in \mathbf{R}^{n}$, we have

$$
\sum_{\sum_{0} n_{j} \psi_{j}}(\vartheta)=(\vartheta e(\eta \cdot \psi)) \hat{)}\left(-\eta_{0}\right) .
$$

So it will be slightly more general to study the behaviour of $|\vartheta e(\eta \cdot \psi)|_{\text {PM }}$ as $|\eta| \rightarrow \infty$, where

$$
|\varphi|_{P M}=\sup _{t \in \mathbf{R}}|\hat{\varphi}(t)|
$$

for every $\varphi \in \mathscr{D}(\mathbf{R})$.

For certain reasons (see [3]; [7], Th. 4.1), we will also study $|\vartheta e(\eta \cdot \psi)|_{A}$, where

$$
|\varphi|_{\mathrm{A}}=\int|\hat{\varphi}(t)| d t
$$

for every $\varphi \in \mathscr{D}(\mathbf{R})$.
We will first state our main results and prove some corollaries :

Theorem 1. - Let $\vartheta \in \mathscr{D}(\mathbf{I})$. Then
(i) $|\vartheta e(\eta \cdot \psi)|_{\mathrm{A}}=0\left(|\eta|^{\frac{1}{2}}\right)$, as $|\eta| \rightarrow \infty$.
(ii) If for some subinterval J of I and some $\sigma>0$

$$
|\vartheta(x)| \geqslant \sigma \text { and }|\vartheta(x)-\vartheta(y)|<\sigma / 2 \text { for all } x, y \in \mathbf{J}
$$

and if $\left.\psi_{1}\right|_{\mathrm{J}}, \ldots,\left.\psi_{n}\right|_{\mathrm{J}}$ are linearly independent modulo affine linear functions, then there is a constant $\mathrm{C}>0$, such that

$$
|\vartheta e(\eta \cdot \psi)|_{\mathrm{A}} \geqslant \mathrm{C}(1+|\eta|)^{\frac{1}{2}}
$$

for all $\eta \in \mathbf{R}^{n}$.
Corollary 1. - The following two conditions are equivalent:
(i) For each $\vartheta \in \mathscr{D}(\mathbf{R}), \vartheta \neq 0$, there are constants $c>0, \mathrm{C}>0$, such that for all $\eta \in \mathbf{R}^{n}$

$$
c(1+|\eta|)^{\frac{1}{2}} \leqslant|\vartheta e(\eta \cdot \psi)|_{A} \leqslant C(1+|\eta|)^{\frac{1}{2}}
$$

(ii) $\psi_{1}, \ldots, \psi_{n}$ are linearly independent modulo affine linear functions on every non empty open subinterval of I .

Proof of Corollary 1. - (i) follows directly from (ii) by Theorem 1. Now suppose that there exists a vector $v \in \mathbf{R}^{n}, v \neq 0$, such that $v \cdot \psi$ is affine linear on some open subinterval $\mathscr{J} \neq \varnothing$ of I. Then we have for any nontrivial $\vartheta \in \mathscr{D}(\mathscr{J})$

$$
|\vartheta e(s v \cdot \psi)|_{\mathrm{A}}=|\vartheta|_{\mathrm{A}} \neq 0 \quad \text { for all } \quad s \in \mathbf{R},
$$

since $e(s v \cdot \psi)$ is the product of a unimodular complex number and a unitary character of \mathbf{R}.

Thus (i) is not fulfilled, q.e.d.

Remark. - Condition (ii) of Corollary 1 is clearly satisfied if $\tau^{-1}(\{0\})$ has empty interior. As will be shown later (Lemma 3), this is always the case if $\psi_{1}, \ldots, \psi_{n}$ are real analytic and linearly independent modulo affine mappings. However one should notice that global linear independence does not in general imply local linear independence.

Theorem 2. - (i) If $\tau^{-1}(\{0\})=\varnothing$, then for $\vartheta \in \mathscr{D}(\mathrm{I})$

$$
|\vartheta e(\eta \cdot \psi)|_{\mathrm{PM}}=0\left(|\eta|^{-1 /(n+1)}\right) \quad \text { as } \quad|\eta| \rightarrow \infty .
$$

(ii) If $\vartheta \in \mathscr{D}(\mathrm{I})$, and if there exists an $x_{0} \in \mathrm{I}$ with $\vartheta\left(x_{0}\right) \neq 0$ and $\tau\left(x_{0}\right) \neq 0$, then there exists an $\varepsilon>0$ and a function $\xi \in \mathbf{C}^{\infty}\left((-\varepsilon, \varepsilon), \mathbf{R}^{n}\right)$ with

$$
\operatorname{det}\left(\xi(y) \xi^{\prime}(y) \ldots \xi^{(n-1)}(y)\right) \neq 0 \quad \text { for all } \quad y \in(-\varepsilon, \varepsilon),
$$

such that, for some $\mathrm{C}>0$,

$$
|\vartheta e(s \xi(y) \cdot \psi)|_{\mathrm{PM}} \geqslant \mathrm{C}(1+|s|)^{-1 /(n+1)}
$$

for all $s \in \mathbf{R}$ and $y \in(-\varepsilon, \varepsilon)$.
Assume that $\tau^{-1}(\{0\})$ has empty interior. Then we have
Corollary 2. - There exists $a \vartheta \in \mathscr{D}(\mathrm{I}), \vartheta \neq 0$, such that for all positive $\alpha_{1}, \ldots, \alpha_{n} \in \mathbf{R}$ with $\sum_{1}^{n} \alpha_{j} \leqslant(n+1)^{-1}$, there exists a constant $\mathrm{C}=\mathrm{C}\left(\alpha_{1}, \ldots, \alpha_{n}\right)>0$ such that

$$
\begin{equation*}
|\vartheta e(\eta \cdot \psi)|_{\mathrm{PM}} \leqslant \mathrm{C} \prod_{j=1}^{n}\left|\eta_{j}\right|^{-\alpha_{j}} \tag{2.1}
\end{equation*}
$$

Conversely, if $\alpha_{1}, \ldots, \alpha_{n} \in \mathbf{R}$ are positive, and if there exists a $\vartheta \in \mathscr{D}(\mathrm{I})$, $\vartheta \neq 0$, and $a \mathrm{C}>0$ such that (2.1) holds, then

$$
\sum_{1}^{n} \alpha_{j} \leqslant(n+1)^{-1}
$$

Proof of Corollary 2. - If $\tau^{-1}(\{0\})$ has empty interior, then there is of course an $x_{0} \in I$ with $\tau\left(x_{0}\right) \neq 0$, and so, for $\vartheta \in \mathscr{D}(\mathrm{I})$ with sufficiently small support near x_{0},

$$
|\vartheta e(\eta \cdot \psi)|_{\mathrm{PM}} \leqslant \mathrm{C}(1+|\eta|)^{-1 /(n+1)}
$$

by Theorem 2, (i).

If $\alpha_{1}, \ldots, \alpha_{n}$ are positive and $\Sigma \alpha_{j} \leqslant(n+1)^{-1}$, then

$$
\prod_{j}\left|\eta_{j}\right|^{\alpha_{j}} \leqslant|\eta|^{1 /(n+1)} \quad \text { for } \quad|\eta| \geqslant 1
$$

hence

$$
|\vartheta e(\eta \cdot \psi)|_{\mathrm{PM}} \leqslant C \prod_{j}\left|\eta_{j}\right|^{-\alpha_{j}} \quad \text { for } \quad|\eta| \geqslant 1
$$

and the same estimate holds for all η if one replaces \mathbf{C} by $\mathbf{C}+|\vartheta|_{\mathrm{L}^{1}}$.
Conversely, let now $\vartheta \in \mathscr{D}(\mathrm{I}), \vartheta \neq 0$, such that (2.1) holds for some $\alpha_{j} \geqslant 0$, and assume

$$
\Sigma \alpha_{j}=(n+1)^{-1}+\delta, \quad \delta>0
$$

Since $\tau^{-1}(\{0\})$ has empty interior, there is an $x_{0} \in I$ with $\vartheta\left(x_{0}\right) \neq 0$ and $\tau\left(x_{0}\right) \neq 0$. Choose $\varepsilon>0$ and $\xi \in \mathrm{C}^{\infty}\left((-\varepsilon, \varepsilon), \mathbf{R}^{n}\right)$ as in Theorem 2 (ii). Since $\operatorname{det}\left(\xi(y) \xi^{\prime}(y) \ldots \xi^{(n-1)}(y)\right) \neq 0$ for all $y \in(-\varepsilon, \varepsilon)$, there exists a $y_{0} \in(-\varepsilon, \varepsilon)$ with

$$
\xi_{j}\left(y_{0}\right) \neq 0 \quad \text { for } \quad j=1, \ldots, n
$$

It follows

$$
\left|\vartheta e\left(s \xi\left(y_{0}\right) \cdot \psi\right)\right|_{P M} \geqslant C^{\prime}(1+|s|)^{-1 /(n+1)}
$$

On the other hand, (2.1) yields

$$
\begin{aligned}
\left|\vartheta e\left(s \xi\left(y_{0}\right) \cdot \psi\right)\right|_{\mathrm{PM}} & \leqslant \mathrm{C} \prod_{j}\left|s \xi_{j}\left(y_{0}\right)\right|^{-\alpha_{j}} \\
& =\left(\mathrm{C} \prod_{j}\left|\xi_{j}\left(y_{0}\right)\right|^{-\alpha_{j}}\right)|s|^{-1 /(n+1)}|s|^{-\delta} .
\end{aligned}
$$

For $|s|$ sufficiently large this leads to a contradiction to (2.2), q.e.d.
Corollary 2 demonstrates that the result in Theorem 2 is in some sense best possible.

3.

Before we start to prove the theorems above we will state some lemmas. The first one is due to J.-E. Björk and is cited in [3], Lemma 1.6 :

Lemma 1. - Let $\mathrm{I} \neq \varnothing$ be a bounded, open interval in \mathbf{R}, and let $\varphi \in \mathscr{D}(\mathrm{I}), \quad g \in \mathrm{C}^{p}(\mathrm{I})$ with

$$
0<\mathrm{C}_{1} \leqslant\left|g^{\prime}(x)\right|+\left|g^{\prime \prime}(x)\right|+\cdots+\left|g^{(p)}(x)\right| \leqslant \mathrm{C}_{2}
$$

if $x \in \overline{\mathrm{I}}$, where C_{1} and C_{2} are constants and p is a positive integer. Then there exists a constant C not depending on g, such that

$$
\left|\int \varphi(x) e^{2 \pi i t g(x)} d x\right| \leqslant \mathrm{C}(1+|t|)^{-1 / p}
$$

for every $t \in \mathbf{R}$.
The second lemma will be used to prove the remark following Corollary 1. I would like to thank Professor H. Leptin for pointing out to me a shorter proof than my original one. By « \wedge » we denote the exterior product in the Grassmann algebra $\Lambda\left(\mathbf{R}^{n}\right)$.

Lemma 2. - Let $\psi \in \mathrm{C}^{\infty}\left(\mathrm{I}, \mathbf{R}^{n}\right)$. Then

$$
\psi(x) \wedge \psi^{\prime}(x) \ldots \wedge \psi^{(n-1)}(x)=0
$$

for all $x \in I$ implies

$$
\psi^{\left(k_{1}\right)}(x) \wedge \psi^{\left(k_{2}\right)}(x) \wedge \ldots \wedge \psi^{\left(k_{n}\right)}(x)=0
$$

for all $x \in \mathrm{I}$ and $k_{1}, \ldots, k_{n} \in \mathbf{N}_{0}$.
Proof. - Fix $x_{0} \in I$, and assume first $\psi\left(x_{0}\right) \neq 0$. If $u \in \mathbf{C}^{\infty}(\mathbf{I}, \mathbf{R})$, then

$$
(u \psi)^{(k)}=\sum_{j=0}^{k}\binom{k}{j} u^{(k-j)} \psi^{(j)}
$$

so $\psi \wedge \psi^{\prime} \wedge \ldots \wedge \psi^{(n-1)} \equiv 0$ implies

$$
(u \psi) \wedge(u \psi)^{\prime} \wedge \ldots \wedge(u \psi)^{(n-1)} \equiv 0
$$

So, it is no loss of generality to assume

$$
\psi_{n}(x)=1 \quad \text { for } \quad x \in I
$$

If $\left\{e_{j}\right\}_{j}$ denotes the canonical basis of \mathbf{R}^{n}, we may thus write $\psi(x)=\sum_{j=1}^{n-1} \psi_{j}(x) e_{j}+e_{n}=\rho(x)+e_{n}, \quad$ where $\rho(x) \in \mathbf{R}^{n-1} \times\{0\} \subset \mathbf{R}^{n}$. This yields
$0=\psi(x) \wedge \psi^{\prime}(x) \wedge \ldots \wedge \psi^{n-1}(x)=\rho(x) \wedge \rho^{\prime}(x) \wedge \ldots \wedge \rho^{(n-1)}(x)$ $+e_{n} \wedge \rho^{\prime}(x) \wedge \ldots \wedge \rho^{(n-1)}(x)$,
and since $\rho(x), \rho^{\prime}(x), \ldots, \rho^{(n-1)}(x)$ are clearly linearly dependent, we get

$$
0=\rho^{\prime}(x) \wedge \rho^{\prime \prime}(x) \wedge \ldots \wedge \rho^{(n-1)}(x)
$$

By induction over n, we now may assume

$$
0=\rho^{\left(k_{2}\right)}(x) \wedge \rho^{\left(k_{3}\right)}(x) \wedge \ldots \wedge \rho^{\left(k_{n}\right)}(x)
$$

for $x \in I$ and $k_{j} \geqslant 1$.
This implies

$$
\psi^{\left(k_{1}\right)}(x) \wedge \ldots \wedge \psi^{\left(k_{n}\right)}(x)=e_{n}^{\left(k_{1}\right)}(x) \wedge \rho^{\left(k_{2}\right)}(x) \wedge \ldots \wedge \rho^{\left(k_{n}\right)}(x)=0
$$

for $0 \leqslant k_{1}<k_{2}<\cdots<k_{n}$, where we considered e_{n} as the function $e_{n}(x)=e_{n}$.

Thus we have proved

$$
\psi^{\left(k_{1}\right)}\left(x_{0}\right) \wedge \psi^{\left(k_{2}\right)}\left(x_{0}\right) \wedge \ldots \wedge \psi^{\left(k_{n}\right)}\left(x_{0}\right)=0
$$

for all $x_{0} \in I_{0}=\{x \in I: \psi(x) \neq 0\}$ and $k_{j} \geqslant 0$. By continuity, the same holds true for $x_{0} \in \bar{I}_{0} \wedge I$, hence for all $x_{0} \in I$, since for $y \in I \backslash \bar{I}_{0}$ clearly $\psi^{(k)}(y)=0$ for every $k \in \mathbf{N}_{0}$.

Lemma 3. - If $\psi=\left(\psi_{1}, \ldots, \psi_{n}\right) \in \mathbf{C}^{\infty}\left(\mathbf{I}, \mathbf{R}^{n}\right)$ is real analytic, and if $\psi_{1}, \ldots, \psi_{n}$ are linearly independent modulo affine mappings, then $\tau^{-1}(\{0\})$ has empty interior, where τ denotes the torsion of ψ.

Proof. - Assume $\tau(x)=0$ for every x in some nonempty open interval $\mathbf{J} \subset \mathbf{I}$. Fix $x_{0} \in \mathbf{J}$. Then, passing to a possibly smaller interval, we may assume that ψ_{j} has an absolute convergent series expansion

$$
\psi_{j}(x)=\sum_{k=0}^{\infty} a_{k}^{j}\left(x-x_{0}\right)^{k}, \quad j=1, \ldots, n, \quad x \in \mathrm{~J}
$$

Define vectors

$$
a_{k}=\left(a_{k}^{j}\right)_{j=1, \ldots, n} \in \mathbf{R}^{n}
$$

and

$$
a^{j}=\left(a_{k}^{j}\right)_{k=2, \ldots, \infty} \in \mathbf{R}^{\mathbf{N}_{1}}, \quad \mathbf{N}_{1}=\mathbf{N} \backslash\{0,1\}
$$

By Lemma 2, $\psi^{\left(k_{1}\right)}\left(x_{0}\right), \ldots, \psi^{\left(k_{n}\right)}\left(x_{0}\right)$ are linearly dependent for any $k_{j} \in \mathbf{N}$ with $2 \leqslant k_{1}<\ldots<k_{n}$, i.e. $a_{k_{1}}, \ldots, a_{k_{n}}$ are linearly dependent for $2 \leqslant k_{1}<\ldots<k_{n}$. But this implies that a^{1}, \ldots, a^{n} are linearly
dependent, i.e. there exist $v_{1}, \ldots, v_{n} \in \mathbf{R}$, not all zero, with

$$
\begin{gathered}
0=\sum_{j} v_{j} a^{j}, \text { i.e. } \\
\sum_{j} v_{j} \psi_{j}(x)=\sum_{j} v_{j} a_{0}^{j}+v_{j} a_{1}^{j}\left(x-x_{0}\right) \quad \text { for } \quad x \in J .
\end{gathered}
$$

But, since ψ is real analytic, this equation holds for all $x \in I$, i.e. $\sum_{j} v_{j} \psi_{j}$ is affine linear.

4.

Proof of Theorem 1. - It is well-known (see e.g. [1], [7]) that for $\varphi \in \mathscr{D}(\mathbf{R})$ one has the estimate

$$
\begin{equation*}
|\varphi|_{A} \leqslant\left\{2|\operatorname{supp} \varphi||\varphi|_{\infty}\left|\varphi^{\prime}\right|_{\infty}\right\}^{1 / 2} \tag{4.1}
\end{equation*}
$$

where $|\operatorname{supp} \varphi|$ denotes the Lebesgue measure of the support of φ. From (4.1) one immediately gets (i) of Theorem 1.

Now, suppose there exists a subinterval J in I and a $\sigma>0$ such that $|\vartheta(x)| \geqslant \sigma$ and $|\vartheta(x)-\vartheta(y)|<\sigma / 2$ for $x, y \in J$, and such that $\psi_{1}, \ldots, \psi_{n}$ are linearly independent modulo affine mappings on J. Then a simple compactness argument yields :

There are constants $\varepsilon>0, \delta>0$, such that for every $\eta \in \mathbf{R}^{n}$ with $|\eta|=1$ there is an interval J_{η} of length 2ε in J with

$$
\begin{equation*}
\left|\eta \cdot \psi^{\prime \prime}(x)\right| \geqslant \delta \quad \text { for all } \quad x \in J_{\eta} \tag{4.2}
\end{equation*}
$$

Now choose $\varphi \in \mathscr{D}(-\varepsilon, \varepsilon), \varphi \geqslant 0$, with $\int \varphi(x) d x=1$. For fixed $\eta \in \mathbf{R}^{n}, \eta \neq 0$, set $\eta^{\prime}=|\eta|^{-1} \eta$, and choose $J_{\eta^{\prime}}$ as in (4.2). Let $\tilde{\varphi}$ be a suitable translate of φ such that $\operatorname{supp} \tilde{\varphi} \subset J_{\eta^{\prime}}$. Then we get
(4.3) $0<\sigma / 2 \leqslant\left|\int \vartheta(x) \tilde{\varphi}(x) d x\right|$

$$
\begin{aligned}
& =\left|\int \vartheta(x) e(\eta \cdot \psi)(x) \tilde{\varphi}(x) e(-\eta \cdot \psi)(x) d x\right| \\
& \leqslant|\vartheta e(\eta \cdot \psi)|_{\mathrm{A}}|\tilde{\varphi} e(-\eta \cdot \psi)|_{\mathrm{PM}},
\end{aligned}
$$

since $J_{\eta^{\prime}} \subset J$.

For $\xi \in \mathbf{R}$ one has

$$
\begin{aligned}
\{\tilde{\varphi} e(\eta \cdot \psi)\}^{\wedge}(-\xi) & =\int \tilde{\varphi}(x) e(-\xi x-\eta \cdot \psi(x)) d x \\
& =\int \varphi(x) e(-|\eta| g(x)) d x
\end{aligned}
$$

where g is a function on $[-\varepsilon, \varepsilon]$ which is a certain translate of the function

$$
x \mapsto \xi^{\prime} x+\eta^{\prime} \cdot \psi(x) \quad \text { on } \quad J_{\eta^{\prime}}
$$

where $\xi^{\prime}=|\eta|^{-1} \xi$.
But (4.2) implies

$$
\delta \leqslant\left|g^{\prime \prime}(x)\right| \quad \text { for every } \quad x \in[-\varepsilon, \varepsilon] .
$$

Moreover, if we set $A=2 \sup _{x \in J}\left|\psi^{\prime}(x)\right|, \quad B=\sup _{x \in J}\left|\psi^{\prime \prime}(x)\right|$, then for $|\xi| \leqslant A|\eta|:$

$$
\begin{aligned}
\left|g^{\prime}(x)\right|+\left|g^{\prime \prime}(x)\right| & \leqslant\left|\xi^{\prime}\right|+\left|\eta^{\prime}\right|(\mathrm{A}+\mathrm{B}) \\
& \leqslant 2 \mathrm{~A}+\mathrm{B}
\end{aligned}
$$

for every $\quad x \in[-\varepsilon, \varepsilon]$.
Thus, by Lemma 1 , there exists a $C>0$, such that for $|\xi| \leqslant A|\eta|$

$$
\begin{equation*}
\left|\int \tilde{\varphi}(x) e(-\xi x-\eta \cdot \psi(x)) d x\right| \leqslant C(1+|\eta|)^{-1 / 2} \tag{4.4}
\end{equation*}
$$

And, if $|\xi|>A|\eta|$, then integration by parts yields

$$
\begin{align*}
\mid \int \tilde{\varphi}(x) e(-\xi x-\eta & \cdot \psi(x)) d x \mid \tag{4.5}\\
& =\left|\int e(-|\eta| g(x))\left(\frac{\varphi}{2 \pi i|\eta| g^{\prime}}\right)^{\prime}(x) d x\right| \\
& \leqslant(2 \pi|\eta|)^{-1} \int\left\{\frac{\left|\varphi^{\prime}(x)\right|}{\left|g^{\prime}(x)\right|}+\frac{|\varphi(x)|\left|g^{\prime \prime}(x)\right|}{\left|g^{\prime}(x)\right|^{2}}\right\} d x \\
& \leqslant C^{\prime}|\eta|^{-1},
\end{align*}
$$

where C^{\prime} is some constant depending on φ, ψ and A only, since for $x \in[-\varepsilon, \varepsilon]$ we have $\left|g^{\prime \prime}(x)\right| \leqslant \mathrm{B}$ and $\left|g^{\prime}(x)\right|=\left|\xi^{\prime}+\eta^{\prime} \psi^{\prime}(y)\right| \geqslant \mathrm{A}-\mathrm{A} / 2$ for some $y \in J$.

Now, by (4.4), (4.5),

$$
|\tilde{\varphi} e(-\eta \cdot \psi)|_{P M} \leqslant\left(C+C^{\prime}\right)|\eta|^{-1 / 2} \quad \text { if } \quad|\eta| \geqslant 1
$$

which together with (4.3) proves Theorem 1 (ii).
Proof of Theorem 2. - Assume $\tau(x) \neq 0$ for every $x \in I$, and let $\vartheta \in \mathscr{D}(\mathrm{I}), \vartheta \neq 0$. Passing to a smaller interval, we may even assume that I is closed.

Set $\mathbf{A}=2 \sup _{x \in \mathrm{I}}\left|\psi^{\prime}(x)\right|$, and for $\xi^{\prime} \in \mathbf{R}, \quad\left|\xi^{\prime}\right| \leqslant A, \quad \eta^{\prime} \in \mathbf{R}^{n},\left|\eta^{\prime}\right|=1$, $x \in I$ let

$$
\mathrm{Q}_{\xi^{\prime}, \eta^{\prime}}(x)=\sum_{j=1}^{n+1}\left|\left(\xi^{\prime} x+\eta^{\prime} \cdot \psi(x)\right)^{(j)}(x)\right| .
$$

Since $\tau^{-1}(\{0\})=\varnothing$, we have $Q_{\xi^{\prime}, \eta^{\prime}}(x) \neq 0$ for every $x \in I$, and since $\mathrm{Q}_{\xi^{\prime}, \eta^{\prime}}(x)$ is continuous in $\xi^{\prime}, \eta^{\prime}$ and x on the compact space $[-\mathrm{A}, \mathrm{A}] \times\left\{\eta^{\prime} \in \mathbf{R}^{n}: \quad\left|\eta^{\prime}\right|=1\right\} \times \mathrm{I}, \quad$ there exist constants $\mathrm{C}_{1}>0$, $C_{2}>0$, such that

$$
\begin{equation*}
C_{1} \leqslant Q_{\xi^{\prime}, \eta^{\prime}}(x) \leqslant C_{2} \tag{4.6}
\end{equation*}
$$

for all $x \in \mathrm{I}, \xi^{\prime}, \eta^{\prime}$ with $\left|\xi^{\prime}\right| \leqslant \mathrm{A},\left|\eta^{\prime}\right|=1$.
So, using quite the same arguments as in the proof of Theorem 1 (ii), we can deduce from (4.6) by Lemma 1 :

$$
|\vartheta e(\eta \cdot \psi)|_{\mathrm{PM}} \leqslant \mathrm{C}(1+|\eta|)^{-1 /(n+1)}
$$

for some constant $\mathrm{C}>0$, which proves (i).
To prove (ii), we will assume, for convenience, $x_{0}=0$, i.e. $0 \in I$, and $\vartheta(0) \neq 0, \quad \tau(0) \neq 0$.

Let $\varepsilon>0$ such that $\tau(x) \neq 0$ for $x \in[-\varepsilon, \varepsilon]$.
Since $\psi^{\prime \prime}(x), \quad \psi^{\prime \prime \prime}(x), \ldots, \psi^{(n+1)}(x)$ are linearly independent for $x \in[-\varepsilon, \varepsilon]$, there exists a function $\xi \in \mathbf{C}^{\infty}\left([-\varepsilon, \varepsilon], \mathbf{R}^{n}\right)$, such that for every $x \in[-\varepsilon, \varepsilon]$

$$
\begin{equation*}
\xi(x) \cdot \psi^{(j)}(x)=0, \quad j=2, \ldots, n \tag{4.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\xi(x) \cdot \psi^{(n+1)}(x)=1 \tag{4.8}
\end{equation*}
$$

Differentiating (4.7) and inserting (4.8), we get

$$
\xi^{\prime}(x) \cdot \psi^{(j)}(x)=0 \quad \text { for } \quad j=2, \ldots, n-1
$$

and

$$
\xi^{\prime}(x) \psi^{(n)}(x)=-1
$$

Repeating this process, one inductively obtains for $k=0, \ldots, n-1$

$$
\left\{\begin{array}{l}
\xi^{(k)}(x) \cdot \psi^{(j)}(x)=0 \quad \text { for } \quad j=2, \ldots, n-k, \tag{4.9}\\
\xi^{(k)}(x) \cdot \psi^{(n+1-k)}(x)=(-1)^{k}
\end{array}\right.
$$

So, if we define matrices

$$
\mathrm{S}(x)=\left(\xi_{j}^{(n-i)}(x)\right)_{i, j=1, \ldots, n}, \quad \mathrm{~T}(x)=\left(\psi_{i}^{(j+1)}(x)\right)_{i, j=1, \ldots, n}
$$

then (4.9) means that $\mathrm{S}(x) \mathrm{T}(x)$ is an upper triangular matrix with diagonal elements 1 or -1 , which yields

$$
\begin{equation*}
\left|\operatorname{det}\left(\xi(x) \xi^{\prime}(x) \ldots \xi^{(n-1)}(x)\right)\right|=|\operatorname{det} S(x)|=|\tau(x)|^{-1} \neq 0 \tag{4.10}
\end{equation*}
$$

for all $x \in[-\varepsilon, \varepsilon]$.
We now claim :
There is a constant $\mathbf{C}>0$, such that for all $y \in(-\varepsilon, \varepsilon)$ and $s \in \mathbf{R}$

$$
\begin{equation*}
|\vartheta e(s \xi(y) \cdot \psi)|_{\mathrm{PM}} \geqslant \mathrm{C}(1+|s|)^{-1 /(n+1)} . \tag{4.11}
\end{equation*}
$$

Choose $y \in(-\varepsilon, \varepsilon)$. Then by (4.7), $\quad(\xi(y) \cdot \psi)^{(j)}(y)=\delta_{j, n+1}$ for $j=2, \ldots, n+1$, and so a Taylor expansion of $\xi(y) \cdot \psi$ yields (for ε small enough)
(4.12) $(\xi(y) \cdot \psi)(x)=\alpha+\beta x+(x-y)^{n+1} g(x)$ for $x \in(-2 \varepsilon, 2 \varepsilon)$,
where g is some smooth function on $(-2 \varepsilon, 2 \varepsilon)$ which depends on y, and where α and β are some real numbers.

Let us remark here that although $g=g_{y}$ depends on $y, \sup _{|x|<2 \varepsilon}\left|g_{y}^{\prime}(x)\right|$ is uniformly bounded for $y \in(-\varepsilon, \varepsilon)$.

Now take $\rho \in \mathscr{D}(\mathbf{R})$ with $\operatorname{supp} \rho \subset(-\varepsilon, \varepsilon), \quad \rho \geqslant 0 \quad$ and $\int \rho(x) d x=1$, and set $\tilde{\rho}(x)=\rho\left(|s|^{1 /(n+1)}(x-y)\right)$.

If we choose ε small enough such that

$$
|\vartheta(0)-\vartheta(x)|<\frac{1}{2}|\vartheta(0)|
$$

for $x \in(-2 \varepsilon, 2 \varepsilon)$, then we get

$$
\begin{aligned}
\left|\int \vartheta(x) \tilde{\rho}(x) d x\right| & =\left|\int \vartheta\left(|s|^{-1 /(n+1)} x+y\right) \rho(x) d x\right||s|^{-1 /(n+1)} \\
& \geqslant \frac{1}{2}|\vartheta(0)||s|^{-1 /(n+1)}, \quad \text { if } \quad|s| \geqslant 1
\end{aligned}
$$

and since

$$
\begin{aligned}
\left|\int \vartheta(x) \tilde{\rho}(x) d x\right| & =\left|\int_{\mid} \vartheta(x) e(s \xi(y) \cdot \psi) \tilde{\rho}(x) e(-s \xi(y) \cdot \psi) d x\right| \\
& \leqslant \mid \vartheta e\left(\left.s \xi(y) \cdot \psi\right|_{\mathrm{PM}}|\tilde{\rho} e(-s \xi(y) \cdot \psi)|_{\mathrm{A}},\right.
\end{aligned}
$$

(4.11) will follow if we can show that $|\tilde{\rho} e(-s \xi(y) \cdot \psi)|_{A}$ is uniformly bounded for $y \in(-\varepsilon, \varepsilon)$ and $|s| \geqslant 1$.

Now, regular affine mappings of \mathbf{R} induce isometries of the Fourier algebra $\mathrm{A}=\mathrm{A}(\mathbf{R})$, thus

$$
|\tilde{\rho} e(-s \xi(y) \cdot \psi)|_{\mathrm{A}}=\mid \rho e\left(-\left.s \xi(y) \cdot \tilde{\psi}\right|_{\mathrm{A}}\right.
$$

where $\mathcal{\psi}(x)=\psi\left(|s|^{-1 /(n+1)} x+y\right)$.
Since for $x \in \operatorname{supp} \rho$ and $|s| \geqslant 1$,

$$
|s|^{-1 /(n+1)} x+y \in(-2 \varepsilon, 2 \varepsilon)
$$

(4.12) yields

$$
\xi(y) \cdot \mathcal{\psi}(x)=\alpha+\beta y+\beta|s|^{-1 /(n+1)} x+|s|^{-1} x^{n+1} g\left(|s|^{-1 /(n+1)} x+y\right)
$$

Thus

$$
|\tilde{\rho} e(-s \xi(y) \cdot \psi)|_{\mathrm{A}}=|\rho e(h)|_{\mathrm{A}},
$$

where $\quad h(x)=-s|s|^{-1} x^{n+1} g\left(|s|^{-1 /(n+1)} x+y\right)$. If we again apply estimate (4.1), we easily see that $|\rho e(h)|_{\mathrm{A}}$ is uniformly bounded for $y \in(-\varepsilon, \varepsilon)$ and $|s| \geqslant 1$, q.e.d.

BIBLIOGRAPHY

[1] F. Carlson, Une inégalité, Ark. Mat. Astr. Fys., 25, B1 (1934).
[2] L. Corwin, F. P. Greenleaf. Singular Fourier integral operators and representations of nilpotent Lie groups, Comm. on Pure and Applied Math., B1 (1978), 681-705.
[3] Y. Domar, On the Banach algebra $A(\Gamma)$ for smooth sets $\Gamma \subset \mathbf{R}^{n}$, Comment. Math. Helv., 52 (1977), 357-371.
[4] C. S. Herz, Fourier transforms related to convex sets, Ann. of Math., (2), 75 (1962), 215-254.
[5] L. Hormander, Lower bounds at infinity for solutions of differential equations with constant coefficients, Israel J. Math., 16 (1973), 103-116.
[6] W. Littman, Fourier transforms of surface-carried measures and differentiability of surface averages, Bull, Amer. Math. Soc., 69 (1963), 766-770.
[7] D. Muller, On the spectral synthesis problem for hypersurfaces of \mathbf{R}^{n}, J. Functional Analysis, 47 (1982), 247-280.

Manuscrit reçu le 27 juillet 1982.
Detlef Müller,
Universität Bielefeld
Fakultät für Mathematik Universitätsstr. 4800 Bielefeld 1
(Federal Republic of Germany).

