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ON THE CLOSURE OF SPACES
OF SUMS OF RIDGE FUNCTIONS

AND THE RANGE OF THE X-RAY TRANSFORM

by Jan BOMAN

1. Introduction.

Let K be some set of straight lines in R" and set for a function
/ on R" with compact support

7(L) = f fds for L G K.
»/L

Here ds is the line element on L. When K is the set of all
^w

lines, the function / is usually called the X-ray transform of /.
A basic problem is to describe the range of the operator P : / —^ /,
the domain being specified. In this article K will always be the set
of all lines that are parallel to one of a given finite set A = {c^ }m_
of directions in R" . This choice is motivated by the situation in
modern medical X-ray techniques, so-called "tomography" (see
the survey articles [8] and [9]). The domain of P will typically be
the set of all functions in I/^R"), 1 <p <°°, whose support is
contained in a given convex, compact set in R" . The main problem
is to decide whether the range of P is closed.

After dualizing one is led to problems of the following kind.
Let ft be an open set in R" , and let a e S"~1 = {x G R" ; \x \ = 1}.
We define L9 (ft , a) to be the set of functions in L9 (ft) which
are constant on almost all lines parallel to a. The question is whether
the vector space

L^ft,^) + . . .+^02 ,^ ) = ^{/^/.eL^ft,^)} (1.1)

is a closed subset of L^ft). If ft is a bounded domain in R2 with
smooth boundary, the answer is yes for 1 < q < °° (Corollary 1.3).
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For 1 < q < °° the condition on the boundary can be considerably
relaxed (Theorem 1.5). In dimensions higher than two the situation
is quite different. We give an example of a convex set ft C R3 with
smooth boundary and two vectors a1 , a2 , such that (1.1) is not
closed for any q . On the other hand, if ft C R3 is convex and the
principal curvatures of the boundary are non-vanishing at every point
(this condition can be relaxed), then we prove that (1.1) is closed
for 1 < q < oo (Theorem 1.8).

A function on R" , or on a subset of R" , that is constant
on parallel lines will be called a ridge function ; this is an extension
of a terminology introduced by Logan and Shepp [6].

As was observed by Petersen, Smith, and Solmon [7] the
problem can be phrased as a question about the range for a certain
matrix valued differential operator. Indeed, if ft is convex, u
belongs to (1.1) if and only if the system of partial differential

m
equations V u y = u, D v Uy = 0 for 1 < v < m has a solution"v w ' ^a" "v

I/==l

(^i , . . . , u^) E L^ft/" ; here D^f denotes the directional deriva-
tive of / with respect to the vector a E R" .

The problem to decide when (1.1) is closed has been treated by
a number of authors. Shepp and Logan raised the problem in [6].
Hamaker and Solmon [3] treated the case when ft is a disk and
q = 2. A more general case was treated by Falconer [2]. Petersen,
Smith, and Solmon [7] proved that (1.1) is closed if ft is a bounded
domain in R2 whose boundary is a Lipschitz curve, and 1 < q < oo.
These authors consider more general norms, Sobolev norms, instead
of If -norms. They also treat a similar higher-dimensional problem
(see Section 8 below). Svensson [10] has studied a more general
problem where L9 (ft , a) is replaced by a space of functions that
are constant on a family of curves in R2 . Our result for the three-
dimensional case (Theorem 1.8) seems to have been previously known
only when ft is a ball; this special case is mentioned without proof
in [ I I ] , Section 7.

We now give a precise description of our results.
Let ft be an open subset of R" . For ^GS7 1"1 we denote

by ft^ the set of all lines parallel to a that intersect f t . The set
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^ is a subset of the factor space R^/L^ , L, = { X ^ ; X e R} , but
we may also think of ^ as a subset of some hyperplane H, C R"
that is orthogonal to a. For 1 < p < oo an operator
Pa : L^(^) —^ L^(^a) (^ indicates compact support) is defined

as follows : (P, f) (L) = J^ fds, L E f t , .

The natural projection R" ——> R"/L^ will be denoted ^ . The
norm in L^(^) is defined by integration with respect to the
Lebesque measure in H,. P^ is continuous, for if supp/ is contain-
ed in the compact set K , then supp P, /C p^(K) , and

IIP, /Up ^diamOC)1-1^ ||/||p (1.2)
by Holder's inequality.

For a given finite set A = {^ ; i/ = 1 , . . . , m} C S"~1 we

further define the operator P^ : L^(K) —> H L^(^»/) by

writing PA = (P^i , . • . , P<,m). For abbreviation we will usually
write ^ and P^ instead of ^ and P^. For given
G = (^i , • . . , gm), ^ € L^(ft^) we may now consider the
problem to find /G L^(S2) satisfying

P A / = G . (1.3)
To describe the necessary conditions on G for the existence

of / in (1.3) it is convenient to introduce the adjoint map of P^ .
Let L^(S2) and L^(^) be defined in the usual way, and
define the operator Q^ : L^(^)—> L^(ft) by constant
extension along lines parallel to a. The range of Q^ is the
space L^(n , a) of functions that are constant a.e. on almost every
line parallel to a. Then P, and Q, are formal adjoints in the

sense that f (P, /) u dy = f /Q^ u dx for /G L^(ft),
""a S'1

y€L^(^), p - ' + ^ - ^ l . Here dy is the Lebesgue
measure on ^ considered as a subset of the hyperplane

H^ C R" . Similarly we define Q^ : ̂  L^(^) -^ L^(n)

by U = («i , . . . , u^) —- S Q<,» "„ . If we write
v=l

(f,u)=f^fudx for fGL^Sl) and MGL^W, and similarly
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^^JU.fvuvdx for F = = ( / ^ • • • ? ^ ) ' ^eL^)-
and U = (^ , . . . , u^), ^ e L^(i2,), then we can state that
PA and Q^ are formal adjoints in the sense that

( P A / . U ) = ( / , Q ^ U ) . (1.4)
Now, the obvious necessary condition for the existence of /

in (1.3) is that G is orthogonal to ker Q^ . Our first theorem states
that this condition is also sufficient.

We will sometimes identify a function ^L^(^) with the
corresponding function Q^eL?^(n,a). From06 this point of
view Q^ is simply the imbedding operator L^(Sl ,a) <—» L^(ft).

We provide 4 (ft) with the usual topology, i.e. the inductive

limit topology on ^ L^.02), where K, C Sl is an increasing

sequence of compact sets whose union is equal to n, and L^ (ft)
denotes the set of functions with support in K .

A continuous linear mapping T between two topological
vector spaces X and Y is said to be a homorphism, if the induced
mapping defined on the factor space X/ker T is a topological isomor-
phism between X and im T C Y. An equivalent condition is that
T is an open mapping from X onto im T with the relative
topology induced from Y. If X and Y are Frechet spaces this is
also equivalent to im T being closed (see Theorem 3.2).

For a G S"-1 let <S(S2 , a) be the set of infinitely differentiable
functions on Sl which are constant on all lines parallel to a.

THEOREM 1.1. - Let Sl be an open convex subset of R" or
an open connected subset of R2 , and let 1 <p < oo. Then P

is a homomorphism from L^(i2) into n I-^(^), and im P^

is equal to the annihilator of kerQ^. More explicitly,
G = (^ , . . . , g^) belongs to im P^ if and only if

2 L 8. ̂  dy = 0
v=i"^v

for all u^ G &(Sl, ay) such that ^ u^ = 0.
v=l
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This theorem will be proved by means of an explicit construc-
tion of the solution /.

The condition on G given in the last sentence of the theorem
will sometimes be abbreviated G G(ker Q^ )1.

In the usual way we provide L^(?2) with the topology

induced by the sequence of seminorms qAf) = ( f |/^ dx)1^ ,
^K,

i = 1 , 2 , . . . , where K, is a family of compact sets whose union
is equal to i2 . In this way L^(S2) becomes a Frechet space.

By means ot well-known functional analysis we will deduce
the following statement from Theorem 1.1.

THEOREM 1.2. - Let Sl be an open convex subset of R" or an
open connected subset of R2 , and let 1 < q < oo. Then Q^ is a

homomorphism from ^ LL*^) into L^(ft), and hence
m
^ L^ (ft , ̂ ) is closed in L^ (ft).
v=l

Remark. - Our proof shows in fact that the range of Q^ is
equal to the annihilator in L^(Sl) of kerP^C®^), the space
of infinitely differentiable functions with compact support in Sl.
If Sl is convex, a function <p € ker P^ C (0(12) must be of the

m
form ^ = (^ D^p) V/ for some V/ecD(f t ) , hence in this case

Sy Lf^(i2 .a*") must consist precisely of those functions

/EL^c(^) for which (JI^ D^)/= 0 in the sense of the theory
of distributions.

Let us now turn to our main problem, which is to decide
whether (1.1) is closed in L^ft). Let us first consider the case
n = 2.

If n = 2 and the boundary is smooth one gets a positive answer
as an immediate consequence of Theorem 1.2.

COROLLARY 1.3. — Assume that t2 is an open bounded
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connected subset of R2 and that the boundary of ^l is of class
C1 . Let 1 < q < oo. 77^

f L^ft,^) isclosedin L^K). (1.5)
r=l

Proof. — Assume that u E L^ (12) and that M belongs to
the closure of 2y L^ft ,^). By Theorem 1.2 there exist

^ e ̂ oc^ » a v ) such that u == s^ ^ • It is enough to prove that

each Uy is in fact in L^ft). Let By be the set of points of the
boundary 3R which lie on some straight line parallel to av not
intersecting S2 (see fig. 1). Since 3S2 is smooth, the By must be
pairwise disjoint. Observe first that \u^(1 is
obviously integrable except possibly in some ^i a2

neighbourhood of By . To prove that u G L^R) -^

we write u^ = u — ^ My and observe that
y^^

each term on the right hand side must belong to
L^ in some neighbourhood of B , since By
are disjoint. Hence u GL/^B), which com-
pletes the proof.

Fig. 1
In this proof the assumption that 9?2 is

smooth was used only to infer that the sets By
are pairwise disjoint. It follows that the same
argument proves a much stronger statement, which we now formulate.

DEFINITION. — Let Sl C R" be open and connected. A point
x^QSl is called characteristic (with respect to the set ACS"" 1 )
if pa(x) belongs to the boundary of Sl^ for at least two different
a € A .

If Sl C R2 , the condition means that there are two straight
lines through x , each parallel to some a G A, such that Sl is
contained in one of the four angle shaped domains formed by the
two lines. It is easy to see that a connected subset of R2 can have
at most a finite number of characteristic points.
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COROLLARY 1.4.— Let i2 be an open bounded connected
subset of R 2 , and assume that the boundary of Sl has no
characteristic point. Then (1.5) holds for 1 < p < °° .

If Sl has characteristic points, regularity assumptions on Sl
are needed to guarantee (1.5). The next theorem treats this case.

An open wedge in the plane is an open connected set bounded
by two intersecting straight lines.

DEFINITION.- The open set Sl C R2 is said to satisfy an
interior wedge condition at x° € QSl, if there exists a neighbourhood
V of x° and an open wedge F with vertex at x° such that
vnrcn.

THEOREM 1.5. — Assume that S2 is an open bounded connected
subset of R2 which satisfies the interior wedge condition at every
characteristic point. Let 1 < q < °°. Then (1.5) holds.

Note that in this theorem regularity conditions on 8S2 are
imposed only near a finite number of points, and that q is allowed
to be equal to 1, whereas Petersen, Smith, and Solmon [7] require
aft to be essentially Lipschitz continuous and assume 1 < q < °°.
The method of Petersen et al. is based on the theory of so-called
very strongly elliptic systems of partial differential equations. On
the other hand, our proof of Theorem 1.5 depends only on Theorem
1.2 together with a very elementary integral inequality (Proposition
5.1').

The assumptions of Theorem 1.5 are essentially the weakest
possible. If q = °°, Lipschitz continuity of the boundary does not
suffice to imply (1.1). For 1 < q < °° examples show that one
cannot replace the wedge in the wedge condition by a cusp of the form
{(^ ,^3) ; 0 <x^ <x\+€} for any positive e . We will present
these and other counterexamples in Section 7 below.

A characteristic feature of the two-dimensional case is that the
kernel of Q^ is particularly simple.

PROPOSITION 1.6. — Assume that ft is an open connected subset
of R2 and that A has m elements. Then kerQ^ consists only
of polynomial functions of order at most m — 2.
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Proof. - Let U = (M, ,...,«„), «„ € L^ft , a"), Q^ U = 0,
i.e. 2 My = 0. Since D^v My = 0 we have for each ju

(^D,.)^=0 (1.6)

in the sense of the theory of distributions. But u is essentially a
function of one variable ; thus (1.6) means that its derivative of order
m — 1 is zero, i.e. u^ is a polynomial of degree at most m -- 2.

We now turn to the case of three dimensions. We begin with a
counterexample, which clearly shows the radical difference between
two and three dimensions.

THEOREM 1.7. — There exists an open bounded strictly convex
set ft C R3 with C°° boundary and two vectors avES2, v = 1,2,
such that for each q, 1 < q < <» , f (ft , a1) -t- L" (ft , a1) is not
closed in L^ft).

This theorem is proved in Section 7. An essential property of
the set ft constructed here is that part of 3ft looks like the surface
^3 = x\ -t- x\ near the origin, i.e. one of its principal curvatures
vanishes at one point. It is therefore natural to conjecture that (1.1)
must be closed if this never happens. Our next theorem states that
this is indeed the case, at least if ft is convex ; it suffices even to make
the curvature hypothesis at the (finitely many) characteristic points.

THEOREM 1.8. — Let ft be an open bounded convex subset of
R3 whose boundary is of class C2 , let a" G S2 , v = 1 , . . . , m,
and let 1 < p < °° . Assume that both principal curvatures of 3ft
are non-zero at every characteristic point. Then

m
^ L^ft,^) is closed in L^ft). (1.7)

i/=i

The property (1.1) of ft (relative to A) is somewhat related
to P-convexity (relative to a differential operator P) studied by
Hormander in [4], chapter III. It is interesting to compare for instance
the conditions on ft in our Theorem 1.8 (Theorem 1.7) and
Hormander's Theorem 3.7.4 (Theorem 3.7.3).

The contents of this paper revolve around three central themes :
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1. The constructive formula (2.1) for a solution of the equation
PA /= G, i.e. for a function / with prescribed projections
(Theorem 1.1). The formula gives a solution whose support is
slightly larger than the minimal convex set whose projections are the
supports of the given data gy . As a consequence the dual statement
(Theorem 1.2), which is deduced in Section 3, involves the space
^ocW instead of L^ft). By the simple localization principle
of Corollary 1.3 one obtains the corresponding result for L^ft)
provided ft C R2 and the boundary of ft is smooth.

2. A study of the case where ft C R2 and the boundary is
non-smooth. The main point here is Proposition 5.1; it is an
elementary lemma, which generalizes the following statement for
functions of one variable: if 1 < p < oo and

oo / , ,_Jfc+l

S J,-̂  lA^-cJ^r
k= 1 ~

for some constants c^ , then / E 1/^(0,1).

3. The three-dimensional case. Using a localization argument
(similar to the one used above in the proof of Corollary 1.3) we
show that the proof of Theorem 1.8 can be reduced to the situation
when all the given directions cp lie in one plane, say the plane
^ 3 = 0 . Then we are led to study a family of two-dimensional
problems on the domains ft^ = {(^ ,x^)\ (x^ ,x^ , z )Ef t} and
prove some estimates for the solutions of the equation Q^U = v ,
the point of these estimates is that they are uniform with respect to
the parameter z . These estimates are proved in Section 4. They
are deduced from analogous estimates for the dual equation
PA / == G, which are proved in the second part of Section 2. In
Section 6 we put the pieces together and complete the proof of
Theorem 1.8.

2. Construction of solution in L^(ft) to P ^ / = G .

In this section we will give a proof of Theorem 1.1 together with
an estimate for the solution of the system P^ /= G, which is essential
for the proof of our main result Theorem 1.8.
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The proof of Theorem 1.1 can be outlined as follows. The first
step is to study carefully the case when m = 1. This amounts to
constructing a right inverse of the operator P^ . This is done in
Lemma 2.1. By means of induction over m one reduces the proof
of Theorem 1.1 to the case g^ = . . . = ̂ _ i = 0. Next one observes
that G = (0, . . . , 0 , g) C (ker Q^ )1 implies that g = Sgo for
some gQ with compact support, where S is a certain differential
operator (Lemma 2.2). If E is the right inverse to P^ constructed
in Lemma 2.1, the solution to our problem can be written

/=D, i D,2. . .D^-i E^o . (2.1)
Then it is obvious that Py / = 0 for v < m ~~ 1 , and an easy

computation shows that P^ / = g .
We will now construct the right inverse of the operator P^.

We will take ft = R" , and note again that p/R") = R"/L^ can
be identified with any hyperplane H^ perpendicular to a. We may
assume that a = (0, . . . , 0,1). For x E R " , writex = ( y ,;<•„),
and identify H^ with R"~1 . Write D .̂ = 3/3^., D = (D^ . . . . ,
D,_,), D^D^...^-^, a=(a, , . . . ,c^).

LEMMA 2.1. — Let K be a compact subset of R" , let e > 0,
and let 1 <p < °°. Then there exists a right inverse E^ == Eg ^
of P^ with the following properties :

(A) if /zEL^H,) and sapphCp^K), then /= E.AEL^R"),
P^ / = h , and supp f C K, == K 4- [x \\x \ < e} ;

(B) E^ A is C°° as a function of x^ , and E^ preserves
regularity with respect to the y-variables in the following sense :
^D^GL^H,), then D0 D^(E^) E L?(R"), r = 0,1 , . . . .

Proof. - Take a locally finite partition of unity 1 == S 0^ on
R" ~ l such that 0^ € C°° and diam (supp ̂ ) < 6/2. Take

V/ G C°° (R) such that f ̂  dt = \ and supp V/ C [- e/4, e/4].

Whenever p^^ anc* ^PP ^fc ^ave some point in common, say z^ ,
we choose a number v^ such that ( z ^ , i ^ ) G K . Then we set
E^==/ , where /(j/ ,^) = A(jQ ^ 0^(^) V/(x^ - i;^). Since K
is compact the sum is finite. It is obvious that all the assertions of
Lemma 2.1 hold.
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LEMMA 2.2. -Let A^a^^i be a finite set of distinct
elements of S"~1 , wite H^ = H^n , let ^GL^(H^) , and assume
that G = (0 , . . . , 0 , ^ ) e (ke rQA) 1 . Z^o^ p^(^)GH^ by
61', i/ = 1, . . . , m — 1 . Then there exists a (unique) function
^GL^(H^) such that

D,i D ,2 . . .D^- i^ = g ' (2.2)
77^ support of §Q is contained in the convex hull of the support
of g .

Proof. - Note that V + 0 , since av ^ ̂ w for v < m. Again
we assume that ^m = (0, . . . , 0, 1) and write x = (^ , x ^ ) ,
where y = ̂  (x) G H^ = R"-1 . In particular ^ = (b\ a^).
We note that some &" may be parallel although no two a" are
parallel. After renumbering the y and changing g^ by a multi-
plicative constant we can write (2.2) as

D?! •••^o =^ (2.3)
where 2 ^ = w — 1 and b1 , . . . , bk are pairwise non-parallel.

It is easy to see that the existence of g^ satisfying (2,3) is
equivalent to
. (2.4)

J t s g ( y + tb^)dt= 0, ^GFT 1 - 1 , 0 < 5 < ^ - 1 , / i = l , . . . , f c ;
for if (2.4) holds, then g^ can be constructed by successive integr-
ations. Let us fix one M , say ^ = 1. After a rotation of the coordi-
nate system in R"~1 = H^ we may achieve that b1 is parallel
to ( 1 , . . . , 0 ) . Then (2.4) reads

f r ^ ( r , ^ , . . . , ^ _ i ) d r = 0, 0 < ^ < ^ -1. (2.5)

The assumption that (0, . . . , 0, g) G(ker Q^ )1 implies that

f^ g^dx=0 (2.6)

whenever (^eC^R"), D^ ̂  = 0, and ^ ^ = 0.
v= 1

Our assumption that p^(^) is parallel to 61 for ^ values of i/,
say 1 < v < /-i , implies that a1 , . . . , a^ and a"" all lie in one
two-dimensional plane N . Let 01', v = 1, . . ., ̂  and 0'" be
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nonzero vectors in N , 01' orthogonal to a^ . If s < ̂  — 1 there
r!

are constants c^ such that Oc,^)^^ = V Cy{x ,6^ . Here
*/^i

< , ) denotes the inner product in R" . Then D^v ^py = 0, if
^ p y ( x ) = (x , fi^ . The same is true if ^py is multiplied by an arbitrary
C°° function of x^ , . . . , x ^ _ ^ , i.e.

^OO^x.e'r^,...,^^), J C E R " , v= 1 , . . . , ^ , i /=m.

Applying (2.6) and letting V/ vary we obtain (2.5), which completes
the proof.

Proof of Theorem 1.1. - The spaces L^(S2) and L^(^) are
LF-spaces in the sense of Dieudonne and Schwarz [I] , i.e. inductive
limits of Frechet spaces. Theorem I page 72 in [1] implies that a
continuous linear operator between LF-spaces must be a homomorphism
if it has closed range. Therefore it is sufficient to prove that
imP^ =(kerQ^)1 . We identify L^(ft) with a subspace of L^(R")
in the obvious way. Let G = (^ , . . . , g^ ) €(ker Q^ )1, ̂  e L^(^).
We use induction over m. The case m = 1 is trivial (c.f. Lemma
2.1.). By the induction assumption there exists fo EL^(ft) such that
P»/ to = 8v for v < m . We seek /\ so that / = /o + A ^Iv^s our
problem, i.e. P^ /i = 0 for ^ < m and P^ A = ̂  - P^ /o = ^m •
It is clear that (0 , . . . , k^) C(ker Q^ )1 . Thus the problem is
reduced to the special case g^ = . . . = gy^ _ ^ = 0.

To consider this case assume again that a^ = (0, . . . , 0, 1)
and write g^ = g . Let gQ be the function constructed in Lemma
2.2. If n is convex, p^(Sl) is also convex, so it is obvious that
^PP^o CPm^^' ^f ^ ls a connected subset of R2 , then p^ (S2)
is an interval (possibly infinite), hence convex, so again we know
that supp gQ C p^ (Sl). Choose a compact set K C S2 such
that p^ (K) D supp go , and choose e > 0 so small that
K, = K 4- [x C R" ; \x | < e} C ft . Let E^ = E,^m be the right

( m -1 \
inverse of P^ constructed in Lemma 2.1 and set/= n D ^ v ) E ^ g o .

To see that /GL^R") we observe that D^ = D^ + ̂  D^ ,
where a" = (b" ,a^), hence / is a linear combination of terms of
the form

R^-,-i(D)D^(E^o), (2.7)
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where R ^ _ ^ _ i (D) denotes any product of precisely m — k — 1
of the operators D^ . But (II D^)go = gG I/^R""1), hence
the function (2.7) belongs to L^R") by (B) of Lemma 2.1. This
proves that fClfW). It is obvious that supp / C K ^ and that
Py f = 0 for v < m. To see that P^ / = g we again write / as
a linear combination of terms of the form (2.7). Then each term for
which k > 0 is mapped to zero by P^ . Taking into account the
definition of ^ we see that the term corresponding to k = 0
is nothing but Eg g , which is clearly mapped to g by P^ . This
completes the proof of Theorem 1.1.

The next theorem gives an estimate for the solution constructed
in Theorem 1.1. As usual A denotes a finite set of distinct elements
of S"-1 .

THEOREM 2.3. — Let K be a compact subset of R" , let
1 < p < oo, and let 0 < e < diam(K). Assume that gy € L^H^),
supp^C^(K), and that G = (^ , . . . ,^ ) € (kerQ^)1. Then
there exists /e L^R") such that

supp/CK, = K + { jcER" ; | ;c |<e}, P A / = G ,
and a constant C depending only on A, such that

M ^^-""("s""^)" 2»^. as,
6 r==l

It is natural to begin the proof with a closer study of the inverse
operator Eg constructed in Lemma 2.1.

LEMMA 2.4. — The operator E^ of Lemma 2.1 can be construct-
ed so that the following estimate holds. If Qy is an arbitrary product
of s directional derivatives with respect to the y-variables, if
diam(K) = d > e , and f(y , x ^ ) = f=E,h, then

I IQ .D^ /Hp ^C^e-'--1^ (d/eY ||Q^ .

For the proof we shall need a couple of lemmas.

LEMMA 2.5.— Let ^ be a collection of continuous functions
on fV1'1 such that not more than N of the ^ are different
from zero at any point of R"~1 , and sup |^ ( j / ) |<B. Let

y ^
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ge.LP(Rn~l), ^GL^R), and let v^ be arbitrary real numbers
Writing x = (y , x^), y e R"-' , set

f ( y , x ^ ) = g ( y ) ̂ ^(j,)^(^-^)
Then /CLW) and r

11/llp < BN||^ I I V / 1 ^ . (2.9)

/Voo/: - By the assumption and Minkowski's inequality for

eachfixedy we have (/ \f(y ,^)f ^„)l/p < \g(y)\ BN ||̂  ,

which immediately gives the assertion.

Proof of Lemma 2.4. - Let Q, = ̂  D,., where

^^^-^{O} and some b" may be equal. We may assume that
\bv\=\ for all v . Define / = E, h as in the proof of Lemma 2.1.
Q, D^; / can .be written as a sum of 2s terms of the form

Q,-th(y) ^Q,<j>,(y)D^ ^(x^-v,), (2.10)
k

where Q, is a product of t of the D^ . It is possible to choose
the partition of unity {^) in the proof of Lemma 2.1 so that
diam(supp^)<e/2, and sup|Q, 0J < C,e-', r = 1, 2, . . . ,
where C, is independent of e and k . Similarly, ^(SC°°(R)

can be chosen so that J ' ^ dt = 1, supp <// C[- e / 4 , e / 4 ] , and

sup|D''V/|<C,e-'-1 . By means of Lemma 2.5 the L^ncrm of
the function (2.10) can be estimated by a constant times

C^NHQ^H^e-'-1^ ||̂ . (2.H)

Since supp h is contained in a ball of radius < d we have by well-
known estimates ||Q,_,A|lp < d* ||Q,/i|lp .

Inserting this inequality in (2.11) and summing over / , assum-
ing d > e , we obtain the estimate of Lemma 2.4.

Proof of Theorem 2.3. - As in the proof of Theorem 1 1 we
consider first the case g, = ... = g ^ _ , = 0. Set ^ = g . ' It is
enough to estimate the L^'-norm of the expression (2.7). By Lemma
2.4 this quantity can be estimated by
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^ C-^^IP (d/er-^-1 1|R,-,_, ^ollp . (2.12)
Since R^.^.i is a product of m - k - 1 of the factors D^y ,
1 < ^ < m - 1, we have ^ = S^ R,_^_i ^o » if S^ denotes the
product of the remaining k factors. Furthermore we use the
estimate || R^.^.i ^llp ^ c dk ll^llp > where C depends only on
the length of the y , hence only on A. Inserting this estimate
in (2.12) and summing over k gives with a new C

11/llp ^Ce-^^/er-1 l^llp.

In order to prove Theorem 2.3 in the general case we use induc-
tion over m. The case m = 1 is already settled. By the induction
assumption we can choose /i such that supp/^ C K ^ , P^ = gy
for v < m — 1, and

!l/i lip < Ce-1"1^ (rf/e)^-02 p^ H^llp . (2.13)
»/==i

Here and in what follows we denote by C different constants
depending only on A. By the special case already treated
we can then choose f^ such that Py f^ = 0 for v < m — 1,
^m fi = Sm ~ tm A = ̂  supp/^ C K^ , and

11/2 lip ^Ce-^^^/er-1 \\k\\p. (2.14)
By (1.2) we have

UP,/Jlp < (diam K,)1-1^ 11/JI, < (2rf)1-1^ ||/J|^,
hence

ll^llp < 11^ lip + IIP., A Up < 11^ lip + (2d)l-l/p ||/J|̂  .(2.15)

Set / = / i + / 2 - Clearly P^ /=^ for all i/. Combining (2.13),
(2.14), and (2.15) we obtain the desired result.

3. The range of Q^ in L^W.

We will now study the map

QA '' § L^(ft,)—^ L?^(n), (3.1)
v=l

(u^ , . . . , u^) —> S Uy , which is the adjoint of the map P^
studied in the previous section. By means of functional analytic
arguments we will deduce Theorem 1.2 from Theorem 1.1.
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Denoting by X* the dual space of X we have the isomor-
phisms (p~1 4- q-1 = 1)

4(i2) ^ L^02)* for 1 <q < oo,
L?oc(") = L^(ft)* for 1 < p < oo.

If the dual spaces are provided with the strong dual topology, these
isomorphisms are topological. Since P^ obviously is a homo-
morphism from L^(Sl) onto L^(^) we have the topological
isomorphism L^(S2^) ^ L^(S2)/kerP^ .

LEMMA 3.1. - For arbitrary open Sl C R" ^rf 1 < p < oo
r/^ annihilator in L^W of kerP^, CL^ft) ,p-1 4- ^-1 == l
^ L^(i2,a).

Proo/ - It is obvious that the annihilator in question contains
L^oc^^)- To prove the converse inclusion assume /^L^ (12)

and that f f^pdx = 0 for every ^GkerP^ Cfi)(S2); here ®(?2)

denotes the space of infinitely differentiable functions with compact
support in S2. If S2 is convex every such ^ is equal to D ^ for

some V/Ea)(S2) . Thus f fD^ ^ dx == 0 for all ^G®(n) .

But this means that D^ f = 0 in the sense of the theory of distribu-
tions, hence /EL^(?2,a) if Sl is convex. For a general i2 this
argument shows that / is constant a.e. on each component of
S2 H L for almost every line L parallel to a . Applying the hypo-
thesis to suitably chosen <^GkerP^ CCZ)(ft) one easily proves that
/ must actually be globally constant on Sl n L. We leave out the
details.

By virtue of Lemma 3.1 we have the following natural topo-
logical isomorphisms for p~1 4- q~1 = l

402,) ^ L^(ft ,a)* for 1 < q < oo,

L^(i2,a)^L^)* for 1 < p < oo .

Proof of Theorem 1.2 for 1 < q < oo. - Let X and Y be locally
convex topological vector spaces. Assume that T: X —> Y is a
homomorphism, and let T* be the adjoint map from Y* into X*.
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Then it is known that im T* must equal (ker T)1, the annihilator
of ker T C X. In fact this follows directly from the Hahn-Banach
Theorem. Now take for 1 < p < oo

X=L^) , Y = ̂  L^).

and T = P^ . Then T* = Q^ as in (3.1), p-1 +^-1 = 1 . Since
PA is known to be a homomorphism by Theorem 1.1, we conclude
that im Q^ = (ker P^ )1, which implies that im Q^ is closed.
By the open mapping theorem Q^ must be a homomorphism.

To treat the case q = 1 in Theorem 1.2 we must deduce inform-
ation about T from assumptions on T*, which is somewhat harder
than the other way round. But in this case we can rely on a theorem
about mappings between Frechet spaces (Theorem 21.9 in [5]).

THEOREM 3.2.-Assume that X and Y are Frechet spaces and
T is a continuous linear mapping from X into Y. Then the follow-
ing conditions are equivalent:

(i) im T is closed in Y
(ii) T is a homomorphism

(iii) im T* is weak* closed in X* .

End of proof of Theorem 1.2. - In Theorem 3.2 we take
x = X ^oJ" ̂ '), Y = L^(S2), and T = Q^ . Then T* = P^ ,

so we know by Theorem 1.1 that im T* is weak* closed in X*.
This proves that T = Q^ has the properties (i) and (ii) as claimed.

4. Estimates for solutions in L^ftF of Q^U = v .

The estimates given in Section 2 for solutions of the equation
PA / = G wll now be translated into analogous estimates for the
adjoint equation Q^ U = v . These estimates are all local in the
sense that the solution U is estimated on a certain set in terms of v
on a somewhat larger set. However, for convex ft C R2 with smooth
boundary it is possible to deduce global estimates in L^^-norms
(Proposition 4.3) by means of the simple argument of Corollary 1.3.
These estimates are crucial for the study of the three-dimensional
problem.
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Let ft be a bounded open subset of R" . We will work with
the Banach spaces L^C^ , l < p < o o . The norm in I/(ft/"

is IIFllp=I (X^l"^)^ for F^A—.^) ,

/.GL^ft). For G^^.^EL^nr, p-1 + ^-1 == 1 ,

and F as above we set (F , G) = V / fv8u ^x •
.?! Jn

In this section we will always assume that 1 < p < °° and
that p~1 + q-1 = 1 .

Let E be a subspace of IfW" . We denote by E1 the
space of all G E ̂ W such that (F , G) == 0 for all F E E .

LEMMA 4.1. - Assume that E is a closed subspace of ^(Sl)"1 ,
and let VEL^n/". Then
mf{||V-H||^ ;HEE}

=sup{|(V,0)|;0EE iCLP(n)w ,||0||p = 1 } .

Proof. — Let X be a Banach space, X* its dual, E a closed
subspace of X, E1 its annihilator in X. Let x E X and { E X * .
Then it is well-known that

sup{|7?(x)| ;T? EE1, ||T?|| < 1 } = inf{\\x-y\\ \y EE} ,
and ,

sup{IS(>QI;^EE.|M|< l}=inf{||$-7?||; r?EE1 } .

Moreover we note that the dual of If (S2)'" is isometrically isomorphic
to L9^^ for 1 < p < °°. These facts imply the assertion of the
lemma.

The next proposition is a dual version of Theorem 2.3. Recall
that im Q^ is equal to the space of solutions of the equation

m
( n D.i/) v = 0 (see the remark after Theorem 1.2). For e > 0i/=i a

we write ft6 = {x E Sl; d(x , 9SI) > e} ; here d(x , S) is the
distance from x to the set S .

PROPOSITION 4.2. — Let Sl be a bounded convex subset of
R" , let l < < 7 < o o and 0<6<diam(f t ) . Let vEL^n) satisfy

\ P D^^t; = 0. Then there exist a constant C depending only
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on A = {a^J^ i , and functions Uy such that S Uy = u a^d

(^^^.^•"^(^"'r-ai.i^y".
Proof. — B y Theorem 1.2 and the remark following it there exists

V = (1:1 , . . . , ! ?„ ) , ^ € L^jn , a"), such that 2 ̂  = u in ft .
Then ^GL"^6) and hence VeL^n6)". Considering Q^ as

W

an operator from [I L^ft6,^) to L^ft6) and identifying the

domain of Q^ with a subspace of Vs (ft6)'" we may consider
kerQ^ as a subspace of L^ft6/" . Set E = ker Q^ . We are going
to estimate inf{| |V — H||^ ; H G E } by means of Lemma 4.1 ; here
the norm refers of course to the space L^ft6). Take an arbitrary
0 = (^ , . . . , ̂  ) G E1 C L^ftT . Extending 0 by zero
outside ft6 we get an element of L^R^Y" , which is also denoted
0, such that supp 0 C ft6 . It is easily seen that the element
0 = (Pi (pji , . . . , P^ (^) belongs to (ker Q^ )1 in the sense of
Theorem 1.1 and Theorem 2.3. Thus by Theorem 2.3 there exists
V/ G L^(R") such that supp V/ C ft , P^ i// = 0\ and

^ (̂d .̂.̂ , g ̂ ^ ^e r=i
Since IIP^^Hp < diam^)^" ||̂ j|p , we deduce from (4.1) that

|| ̂  ||p < C (̂ "li"!)" 2+ * ||0||p . Identifying t>, € L" (^ , a")

with the corresponding function i^GL^K^,) we now get

(V,0)= f f v,^dx= ^ f v^^^dy
v=l " r=l "r

= S J^e ^^ ^dy=fa (2 v ' ' ) ^ d x = f n V ^ d X = ( , V , ^ ) .

Taking account of (4.1) we finally obtain

|(V , ̂  = |(. , W < (j^ I.I. dxf c(d"^w )m2+l ||̂ ||̂

for 0 G E1 C L^ft6)'" . The assertion of the proposition now
follows from Lemma 4.1.
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For a convex domain Sl C R2 with smooth boundary we can
now easily deduce an estimate on the entire domain S2 of solutions
to Q^ U = v . The argument needed is only a quantitative version
of the proof of Corollary 1.4.

PROPOSITION 4.3.-Assume that Sl C R2 is convex and
bounded, that the boundary 3S2 of Sl is of class C2 , and let K
be the maximal curvature of 3S2 . Let 1 < q < °° , let v G 1^(12),
and (TlD^)v=0 in ft. Then there exist Uy^\q{^l,av)
such that 2 Uy = v , a/zd a constant C depending only on
A = {^}^=i , such that

( 2 X l^l^^y'^C^diamW)"2^^ It^Ac)^.

Proof. - For given e > 0 and a G R^O} let V(e , a) be the
set of all x G i2 such that the line through ;c parallel to a intersects
ft6 . Thus V(e , a) is that part of St where a function in l^ffi, a)
is determined by its values on ^e. An easy geometrical argument
shows that \Sl 0 L| < 2|ne H L| for any line L intersecting
ft26 ; here | | denotes length. Hence we have the estimate

[ \f\^ dx <2 f 1/T dx (4.2)
^(26, a) ^n6

for /E 1^(^2,0). Now choose e so small that all the sets
f t \V(2e,^) are disjoint. Another elementary geometrical consider-
ation shows that it suffices to take e so that cos (7/3) ̂  1 —K 2 e ,
where 7 is the minimum angle between different a" . In figure 2
we have drawn the "extremal" case, in which 9SI is a circular arc
with radius I / K . By Proposition 4.2 and (4.2) we infer that Uy can
be chosen so that (setd = diam(S2))

(Xo,,..> i"J'^y"-.cw.r1" (.(,1^)'". (4.3)
The rest of the argument is parallel to the proof of Corollary
1.3. Set F^ ==n\V(26,^) . Since the Fy are disjoint, we have
F^ C n\F^ = V(2 e, ̂ ) for ^ ̂  ̂ . Using the identity
u = v — V Kp we get with a new C

p^
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/,. i".^r" (/„ '"t ̂ r+ s, (x,..,., i"̂ ra.
< C^^2^ (J^ \v^ Ac)1^ . (4.4)

Combination of (4.3) and (4.4) gives the desired estimate.

(2e)

a

^^

5. The range of Q^ in L^ft), ft C R2 .

In this section we will complete the proof of Theorem 1.5. It
remains to consider the case when 3S2 has characteristic points.
The main step is to treat the case when ft has one "comer", i.e.
ft looks like a wedge near one point. Let F be a bounded or
unbounded wedge. A basic idea is to introduce a new norm on
1^(0 by factoring out polynomials on a sequence of overlapping
dyadic parts of the wedge. Since functions in L^F ,a) actually
depend only on one variable, we can formulate the lemma that
we need in terms of functions on R+ = { t ; t > 0} rather than F.

Let 1 < q < °°, let Py be the set of polynomials in one
variable of degree at most r , and set

1̂  = {^-1 < r<2^ 1 } , A : = 0 , ± l , . . . .
We will consider the factor space L^I^/Py. for each k . Moreover
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for a r e a l > — l we introduce the Banach space S^° of
sequences V = {t^}^_^ , ^ E L^I^/P,, such that
^ -^i == 0 in L^ ni^)/P,, and

ll^-IIYII^.o-l 1 2^||t;JI[^/p^l/<^<oo.
( fc==-oo )

If we think of i^ ^functions in L^) rather than elements of
the factor spaces l^d^/fy these conditions mean that
vk ~ vk+l e Py ^or a^ ^ ^d that

^ 2^ inf f |^-A|^ dr<oo. (5.1)
fc=—oo hGPy ifc

Let L^^R^) be the Banach space of functions v on R+ such

that Hi; ||̂  = H t° ivW d t \ l q < ^ . Then there is a natural

continuous linear map r\: L^^R^) —> S^0 defined by the
sequence of restrictions and projections

Lqfa(^)^u —^ ^eL^4) /P , . fc=0 ,± 1 , . . . .

PROPOSITION 5.1. - The map 77 is surjective, if 1 < q < oo
and a > — 1.

If M e L ^ ^ C R ^ ) and T ? ( M ) = O , then « must be a polynomial,
hence u = 0. Thus 17 is injective. By the Closed Graph Theorem
77 must be an isomorphism of Banach spaces. In other words, the
expression (5.1) is a norm on L^CR^), equivalent to the
usual one.

Denote by L^ (RJ the set of functions u such that u(t)
belongs to \3 over every compact subset of R+ . An arbitrary
element of S^0 can by its definition obviously be represented by
a function in L^ (R+) . Thus Proposition 5.1 is equivalent to the
following statement.

PROPOSITION 5.1' - Let 1 < q < oo and a > — 1. There
exists a constant C depending only on r , q , and a wth the
following property. If u C L^ (R^) and

s 2ko ̂  ti I^-^I^^C, <oo, (5.2)
fC-=—oa AIt=ry v ifc
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then there exists h € P^. such that u — h E L^R^) awd

f^ t° \u(t)-h(W dt<CC, .

Remark.-The spaces L^^RJ and S^ make of course
good sense for q = oo; in this case the parameter a is immaterial
and we may choose a = 0. However, Proposition 5.1 is not true
in this case. To see this take r = 0 and u ( t ) = l o g t . Then
^eL^RJ, but ( k - l ) l o g 2 < M ( r ) < ( f c + l ) log2 on 4,
hence inf sup \u(t) •— c\ = log 2 for all k.

c re=lfc

Proof of Proposition 5.1 - Choose A ^ G P ^ . such that

^ bl < oo, where 6, = ( 2"° ̂  |^ - A,|^ dt j l/q .

We will choose h = lim h^. To prove that this limit exists,
observe that k "OB

! f 1^-^ i l 9 ^1 l/q
(^ i f c^ i fc - i k k~l }

< g f \h,-u\^dt l / ' + i f IA, , -^l^r)^(^ i f c^ l f c - i 1 fc ' ( Jifcnifc.i ' fc-1 )

<^ 2-^^ + ^ _ i 2-(fc-l)a/q .

Since h^ — A^_ ^ G Py., there is a constant Cy. depending only on
r , such that

SUp 1^-^_J<C,2-^(^ 2-^ + ^ _ ^ 2-(<r-l)a/q)
i^ifc-i (5j)

Extend A^ to R + . Then the estimate (5.3) is valid on (0,2^) with
a new C y . Thus

1̂  ~ h\ < f IA, -A,_i | < C, ^ 2- /<(7+l)/<^ 6, (5.4)
f c + i fc

on (0,2^). Now

Ft0 \u-h^dt<2° y [ \u-h\^dt,J o -*";, J i^

Replacing u — h by u — h ^ - ^ h ^ — h in the ^r/l term in the
sum and using Minkowskfs inequality for sequences we get
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I" f\u-hy t i l } ' " ' < Vl' l\ My"\f:0 ; v "̂lo /

+ 2^j S 2^ ^-h^dA1'9.
\ — OQ K J

To estimate the last term we use (5.4) and obtain

(2ko f, ^ - h^ dtV < 2^ 2^ C, S 2-/(0+1)^ &.fc / r ^ j

== c ^ p"7^1^ /»
r̂ — z ° fc+/ -

7=0

Denote the expression on the left hand side by \. Using
Minkowski's inequality for sequences we get

i o^ <c, ^ 2-^+l^( ^ A^.)^
fc=-00 /^O ^fc^oo / /

= cr /< f' ^v/<?
1 — 2-(a+l)/q ^ ^ 0 ^ ) .

This completes the proof.
The link between Proposition 5.1 and Theorem 1.5 is provided

by the next lemma. Its proof depends only on Theorem 1.2 together
with the fact that the wedge is invariant under dilation.

LEMMA 5.2. - Let a1 = (0,1), let V be a wedge with vertex
at the origin, whose closure except the origin is contained in the
half-plane x^ >0 , and let 1 < q < oo. Assume u = Z v ^ e L q ( ^ ) ,
^^oc^ > ^ ) » ^ = l , . . . , w . Then v^x^ , x ^ ) = w ( x ^ )
satisfies ( 5 . 2 ) for a = 1 and r = m - 2, i.e.

00 /»

^ 2^ inf j \w(t)-h(W dt<^. (5.5)
fc=—oo "^-^m-l k

Proof. - Let KQ and K^ be compact subsets of F such that
K ^ C C K ^ . From Theorem 1.2 we know that Q^ is a homo-
morphism in the topology of L^(F). This implies that

^mL2^01l;"'^^<CX, ^Qdx-
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By homogeneity this inequality holds with the same C if KQ and
KI are replaced by \KQ and XK^ , X > 0 . Let 1̂  and I\
be two smaller wedges with vertex at the origin such that
FQ CC r\ CC r (in an obvious sense), choose

K^KoW^n^,^)^-1 <x, < 2 f c + l } ,
KI = K i ( f e ) = r , ^ { ( x , , X 2 ) ; 2 ^ - 2 <;ci <2^2},

and sum over k from — oo to oo. The sum on the right hand

side can be estimated by a constant times jf \u ̂  dx , hence is finite.

For v = 1 the sum on the left is larger than a constant times the
expression in (5.5), since v^ is independent of x^ . Thus the lemma
is proved for 1 < q < oo. The argument is easily seen to be valid
for q = °° as well; in this case (5.5) should be interpreted as

sup inf sup |w — h \ < °°.
^ ^Pm-2 Ifc

Remark. — The statement of the lemma is valid with
obvious modifications if F is replaced by a bounded wedge, say
{ ^ E r ; | x | < 6 } ; we simply restrict the summation in (5.3) to
k < RQ for some suitable k^ .

Proof of Theorem 7.5. - Assume that ^GL^^) belongs to
the closure of 2 L^ft , ̂ ). By Theorem 1.2 u = 2 Vy , where
1̂  EL^(S2 ,^). We have to prove that each i^eL^ft). It is
enough to prove that Vy G L9 in a neighbourhood of an arbitrary
point of the boundary of 12. By the proof of Corollary 1.3 it
remains only to consider a neighbourhood of a characteristic
point, which we may assume to be the origin. Let Vg be an open
disk with radius 6 and center at the origin. By the wedge condition
there exist an open wedge F with vertex at the origin and a 6 > 0
such that r H Vg C Sl. Fix an arbitrary 11, 1 < JLI < m. We
need to prove that

^GL^nnVg). (5.6)

We have to distinguish between different cases with regard to
the position of S2 relative to the direction a^ . Let Vy be the line
through the origin with direction c^ , v = 1 , . . . , m . If TT
intersects 12, (5.6) follows immediately from v E L^(S2 , a^).
Thus we assume that TT does not intersect Sl. If a^ is parallel
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to one of the edges of F we choose F somewhat smaller, so that
TT 0 r =? {0}. Then we combine Proposition 5.1 with Lemma 5.2
and the remark following it to conclude that v € L9 (F H V g ) .
At this point we have used the assumption q < o°. If TT H ?2 = {0},
this immediately implies (5.6).

There remains the case when TT intersects i2 0 Vg at points
other than the origin, but TT is disjoint from i2 (see fig. 4).
By the argument given so far |i; {q must be integrable over
(Sl 0 Vg )\S , where S is any open wedge containing a^ . But if
S is sufficiently small we know already that Vy G L^n 0 2 n Vg)
for all v ̂  [ k . Hence the identity ^ Vy = M G L^ft) implies (5.6),
and the proof is complete.

In the proof of Theorem 1.5 we used only the "negative half"
k < 0 of the mapping 17 in Proposition 5.1. Using the full strength
of that proposition we can prove results for certain unbounded
regions. However, we have not investigated unbounded regions
systematically, so we will give only one result of that kind here.

PROPOSITION 5.3. — Let r be an (unbounded) open wedge in

R2 , and let 1 < q < ~. Then ^ L^F , ̂ ) is closed in L^F).
i/=i

Proof. — We may assume that the vertex of F is the origin.
Then we observe that L^(r , a) = {0}, if a G F . Thus we may
assume c ^ ^ F for all v . Denote by Py(a) the set of polynomial
functions in R2 of degree at most r which are constant on all
lines parallel to a. Arguing as in the proof of Theorem 1.5 using
Proposition 5.1 and Lemma 5.2 we conclude that there exist
^ e Pm-2^) so that v ^ - h y C LW and 2 Vy = u . Then
2(^ - ̂ ) = S ̂  - S \ = u - S ̂  , so that S ̂  E L^F). But
2 hy is a polynomial, hence 2 Ay = 0. This proves that
u = ̂ (Vy ~ hy) and thus completes the proof of the proposition.

6. The range of Q^ in L^B), ft C R3 .

This section is devoted to a proof of Theorem 1.8. We will
actually prove the following statement, which implies Theorem 1.8.
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PROPOSITION 6.1. — Assume that Sl satisfies the assumptions
of Theorem 1.8 and let 1 < q < oo. Assume that u = 2 Uy G L^n),
^ G L^(i2 , ̂ ), i/ = 1 , . . . ,m . Then there exist ^ G L/^n , ̂ ),
such that u = 2 Vy .

To prove that this proposition implies Theorem 1.8 we argue
as in the proof of Corollary 1.3. Assume that MEL^^) belongs
to the closure of SL^K,^) . By Theorem 1.2 u must lie in
S L^(Sl ,^). But this means that the assumptions of Proposition
6.1 are fulfilled, and the conlusion of that proposition is our assertion.

An important difference between the two-dimensional and three-
dimensional cases should be noted here. In the proof of Corollary
1.3 we could assert that the functions Uy , a priori assumed to belong
to L^(i2,^), were actually in L^n). In Proposition 6.1,
however, we cannot assert this, but must choose new functions Vy ,
which belong to L^(ft , a " ) . The reason is of course that in the
two-dimensional case all solutions Uy € L^(i2 , a") of 2 Uy = 0
are polynomials <Proposition 1.6), which is not the case in higher
dimensions.

Our first step is to solve locally the problem of constructing
the functions Vy in Proposition 6.1. We formulate this step as a
lemma. Recall that the Uy are automatically in L^ near non-
characteristic points of the boundary, so we need only consider a
neighbourhood of a characteristic point.

LEMMA 6.2. -Assume that St satisfies the hypothesis of
Theorem 1.8 and let 1 < q < oo. Assume that u E L^ft),
u = 2 ̂  , ̂  E L^(n , ̂ ), and let x° E QSl be a characte-
ristic point. Then there exist a neighbourhood (relative to Sl)
a? of x° and functions Zy E L^(Sl ,^) such that Zy = u^ in
SI\Q} , 2 Zy = u in Sl, and the restriction of Zy to a? belongs
to 1^(0?) for each v .

Proof. -Let A^ be the set of all ^ G A = O^}^ that are
parallel to the tangent plane to 80; at x0 . We may assume that
AQ is the set of the k first elements of A. Then there exists a
neighbourhood 0:0 of XQ such that ^eL^o) for v > k , i.e.

k m
S ". =«- S M,eL"(^).

v= 1 fc+ 1
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We may assume that x° = (0, . .. , 0), the tangent plane at x°
is ^ 3 = 0 , and that f tC [x \x^ > 0}. We are going to choose
^ = {x E ft ; ̂ 3 < 5} , where 5 > 0 is so small that co C 0:0 .
For fixed re (0 ,5 ) we consider the region

", = {(^i ,x^)-,(x^ ,x^ ,r)Eft}.
w

Set u— ^ U y = w . By Proposition 4.3 applied to ft C R2

k+l r

and AQ we can find ^GL^ft , ,^) so that 2^=^,
where w^i ,^) = w(^ ,^ , t), and (assume q < oo, the
case q = oo is similar)

J^I^|^<C^ I w ^ r f x , <..= 1 , . . . , ^ . (6.1)

We claim that C may be chosen independent of r . This follows
from Proposition 4.3 if we show that K, diam(ft,) is bounded for
small t ; here ^ is the maximal curvature of the boundary of ft
But this is an easy consequence of the hypothesis about the
principal curvatures of 3ft at x° . To complete the proof we set
z^ = Uy in all of ft for v > fe., z^ = Uy in ft\cj for v < k ,
and z^(x^ ,x^ , t) = v^(x^ , x ^ ) for (x^ ,x^ , r) G cj for v < k.
Then Zy G If (a?) by virtue of (6.1), and the lemma is proved.

End of proof of Proposition 6.1. - Choose, for every characte-
ristic point x 1 , i == 1, . . . , N, functions z^, according to

Lemma 6.2. Set < = z\ - ̂  and ^ = ̂  + f w^, . Then
1=1

Vy G ̂ (ft , ̂ ) and 2 i;y = u, which proves the theorem.

7. Counterexamples.

Our first example shows that the statement of Theorem 1.5
is not valid for q = oo ^ not even for convex ft . The second
example treats the case 1 < q < oo and shows that one cannot
weaken the assumptions of Theorem 1.5 by replacing the wedge
condition by a Lip(a)-condition for any a < l . Finally we
construct the example announced in Theorem 1.7, which shows that
the curvature hypothesis on 3ft in Theorem 1.8 cannot be
omitted.
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In the first two examples we shall take A = { a l , a 2 } ,
a1 =(1,0), a2 =(0,1). For abbreviation we shall write

E^ =Lq(a,al)+L({(a,a2).

The closure of E^ in L^ft) will be denoted E^ . In the first
example we take

ft = { ( X i , x ^ ) , x ^ <x^ < 2x^ , 0< ;C i < 1/4} , and

f(x^ , x ^ ) = logllogx^ | — logllog^ | ,x G f t .

PROPOSITION 7.1. - /E E^ , but /^E^.

Proof. - Since any representation / = /i + f^ ,fy € L°° (ft , ̂ ),
differs from (7.1) by an additive constant, we see at once that
/^E<,. Next observe that f(x)—>0 as x—> (0,0) in f t ,
hence /eL°°(ft). To see that /eE^ define /^ in Sl by
/e^) = /(^) f^ ^i > ^ , /,(x) = 0 for jCi < e . Then
/ ,Oci ,X2)=^(Xi)-^(x2)+t ; , (Xi , ^ 2 ) » ^ere u,(t) = logllog r|
for t > e.u^t) = logllog e| for r < e , and ^(^i , x ^ ) = log l logx^l

— log |log e | in the region {x E Sl '^x^ < e < x^ } , and v^ = 0
elsewhere in Sl. Then i^ —^ 0 and /g ——^ / in L°° (ft), which
proves the statement.

Remark. - In [7], p. 154, the function f(x^ , x ^ ) = \og(x^/x^)
is claimed to have the properties of Proposition 7.1. However, it is
not true that /€ E^ . To see this, assume g = h(x^) + k(x^) € E^ ,
and ||/-g|L <(log2)/4. Then
A:(2-^1) - kd-^ = g(2-^ , 2- f c + l) -^(2^ , 2-^)

^^,^-fc ^ 2-^1) -/(2-fc , 2-^) - (log 2)/2 = (log 2)/2 .
But this implies that k(x^)—> oo as x^——> 0, which is a
contradiction.

We now turn to the case 1 < q < oo. Let (3 be any real number
> 1 and choose

ft = {(^ , x ^ ) , x ^ <x^ <x^ +x^ ,0<x^ < 1},
and f(x^ , x ^ ) == x^ - x^ , x € S l , where a = (1 + 3p)/2q .

PROPOSITION 7.2. - For 1 < q < oo yv6? /za^ /E E , but
/^E,.
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Proof. — The functions f.(x) = x^ do not belong to L^(ft),
hence /^E^ . Next we claim that /GL^ft). By a straightforward
computation

f |/0c)|^ A = f1 ̂ -^ f^ (1 - (1 + tF^dtdx, .
Jsi ^0 ^o

^i-1

The inner integral has the order of magnitude (x^~i)q+l as
x^——> 0. Hence the condition for convergence of the outer
integral becomes 1 — aq 4- (j3 — 1) (q 4- 1) > — 1 , which is
satisfied for the value of a that was chosen. It still remains to show
that / < = E ^ . Set f^x) = f(x) for x^ > e J,(x) = 0 for x ^ < e
and write f^x) = u^x^) —u^x^) + v^(x^ , x ^ ) , where
u,(t) = r-0 for r > e , ^(r) = 0 for r < e . Then ^ = x^
on the region D^ = { x € i 2 ; x ^ < e < ^ 2 } an^ ^e = ^ elsewhere.
It suffices to show that v^——^ 0 in L^Cft) as e —^ 0. The area
of D, is <e2^ and \v,\ < e-01, hence \\v,^ < e-^2^ , which
tends to zero as e —^ 0 for our value of a.

We will now go back to the three-dimensional case and prove
Theorem 1.7. The idea of the construction is that the two-dimensional
sections S2^ of Sl (see below) are very narrow and close to the
line x^ = x^ for small t , hence the function (7.2) is integrable to
0th power although the g, are not.

Proof of Theorem 7.7.-Take a1 =(1,0,0), a2 =(0,1,0).
Set V/Oci , x ^ ) = (;Ci — x ^ ) 2 + (;Ci 4- x^)4 . Choose K bounded
and strictly convex with C°° boundary so that 3ft near the origin
has the form x^ = ^(x^ ,x^) and ft lies in the region
x^ > V/(;X4 , ^2 ) . For z > 0 let ft^ be the two-dimensional region
ft H {x^ = z} . For small z , ft^ is an ellips-like domain with
length and width proportional to -^T and ^/?, respectively. Assume
first that 1 < q < oo. Set /(;c) = ̂ (^ — ^ i ) , x e ft , where
a = (3 + H^-1)/^. Then /GL^ft), since

f 1 / 1 ^ dx < 4 f1 z-°^ z1/4 f 2 ^ drdzj\i »/o </u

=——4—— f^l^+fe+D^-cq ̂
r̂ + 1 •'0

=,ATX l z- l+q/8r f^<oo•
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Setting f^ = / for x^ > e ,/g = 0 for x^ < e , we have f^ G
L^BV) 4- L^n.fl2) and / ,——^/ in L^ft) as e—^ 0,
hence / belongs to the closure of L^n ,a1) + L^(n ,a 2 ) . On
the other hand, we claim that /^ L^ft ,a1) 4- L^ft , a2) . We
have the decomposition

f(x) = X^ X^ -X^01 X^ =^1(^2 ^3) ""^^l '^3) ' (7-2)

where gy are constant in the c^ - direction. Since any decompo-
sition of this kind differs from this one by a function of x^ only
(see Proposition 1.6), it is enough to prove that ^^L^ft). In
fact, for some c > 0, 6 > 0,

f [ g . ^ d x ^ c f6 z-^ z112 C 2 t q d t d zJn Jo ^o
=—c-—— f ^ - a q + l / 2 + ( f l + l ) / 4 ̂

^ + 1 ^0

C /*5
= ——— / z~l~q/s dz = oo

^ + 1 "0

Finally, if q = °o, we take a = 3/8 and define / in the same way.
The proof for this case is obvious.

8. Generalizations.

It seems very plausible that Theorem 1.8 can be generalized to
the case 12 C R" ,n>3. This would mean that (1.1) is closed
for arbitrary bounded convex Sl C R" with boundary of class C2 ,
whose principal curvatures are all different from zero at every
characteristic point. If this condition is satisfied, the set of characte-
ristic points is a finite union of n — 3-dimensional submanifolds of
QSl. In fact, if B,, is the set of points of 3ft where the tangent
plane is parallel to a" , then the characteristic set is equal to the
union of all B,, H B , v ̂  yi.

In the special case when f2 is a ball in R" we can prove that
(1.1) is closed by means of a reasoning similar to the proof of
Theorem 6.1 together with an induction over n\ what makes this
case simple is that the intersection of a ball and a plane is always
a ball, and hence estimates like those of Proposition 4.3
automatically hold for families of such intersections.
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One can generalize the problem by replacing the directions
av by subspaces Hy of arbitrary dimension k , 1 < k < n — 1.
Let us write u E L^ft , H), if u G L^ft) and ^ is constant
almost everywhere on ft H E for almost every translate
E = x + H of H. Let {H^}^ be a finite set of such
subspaces. The question is whether

^ L^ (ft , H^) is closed in L9 (ft). (8.1)
v^\

The case when
def

H^ + H^ == {x + y ; x E H^ , >/ E H^} = FT whenever v ^ ^ (8.2)
has been treated by a number of authors. Petersen et al. [7] show
that (8.1) holds if l < p < < » , (8.2) is satisfied, and 3ft is
Lipschitz continuous (their result is in fact more general than this).
Lars Svensson [10] proves a similar result for the more general problem
where the family of translates of a subspace is replaced by the
family of level sets of a smooth mapping from R" to R^ ,
l < f c < ^ — 1 . If (8.2) is not satisfied one can construct an
example based on the idea of Theorem 1.7, where ft is strictly
convex, 3ft is infinitely differentiable, and (8.1) does not hold. On
the other hand, it is natural to expect that the non-vanishing of the
principal curvatures again guarantees (8.1).
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