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A C*-ALGEBRAIC SCHOENBERG THEOREM
by 0. BRATTELI, P.E.T. J0RGENSEN

A. KISHIMOTO, D.W. ROBINSON

0. Introduction.

Let %' be a C* algebra. A linear operator 6 ; D(6) '—> 5[
is defined to be a derivation if is satisfies the following three
properties:

a) the domain D(5) is a norm-dense *-subalgebra of $(,
b) 6(X*)= 6(X)*, XGD(5) ,
c) 6(XY) = 6(X)Y + X8(X), X , Y G D ( 6 ) .

Similarly 8 is defined to be a dissipation if it satisfies properties
a) and b) together with

c') 5(X*X)<5(X*)X + X*8(X), XED(5) .
The operator 6 is defined to be a complete dissipation if it

satisfies properties a) and b) together with the matrix inequalities
c") [6 (XT X?] < [5 (X,)*X, + Xy* 6 (X,)]

for all finite sequences X^ , . . . , X^ in D(6). The study of
derivations and dissipations is mainly motivated by the following
facts.

If 6 is a bounded linear operator on $[ , then :
1) r€ R «—^ a^ = exp{— 18} is a uniformly continuous

one-parameter group of *-automorphisms of ^ if, and only if,
5 is a derivation,

2) ^ G R ^ . •—> a^ = exp{— t6} is a uniformly continuous
one-parameter contraction semigroup of symmetric maps, i.e.,
a^(X)* = o^(X*), XG51, which are strongly positive, i.e.,
a,(X*X)>a,(X)*a,(X), X E 9T, if, and only if, 5 is a
dissipation,

\
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3) r € R ^ '—> c^ = exp{— tS} is a uniformly continuous
semigroup of completely positive contractions, i.e., c^ ® 6 y , ;
ST ® M^ •—> ^ ® M^ is positive for all ^ C N , and ||aj| < 1 ,
if, and only if, 5 is a complete dissipation.
The first statement is easily verified. The second is less obvious; it
is a result of Evans and Hanche-Olsen [15]. The third follows
from the second together with results by Evans [14].

The principal problem in the theory of derivations is to
characterize those derivations which generate strongly continuous
one-parameter groups of ""-automorphisms. This problem has
attracted a great deal of attention in the last decade (see, for
example, [9] Chapter 3 or [24] [7]). An analogous problem
is to characterize those complete dissipations which generate
strongly continuous one-parameter contraction semigroups of
completely positive maps. In this paper we examine this latter
problem in a more restricted framework of "non-commutative
harmonic analysis^and extend some results obtained in [6].

The extra ingredient for this restricted setting is a compact
abelian group G represented by a strongly continuous group TQ
of *-automorphisms of SI . If ^r denotes the fixed point algebra
of r in [̂ then one has the following result for derivations.

THEOREM [8]. —// 5 is a closed derivation on ^ such that
1) D(6) is T-invariant and

8(^(X))=^(8(X)),XeD(5), g C G ,
2) ^T is contained in D(8) and 5(X)== 0, X e ^ T ,

then 5 is the generator of a strongly continuous one-parameter
group of ^automorphisms of ̂  .

Our main result is a direct analogue of this theorem for
complete dissipations and completely positive semigroups. It can
also be viewed as a generalization of Schoenberg's theorem [25]
[4], in classical harmonic analysis. This classical setting is given
by choosing $[ = C(G), the continuous functions over G with
the supremum norm, and considering a negative definite function
V / : G —^ C where G is the dual of G. The function V/ defines
a linear operator 5^ on C(G) by the definition

(V?))(7)= ^(7)/(7), 7^G,
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where / is the Fourier transform of /G S[. Then

(5^(n/+76^(/)-6^(7h)00

== S 7(F)<ri>[^)+^(r7)-^(r?-S)]/(r?)<r?^>
^,T?e6

>0, ^GG,
because V/ is negative-definite. But Schoenberg's theorem states
that if V/ is a function with i^(0) = 0 then V/ is negative-definite
if, and only if, 7'—^ exp{—r^(7)} is positive-definite for all
t > 0. A straightforward calculation shows, however, that this
latter condition is equivalent to positivity of the semigroup
t '—> e x p { — ^ S ^ } , or, by the generalized Schwarz inequality, to
the strong positivity requirements

(^-^ (//)) (g) > (e-'^ (/)) (g) (^-^ (/)) (g).

In fact these inequalities follow from negative-definiteness of V/ and
Schur's theorem (see the proof of Lemma 1.7), and conversely
negative-definiteness of V/ follows from the inequalities by
differentiation.

In fact negative definiteness of ^ implies that 6^ is a
complete dissipation as expressed by the matrix inequalities

1(5^ (W/ + fi^ (fj) - ̂  (W ̂  ̂  °
where f^ , f^ , . . . , / „ is any finite sequence in the domain of
8. . This in turn implies complete positivity of the semigroup
t •—> exp{— r5^}, i.e.,

[(e-^ (// ̂ )-^~r^ (7/) e-'^ (/,)) (g)} > 0.

Our main theorem proves an equivalence between such conditions
for operators and semigroups acting on non-abelian C*-algebras.
In this context it should be remarked that every positive map on
an abelian C*-algebra is automatically completely positive and
each dissipation is a complete dissipation, (see Remark 1 after
the main theorem) but this is not necessarily the case for non-
abelian C*-algebras, as our Theorem 2 indicates.

Finally we note that Akemann and Walter [1] have studied
negative definite functions on non-abelian groups G. In particular
they associated to each such function ^ a dissipation 5^ , by
an extension of the above construction for abelian G, and used
the existence of this operator to obtain structural results for G.
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1. A C^-algebraic Schoenberg Theorem.

We adopt the notation of [8], except the representation of
G as automorphisms of ST is denoted by r instead of a. For
example ^(7) denotes the spectral subspace of T
corresponding to 7 G G ,

^(7)== { X G 5 T ; ^ ( X ) = = ( 7 , ^ > X for all gEG},
and ^==^(0) is the fixed point subalgebra. Moreover 51 p
denotes the linear span of the ^T (7).

THEOREM 1. — Let G be a compact abelian group, r an action
of G on the C^-algebra 51, and (D a r-invariant dense*-subalgebra
of ^ such that ^T C (® and (D is the linear span of the
subspaces CO H 9T (7), 7 G G. Further let H : ® —>- ^ be a linear
operator which is symmetric, i.e., H(X*)=H(X)*, XGfi) ,
which satisfies H(X) = 0 for all XEST, and is such that
H(T^X))=T^H(X)) forall X E ® , g C G .

The following conditions are equivalent:
1 ) The matrix inequality

[H(X,)*X, + X?H(X,) - H(X,*X^)] > 0
holds in S(® My,, for all finite sequences X^ , X^ , . .. , X^ Ed?.

2) The operator H is closable and its closure H generates
a CQ-semigroup S of contractions which is completely positive,
i.e., the matrix inequality

[S,(XTXp-S,(X,)*S,(X?]>0
holds for all finite sequences X^ , X^ , . . . , X^ e 6D.

A special case of this result was proved in [6]. Before turning
to the proof we make a series of comments on its assumptions
and conclusions.

Remark 1. - If ^ is an abelian C*-algebra and H : (0 —^ ^
a dissipation defined on a dense*-subalgebra S> then H is
automatically a complete dissipation. To prove this one first
argues that one may reduce to th& case that 5T == C(S2), where S2
is a compact Hausdorff space, and I €<D . Then if
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Q,y = H(X/)*X, + X^H(X? - H(X^Xp and X = ^ W
with X, G C one has

S X,X^.(cj) = (H(X)*X + X*H(X) - H(X*X)) (o;) > 0,
< J

i.e., the scalar-valued matrix Q(o?) = [Q/.(<^)1 is positive for each
a?Ei2. Therefore p(Q(o;)) > 0 for each state p on My,. But
every pure state a on S( ® My, has the form a = 6^ ® p
where 6^, is the point measure at a? G S2. Consequently
^([Q,y])>0, and [Qy]>0 in 9 ( ® M ^ . (The basic idea is
in [19], [29], and [3].)

Remark 2. - Let
p^ x ^fo ^<7T>^(X)

denote the projection from $( onto 51T (7). Since CD is assumed
to be the linear span of Q) ̂ ^(7), it follows, from the uniqueness
of the Fourier decomposition, that P^((D)CCO for each 7 EG
and ^ hence (D 0 ̂ (j) = P<y(CD) is dense in ^(7) for each
7 G G .

Remark 3. — It would be interesting if one could replace
the hypothesis on S) by the alternative hypothesis; GO is a
r-invariant dense *-subalgebra of 5{ , or 5tp, and H is closable.
Indeed from this latter hypothesis and the commutation condition,
Condition 2 of the theorem, it follows that P^(D(H)) C D(H) for
all 7 G G , and thus DCH)^^) is dense in ^r (y) for each
7 G G. It is not clear, however, that the matrix inequalities of
Condition 1 extend to D(H)nSTp , and it is not even clear that
D(H) 0 $IF is an algebra.

Remark 4. — Note that if ^ has an identity I and if the
ideals ^ (7)* 8^(7) are dense in ^T for each 7^6 then a
simple argument shows that any (D satisfying the hypothesis of
the theorem must be equal to % p.. This is no longer the case
if $1 does not have an identity; a counterexample is given by
a minor modification of Examples 6.1 and 6.2 in [8].

Remark 5. — In the proof of the theorem we also give a
classification of all completely positive Co-semigroups on ST
which commute with TQ and restrict to the identity on the fixed
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point algebra ^T . This classification is in terms of maps from G
onto unbounded operators affiliated with the centres of the
multiplier algebras of the ideals ^(7) ̂ (7)* in ^T [22].
If ^(7)^(7)* is dense in 5T for each 7^6 these maps
can be described as follows. Let g denote the centre of the
multiplier algebra MOT) of ^r . In Lemma 1.5 we prove that
there is a representation 7 E G ̂  a^ of G as ^automorphisms
of g such that o ^ ( A ) X = X A for all Xest7^) and A G ^ .
Given the semigroup S satisfying the above requirements there
exists a map 7 EG ^—> exp{~rL(7)} such that

1) 6?-^) E g , t>0.
2) ^ '—^ ^-^('y) is a contraction semigroup, continuous

in the strict topology on M(ST), i.e., r « — > exp {- tL(-f)} X
is norm continuous for each X E a7 '.

3) The matrix inequality
[o^-^7/-7^)] > [^-^(^r)* ^-^(7,)]

is valid for all finite sequences 7i , . . . , 7 EG.
4) <?-^(o)^ ^ ^Q.

The connection between S and L is given by
S,(X)=e-tL^X (*)

for all XeS(T(7), all 7^6, and all r > 0 . Conversely given a
map 7 —^ L(7) satisfying these four conditions the relation (*)
defines a Co-semigroup of completely positive maps on U
commuting with TQ and restricting to the identity on ^ r .
Moreover if the automorphisms a^ are equal to the identity c,
or, equivalently, if the centre of MC^T) is contained in the centre
of M($f), then Condition 3 reduces to positivity of the matrices
[exp{-rL(7^.-7,)}] and, by using Bochner's theorem as in
[6], one concludes that S,(X) = f d^(g) r^(X) where ^ is

a g-valued convolution semigroup of probability measures on G.
In this case, the Levy-Khinchin theorem, [21], gives an explicit
representation of H, (see, for example, [6] Corollary 5.8).

Now we turn to the proof of Theorem 1.

Condition 2 of the theorem implies Condition 1 by
differentiation. The principal part of the proof of the converse
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is contained in the following series of eight lemmas. The first four
lemmas are very similar to results used to prove Theorem 5.1
in [6].

LEMMA 1.1.— Let ^ be a C*algebra, (Q a ^-subalgebra of
$1:, and (DQ a *-subalgebra of(D. Let H:6E) —> M. be a symmetric
linear operator such that H(X) = 0 for all XEO&o , and

H(X*) X 4- X*H(X) - H(X*X) > 0
for all Xe®.

It follow that H ( X Y ) = H ( X ) Y , H(YX) = YH(X) for all
X GO) , Y E <D^ .

This is an immediate consequence of the Cauchy-Schwarz
inequality applied to the positive sesquilinear forms

X, YG (D ^-> o;(X(X*) Y + X*H(Y) - H(X*Y))
where o; ranges over all states on ^i (see, for example, the proof
of Lemma 5.3 in [6]).

In the sequel we assume that 5T is represented faithfully,
and non-degenerately, on a Hilbert space 96. L e t ^ ^ ^ n ^ .
Since ^(7) ̂ (7)*, 7^G, are ideals in <^r the subalgebras
5^T(7) S^T(7)*, where the bar denotes or-weak closure on 3C ,
are ideals in ^rl and thus there exist projections E(7) G ^
such that

a'(7) ̂ (7)* =^^(7)
=E(7)^rM=(%TM)E(7).

Now define 0(7) = ^(7) n (0 where (Q is the domain
specified in the main theorem.

LEMMA 1.2.-For each ^ G G there exists a closed, densely
defined, possibly unbounded operator L(7) on E(7) 36 such
that

1 ) ®(7)gecD(L(7)), ®(7)3^ is a core for L(7) and
H(X) = L(7)X forall XC(D(j), j€G.

2) The operator — L(j) is dissipative, i.e., Re($,L(7)^»0
forall SED(L(7)).

3 ) L(7) is affiliated with the abelian von Neumann algebra
gB(7).
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Proof. — This is deduced from Lemma 1.1. by the same
argument used to deduce Lemma 5.4 from Lemma 5.3 in [6].
Roughly, one constructs an approximate identity for the C*-closure
of ^(7)^(7)* of the form E ^ = S X ? X ^ * where X?e6D(7)
and each sum is finite. The E^ converges a-weakly to E(j)
on ge , and one defines LCy) such that

L(7) X = £im S H(X?) X?*X
a f

for each X€®(7). wher^ the limit exists in norm. The remaining
details of the proof are given in Lemma 5.4 of [6].

LEMMA \ 3 . — 1 ) The operator L(7) is the generator of a
C^-semigroup t »—^exp{— rL(7)} of contractions on E(y) 9€
such that exp {- rL(7)} G ^ £(7) for all t > 0.

2 ) If Xe5T(7), then e-^^ X = e-^^ E(7)Xe^(7)
for all t>0, and the map t>0 *—^ e~tLWX in norm-continuous.

Proof. — 1) Again the reasoning closely resembles the proof
of Lemma 5.6 in [6]. By Lemma 1.2, L(7) is dissipative and
affiliated with the abelian von Neumann algebra ^£(7).
Therefore L(7) is the generator of a contraction semigroup in
^ £(7) by spectral theory, [27] [30]. Alternatively, one can
see that L(7) is a generator by the analytic element method
employed in proving part 2.

2) If XG6E)(7), and f^: [0, + oo> —^ [0,+ oo> is a conti-
nuous function such that /g(x) = 0 for x <e , then the argument
used in Lemma 5.6 in [6] shows that X^ =/^(XX*) X E ® (7),
and Xg is an entire analytic element for H. The relations
H ( Y ) = = L ( 7 ) Y , for Ye ̂ (7), then show that X^ is entire
analytic for L(7), for any $ € gg, and one has

£ (-rH)n(X,)=^-rL^X,.
=o n!n=0

In particular exp{— rL(7)} X^ e ST(7) and t ^ exp{-rL(7)} X^
is norm continuous. Since any XE(D(j) can be approximated in
norm by elements X^, and since (D(y) is norm dense in ^(7),
part 2 of Lemma 1.3 follows by closure.
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LEMMA 1.4. - The restriction of H to ©(7) is norm-closable
as an operator on the Banach space 8T(7) and its closure is the
generator of a ^-semigroup of contractions S on ^(7).
Furthermore S,(X) = e~tL ̂  X forallt>0 and XGU^r) .

Proof. - If one defines S on ^(7) by the above
relation then S is a Co-semigroup of contractions by Lemma 1.3.
Let H denote its generator.

If XE®(7) and ^3€ then X^GD(L(7)) and hence
S^XK-XS^-^^-OXS

=^^ dse-^WXS;.
Alternatively stated S^(X) — X = — J ds e'^^ H(X).

It follows that XCD(H) and H(X)=H(X) , i.e., H is an
extension of H. But the proof of Lemma 1.3 showed that H
has a dense set of analytic elements in 60(7), and it follows that
©(7) is a core for H (see, for example, [9] Corollary 3.1.20).
This shows that H is closable with closure H.

We now define a semigroup S of linear maps from ^(p into

$4 by S,(X)= S e-^^X^ where X == £ X- is the
7€EG

Fourier decomposition of X. Our aim is to show that S extends
to a completely positive contraction semigroup on 5T . The main
obstacle is to show that S is contractive, or, equivalently, that
S is positive on ^Tp. To this end, we first need the following
results concerning the structure of the spectral subspaces
^(7).

LEMMA 1.5. — There exists a unique ^-isomorphism
c^: gE(-7) -^E(7)

such that a^(A)X=XA for all Xe^^) and AGgE(-7).
Furthermore AX* = X*a^(A) for all XESI^) and AE 5 £(-7).

Remark. — I f ^(7) contains a unitary operator U, one has
E(7) = E(- 7) = I and a^(A) = UAU* for AC g.

Proof. — Assume first that AE g E(— 7) is given. As E(7)
is the range projection of the subspace [^(7)96] of 3€ , the
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operator B defined on this subspace by

B(SX^)= 1:X,A^
( <

is unique whenever the definition is consistent. In fact, we will
show that I I SX,A^|| <||A|| || ^X^JI for all finite sums,

' <
where X/GSt^) and ^£ge, and hence the definition is
indeed consistent. Moreover || B || < || A ||.

To derive the inequality, first assume that the finite sum
contains only one element. Then

IIXAU2 =(A{,X*XA{)

=(A*A{,X*X{)

=(A*A{, |X|^)
=(A*A|X|$, |X|^)

=iiAixmi2
<IIA||2|||X|tl|2

= II A ||2 || X{ ||2

where we have used X*X, I X| € Sf" E(-7) and A e % E ( - 7 ) .
To derive the inequality for general finite sums, one then employs
the previous reasoning on the matrices

X =

' X . . . .X , -

0 . . . O
. ,

•

- 0 . . . O -

/-w

, A =

' A O . .. 0

0 A . . . 0
.

. 0 0 ... A .

/^

, ^=

' S/
.

.^n.

Next we show that Be8tT"E(7). Let E^ be an approximate
identity for 81T (7) 31^7)* of the form E ^ = S X ^ X ^ * , where

/
X^esi^) and each sum is finite. From the defining relation
for B we have BE<, = ^X? AX^* . Since S.imE^=E(j),

i a

where the limit exists in the strong operator topology, it follows

that B = lEirn BE,, = £im (^ X? AX?*) .
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But as A<=8tT"E(-7), we have X^AX"* GST1'" £(7) for each
n • '

i, a, and hence B E Stt E(7).
Now we show that BG^E(7). If Cea7 , X/esT(7),

and S/e^, we have 0X^^(7), and hence

CB (SX^)=CI:X/A^
/ i

= ̂  (CX,) A^

= B S (CX,K/=BC S X.S/
/ /

It follows that Bey E(7), and hence
B = ^ ( T M E ( 7 ) n S ( T ' E ( 7 ) = gE(7).

Now define a^ : gE(- 7) —> gE(7) by a^(A) = B.
Then a^(A^ A^) X = XA^ A^ = a^(A^) XA^

=a^(A^)^(A2)X

for all Xe^^^), A ^ , A ^ G %E(—7) so a^ is a morphism.
We next show that a^ is a *-morphism, i.e., a^(A*) = a^(A)*.
Let AC gE(-7), B = a^(A) and B^ = a^(A*). We must
show that B i = B * . But if X,YeST(7), $, 77 E 96 we have

(B^,Yr?)=(XA*£,Yr?)

=(A*S,X*Yr?)

=(S,X*YA7?)

=(X{,YA7?)
=(XS,BYr?)

where we have used X^YesT and hence AX' l tY=X*YA. It
follows that BI =B*.

We thus know that a^ : gE(— 7) —> g E(7) is a *-morphism.
But since ^r (— 7) = SM^Cy)*, it follows from the adjoint relation
X*B* = A*X* that a_^ is the inverse of a^. Therefore a^
is a ^-isomorphism.

Next we extend the operators L(7) affiliated with g E(7)
to operators affiliated with % . The extended operators will also
be denoted by L(7) and the extensions are defined by the
requirements L(7) (I — E(7)) = 0. The operators exp{— tL(^)}
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and E(7), where t>0 and 7^6, are then all contained in
g and consequently generate an abelian von Neumann algebra.
If G is countable this algebra is countably decomposable and
has the form L°°(ft,rf^) for some finite measure coming from
a normal state with faithful restriction to the abelian algebra.
If G is not countable one may replace G by countable subsets
of G throughout the following reasoning and assume the existence
of a similar representation.

In this spectral representation the projections £(7) are
represented by characteristic functions of measurable subsets of
S2, and the operators LCy) by almost everywhere defined
measurable functions with non-negative real part. Since the
maps a^: ^ E ( - 7 ) — > 5 ECy) are ^isomorphisms they are
automatically normal. They may be extended to normal *-morphisms
^'y-' g — ^ g » with range gE(7), by the requirement
a^(l -E(-7)) = 0. Since they are normal they extend uniquely
to unbounded operators affiliated to 3 so, for example,
o^(L(7^)) is a dissipative operator affiliated with gE(7^) .
We will also adjoin these operators to the spectral representation
mentioned above.

LEMMA 1.6. - For all 7^ , . . . , 7^ G G and m G N one has
[E(7,) {L(7/)* + L(7,) - S/L(7, - 7,)» m E(7,)] > 0,

ie., the matrix-valued measurable function from Sl into M
v^hose O',7')-th matrix element is given by the foregoing expression
takes values in the positive matrices, almost everywhere.

Proof. - If X^ G 0(7^), i = 1, 2, . . . , n, then by the hypothesis
of the theorem [H(X/)*X^ 4- X^H(X,) - H(X^X^)] > 0.

Therefore [X? L(7/)* X^ 4- X? L(7y) X, - L(7, - 7/) X^ X,] > 0 by
Lemma 1.2. But by Lemma 1.5 one then has

L(7, - 7/) X?X, = X?c^(L(7, - 7/)) X,
in the sense that the densely defined operator to the right has a
bounded extension, equal to the operator to the left. Thus

[X? 0(7,)* + L(7,) ~ c^(L(7y - 7/)» X,] > 0 .
Using the matrix methods employed in the proof of Lemma 4.5 in
[6] one deduces that
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&X?Xr) {L(7/)* + L(7? - c^(L(^ - 7/))} S X^Xf] > 0
^ ^

for all finite sequences X^G^^). But if Hx^X^ mns
^

through an approximate identity for ^(7)^(7)*, then

EXfxf converges strongly to ECy), and hence, working in

the spectral representation, one finds
[E(7/) {L(7/)* + L(7,) - ̂ ,(L(7, - 7/))}E (7;)] > 0.

But a classical theorem of Schur, [26], implies that if A = [A«]
is a positive M x n matrix, then [(A,..)'71 ] is also positive, for
m = 1, 2 , . . . . Applying Schur's theorem to the matrix-valued
fonctions above we deduce that

[E(7<) {L(7<)* + L(7;) - c^(L(7;- 7^6(7;)] > 0.
L E M M A l . 7 . — / / X G S t p the generalized Schwarz inequality

S,(X* X) > S/X)*S,(X) ^ valid.

Remark. — By tensoring with the n x n matrices, one can
equally well deduce the matrix inequality

[S^X^tS^X^S^X?].

Proof. — If the matrix inequality in Lemma 1.6 is multiplied
to the right with the matrix

r^L(7i) o (

0 ^-rL(72) ... (

0 ^-rL(7n)

and to the left with the adjoint of the matrix, we obtain
[E^e-^^ {t(W + L(7?

- c^(L(7, - 7/)))} m e- ̂  E(7;)] > 0.
Therefore, if this matrix is divided by m!, and the sum is taken
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over m = 0, 1, 2, . .. , then the sum is larger thant the m = 0
term, i.e.,

-^(LQ,-7/)) -rLCy/)* -rLCy.)
€ '[E(7,) ^ 7/ / I E(7,)] > [E(7,) e ^ / £(7,)]

and both matrix operators involved in this last inequality have
finite norm. Assume that X € %p, and that X has the Fourier

n n
decomposition X = ,̂ X = ^ X^. Multiplying the matrices

/ = i 1=1
above to the right with

rx, o ... o]
X^ 0 ... 0

[ X , 0 . . . Oj

and to the left with the adjoint of the matrix, one obtains
matrices where only the upper left hand corner is nonzero. The
resulting inequality becomes, after using X^E(7^)=X^ and
E(7,)X,=X,,

S X^-^7^ X,> SX? e-^ e-^ X,.

But X^-^^-^X^xra^.-^-^)^

^-^,-^x?x,
= S,(X? X,)

and (T^^X^ S,(X,).
The above inequality therefore states S,(X* X) > S^(X)* S^(X).

Now we come to the crucial part of the proof that S is
positive and contractive.

LEMMA 1.8. — Suppose that a linear mapping ^3: Sip —^ 81
is defined with the two properties

1 ) ^(X*X)>0, for all X E S I p ,
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2) For every 7 E G there is a C > 0 such that
I I ^(X) || <C^ || X||, forall XE^).

It follow that |||3(X)|| ̂  Co || X|| /bra// X E ^ ^rf ^
extends to a positive linear map j3 : Sl —>- 51, with || j31| < Co .

Remark 1. —The main problem in the proof of this lemma is
to show that j3 is positive on Sip. This is not a simple consequence
of the first condition because positive elements in S(y do not
necessarily have the form X*X with X E $(p. An example
showing the possible problems is as follows. Let S( =C(0 ,1 )
and 6D the *-subalgebra of polynomials. Each /E ® extends
by analyticity to C and if one defines j3 by

(/?(/)) Oc)=/0c+ 2), /Efi),

then j3: (B —> (D is a *-automorphism and in particular
j3(/*/)>0 for all /E®. But (? is not positive on CD nor is
it norm-continuous.

Remark!.—in our application of Lemma 1.8 the map j3
satisfies the stronger positivity requirement

0(X*X)>0(X)*^(X), forall X E S I p ,
and this implies C < 1 forall 7 EG. This is because

^(X^^II^X^IKCJIXII2

for X E ̂  (7), since X* X E ̂  . Therefore C^ < y^ and
siting 7 = 0 one has ^/To< 1 . Hence Lemma 1.8 then implies
||^(X)|| < 11X11 for all X E ^ I F .

Remark 3. — The group G plays a somewhat spurious
role in Lemma 1.8 and in fact one can give a reformulation which
does not involve G. Let U be a C*''algebra containing an
increasing net ^ of closed subspaces indexed by a lattice such
that (^ = ^A ^A is a ^orm-dense ^-algebra of ST and assume
there exist linear operators P^ : Sl —> 51̂  such that

a) PA^A^^^AHA^ f0^11 A, A',

b) PA(X)ECo{a(X); aEau t®, a(3t^) ^ ̂  f^ al1 ^
for all X E (0, where Co denotes the weakly (norm) closed convex
huli

c ) P^(X) —> X for all XE®
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Further let j3 : (0 —> 81: be a linear map with the properties
1) ^ (X*X)>0 for all X G G ) ,
2) for each A there is a C\ > 0 such that

||j3(X)||<CJ|X|| for all XE^ .

It follow that ft is a positive map. Moreover if $T contains
an identity I e CD then ft is bounded and \\ft\\ = ||j3(l)||.

The proof of this statement is a rephrasing of the following
proof with P^ identified with the regularization operator
^•(4).

Proof of Lemma 1.8.-The main onus of the proof is to
establish that. ftW > 0 for all positive Y G $(p . Once this is
done the rest of the proof is as follows.

Choose an approximate identity {Eg} for 51 such that
Eg G a1'for all 6 (see for example, [6] Lemma 4.1). Then

- H X H E ^ E g X E ^ ||X|| E,2

for all X = X* E ̂  . Hence

- II X || ̂ (E,2) < p(E, XE,) < || X || 0(E,2).
Therefore

H^XE^II < HXII 11^)11

< 1|X|| CJIE^IK ||X|| Co.

But <31^r(A) is bounded for every finite subset A C G by the
estimate

11/!(X)|| ==|| I ^(X))l|
7GA

<( S c^) HXII, xer(A);
reA

(here U7 (A) = S ^T (j), see [9], Definition 3.2.37). Therefore
7GA

taking the limit over the approximate identity one obtains
II P(X) || < Co || X || for all X = X* E 9lp .

Now j3 extends by continuity to the space ^^ of all
self-adjoint elements of ST and can be further extended by
linearity to ^ = ^^ 4- ̂ . Since ft is positive on ^ it
follows by approximation that the extension j? is positive on



A C*-ALGEBRAIC SCHOENBERG THEOREM 171

51, e.g., this follows from the regularization method used in the
sequel. Therefore \\?\\ = £im II^Eg)!! < CQ by Lemma 2 of

6

[11]. In particular || <?(X) || < CJ X || for all X E ̂ .
Thus to complete the proof of the lemma it remains to

establish that j3 is positive on 51 p.. This will be achieved by
approximating a positive Y G STp with elements of the form Z2

with Z = Z* € ^p and using the fact that j3 is bounded on
each ^(A). It is, however, necessary to keep control over the
size of A. For this a regularization argument is essential.

Let / be a function on G whose Fourier transform /
has finite support A(/) and define r(/) =J dgf(g) T .
Then r(f) maps ^T (A) into ^(AHAC/)) C ^r (A(f)) because
if XE^A) then

r(/)(X) = S f dgf(g)r(X^)
-VGA JG7€=A

S f dgf(g)(j,g)X^
^A JG 77GA

Z /WX-e^AnAC/)).
7eAHA(/ )

Next we observe that one can choose an approximate identity
{/^}, for the convolution algebra L^G), consisting of continuous,
positive /^, with y ^/A^)^^ and such fhat /^ has
finite support A(/). One way to achieve this is to consider
an upward directed family of finite sets A C G with union G
such that - A = A and then set /\ = (A^/IA | where
A^GC(G) is the Fourier transform of the characteristic function
of A. In this case A(/) = A + A = {7 + { ; 7,$ GA} .

Note that the regularization operators r(/^) associated
with an approximate identity of this type are completely positive
contractions on ^ .

Now we are prepared to prove the positivity of j3 on STp •
Given 1 > e > 0 and Y G ^p » with Y > 0, choose

Z = Z * G ^ such that lly^Y-Z|| < e/(2||Y||1/2 + 1). Then
I I Y - Z ' I K d I Y I I ^ + H Z I D H ^ Y - Z I K e .
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Moreover if /^ is the above approximate identity
II r(f^) (Y) - T(^) (Z2) || < || Y - Z2 || < e

and also
II ̂ r(f^) (Y)) - ̂ (r(4) (Z2)) II <( S C , ) e .

SeA(/) 1 /

Then clearly

^(T(/A) (Y)) > ̂ (/A) (Z2)) ~ e ( S cj
7<=A(/)

>-.( S; c,),
7GA(/)

since . „
P(rW (Z2) = J dgf^(g)^r(g) (Z2))

=/^/A(^(fr^)(Z))2)

>0

by assumption 1 in the lemma. But e is arbitrary and hence

(?(r(^)(Y))>0.
Moreover r (/^) (Y) G ST" (A'nA(/)) C ^r (A') where A' is
independent of /\. Thus r(/^)(Y) —^ Y as A —> G in
the closed subspace ^(A'). But <3 is bounded in restriction to
^(A^) and hence ^(r(/^) (Y)) —> j3(Y) and we find j3(Y) > 0
which is the desired conclusion.

End of proof of Theorem 1. — In the foregoing lemmas we
have constructed a CQ -semigroup S: STp —> Sip which is
contractive, by Lemma 1.8, and hence extends by continuity to
a Co-semigroup of contractions S on ^ . But S then satisfies
the generalized Schwarz inequality, by Lemma 1.7, and in fact
satisfies the matrix inequality contained in Condition 2 of the
theorem, by the remark after Lemma 1.7. But the reasoning in
the proof of Lemma 1.4 shows that the generator H of S is
an extension of H and therefore H is closable. In the course
of that proof we constructed a dense set of analytic element for
H and thus H is the closure of H (see, for example [9] Corollary
3.1.20).
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2. Dissipations and Complete Dissipations.

In the implication 1 '̂  2 in Theorem 1 it was assumed
that H was a complete dissipation, i.e., the matrix inequality
[H(X? Xj + X^ H(X? - H(iX*X^)] > 0 is valid for all finite
sequences X^ , . . . , X^ G D(H). This can not in general be
replaced by the weaker assumption that H is a dissipation, i.e.,
H(X*) X 4- X* H(X) - H(X'16 X) > 0 for all X G D(H). This
is illustrated by the following theorem.

THEOREM 2. — Let 51 be a C*-algebra and assume there
exists an ergodic action r , on 1& , of a finite abelian group G.

The following three conditions are equivalent:
1 ) All dissipations on STp are complete dissipations,
2) If H : $Tp —> ^iisa ^-operator, with the properties:

a. H is a dissipation,
b. Hr^== r^H for all g C G :
c. H(X) = 0 for all XG centre (STp), then H is a

complete dissipation,
3 ) ^ is abelian.

Proof. — Since any dissipation of an abelian C*-algebra is a
complete dissipation, by Remark 1 after Theorem 1, it follows
immediately that 3==^ 1 whilst !==» 2 is trivial. To prove
2 =» 3 we will first just assume that G is a compact abelian
group, and obtain characterizations of dissipations and complete
dissipations in Lemmas 2.1-2.3. We then specialize to finite G
in Lemmas 2.4 - 2.6.

We may assume by ergodicity that the action r is faithful.
Each spectral subspace ^T^7) is then spanned by a unitary
operator U(7), and the U(7) satisfy the commutation relations
U(7 i )U(72)=P(7 i ,72)U(72)U(7 i ) for all 7i , ̂  E G whe^
p is an antisymmetric bicharacter, independent of the choice of
the U [20]. Moreover ^ is simple if, and only, if p is non-
degenerate [28] and ST is abelian if, and only if, p(7l ,72)= ^
for all 7i, 7^ • The U also satisfy the cocycle relation

U(7i) U (72) = 0(7i, 72) U (7i + 72)
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where P is a 2-cocycle, i.e., (! is a phase factor satisfying

^(7i, 7^) ̂  (7i + 72 . 7s) = ?(7i, 72 + 7a) ̂  , 7s)

for all 7 l , 7 2 » 7 3 e G • The function j3 depends on the phase
chosen for the 0(7), if UCy) is replaced by U'Cy) = ^(7) U (7),
j3 is replaced by ^ given by

^.7.)=^,7.)^l);(72)

<^(7i + 72)
and ^ is uniquely determined by r up to these transformations.
In particular, ^ is abelian if, and only if, j3 is a co-boundary, i.e.,

{p(^ 4- y \

^1'^)=^1)^^) for some ^"^on ^ : G — ^ T . The

connection between ^ and p is given by pp . , 7 ) ~ ̂ 71 > 7 2^
^(72,7^'

We first reduce the proof of 2 ^ 3 to the case that 8( is
simple. To this end, define F = {7 e G ; .0(7, ^) = 1 for all {EG}
and Go = r1 = {g e G; <7 ,^> = 1 for all 7 € F}.
Then

centre (91) = closed linear span of {U(y); -yE F}
=St G o={Xe9( ; r(g)(X)=X for all gGGo}.

See, for example J5]. ^Define a nondegenerate antisymmetric
bicharacter p y ; Cy x G(,= G/F x G/F i—> T by

Po(M,m)=p(7^)

where [7] is in the coset of 7^6 in G/F. Let Slo be the
simple C*-algebra which is the closed linear span of unitary
operators ^([7]), [7]€G,, satisfying

Uo([7l) Uo([(]) = po([7], ({]) IVm) Uo([7])

and let r0 be the corresponding ergodic action of G() on St,,.
The C*-algebra a is then a homogeneous C*-algebra over
centre (81) as C(r) as C(G/G()) with fibre ̂ .

LEMMA 2.1. - There is a 1-1 correspondence between
dissipations (resp. complete dissipation) H on 3tp. satisfying

b) HT^=T^H /or all gGG,
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c) H(X) = 0 for all X e centre ( ST )
and dissipations (resp. complete dissipations) H^ on ^ satisfying

b1) Ho^==T^Ho for all ^ E G o ,
c^ Ho(lo) = 0 , where IQ z5 r/^ identity element in $To.

// the functions L: G —^ C and L^ : GQ —> C are defined by
H(U(7))=L(7)U(7) ,7€=G,

HoOVM)) = Lo([7]) IVM), [7] E Go = G/r ,
rAfa correspondence is given by L(j) = ^([7]), all 7^ G.

Proo/ — If H is a dissipation (resp. complete dissipation)
on ^F satisfying b) and c), then it follows from Lemma 1.1
that H(XY) = H(X) Y = YH(X) = H(YX) for all X € ̂  ,
Y E^ centre (Sip) = linear span of {U(7); 7 G F}. Thus, if
L : G — ^ C is the function such that H(U(7» = L(7) U(7),
then ^ L depends only on [7], and we may define a function
LQ'.GQ^C by 4([7])=L(7) for all 706, and then
define an operator HQ on $IQ by

Ho(Uo([7]))=Lo([7])Uo<[7]) for [7] e G^ .
The point Q G G/GQ (or any other point) defines a character

on C(G/GQ) = centre (%) by evaluation, and thus a morphism
<^ on 5( with range canonically isomorphic to S(o by the
correspondence <^(U(7)) ^ Uo([7]), 7 G G.
As H(XY)=H(X)Y for all X G S I p , Y € centre ($(), H maps
each fibre of the homogeneous C*-algebra 5T over centre (ST)
into itself, and hence H lifts via ^ to a map on ^(^p) ~ STo .
This map identifies with Ho via the above correspondence, and
as <^ is a *-morphism it follows that HQ is a dissipation (resp.
complete dissipation).

Conversely, if HQ is a dissipation (resp. complete dissipation)
on 3to satisfying &'. and c'., define L(7) = ^([7]) for 7 G G a n d
H(U(7)) = L(7) U(7) for 7^6.
The H satisfies properties b and c, and in particular the
action of H on ^ decomposes under the "central decomposition"
of $T into actions of H on each of the fibres of ST over
centre (90. But as explained above, each of these actions is isomorphic
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to the action of HQ on Sl^, and hence H is a dissipation (resp.
complete dissipation) if, and only if, HQ has this property.

Because of Lemma 2.1, we may assume that the bi-
character p is non-degenerate and $( is simple in the rest of the
proof. The condition 2 c) reduces to H(l) = 0, and any *-map
satisfying 2b) and 2c) is given by H(UOy)) = LCy) UCy) where
L(7) is a scalar satisfying L(— 7) = L(7), L(0) = 0. Actually,
we will restrict attention to functions L: G —> C having the
form L(7) = ^ (1 — p({,7)) a(f) where a is a real

^G\{0}

function on G such that a(0) = 0 and 2^ |a(7)| < 4- oo.
jGG

The space of such functions a will be denoted by QL , and the
space of the corresponding functions L will be denoted by K .
The operator H == H^ corresponding to a is then given by

H(X) = - S 0(7) U(7) XU(7)* + ( S 0(7)) X.
-ye=G\{o} \eEG\{o}

H^ is thus a bounded operator satisfying 6) and c).Note that if
G is finite, it follows from [6], Example 6.4, and [18, 13] that
H is a complete dissipation satisfying b) and c) if, and only if,
H == H^ for an a € QL such that 0(7) > 0 for all 7. For
general compact abelian groups G we have the following:

LEMMA 2.2. - 1) The linear transformation M : QL —> K
defined by

(Ma)(7)= S (l-pa,7))a(S)
f€=G

is a real linear isomorphism from OL —> ff .
2 ) The function 7 —^ (Ma) (7) is negative definite on

G if, and only if, a({) > 0 for all g E G. Thus H^ is a
complete dissipation if, and only if, a(^) > 0 for all { E G .

Remark.—If G is finite, one deduces from 1. by counting
dimensions that

e = { L : G -^ C;L(0 )= 0 and L(- 7) == L(y) forall 706}
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and hence any operator H: ST —> 51 with the properties
Hr^ = r^H and H(l) == 0 has the form H = H^ for a unique
aea.

Proof, — 1 \ The antisymmetric bi-character p defines a
morphism < ^ : G — > G by <S ,^Cy)> = P(£,7) for all S . 7 G G .
As p is non-degenerate this morphism is faithful, and <^(G) is a dense
subgroup of G. Using this morphism, we may view ff as functions

L on G by L(g) = S (l-<^»a($), i.e., we identify the
-yGG

function L^ on G with the function L^ on G obtained by
extending 1^(^(7)) = 1^(7) by continuity. Thus

L(g) = (Ma) (^) = a(0) - a(g)

where denotes the inverse Fourier transform. But if Ma = 0
one obtains a(g) = a(0) for all g , and hence a(^) is propor-
tional to 5({). But as a(0) = 0 it follows that a = 0 , and
thus the kernel of M is zero.

2) As G is compact, G admits no nontrivial additive
characters into the reals. It follows from the Levy-Khinchin theorem
[4, 21] that a function L on G is negative definite if, and

only if, L has the form L(g) = S ( l - < S , ^ » a ( { )
^GG

where a G £1 (G), a(0) = 0, and a({) > 0 for all { E G . But
as <^(G) is dense in G, and L as a function on G is continuous,
it follows that L is negative definite as a function on G if, and
only if, it is as a function on <^(G). Part 2. of the lemma then
follows from the byectivity of M. But H^ is a complete dissi-
pation if, and only if, L is negative definite, see [6], Corollary 5.8,
or Lemma 1.6 in this paper.

We next investigate when H is a dissipation. This means
that H(X*) X + X* H(X) - H(X* X) > 0 for all

X = S x(7)U(7)E 5L
7
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But

H(X*)X+X*H(X) -H(X*X)

= 1 x(^) x(H) {L(T) + L(S) - L({ - 7)} U(7) "U^)
7,^

= S x(7)^(S) [ 1 ( 1 - P(r?,7))a(r?)
7^ ( r»

+11(1 -P(7?,f))a(ry) - ^(1 -p(7?,S-7))^(y?)l U(7)*U($)
I? T} )

= S ^(7)^(S){(1 -P(r?,7))(l -P(T?,S))}a(77)U(7)*Ua)
7,t.T?

= SX^XCrOaO?)
T»

where X(7?) = S x (S) (1 - p(7?, {)) U({) for all 77 G G. If
H

we use a similar identification of G with a dense subgroup <p(G)
of G as in the proof of Lemma 2.2, with p(7?,^) = = < S , ^ ( T ? ) > for
all ry , f e G, then we have X(T?) = X - T^) (X).
Let Tr be the unique normalized trace state on ST . As any
positive linear functional a; on S( , can be approximated by
functionals of the form Tr (Z* • Z), where Z G 5T we thus
obtain

LEMMA 2.3. - Let aEQL. The following two conditions
are equivalent:

1) H^ is a dissipation,

2 ) S,Tr(Z4 t(X-T^^(X))*(X-^^(X))Z)aa)>0 for
(f€G

all X,ZGS(.
Assume now that every dissipation of the form H^ is a

complete dissipation. By Lemma 2.2 and 2.3 this means that
if a E QL has the property that

S Tr(Z*(X -r^/X))*(X--T^(X))Z)aa)>0
^€G

for all X, Z E ̂  , then necessarily a(f) > 0 for all { G G.
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Identifying QL with CR(G\{0})y this means that the convex
cone in CR(G\{O}) generated by the functions

S C G\{0} ̂  /x.z 0) -Tr (E*(X - r^ (X))*(X - r^ (X))Z)

is weak*-dense in CR(G\{O})+ = 0?e r ; ^(S) > 0 for all
{GG\{0}}. But this is equivalent to the condition that the
extremal points ^ '—> 5 ( ^ — ^ o ) in (£R^ can be approximated
in the weak*-topology by a net of convex combinations of
functions of the above type.

From now on we will assume that G is finite. In this case
the cone generated by the function /x z ls automatically closed
because of finite-dimensionality, and hence the condition above
is equivalent to the existence of X, Z G S( for each g^ € G
such that Tr (Z* (X - r^(X)) * (X - r^(X)) Z) = 6 (g - g^) for
all g€G\{0} . As the trace is faithful, we have proved the following :

LEMMA 2.4. — Assume that G is finite. Hypothesis 2 in
Theorem 2 is fulfilled if, and only if, for all gQ^.G\{0} there
exist X , Z C ^ with

=0 for g^gQ
(X - r^(X)) Z

( ^=0 for g ^ g ^ .

The if part of this lemma follows from the remark after Lemma 2.2.

We next translate the conditions in Lemma 2.4 into conditions
on the Fourier coefficients x(j) ,^(7) of X. Z. We have

X - T/X) = S x(7i) (1 - <7i ,^» U(7i)
Ti

and hence we may assume without loss of generality that x(0) = 0.
Furthermore using U(7^) U(7^) = j3(7i ,7^) U(7^ + 7^) we have

(X-r^(X))Z= ^ ^(7i)^(72)d-<7i^»^(7i,72)U(7i+72)
'yi.'y2

=Sil>(Timf-7i)(l -<7i^»^(7i,S-7i)lua)
<? Tl
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Thus, if X , Z satisfy the conclusion of Lemma 2.4 we have

^(7iM{ ~7 i ) ( l -<7i^>m7i^-7i )

= 0 if ^^

S
Tl

=^ 0 for some { if g = g^

-h^)6(g -^)
for some nonzero function A on G. Put

A(7i) = ̂ (7i) ^0 - 7i) <?(7i, € - 7i).

Then the above relation states that /^(O) -/^)=A($)6(^ -^)
where ^ denotes the inverse Fourier transform, i.e.,

/ t te)=^(0)-AO)5Qr -go).
Taking the Fourier transform, we obtain

^(^——^ S <-7^>/^)
1 ^ 1 ^GG

= ̂ J 5(7)^(0) - ̂ h(Ji) <- 7,^>

=8(7)^(S)+^o(7)^(S)

where c ^ . c ^ , are^ functions on G, c^ is nonzero, and ^ is
the character on G given by — 7^ . Thus

^(7iM72)P(7i ,7s) = 8(7i) Ci(7i +7^) + ̂ o(7i) ̂ (7i + 7s)

= 5(7i) ^1(72) + go(Vi) ^2(7i + 72)-

Now, the condition x(0) = 0 gives c^^) + 0^(72) = 0 for
all 7^, i.e., €1(7)= - ̂ (7) = c(j) for all 7 where c is a
function. Thus

LEMMA 2.5. —Hypothesis 2 in Theorem 2 implies that the
following set of equations

^(7i) ^(72) ?(7i, 72) = 8(7i) ̂ (72) - ̂ o(7i) ̂ (7i + 72) (*)

has a solution x , z with x (0) = 0 for some nonzero function
c on G, for each ^GG\{0}.
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The algebra S[ is a full matrix algebra My, . If ^ = 1,
the implication 2 ===^ 3 in Theorem 2 is trivial, and hence we
may assume that n > 2. Then G has at least 4 elements. Our
aim is to show that the equations (*) have no solution with
c ^ = 0 .

LEMMA 2.6. - // the equations ( * ) have a solution x ,z , c
with c =^= 0, one has

x(j)^0 for all 7 ^ = 0

and z(7) ̂  0 )
\ for all 7.

c(7) ̂  0 )

Proof. - If ;c(7i) = 0 for a 7i ^ 0, it follows from (*)
that c(7i 4- 72) = 0 for all 72, which is impossible. Thus
x(7)^0 for all 7^0 .

If z(^o) = 0 for a 7o E G , it follows from (*) that

5(7i) ^(7o) = ^o(7i) ^^^i + ^o)
for all 7^ G G , i.e., 0(7) = ^6(7 - 7o) for some constant d.
Thus c ̂  0 implies that z(7^) ^= 0 for all 72 =^ 7o • The

equations (*) now take the form

x(7i) ^(72) 0(7i, 72) = d {5(7i) 5(72- 7o) - ̂ o<7i) 5(7i+ 72- 7o» •

Choosing 72 ^= 7o» and 72 ̂  0, with 7i + 72 ^ 7o » the ^^
hand side of the above equation is zero, whilst z(72)j3(7i ,72)^= 0.
Thus jc(7^) = 0, contradicting the first part of the proof. Thus
2(72) ^= 0 for all 72.

Thus x(7^) 2(72) (3(71,72)^ 0 for all 7^ ^= 0 and all
72, i.e., 0 ( 7 ^ + 7 2 ) ^ ° tor the same (7i ,72)> ^ 0(7) ̂  0
for all 7.

We next investigate consequences of the 2-cocycle identity,

^(7i, 72) ̂ (7i + 72 »7s) = (3(7i, 72 + 7a) ^(72 . 7s)
satisfied by |3. Multiplying both sides of this equation by
^(7l)^(72);c(7l + 72)z(72)z(73)z(72 + 7s) and combining with
Lemma 2.5 we obtain
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^•(72)?o(72M72 + 73) {z(7^)c(^ + 73) ~z(72 + 73M72)}5(7i)

-^(72M72 + 73)^o(7iM73)^(0)8(7i + 72)

+^(7iMO)^o(7i)c(73M7i + 73)8(72) (**)

+^o(7i)^o(72M7i +72+73) {^(72M72 +73)^0 (7iM7i + 72)

- ̂ (7i +72) ^(72)^(72 + 73)} = O .

Now, fixing 7^ = 7 = 0 , and 72 = S ̂  0, such that 7 + ^ ̂  0,
the first three terms in (**) disappear, and combining with Lemma 2.6
we obtain

x(fi) ̂ o(7) c(7 + S) ^(S + 73) = ̂ (7 + £) z(fi) c(f + 73)

for all y ^ E G , i.e., z is proportional to c. By moving the
factor of proportionality^ over to x we may therefore assume
z(7) = 0(7) for all 7 G G . Inserting this in (**) the 5(7^)-term
disappears, and choosing 7i ,72 » such that 7^ + 7^ ^ 0,7^ =^= 0,
we obtain -v(72)^o(7i)^(7i + 72) = x(7l + 72)c(72)» or

^(72) ^(7i + 72)
^(72)^0(72) ^(7i + 72)^o(7i + 72)

x(y)i.e., 7 ̂  0 '—^ ————-.— is a constant rf . Thus
c(7)^o(7)

0 if 7 = 0
x(j) =

^o(7)<-(7) if 7 = ^ 0 .
From (*) we therefore obtain

3^ ^ ) ̂  ^71 + 7P ^ ̂ (7i + 72)
P V 7 1 ) 7 2 / dc(7i)c(72) ^(7iM72)

whenever 7^ =^= 0, where ^(7) = dc(7). But as j3(7i,0) = 1
for all 7^ we obtain <p(0) = 1, and as j3(0,72) = 1 for all

{p(y. + 7,)
72. we then see that the relation ^(71,72)=—-——— is valid

<^(7i)^(72)
for all 7^ ,72^6 . As l /3(7 i>72) l = ! for a11 7 i»72 it follows
readily that I (^(7) 1 = 1 for all 7, and hence j3 is a coboun-
dary. But as % is non-abelian, this is impossible.

We have thus proved that if ST is non-abelian, condition 2
of Theorem 2 is not valid. This ends the proof of 2 sss^ 3.
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3. Positivity Properties.

To conclude we examine various concepts of positivity for
semigroups acting on 91 = M^ .

First consider the ergodic action of G = Z^ x Z^ on M^
defined in Section 6 of [6]. The eigenunitaries for this action can
be taken to be OQ = I ,^ , o ^ , a ^ , where a^ are the Pauli
matrices. It follows that operators H commuting with the G-action
have the form H(a,) = \0f, i = 0, 1, 2, 3 , and since ^G = Cl
the condition H(X) = 0 , X € ^G , is equivalent to \Q = 0.
Hence the semigroup S ^ = e x p { — ^ H } is determined by the
vector X = (X^ ,\^,\^)< It was shown in [6] that S is positive
if, and only if, X/ > 0, and S is completely positive if, and only
if t{>0 where ^ = — X / + 2^ X, . But we now argue that S

/ ^ t
is strongly positive if, and only if, X / > 0 and 4 X ; X y ^ ^ > 0
for i = j ̂  k =^= i. Thus the three concepts of positivity are
distinct, even for semigroups commuting with an ergodic action.

To derive the characterization of strong positivity of S
we first remark that it is equivalent to the conditions

Q^(X) = H(X*) X + X* H(X) - H(X* X) > 0

for all X €: 9T. But a state co over M^ has the form
o?(A) = Tr(pA) where p = (I + p^ 4- p^a^ + p ^ a ^ ) / 2 with
p, G R and p\ + p| + p| < 1. One then calculates that
o;(QJX)) > 0 for all X e 91 if, and only if, the matrix

2Xi ip^t^ ~~ip2t2
-ip^t^ 2X^ !pi^i

4)3^ ^^ i^ i ^
is positive. Thus S is strongly positive if, and only if, these
matrices are positive for all possible p.

By the Principal-Milnor-Theorem (see, for example, [16]
Ch.X, Theorems 4 and 20) and the conditions p\ + p| + pj < 1,
positivity of these matrices is equivalent to the six conditions
\ > 0 and 4X/ X .̂ - t\ > 0, i ^ j ^ k ^ i . In particular
positivity, strong positivity, and complete positivity, are distinct
properties for the semigroup.
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A specific example of a strongly positive semigroup which
is not completely positive is given by the choice

X o = 0 , \ i = = 1/2,^ ̂ ^^ == 1/2.
This semigroup has the action

S,(X) = (Ch(t/2) X + Sh(t/2) X") e^t + Tr(X) (1 - e-^2) I

where X^ denotes the transpose of X and Tr(X) is the
normalized trace. If H is the generator of this S then <p == I - H
is the strongly positive operator exhibited by Choi [12] which
is not 2-positive. Similarly S^ is not 2-positive for all t > 0.
Specifically 2-positivity fails for 0 < t < 2 ln[(l +^/3)/2].
Nevertheless S^ is 2-positive for large t , e.g., asymptotically
one has lim S,(X) = Tr(X) I .

(->.oo

Finally we mention that Choi [31] has shown that
/2-positivity and complete positivity are equivalent properties
for operators on M^ .
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