JOSÉ MANUEL CARBALLÉS

Characteristic homomorphism for (F_1, F_2) -foliated bundles over subfoliated manifolds

Annales de l'institut Fourier, tome 34, nº 3 (1984), p. 219-245 http://www.numdam.org/item?id=AIF_1984_34_3219_0

© Annales de l'institut Fourier, 1984, tous droits réservés.

L'accès aux archives de la revue « Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

CHARACTERISTIC HOMOMORPHISM FOR (F₁, F₂)-FOLIATED BUNDLES OVER SUBFOLIATED MANIFOLDS

by José Manuel CARBALLÉS

1. Introduction.

Let (F_1, F_2) be a couple of foliations on a differentiable manifold M such that the leaves of F_1 contain those of F_2 ; we shall say such couple (F_1, F_2) a subfoliation on M. While Moussu [9], Feigin [5], Cordero-Gadea [3] and Cordero-Masa [4] have study the (exotic) characteristic homomorphism of a subfoliation (F_1, F_2) using the techniques of Bernstein-Rozenfeld, Bott-Haefliger and Lehmann, our aim in this paper is to present the construction of the characteristic homorphism of (F_1, F_2) using the techniques and language of Kamber-Tondeur for foliated bundles.

Our study is based on the notion of (F_1, F_2) -foliated principal bundle. This is a principal bundle of the form $P = P_1 + P_2 \longrightarrow M$ of structure group $G_1 \times G_2$ endowed with a foliated structure given by a connection of the form $\omega = \omega_1 + \omega_2$ (called adapted connection sum) and where, for each $i = 1, 2, P_i \longrightarrow M$ is an F_i -foliated principal bundle of structure group G_i , and ω_i is an adapted connection in P_i . The most meaningful example of (F_1, F_2) -foliated bundle over M is a reduction of the bundle of linear frames of the so called normal bundle of (F_1, F_2) defined by $\nu(F_1, F_2) = (F_1/F_2) \oplus \nu F_1$. This vector bundle $\nu(F_1, F_2)$ has been used in [4] in order to define the characteristic homomorphism of (F_1, F_2) adapting the Bott [2] well-known construction of the characteristic homomorphism of a foliation; our construction of the characteristic homorphism of an (F_1, F_2) -foliated principal bundle generalizes that of Cordero-Masa in the same way as Kamber-Tondeur theory of characteristic classes of foliated bundles generalizes Bott theory. This approach allows, moreover, to initiate the study of the holonomy homomorphism of a "leaf" of a subfoliation, in the line of Goldman's paper [6] for the leaf of a foliation.

The paper is structured as follows. In § 2, we introduce the basic definitions and deduce the filtration preserving properties of the Weil homomorphism $k(\omega)$ of an adapted connection sum in an (F_1, F_2) -foliated bundle. As a particular consequence, the vanishing theorem for the normal bundle of a subfoliation [4], [5] is reobtained. These properties of $k(\omega)$ are used in order to prove the vanishing of $k(\omega)$ on a differential ideal I of the product Weil algebra $W(g_1 \oplus g_2)$ (firstly considered by Feigin [5]) and thus, following Kamber-Tondeur's theory, we introduce the generalized characteristic homomorphism of an (F_1, F_2) -foliated principal bundle P:

$$\Delta_* = \Delta_{(F_1, F_2)} (P) : H(W(g, H)_I) \longrightarrow H_{DR}(M)$$

where $H \subset G$ is a closed Lie subgroup such that P admits an H-reduction. We show that Δ_* does not depend on the connection sum ω and that it satisfies the usual functorial properties (i.e. naturality under pull-backs and ρ -extensions). We also deal with the case where ω_1 and ω_2 both are basic connections.

In § 3, we relate the generalized characteristic homomorphism $\Delta_{*}(\mathbf{P})$ with the generalized characteristic homomorphism (as defined in [7] of each \mathbf{P}_i , i = 1, 2. Taking into account that any adapted connection sum in \mathbf{P} is \mathbf{F}_2 -adapted, we deduce some properties of the characteristic homomorphism as \mathbf{F}_2 -foliated bundle of an $(\mathbf{F}_1, \mathbf{F}_2)$ -foliated bundle as well as of any \mathbf{F}_2 -extension of it. This section ends with the construction of the generalized characteristic homomorphism $\Delta_{*}(\mathbf{P})$ when considering a foliation \mathbf{F} as a subfoliation in the three possible forms.

In § 4 we apply the general results of Kamber-Tondeur on

CHARACTERISTIC HOMOMORPHISM FOR (F_1, F_2) – FOLIATED BUNDLES 221

the cohomology of g-DG-algebras in order to calculate the cohomology $H(W(g, H)_I)$. In particular, this allows to refind the characteristic homomorphism of (F_1, F_2) as defined in [4]. The algebra of secondary characteristic invariants is constructed and a geometric interpretation of the generalized characteristic homomorphism is also given for the general situation.

Finaly, in § 5, we restrict the (F_1, F_2) -foliated bundle P to the leaves of each foliation F_i , i = 1, 2; this leads us, on the one hand to a slightly generalization of Goldman's study, and, on the other, to define the holonomy homomorphism of a "leaf" of a subfoliation and to discuss an example of Reinhart [10].

Through all this paper, the manifolds, maps, etc, will be assumed differentiable of class C^{∞} . Also, we shall adopt the notation of [7].

This paper is a part of the doctoral dissertation of the author who would like to acknowledge here his gratitude to L.A. Cordero for his guidance and encouragement.

2. Characteristic homomorphism of an (F_1, F_2) -foliated bundle.

Let M be an *n*-dimensional differentiable manifold, TM its tangent bundle. Through all this paper, we always assume M endowed with a (q_1, q_2) -codimensional subfoliation (F_1, F_2) , that is, of a couple of integrable subbundles F_i of TM of dimension $n - q_i$, i = 1, 2, and F_2 being a subbundle of F_1 . Therefore, for each *i*, F_i defines a q_i -codimensional foliation on M, $d = q_2 - q_1 \ge 0$ and the leaves of F_1 contain those of F_2 .

Let $Q_i = TM/F_i$ be the normal bundle of F_i , i = 1, 2, and Q_0 the quotient bundle F_1/F_2 ; then, there is a short exact sequence of vector bundles, canonically associated to (F_1, F_2) , $0 \longrightarrow Q_0 \xrightarrow{i} Q_2 \xrightarrow{\pi} Q_1 \longrightarrow 0$ and the vector bundle $\nu(F_1, F_2) = Q_0 \oplus Q_1$ is called the normal bundle of (F_1, F_2) . Let $P_i(M, G_i)$ be an F_i -foliated principal bundle, i = 1, 2, and let ω_i be an adapted connection. Let

$$P(M, G_1 \times G_2) = P_1(M, G_1) + P_2(M, G_2)$$

be the principal bundle sum of P_1 and P_2 ; then $\omega = \omega_1 + \omega_2$ defines two partial connections in P and ω is adapted to both; endowed with these two partial connections, P will be said (F_1, F_2) -foliated and $\omega = \omega_1 + \omega_2$ an adapted connection sum. Let us remark that, in particular, P is F_2 -foliated and if both ω_1 and ω_2 are basic, then $\omega = \omega_1 + \omega_2$ is also basic with respect to F_2 .

Let $L(Q_i)$ be the frame bundle of Q_i , i = 0, 1, and $L(Q_1) + L(Q_0)$ the bundle sum. As it can be easily shown using the results in [4], $L(Q_1) + L(Q_0)$ is (F_1, F_2) -foliated and it will be called the bundle of transverse frames of (F_1, F_2) . Other examples can be obtained as follows; let $P_i \rightarrow M$ be a G_i -principal bundle, i = 1, 2, endowed with an F_i -foliated structure, F_i being the orbit foliation defined on M by a left almost free action of a Lie subgroup $K_i \subset G_i$ (see 2.4 in [7]); then, if $K_2 \subset K_1$, $P = P_1 + P_2$ is an (F_1, F_2) -foliated bundle. In particular, if $P \rightarrow M$ is a G-principal bundle which is F_1 -foliated by the orbits of the action of a Lie subgroup $K_2 \subset K_1$, the bundle of $M_1 \subset G_1$ and $M_2 \subset K_1$.

Let $P = P_1 + P_2$ be an (F_1, F_2) -foliated bundle over M, $\omega = \omega_1 + \omega_2$ an adapted connection sum. If we denote $G = G_1 \times G_2$, its Lie algebra by $g = g_1 \oplus g_2$ and $k(\omega)$, $k(\omega_1)$, $k(\omega_2)$ the respective Weil homomorphisms, the following commutative diagram allows to write $k(\omega) = k(\omega_1) \otimes k(\omega_2)$:

where L denotes the canonical isomorphism, π is defined by $\pi(\alpha \otimes \beta) = p_1^* \alpha \wedge p_2^* \beta$, $p_i: P_1 \times P_2 \longrightarrow P_i$ the canonical projection, and $\overline{\Delta}^*$ being induced by the canonical homomorphism $\overline{\Delta}: \mathbf{P} = \mathbf{P}_1 + \mathbf{P}_2 \longrightarrow \mathbf{P}_1 \times \mathbf{P}_2$.

Using $L: W(g) \cong W(g_1) \otimes W(g_2)$, the canonical even decreasing filtration of W(g) by G-DG-ideals can be written as

$$F^{2p}W(g) = \bigoplus_{j \ge p} \Lambda^* g^* \otimes S^j g^*$$

$$= \bigoplus_{j_1+j_2 > p} \Lambda^* g^* \otimes \mathrm{S}^{j_1} g_1^* \otimes \mathrm{S}^{j_2} g_2^*, \quad p \ge 0$$

and we can define a new even decreasing filtration of W(g), also by G-DG-ideals, by

$${}^{\prime}\mathrm{F}^{2p}\mathrm{W}(g) = \bigoplus_{\substack{i \geq p}} \Lambda^{\circ} g^* \otimes \mathrm{S}^{i} g^*_1 \otimes \mathrm{S}^{\circ} g^*_2, p \ge 0.$$

Also, $\Omega^{\bullet}(P)$ has two decreasing filtrations by G-DG-ideals defined by the sheaves \underline{Q}_{i}^{*} , i = 1, 2, of local 1-forms annihilating the foliation F_{i} on the base space M; they are given by

$$F^{p}\Omega(\mathbf{P}) = \Gamma(\mathbf{P}, \pi^{*}\Lambda^{p}\underline{Q}_{2}^{*} \cdot \Omega_{\mathbf{p}}),$$

$$'F^{p}\Omega(\mathbf{P}) = \Gamma(\mathbf{P}, \pi^{*}\Lambda^{p}\underline{Q}_{1}^{*} \cdot \Omega_{p}), \quad p \ge 0.$$

Then, the Weil homomorphism $k(\omega)$ of an adapted connection sum $\omega = \omega_1 + \omega_2$ is filtration-preserving, that is

$$k(\omega) (\mathbf{F}^{2p} \mathbf{W}(g)) \subset \mathbf{F}^{p} \Omega(\mathbf{P}), \ p \ge 0,$$

and if ω_1 and ω_2 are basic, then

$$k(\omega)\left(\mathsf{F}^{2p}\mathsf{W}(g)\right)\subset\mathsf{F}^{2p}\Omega(\mathsf{P}), \ p\geq 0.$$

Moreover, one easily proves

PROPOSITION 2.1. - Let $\omega = \omega_1 + \omega_2$ be an adapted connection sum in $\mathbf{P} = \mathbf{P}_1 + \mathbf{P}_2$. Then $k(\omega) ('\mathbf{F}^{2p} \mathbf{W}(g)) \subset '\mathbf{F}^p \Omega(\mathbf{P}), \ p \ge 0$. If ω_1 and ω_2 are basic, then $k(\omega) ('\mathbf{F}^{2p} \mathbf{W}(g)) \subset '\mathbf{F}^{2p} \Omega(\mathbf{P}), \ p \ge 0$.

COROLLARY 2.2. - For an adapted connection sum $\omega = \omega_1 + \omega_2$, $k(\omega) F^{2(q_2+1)}W(g) = 0$, $k(\omega) 'F^{2(q_1+1)}W(g) = 0$. If ω_1 and ω_2 are basic, $2(|a_2/2|+1)$

$$k(\omega) \operatorname{F}^{2([q_2/2]+1)} W(g) = 0, \ k(\omega) \operatorname{F}^{2([q_1/2]+1)} W(g) = 0.$$

If we now consider the algebras of G-basic elements, we obtain similar properties for the Chern-Weil homomorphism $h(\omega): I(G) = I(G_1 \times G_2) \longrightarrow \Omega(M)$ with respect to the following filtrations of I(G) and $\Omega(M):$

$$\mathbf{F}^{2p}\mathbf{I}(\mathbf{G}) = \bigoplus_{j \ge p} \mathbf{I}^{2j}(\mathbf{G}), \ '\mathbf{F}^{2p}\mathbf{I}(\mathbf{G}) = \bigoplus_{j \ge p} \mathbf{I}^{2j}(\mathbf{G}_1) \otimes \mathbf{I}^{\bullet}(\mathbf{G}_2), \quad p \ge 0$$

 $F^{p}\Omega(\mathbf{M}) = \Gamma(\mathbf{M}, \Lambda^{p} \, \underline{Q}_{2}^{*} \cdot \Omega_{\mathbf{M}}),$

 ${}^{\prime}F^{p} \Omega(M) = \Gamma(M, \Lambda^{p} Q_{1}^{*} \cdot \Omega_{M}), \quad p \ge 0.$ That is, since $F^{q_{2}+1}\Omega(M) = 0$ and ${}^{\prime}F^{q_{1}+1}\Omega(M) = 0$, we have

COROLLARY 2.3. – Let $\omega = \omega_1 + \omega_2$ be an adapted connection sum in an (F_1, F_2) -foliated bundle $P = P_1 + P_2$, and let $h(\omega)$ denote the Chern-Weil homomorphism of P. Then

$$h(\omega) \operatorname{F}^{2(q_2+1)} \operatorname{I}(G) = 0, \ h(\omega) \operatorname{F}^{2(q_1+1)} \operatorname{I}(G) = 0.$$

If, moreover, ω_1 and ω_2 are basic, then $h(\omega) F^{2([q_2/2]+1)} I(G) = 0, h(\omega) 'F^{2([q_1/2]+1)} I(G) = 0.$

In particular, if P is the bundle of transverse frames of (F_1, F_2) , then Corollary 2.3 is the Vanishing Theorem for subfoliations stated in [4].

Next, let
$$I \subset W(g)$$
 be the G-DG-ideal given by

$$I = F^{2(q_2+1)}W(g) + F^{2(q_1+1)}W(g). \qquad (2.1)$$

Then, by virtue of Corollary 2.2, $I \subset Ker(k(\omega))$ and there is an induced G-DG-homomorphism $k(\omega) \colon W(g)_I = W(g)/I \longrightarrow \Omega(\mathbf{P})$.

For any subgroup $H \subset G$, there is the relative ideal I_H of $W(g, H) = W(g)_H$, and thus if we construct

$$W(g, H)_{I} = W(g, H)/I_{H} = (W(g)_{I})_{H},$$

we can consider the induced DG-homomorphism

$$k(\omega)_{\mathrm{H}}: \mathrm{W}(\mathrm{g}, \mathrm{H})_{\mathrm{I}} \longrightarrow \Omega(\mathrm{P})_{\mathrm{H}}.$$

Now, if we assume H to be closed and P having an H-reduction given by a section $s: M \longrightarrow P/H$ of the induced map $\hat{\pi}: P/H \longrightarrow M$,

we can construct a DG-homomorphism as the composition

$$\Delta(\omega) = s^* \circ k(\omega)_{\mathrm{H}} : \mathrm{W}(g, \mathrm{H})_{\mathrm{I}} \longrightarrow \Omega(\mathrm{P})_{\mathrm{H}} \cong \Omega(\mathrm{P}/\mathrm{H}) \longrightarrow \Omega(\mathrm{M}).$$

DEFINITION 2.4. – We shall call generalized characteristic homomorphism of the (F_1, F_2) -foliated bundle P the homomorphism $\Delta_* = \Delta_{(F_1, F_2)}(P) : H(W(g, H)_I) \longrightarrow H_{DR}(M)$ induced by $\Delta(\omega)$ in cohomology.

Remark. – If both ω_1 and ω_2 are basic connections, then $k(\omega)$ vanishes on the ideal

$$I' = F^{2([q_2/2]+1)}W(g) + 'F^{2([q_1/2]+1)}W(g)$$

and the generalized characteristic homomorphism of P will be $\Delta_* : H(W(g, H)_{I'}) \longrightarrow H_{DR}(M)$ because, under these conditions, $\Delta(\omega)$ factorizes through $p: W(g, H)_{I} \longrightarrow W(g, H)_{I'}$, the canonical projection induced by the injection $I \subset I'$.

 $\Delta_* = \Delta_{(F_1, F_2)}(P)$ is independent of the choice of $\omega = \omega_1 + \omega_2$ in the following sense. Let $\omega^0 = \omega_1^0 + \omega_2^0$, $\omega^1 = \omega_1^1 + \omega_2^1$ be two adapted connections sum in P. Let an H-reduction of P be given by a section $s: M \longrightarrow P/H$, and

$$\Delta_{*}^{i} = \Delta(\omega^{i})_{*} : H(W(g, H)_{I}) \longrightarrow H_{DR}(M)$$

the homomorphism constructed using the connection ω^i , i = 0, 1. Then,

PROPOSITION 2.5. $-\Delta_*^0 = \Delta_*^1$.

Proof. – Let $f: M \times [0, 1] \longrightarrow M$ be the canonical projection, and let $f^{-1}(F_k)$, k = 1, 2, the foliation inverse image of F_k via f. If $P = P_1 + P_2$ is an (F_1, F_2) -foliated bundle over M then the inverse image $P' = f^*(P) = f^*(P_1) + f^*(P_2)$ of P via f is $f^{-1}(F_1, F_2) = (f^{-1}(F_1), f^{-1}(F_2))$ -foliated. Moreover, the connection $\overline{\omega}$ given by

$$\overline{\omega}(\mathbf{X}) = t(f^* \,\omega^1) \,(\mathbf{X}) + (1-t) \,(f^* \,\omega^0) \,(\mathbf{X}), \ \mathbf{X} \in \mathbf{T}_{(u,t)}(\mathbf{P}')$$

is obviously an adapted connection sum in \mathbf{P}' .

On the other hand, if $j_t: M \longrightarrow M \times [0,1]$ is the canonical injection $j_t(x) = (x, t)$, for each $t \in [0,1]$, then $j_t^*(\mathbf{P}') = \mathbf{P}$ for any $t \in [0,1]$, $\overline{j_0^*} \overline{\omega} = \omega^0$, $\overline{j_1^*} \overline{\omega} = \omega^1$ where $\overline{j_t}: \mathbf{P} \longrightarrow \mathbf{P}'$

denotes the canonical lift of j_t . Thus, using $\overline{\omega}$ to construct the generalized characteristic homomorphism of $\mathbf{P}': \overline{\Delta}_* = \Delta_*(\overline{\omega})$, we have $\Delta_*^i = (j_i^*)_{\mathrm{DR}} \circ \overline{\Delta}_*$, i = 0, 1. But, since $(j_0^*)_{\mathrm{DR}} = (j_1^*)_{\mathrm{DR}}$, then $\Delta_*^0 = \Delta_*^1$.

It is clear from the construction that Δ_* depends a priori upon the H-reduction of P given by s. However, this construction is visibly independent of s if the closed subgroup $H \subset G$ contains a maximal compact subgroup of G.

 Δ_* has also the following properties of functoriality.

(A) Δ_* is functorial under pullbacks.

This means more precisely the following. Let (F'_1, F'_2) and (F_1, F_2) be (q_1, q_2) -codimensional subfoliations on M' and M respectively, and let $f: M' \longrightarrow M$ be a differentiable map such that $f_*(F'_i) \subset F_i$, i = 1, 2. Let $P = P_1 + P_2$ be an (F_1, F_2) -foliated bundle over M, and let

$$\mathbf{P}' = f^*\mathbf{P} = f^*\mathbf{P}_1 + f^*\mathbf{P}_2$$

be the inverse image of P via f. Since each f^*P_i is F'_i -foliated ([1], Prop. 1.7), then P' is, in fact, an (F'_1, F'_2) -foliated bundle over M'. Then, if $H \subset G$ is a closed subgroup and $s : M \longrightarrow P/H$ the section given an H-reduction of P, $s' = f^*s : M' \longrightarrow P'/H$ gives an H-reduction of P' and we can easily prove

PROPOSITION 2.6. $-\Delta_*(\mathbf{P}') = f_{\mathrm{DR}}^* \circ \Delta_*(\mathbf{P}).$

It is clear that this result is applied in the particular case of f being transversal to the subfoliation (F₁, F₂) on M [4].

(B) Δ_* is functorial under ρ -extensions.

This means more precisely the following. Let

$$\rho = (\rho_1, \rho_2) : \mathbf{G} = \mathbf{G}_1 \times \mathbf{G}_2 \longrightarrow \mathbf{G}' = \mathbf{G}'_1 \times \mathbf{G}'_2$$

a homomorphism of product Lie groups, that is, each $\rho_i: G_i \longrightarrow G'_i$ a Lie group homomorphism, i = 1, 2. If P is an (F_1, F_2) -foliated principal bundle over M and ω an adapted connection sum in P, then P', the extension of P by ρ , is (F_1, F_2) -foliated and ω' , extension of ω by ρ , is an adapted connection sum in P'.

Let H, H' be closed subgroups of G and G', respectively,

such that $\rho(H) \subset H'$; let I' and I be the ideals of W(g') and W(g) given by (2.1). Since $W(d\rho)$ is graduation-preserving, then $W(d\rho)(I') \subset I$ and diagram (4.72) in [7] can be used to state

PROPOSITION 2.7. $-\Delta_*(\mathbf{P}') = \Delta_*(\mathbf{P}) \circ W(d\rho)^*$.

3. Relation between $\Delta_*(\mathbf{P})$ and $\Delta_*(\mathbf{P}_i)$, i = 1, 2.

Between the generalized characteristic homomorphism $\Delta_*(\mathbf{P})$ of an $(\mathbf{F}_1, \mathbf{F}_2)$ -foliated principal bundle $\mathbf{P} = \mathbf{P}_1 + \mathbf{P}_2$ and the generalized characteristic homomorphism $\Delta_*(\mathbf{P}_i)$ ([7]) of the \mathbf{F}_i -foliated principal bundle \mathbf{P}_i , i = 1, 2, there exists a canonical relation given as follows.

Let $\rho_i: G = G_1 \times G_2 \longrightarrow G_i$ be the canonical projection, $H_i \subset G_i$ a closed subgroup, i = 1, 2, and $H = H_1 \times H_2 \subset G$. Let $s: M \longrightarrow P/H$ be a section defining an H-reduction of P and let $s_i: M \longrightarrow P_i/H_i$ be the induced section defining an induced H_i -reduction of P_i . Then.

PROPOSITION 3.1. – The diagram

is commutative for each i = 1, 2. In fact, this diagram is also commutative at the cochain level.

Proof. – Since P_i is isomorphic (as F_i -foliated bundle) to the ρ_i -extension of P, and because $\omega_i = (\rho_i) * \omega$ is an adapted connection in P_i , $\omega = \omega_1 + \omega_2$ being an adapted connection sum in P, the following diagram commutes for each i = 1, 2:

and we are reduced to show that $W(d\rho_i)$ ($F^{2(q_i+1)}W(g_i)$) $\subset I$ for each i = 1, 2.

For i = 2, this follows easily because $W(d\rho_i)$ preserves the bigraduation and then

$$W(d\rho_2) W^{p,2q}(g_2) \subset W^{p,2q}(g).$$

For i = 1, the result follows from the fact that

$$W(d\rho_1) (\Lambda^u g_1^* \otimes S^v g_1^*) \subset \Lambda^u g^* \otimes S^v g_1^* \otimes S^0 g_2^*, \quad u, v \ge 0$$

since $(d\rho_1)^* : Sg_1^* \longrightarrow Sg^* = Sg_1^* \otimes Sg_2^*$ is given by
 $(d\rho_1)^* (\alpha) = \alpha \otimes 1.$

Remarks. - 1) Since both $\omega = \omega_1 + \omega_2$ and ω_i are F_2 -adapted connections, we can truncate the Weil algebras in diagram (3.1) at the degree q_2 and thus, going into cohomology, obtain a commutative diagram relating the generalized characteristic homomorphisms of **P** and P_i as F_2 -foliated principal bundles.

2) We can use $\omega = \omega_1 + \omega_2$ to construct the generalized characteristic homomorphism of the F₂-foliated bundle P:

$$\Delta_{F_2}(\mathbf{P}): \mathbf{H}(\mathbf{W}(g,\mathbf{H})_{g_2}) \longrightarrow \mathbf{H}_{\mathbf{DR}}(\mathbf{M}).$$

Then, taking into account that the inclusion $F^{2(q_2+1)}W(g) \subset I$ induces a projection $p: W(g, H)_{q_2} \longrightarrow W(g, H)_I$, we obtain a commutative diagram

and, therefore, $\operatorname{Im} \Delta_{F_2}(P) \subset \operatorname{Im} \Delta_{(F_1 F_2)}(P)$.

3) Let $\rho: G = G_1 \times G_2 \longrightarrow G'$ be a homomorphism of Lie groups and consider the structure of F_2 -foliated bundle on the ρ -extension $P' = \rho_* P$ induced by the structure of F_2 -foliated bundle underlying the (F_1, F_2) -foliated structure of $P = P_1 + P_2$.

Then, for suitable closed subgroups $H \subset G$, $H' \subset G'$, the functoriality under ρ -extensions of the generalized characteristic homomorphism of foliated bundles ([7]) implies that the following diagram is commutative

which combined with (3.2) leads to the following

PROPOSITION 3.2. - Let $P' \longrightarrow M$ be an F_2 -foliated principal bundle with structure group G' and let $P = P_1 + P_2$ be an (F_1, F_2) -foliated G-reduction of P. Assume $i: P \longrightarrow P'$. be F_2 -foliated compatibly with the homomorphism

$$\rho: \mathbf{G} = \mathbf{G}_1 \times \mathbf{G}_2 \longrightarrow \mathbf{G}',$$

and let H, H' be closed subgroups of G, G' respectively, verifying the suitable hypothesis. Then, the generalized characteristic homomorphism $\Delta_{F_2}(P')$ of P' as F_2 -foliated bundle factorizes through the generalized characteristic homomorphism $\Delta_{(F_1,F_2)}(P)$

16

of **P** as (F_1, F_2) -foliated bundle, that is, the following diagram is commutative:

Example. - Let $\mathbf{P}' \doteq L(\mathbf{Q}_2) \cong L(\nu(\mathbf{F}_1, \mathbf{F}_2))$ be the canonically \mathbf{F}_2 -foliated bundle of transverse frames of \mathbf{F}_2 , and \mathbf{P} the $(\mathbf{F}_1, \mathbf{F}_2)$ -foliated bundle of transverse frames of $(\mathbf{F}_1, \mathbf{F}_2)$, which is a (not \mathbf{F}_2 -foliated) reduction of \mathbf{P}' compatible with the canonical homomorphism $\rho: \operatorname{Gl}(q_1, \mathbf{R}) \times \operatorname{Gl}(d, \mathbf{R}) \longrightarrow \operatorname{Gl}(q_2, \mathbf{R})$.

If we consider in P' the ρ -extension of the F_2 -foliated structure of P, this is not the canonical F_2 -foliated structure of P'; but, as it can be easily shown using the Lemma 5.3 in [4] (see [8]), both are integrably homotopic. Then, for suitable H, H' the proposition 3.2 provides the corresponding commutative diagram. If, moreover, $H = O(q_1) \times O(d)$ and $H' = O(q_2)$, then $\Delta_{F_2}(P')$ is just the characteristic homomorphism of the foliation F_2 , whereas $\Delta_{(F_1, F_2)}(P)$ is the characteristic homomorphism of the subfoliation (F_1, F_2) [4], as it will be established later.

Now, let us remark that a q-codimensional foliation F on M can be considered as a subfoliation on M in three different ways; $(C_1): F_1 = F_2 = F$, $q_1 = q_2 = q$; $(C_2): F_1 = TM$, $F_2 = F$, $q_1 = 0$, $q_2 = q$; $(C_3): F_1 = F$, $F_2 = 0$, $q_1 = q$, $q_2 = n$. Then, all the previous results particularize to these cases as follows:

Case (C₁). – Here an (F₁, F₂)-foliated bundle $\mathbf{P} = \mathbf{P}_1 + \mathbf{P}_2$ is, in fact, an F-foliated bundle, the ideal I coincides with $F^{2(q+1)} W(g)$, p^* in diagram (3.2) is an isomorphism and $\Delta_{(F,F)}(\mathbf{P}) = \Delta_F(\mathbf{P})$. Case (C₂). - Here, $P = P_1 + P_2$ is the sum of a flat bundle P_1 and an F-foliated bundle P_2 ; since

$$I = F^{2(q+1)} W(g) + 'F^{2} W(g),$$

making calculations we obtain

$$W(g)_{I} \cong \bigoplus_{j=0}^{q} \Lambda^{\bullet} g^{*} \otimes S^{0} g_{1}^{*} \otimes S^{j} g_{2}^{*}$$
$$W(g)_{q} \cong W(g)_{I} \oplus \begin{pmatrix} q^{-1} & q^{-j} \\ \oplus & \oplus \\ j=0 & i=0 \end{pmatrix} \Lambda^{\bullet} g^{*} \otimes S_{1}^{i} g^{*} \otimes S_{2}^{j} g^{*} \end{pmatrix}$$

and then p^* in diagram (3.2) is surjective. Hence

$$\operatorname{Im}(\Delta_{F}(P)) = \operatorname{Im}(\Delta_{(TM,F)}(P)).$$

Case (C₃). - In this case, $P = P_1 + P_2$ is simply an ordinary bundle (that is, 0-foliated) which is not necessarily F-foliated. Thus, if we take H = G in diagram (3.2) and denote $\tau: I(G) \longrightarrow I(G)_n$ the canonical projection, we have a commutative diagram

where h^* denotes the Chern-Weil homomorphism of P. Thus, we can assert the following: if $P = P_1 + P_2$ where P_1 is a foliated bundle, then the Chern-Weil homomorphism of P vanishes on Ker $(p^* \circ \tau)$. Again, since any connection in P_2 is basic with respect to the foliation by points on M, if P_1 admits a basic connection then h^* vanishes on the kernel of the composition

$$I(G) \xrightarrow{r'} I(G)_{[n/2]} \xrightarrow{p'^*} I(G)_{I'}.$$

4. Difference construction for $\Delta_{(F_1,F_2)}(P)$. Secondary invariants.

The computation of $H(W(g,H)_I)$ can be done from the general results in [7], Chapter 5, from where we shall take the notation.

We assume throughout that G is either connected or $I(G) \cong I(G_0) \equiv I(g)$ for the connected component G_0 of G; the closed subgroup $H \subset G$ is assumed to have finitely many connected components.

Then, let us consider in the G-DG-algebra $W(g)_I$ the canonical connection given by the projection $k: W(g) \longrightarrow W(g)_I$.

If the pair (g,h) is reductive (h = Lie algebra of H), in accordance with Theorem 5.82 in [7] there exists a homomorphism $\zeta(W(g)_I, H) : A(W(g)_I, H) \longrightarrow (W(g)_I)_H = W(g, H)_I$ which induces an isomorphism in cohomology. In this way, the generalized characteristic homomorphism $\Delta_{(F_1, F_2)}(P)$ of P will have the same image as the composition

$$H(A(W(g)_{I},H)) \xrightarrow{\boldsymbol{\zeta}(W(g)_{I},H)_{*}} H(W(g,H)_{I}) \xrightarrow{\boldsymbol{\Delta}_{(F_{1},F_{2})}(P)} H_{DR}(M)$$

induced by the cochain map $\widetilde{\Delta}(\omega) = \Delta(\omega) \circ \zeta(W(g)_1, H)$. In fact, the evaluation of $\widetilde{\Delta}(\omega)$ on the complex

 $A(W(g)_{I}, H) = \Lambda P_{g} \otimes (W(g)_{I})_{g} \otimes I(H) = \Lambda P_{g} \otimes I(G)_{I} \otimes I(H)$

is equal to that of Theorem 5.95 in [7] for the case of a foliated bundle.

If we now assume the pair (g,h) to be special Cartan (CS), then, by Theorem 5.107 in [7], there is an isomorphism

$$\overline{\beta} \colon \mathrm{H}(\mathrm{\hat{A}}(\mathrm{W}(g)_{\mathrm{I}})) \otimes_{\mathrm{I}(g)} \mathrm{I}(\mathrm{H}) \xrightarrow{\cong} \mathrm{H}(\mathrm{A}(\mathrm{W}(g)_{\mathrm{I}},\mathrm{H}))$$

where $\hat{A}(W(g)_I) = \Lambda \hat{P} \otimes (W(g)_I)_g$. Thus $\Delta_{(F_1, F_2)}(P)$ has the same image as the composition $\Delta_{(F_1, F_2)}(P) \circ \zeta(W(g)_I, H) \circ \overline{\beta}$. Then taking into account that $\hat{A}(W(g)_I) \subset A(W(g)_I, H)$, we consider the composition

$$\hat{\Delta}(\omega): \hat{A}(W(g)_{I}) \longrightarrow A(W(g)_{I}, H) \xrightarrow{\widetilde{\Delta}(\omega)} \Omega(M)$$

and, thus, the characteristic homomorphism $\Delta_{(F_1, F_2)}(P)$ will be realized by $\hat{\Delta}_* \otimes h'_* : H(\hat{A}(W(g)_I)) \otimes_{I(G)} I(H) \longrightarrow H_{DR}(M), h'_*$ being the characteristic homomorphism of the H-reduction P' of P. See 5.112 in [7] for more details.

• In particular, let us assume that $P = P_1 + P_2$ is the bundle of transverse frames of (F_1, F_2) , and take

$$\mathbf{H} = \mathbf{O}(q_1) \times \mathbf{O}(d) \subset \mathbf{Gl}(q_1, \mathbf{R}) \times \mathbf{Gl}(d, \mathbf{R}) = \mathbf{G}$$

Since $gl(q_1, \mathbf{R})$ and $gl(d, \mathbf{R})$ are reductive Lie algebras and $(gl(q_1, \mathbf{R}) \times gl(d, \mathbf{R}), o(q_1) \times o(d))$ is symmetric, this pair will be special Cartan and the previous construction can be used. Then, $\Delta_{(F_1, F_2)}(\mathbf{P})$ can be considered as defined on $H(\hat{A}_I) \otimes_{I(G)} I(H)$, where $\hat{A}_I = \hat{A}(W(g)_I) = \Lambda \hat{P} \otimes I(gl(q_1, \mathbf{R}) \times gl(d, \mathbf{R}))_I$. But, as it happens in the case of the bundle of transverse frames of a foliation [7], $H(\hat{A}_I) \otimes_{I(G)} I(H) \cong H(\hat{A}_I)$, and then

$$\hat{\Delta}_{(F_1, F_2)} (\mathbf{P}) = \hat{\Delta}_* : \mathbf{H}(\hat{\mathbf{A}}_{\mathbf{I}}) \longrightarrow \mathbf{H}_{\mathbf{DR}} (\mathbf{M}).$$

On the other hand, $I(gl(q_1, \mathbf{R})) = \mathbf{R}[c_1, \ldots, c_{q_1}],$ $I(gl(d, \mathbf{R})) = \mathbf{R}[c'_1, \ldots, c'_d]$ and $\Lambda \hat{P} = \Lambda \hat{P}_1 \otimes \Lambda \hat{P}_2$, \hat{P}_i being the Samelson subspace of the pair $(g_i, h_i), i = 1, 2$; since both pairs are special Cartan,

$$\Lambda \hat{\mathbf{P}}_1 = \Lambda(y_1, y_2, \dots, y_{q_1'}), \quad \Lambda \hat{\mathbf{P}}_2 = \Lambda(y_1', y_3', \dots, y_{d'}')$$

where $y_i = \sigma c_i$, $y'_i = \sigma' c'_i$ and $q'_1 = 2[(q_1 + 1)/2] - 1$, d' = 2[(d + 1)/2] - 1, σ and σ' being the suspension maps. Therefore

$$\hat{\mathbf{A}}_{\mathbf{I}} = \Lambda(y_1, y_3, \dots, y_{q_1'}) \otimes \Lambda(y_1', y_3', \dots, y_{d'}')$$
$$\otimes \frac{\mathbf{R}[c_1, \dots, c_{q_1}] \otimes \mathbf{R}[c_1', \dots, c_d']}{\mathbf{I}_g}$$

where

$$\mathbf{I}_{g} = \mathbf{I} \cap \mathbf{I} (g) = \langle \{ \alpha \otimes \beta \in \mathbf{I}^{j_{1}}(g_{1}) \otimes \mathbf{I}^{j_{2}}(g_{2}) | j_{1} > q_{1} \text{ or } j_{1} + j_{2} > q_{2} \} \rangle.$$

That is, $\hat{A}_{I} = WO_{I}$, the graded differential algebra defined in [4]. Therefore, the generalized characteristic homomorphism of the bundle of transverse frames of the subfoliation (F_{1}, F_{2}) coincides with the characteristic homomorphism of (F_{1}, F_{2}) as defined in [4]

$$\lambda^*_{(F_1, F_2)} : H(WO_I) \longrightarrow H_{DR}(M).$$

From this point of view, the generalized characteristic homomorphism $\Delta_{(F_1, F_2)}(P)$ of an (F_1, F_2) -foliated bundle $P = P_1 + P_2$ generalizes the characteristic homomorphism of the subfoliation (F_1, F_2) in the same way as Kamber-Tondeur's characteristic homomorphism of a foliated bundle generalizes Bott's characteristic homomorphism of a foliation ([7], [2]).

In order to construct the algebra of secondary characteristic invariants, from now on, we shall consider an (F_1, F_2) -foliated bundle $P = P_1 + P_2$, $H \subset G$ a closed subgroup with finitely many connected components and such that the pair of Lie algebras (g,h) be reductive. Let us denote P' the H-reduction of P used to define the characteristic homomorphism $\Delta_{(F_1, F_2)}$ (P) of P and, to simplify the notation, put $A_I = A(W(g)_I, H)$.

Let $p: A_I \longrightarrow I(G)_I \otimes_{I(G)} I(H)$ the composition of the canonical projection along $\Lambda P_g, \lambda: A_I \longrightarrow I(G)_I \otimes I(H)$ with the canonical map.

DEFINITION 4.1. $-H(K_1)$, where $K_1 = \text{Ker } p$, is called the algebra of secondary characteristic invariants of P.

PROPOSITION 4.2. – There is a short exact sequence of algebras

 $0 \longrightarrow H(K_{I}) \longrightarrow H(W(g,H)_{I}) \longrightarrow I(G)_{I} \otimes_{I(G)} I(H) \longrightarrow 0.$ (4.1)

Proof. - Consider the short exact sequence of complexes

 $0 \longrightarrow K_{I} \longrightarrow A_{I} \longrightarrow I(G)_{I} \otimes_{I(G)} I(H) \longrightarrow 0.$

Then (4.1) appears by writing up the associated long exact sequence of homology whose connecting homomorphism is null, and because $H(A_I) \cong H(W(g, H)_I)$.

The non-triviality of $\Delta_{(F_1, F_2)}(P)/_{H(K_1)}$ is a measure for the incompatibility of the (F_1, F_2) -foliated structure of $P = P_1 + P_2$ with its H-reduction P'; that is,

PROPOSITION 4.3. -Let $P = P_1 + P_2$ be an (F_1, F_2) -foliated bundle, $H = H_1 \times H_2 \subset G$ a closed subgroup and P' an H-reduction of P which is (F_1, F_2) -foliated and such that, if $\iota: H \longrightarrow G$ is the injection, then the (F_1, F_2) -foliated structure of P is, in fact, the ι -extension of that of P'. Then $\Delta_{(F_1, F_2)}(P)/_{H(K_1)} = 0.$

Proof. – Applying Proposition 2.7 to the homomorphism $\iota: (H, H) \longrightarrow (G, H)$ we obtain the commutative diagram

and hence $\Delta_*(\mathbf{P})/_{\operatorname{Ker}(\mathbf{W}(d_i)^*)} = 0$.

Moreover, there is a commutative diagram

where ψ is the canonical projection of

 $I(G)_{I} \otimes_{I(G)} I(H) \cong I(H)/I \cdot I(H)$

onto $I(H)_I = I(H)/I$. Thus, going into cohomology, we obtain a factorization $H(W(g,H)_I) \longrightarrow I(G)_I \otimes_{I(G)} I(H) \longrightarrow I(H)_I$ of the vertical homomorphism in (4.2). Then, because

$$H(K_{I}) = Ker \{H(W(g, H)_{I}) \longrightarrow I(G) \otimes_{I(G)} I(H)\}$$

by virtue of Proposition 4.2, we have $H(K_1) \subset Ker(W(d\iota)^*)$.

Moreover, as in the usual case of foliated bundles [7], we have

J.M. CARBALLES

PROPOSITION 4.4. – There is a splitting homomorphism

 $\kappa : I(G)_{I} \otimes_{I(G)} I(H) \longrightarrow H(W(g, H)_{I})$

of the short exact sequence (4.1) and the composition $\Delta_*(\mathbf{P}) \circ \kappa$ is induced by the characteristic homomorphism of \mathbf{P}' :

 $h_*(\mathbf{P'}): \mathbf{I}(\mathbf{H}) \longrightarrow \mathbf{H}_{\mathrm{DR}}(\mathbf{M}).$

5. Restriction to the leaves.

In this section we shall discuss the restriction of an (F_1, F_2) -foliated bundle $P = P_1 + P_2$ to the leaves of each foliation F_i , i = 1, 2. In order to do that, let us previously discuss the restriction to the leaves of an F_2 -foliated bundle.

So, let (F_1, F_2) be a (q_1, q_2) -codimensional subfoliation on M, L a leaf of F_1 and $j: L \longrightarrow M$ the canonical immersion. Since $F_2 \subset F_1$, F_2 induces on L a foliation which will be denoted by F_L ; note that codim $(F_L) = d = q_2 - q_1$ while codim $(F_2) = q_2$. Obviously, j maps the leaves of F_L into leaves of F_2 .

Now, let $\pi: P \longrightarrow M$ be a G-principal fibre bundle and denote $P' = j^*P$ the inverse image of P via j. Then $\pi': P' \longrightarrow L$, the restriction of P to L, is a G-principal fibre bundle and we shall denote $\overline{j}: P' \longrightarrow P$ the canonical injection. The following result is known [1]:

PROPOSITION 5.1. – If P is F_2 -foliated then P' is F_L -foliated. Moreover, if ω is an adapted connection in P then $\overline{j^*} \omega$ is an adapted connection in P'.

Precisely the latter condition allows to consider, using connections ω and $\overline{j}^*\omega$, a commutative diagram

$$H(W(g, H)_{q_2}) \xrightarrow{\Delta_*(P)} H_{DR}(M)$$

$$p^* \downarrow \qquad \qquad \downarrow j^* \qquad (5.1)$$

$$H(W(g, H)_d) \xrightarrow{\Delta_*(P')} H_{DR}(L)$$

where $p: W(g, H)_{q_2} \longrightarrow W(g, H)_d$ is the canonical projection $(d \leq q), H \subset G$ is a subgroup satisfying the usual hypothesis and $\Delta_*(P), \Delta_*(P')$ are the generalized characteristic homomorphisms of P and P'.

For example, $Q_0 = F_1/F_2$ (the normal bundle of F_2 relative to F_1) is an F_2 -foliated vector bundle on account of the existence on it of the so-called Bott connection [4], [1]. Moreover, $Q_L = TL/F_L$, the normal bundle of F_L , is canonically isomorphic to j^*Q_0 [1] in such way that the Bott connection in Q_0 pulls back via j to the Bott connection in Q_L . Therefore, the frame bundle of Q_0 , P, is an F_2 -foliated G1(d, R)-principal bundle, and $P' = j^*P$ is precisely the bundle of transverse frames of F_L . Thus, through the corresponding isomorphisms, diagram (5.1) becomes:

where Δ'_{*} is just the usual characteristic homomorphism of foliation F_{L} on L.

Next, we shall discuss the restriction to a leaf of F_2 . Thus, provided that we do not need to use the foliation F_1 , we shall assume only one foliation F on M, L a leaf of F and $j: L \longrightarrow M$ the canonical immersion. Now if $\pi: P \longrightarrow M$ is a G-principal bundle and $P' = j^*P$ is the inverse image of P via j, we have

PROPOSITION 5.2. – Each F-foliated bundle structure on P determines a flat bundle structure on P' in such way that if ω is an adapted connection in P, then $\omega' = \overline{j}^* \omega$ is a flat connection in P'.

Therefore, if we consider on M the subfoliation (F,F)then the foliation F_L induced on L is trivial, that is, $F_L = TL$,

17

and taking into account that $W(g, H)_0 \cong (\Lambda g^*)_H \cong \Lambda (g/h)^{*H}$, diagram (5.1) becomes

 Δ'_* being the generalized characteristic homomorphism of **P'** as flat bundle [7].

Example. – Let P be the bundle of transverse frames of F. Then, if $\nu F = TM/F$ is the normal bundle of F, $\nu L = \nu F/L$ is the normal bundle of the leaf L of F and P' = j^*P is just the bundle of frames of νL . Following Goldman [6], any connection in P adapted to its canonical structure of F-foliated bundle will be said a foliation connection, and a connection in P' obtained as inverse image of a foliation connection will be said a leaf connection. In fact, Goldman showed that there is an unique leaf connection which is flat, and one easily checks that Δ'_* in diagram (5.2) is nothing but the so-called holonomy homomorphism of the leaf L [6].

Again, let (F_1, F_2) be a (q_1, q_2) -codimensional subfoliation on M, L_1 a leaf of F_1 , $j_1: L_1 \longrightarrow M$ the canonical immersion, F_{L_1} the foliation on L_1 induced by F_2 , $P = P_1 + P_2$ an (F_1, F_2) -foliated bundle on M and $P' = j_1^*P$ its inverse image via j_1 . Then, since P is also F_2 -foliated we can apply to it all previous results; so, in particular, we can construct a diagram (5.1) for this $P = P_1 + P_2$. On the other hand,

$$\mathbf{P}' = j_1^* \mathbf{P}_1 + j_1^* \mathbf{P}_2 \; ;$$

then, applying the previous results to each $j_1^* P_i$, i = 1, 2, it follows that P' is (TL_1, F_{L_1}) -foliated over L_1 . Moreover, if ω is an adapted connection sum in P then $\omega' = j_1^* \omega$ is an adapted connection sum in P'. If I and I' are the ideals given by (2.1) for the pairs (q_1, q_2) and (0, d), respectively, then $I \subset I'$ and, for an appropiate subgroup H, we obtain a commutative diagram

where p'^* is induced by the canonical projection. If we now combine (5.3) with (5.1) through (3.2), we obtain

Now, if L_2 is a leaf of F_2 and $j_2: L_2 \longrightarrow M$ is its canonical immersion, then (F_1, F_2) induces on L_2 the trivial subfoliation (TL_2, TL_2) . Therefore, the restriction to L_2 of an (F_1, F_2) -foliated bundle $P = P_1 + P_2$ is a flat bundle, and hence we obtain a commutative diagram similar to (5.4):

J.M. CARBALLES

If we now assume that L_1 contains L_2 , $j_0: L_2 \longrightarrow L_1$ being the canonical immersion with $j_2 = j_1 \circ j_0$, then, using Proposition 3.1 and taking the closed subgroups

$$H_1 \subset G_1$$
, $H_2 \subset G_2$, $H = H_1 \times H_2$

and $\rho_i: G = G_1 \times G_2 \longrightarrow G_i$, i = 1, 2, the canonical projections, there is a commutative diagram

All these results, when particularized in certain examples, provide a starting point for a study of the holonomy of the leaves of a subfoliation similar to that of Goldman [6] for the leaves of a foliation.

Example. – With the previous notations, let

$$\mathbf{P} = \mathbf{L}(\mathbf{Q}_1) + \mathbf{L}(\mathbf{Q}_0)$$

be the bundle of transverse frames of (F_1, F_2) and let (L_1, L_2) be a "leaf" of (F_1, F_2) (that is, L_i leaf of F_i and $L_2 \subset L_1$); then $P' = j_2^* P = L(j_0^*(\nu L_1)) + L(j_2^*(Q_0))$ is a reduction of the bundle of frames of the "normal bundle of (L_1, L_2) " defined as $\nu(L_1, L_2) = j_0^*(\nu L_1) \oplus j_2^*(Q_0)$, νL_1 being the normal bundle of the leaf L_1 [6], that is, $\nu L_1 = Q_1/L_1$. With a terminology analogous to that of Goldman, we call leaf connection any connection in P' obtained by pull-back of any adapted connection sum in P. Then, the following proposition can be easily proved:

PROPOSITION 5.3. – There exists a unique leaf connection in \mathbf{P}' . Moreover, this connection is flat.

Through this result, we can state easily vanishing and obstruction theorems for the leaves of a subfoliation similar

to those in [6] for the leaves of a foliation, because the real Pontrjagin ring of $\nu(L_1, L_2)$ is trivial and this fact provides a necessary condition for a pair (N_1, N_2) of connected manifolds, with injective immersions $j_i: N_i \longrightarrow M$, $i = 1, 2, j_0: N_2 \longrightarrow N_1$ and $j_2 = j_1 \circ j_0$, to be a leaf of a subfoliation on M.

Now, if $P'' = L(Q_2)$ and

$$\rho: \mathrm{Gl}(q_1, \mathbf{R}) \times \mathrm{Gl}(d, \mathbf{R}) \longrightarrow \mathrm{Gl}(q_2, \mathbf{R})$$

is the canonical homomorphism, then, using the example that follows Proposition 3.2 and taking a closed subgroup

$$\mathbf{H}' \subset \mathrm{Gl}(q_2, \mathbf{R})$$

such that $\rho(H) \subset H'$, we first obtain a commutative diagram combining (5.2) vith (5.5):

Now, we assume $H = O(q_1) \times O(d)$ and $H' = O(q_2)$. In this case Goldman shows that p^* in diagram (5.7) is the zero homomorphism and concludes that the secondary foliation classes of F_2 vanish in the leaves L_2 . Essentially with the same arguments, one can prove that the homomorphism *p*'* in diagram (5.7) is also zero and assert that the restriction to L, of every secondary subfoliation class of (F_1, F_2) vanishes. Moreover, the homomorphism $\Delta_*(\mathbf{P}')$ is similar to the holonomy homomorphism defined by Goldman, and hence it can be called the holonomy homomorphism of the leaf (L_1, L_2) and denoted $\phi_{F,L}^*$. Then, diagram (5.8) relate the holonomy homoby morphism of (L_1, L_2) with that of each L_i , i = 1, 2. Through the canonical isomorphisms we obtain the following commutative diagram:

where $\ell_i = 2[(q_i + 1)/2] - 1$, i = 1, 2; $\ell' = 2[(d + 1)/2] - 1$; $\ell'' = \ell_1$.

Obviously, the case of a subfoliation with trivialized normal bundle can be also discussed; to do that, it suffices to take H' as the trivial subgroup, and the diagram (5.8) becomes

This result may be used in order to obtain topological obstructions to the existence of subfoliations. Reinhart [10] exhibits a first example of these obstructions which can be expressed in our language as follows.

Let (F_1, F_2) be a (1, 2)-codimensional subfoliation on a manifold M with trivialized normal bundle; suppose F_1 defined by the global 1-form α_2 and F_2 defined by the global 1-forms α_1, α_2 . Hence there exist 1-forms $\tau_{11}, \tau_{21}, \tau_{22}$ on M such that $d\alpha_1 = \alpha_1 \wedge \tau_{11} + \alpha_2 \wedge \tau_{21}, d\alpha_2 = \alpha_2 \wedge \tau_{22}$.

If (L_1, L_2) is a leaf of (F_1, F_2) , let us consider the 1-forms on L_2 given by

 $\tau_{11}^{\rm L} = j_2^*(\tau_{11}) \,, \quad \tau_{21}^{\rm L} = j_2^*(\tau_{21}) \,, \quad \tau_{22}^{\rm L} = j_2^*(\tau_{22}) \,.$

In this case, the previous diagram writes, at the cochain level, as

and, from it, we obtain the following holonomy classes :

a) for L_1 as leaf of F_1 : $\phi_{F_1,L_1}^*(h_1) = [\tau_{22/L_1}] \in H_{DR}(L_1)$ b) for L_2 as leaf of F_2 :

$$\phi_{\text{F}_2,\text{L}_2}^*(h_1) = [\tau_{11}^{\text{L}} + \tau_{22}^{\text{L}}] \in \mathcal{H}_{\text{DR}}(\mathcal{L}_2), \quad \phi_{\text{F}_2,\text{L}_2}^*(h_2) = 0$$

since $h_2 \in \text{Ker } \rho^*$. In fact, Reinhart shows the vanishing of $\phi^*_{F_2, L_2}(h_2)$ through a direct computation.

c) for
$$(L_1, L_2)$$
 as leaf of (F_1, F_2) :
 $\phi_{F,L}^*(h'_1) = [\tau_{11}^L] \in H_{DR}(L_2), \quad \phi_{F,L}^*(h''_1) = [\tau_{22}^L] \in H_{DR}(L_2)$
 $\phi_{F,L}^*(h'_1 + h''_1) = [\tau_{11}^L + \tau_{22}^L] \in H_{DR}(L_2).$

Now, by comparing with Reinhart results one can deduce :

1) the vanishing of certain holonomy classes of L_2 follows from the fact that they are obtained from elements of Ker ρ^* .

2) the image of $\Lambda(h'_1)$ by $\phi^*_{F,L}$ gives holonomy classes which cannot be obtained if we consider each leaf separately.

BIBLIOGRAPHY

- G. ANDRZEJCZAK, Some characteristic invariants of foliated bundles, Institute of Mathematics, Polish Academy of Sciences, Preprint 182, Warszawa, 1979.
- [2] R. BOTT, Lectures on characteristic classes and foliations, Lecture Notes in Math., Vol. 279, Springer, Berlin, 1972.
- [3] L.A. CORDERO and P.M. GADEA, Exotic characteristic classes and subfoliations, *Ann. Inst. Fourier*, Grenoble, 26-1 (1976), 225-237; errata, *ibid.* 27, fasc. 4 (1977).
- [4] L.A. CORDERO and X. MASA, Characteristic classes of subfoliations, Ann. Inst. Fourier, Grenoble, 31-2 (1981), 61-86.
- [5] B.L. FEIGIN, Characteristic classes of flags of foliations, Funct. Anal. and its Appl., 9 (1975), 312-317.

CHARACTERISTIC HOMOMORPHISM FOR (F_1, F_2) – FOLIATED BUNDLES 245

- [6] R. GOLDMAN, The holonomy ring of the leaves of foliated manifolds, J. Differential Geometry, 11 (1976), 411-449.
- [7] F.W. KAMBER and Ph. TONDEUR, Foliated bundles and characteristic classes, *Lecture Notes in Math.*, Vol 493, Springer, Berlin, 1975.
- [8] X. MASA, Characteristic classes of subfoliations II, preprint.
- [9] R. MOUSSU, Sur les classes exotiques des feuilletages, Lecture Notes in Math., Vol. 392, Springer, Berlin, 1974, 37-42.
- [10] B.L. REINHART, Holonomy invariants for framed foliations, Lecture Notes in Math., Vol. 392, Springer, Berlin, 1974, 47-52.

Manuscrit reçu le 17 mai 1983 revisé le 8 novembre 1983.

José Manuel CARBALLÉS Departamento de Geometría y Topología Facultad de Matemáticas Universidad de Santiago de Compostela Santiago de Compostela (Espagne).