## Annales de l'institut Fourier

## José Manuel Carballés

# Characteristic homomorphism for $\left(F_{1}, F_{2}\right)$-foliated bundles over subfoliated manifolds 

Annales de l'institut Fourier, tome 34, no 3 (1984), p. 219-245

[http://www.numdam.org/item?id=AIF_1984__34_3_219_0](http://www.numdam.org/item?id=AIF_1984__34_3_219_0)
© Annales de l'institut Fourier, 1984, tous droits réservés.
L'accès aux archives de la revue « Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

$\mathcal{N u m d a m}^{\prime}$

# CHARACTERISTIC HOMOMORPHISM FOR ( $F_{1}, F_{2}$ )-FOLIATED BUNDLES OVER SUBFOLIATED MANIFOLDS 

by José Manuel CARBALLÉS

## 1. Introduction.

Let ( $\mathrm{F}_{1}, \mathrm{~F}_{2}$ ) be a couple of foliations on a differentiable manifold $M$ such that the leaves of $F_{1}$ contain those of $F_{2}$; we shall say such couple ( $\mathrm{F}_{1}, \mathrm{~F}_{2}$ ) a subfoliation on M . While Moussu [9], Feigin [5], Cordero-Gadea [3] and Cordero-Masa [4] have study the (exotic) characteristic homomorphism of a subfoliation ( $\mathrm{F}_{1}, \mathrm{~F}_{2}$ ) using the techniques of Bernstein-Rozenfeld, Bott-Haefliger and Lehmann, our aim in this paper is to present the construction of the characteristic homorphism of ( $\mathrm{F}_{1}, \mathrm{~F}_{2}$ ) using the techniques and language of Kamber-Tondeur for foliated bundles.

Our study is based on the notion of ( $\mathrm{F}_{1}, \mathrm{~F}_{2}$ )-foliated principal bundle. This is a principal bundle of the form $P=P_{1}+P_{2} \longrightarrow M$ of structure group $G_{1} \times G_{2}$ endowed with a foliated structure given by a connection of the form $\omega=\omega_{1}+\omega_{2}$ (called adapted connection sum) and where, for each $i=1,2, \quad \mathbf{P}_{i} \longrightarrow \mathrm{M}$ is an $\mathrm{F}_{i}$-foliated principal bundle of structure group $G_{i}$, and $\omega_{i}$ is an adapted connection in $\mathrm{P}_{i}$. The most meaningful example of ( $\mathrm{F}_{1}, \mathrm{~F}_{2}$ ) foliated bundle over M is a reduction of the bundle of linear frames of the so called normal bundle of ( $\mathrm{F}_{1}, \mathrm{~F}_{2}$ ) defined by $\nu\left(\mathrm{F}_{1}, \mathrm{~F}_{2}\right)=\left(\mathrm{F}_{1} / \mathrm{F}_{2}\right) \oplus \nu \mathrm{F}_{1}$. This vector bundle $\nu\left(\mathrm{F}_{1}, \mathrm{~F}_{2}\right)$ has been used in [4] in order to define the characteristic homomorphism of $\left(\mathrm{F}_{1}, \mathrm{~F}_{2}\right)$ adapting the Bott [2] well-known construction of the characteristic
homomorphism of a foliation; our construction of the characteristic homorphism of an $\left(F_{1}, F_{2}\right)$-foliated principal bundle generalizes that of Cordero-Masa in the same way as KamberTondeur theory of characteristic classes of foliated bundles generalizes Bott theory. This approach allows, moreover, to initiate the study of the holonomy homomorphism of a "leaf" of a subfoliation, in the line of Goldman's paper [6] for the leaf of a foliation.

The paper is structured as follows. In § 2, we introduce the basic definitions and deduce the filtration preserving properties of the Weil homomorphism $k(\omega)$ of an adapted connection sum in an $\left(F_{1}, F_{2}\right)$-foliated bundle. As a particular consequence, the vanishing theorem for the normal bundle of a subfoliation [4], [5] is reobtained. These properties of $k(\omega)$ are used in order to prove the vanishing of $k(\omega)$ on a differential ideal I of the product Weil algebra $\mathrm{W}\left(g_{1} \oplus g_{2}\right)$ (firstly considered by Feigin [5]) and thus, following Kamber-Tondeur's theory, we introduce the generalized characteristic homomorphism of an ( $\mathrm{F}_{1}, \mathrm{~F}_{2}$ )-foliated principal bundle P :

$$
\Delta_{*}=\Delta_{\left(\mathrm{F}_{1}, \mathrm{~F}_{2}\right)}(\mathrm{P}): \mathrm{H}\left(\mathrm{~W}(g, \mathrm{H})_{\mathrm{I}}\right) \longrightarrow \mathrm{H}_{\mathrm{DR}}(\mathrm{M})
$$

where $H \subset G$ is a closed Lie subgroup such that $P$ admits an H-reduction. We show that $\Delta_{*}$ does not depend on the connection sum $\omega$ and that it satisfies the usual functorial properties (i.e. naturality under pull-backs and $\rho$-extensions). We also deal with the case where $\omega_{1}$ and $\omega_{2}$ both are basic connections.

In § 3, we relate the generalized characteristic homomorphism $\Delta_{*}$ (P) with the generalized characteristic homomorphism (as defined in [7] of each $\mathrm{P}_{i}, i=1,2$. Taking into account that any adapted connection sum in $P$ is $F_{2}$-adapted, we deduce some properties of the characteristic homomorphism as $F_{2}$-foliated bundle of an $\left(F_{1}, F_{2}\right)$-foliated bundle as well as of any $\mathrm{F}_{2}$-extension of it. This section ends with the construction of the generalized characteristic homomorphism $\Delta_{*}(\mathrm{P})$ when considering a foliation $F$ as a subfoliation in the three possible forms.

In § 4 we apply the general results of Kamber-Tondeur on
the cohomology of $g$-DG-algebras in order to calculate the cohomology $\mathrm{H}\left(\mathrm{W}(g, H)_{\mathrm{I}}\right)$. In particular, this allows to refind the characteristic homomorphism of $\left(\mathrm{F}_{1}, \mathrm{~F}_{2}\right)$ as defined in [4]. The algebra of secondary characteristic invariants is constructed and a geometric interpretation of the generalized characteristic homomorphism is also given for the general situation.

Finaly, in $\S 5$, we restrict the $\left(F_{1}, F_{2}\right)$-foliated bundle $P$ to the leaves of each foliation $\mathrm{F}_{i}, i=1,2$; this leads us, on the one hand to a slightly generalization of Goldman's study, and, on the other, to define the holonomy homomorphism of a "leaf" of a subfoliation and to discuss an example of Reinhart [10].

Through all this paper, the manifolds, maps, etc, will be assumed differentiable of class $\mathrm{C}^{\infty}$. Also, we shall adopt the notation of [7].

This paper is a part of the doctoral dissertation of the author who would like to acknowledge here his gratitude to L.A. Cordero for his guidance and encouragement.

## 2. Characteristic homomorphism of an $\left(F_{1}, F_{2}\right)$-foliated bundle.

Let $M$ be an $n$-dimensional differentiable manifold, TM its tangent bundle. Through all this paper, we always assume $M$ endowed with a $\left(q_{1}, q_{2}\right)$-codimensional subfoliation $\left(\mathrm{F}_{1}, \mathrm{~F}_{2}\right)$, that is, of a couple of integrable subbundles $F_{i}$ of TM of dimension $n-q_{i}, \quad i=1,2$, and $F_{2}$ being a subbundle of $\mathrm{F}_{1}$. Therefore, for each $i, \mathrm{~F}_{i}$ defines a $q_{i}$-codimensional foliation on $\mathrm{M}, d=q_{2}-q_{1} \geqslant 0$ and the leaves of $\mathrm{F}_{1}$ contain those of $\mathrm{F}_{2}$.

Let $\mathrm{Q}_{i}=\mathrm{TM} / \mathrm{F}_{i}$ be the normal bundle of $\mathrm{F}_{i}, i=1,2$, and $Q_{0}$ the quotient bundle $F_{1} / F_{2}$; then, there is a short exact sequence of vector bundles, canonically associated to $\left(\mathrm{F}_{1}, \mathrm{~F}_{2}\right), \quad 0 \longrightarrow \mathrm{Q}_{0} \xrightarrow{i} \mathrm{Q}_{2} \xrightarrow{\pi} \mathrm{Q}_{1} \longrightarrow 0$ and the vector bundle $\nu\left(\mathrm{F}_{1}, \mathrm{~F}_{2}\right)=\mathrm{Q}_{0} \oplus \mathrm{Q}_{1}$ is called the normal bundle of ( $\mathrm{F}_{1}, \mathrm{~F}_{2}$ ).

Let $\mathrm{P}_{i}\left(\mathrm{M}, \mathrm{G}_{i}\right)$ be an $\mathrm{F}_{i}$-foliated principal bundle, $i=1,2$, and let $\omega_{i}$ be an adapted connection. Let

$$
P\left(M, G_{1} \times G_{2}\right)=P_{1}\left(M, G_{1}\right)+P_{2}\left(M, G_{2}\right)
$$

be the principal bundle sum of $P_{1}$ and $P_{2}$; then $\omega=\omega_{1}+\omega_{2}$ defines two partial connections in $\mathbf{P}$ and $\omega$ is adapted to both; endowed with these two partial connections, $P$ will be said ( $\mathrm{F}_{1}, \mathrm{~F}_{2}$ )-foliated and $\omega=\omega_{1}+\omega_{2}$ an adapted connection sum. Let us remark that, in particular, $P$ is $F_{2}$-foliated and if both $\omega_{1}$ and $\omega_{2}$ are basic, then $\omega=\omega_{1}+\omega_{2}$ is also basic with respect to $\mathrm{F}_{2}$.

Let $\mathrm{L}\left(\mathrm{Q}_{i}\right)$ be the frame bundle of $\mathrm{Q}_{i}, i=0,1$, and $L\left(Q_{1}\right)+L\left(Q_{0}\right)$ the bundle sum. As it can be easily shown using the results in [4], $L\left(Q_{1}\right)+L\left(Q_{0}\right)$ is $\left(F_{1}, F_{2}\right)$-foliated and it will be called the bundle of transverse frames of $\left(\mathrm{F}_{1}, \mathrm{~F}_{2}\right)$. Other examples can be obtained as follows; let $P_{i} \rightarrow M$ be a $\mathrm{G}_{i}$-principal bundle, $i=1,2$, endowed with an $\mathrm{F}_{i}$-foliated structure, $F_{i}$ being the orbit foliation defined on $M$ by a left almost free action of a Lie subgroup $\mathrm{K}_{i} \subset \mathrm{G}_{\boldsymbol{i}}$ (see 2.4 in [7]); then, if $K_{2} \subset K_{1}, P=P_{1}+P_{2}$ is an $\left(F_{1}, F_{2}\right)$-foliated bundle. In particular, if $\mathbf{P} \longrightarrow \mathbf{M}$ is a G-principal bundle which is $F_{1}$-foliated by the orbits of the action of a Lie subgroup $K_{1} \subset G$ on $M$, as above, then for each Lie subgroup $K_{2} \subset K_{1}$, the bundle $P+P$ is $\left(F_{1}, F_{2}\right)$-foliated.

Let $P=P_{1}+P_{2}$ be an $\left(F_{1}, F_{2}\right)$-foliated bundle over M, $\omega=\omega_{1}+\omega_{2}$ an adapted connection sum. If we denote $\mathrm{G}=\mathrm{G}_{1} \times \mathrm{G}_{2}$, its Lie algebra by $g=g_{1} \oplus g_{2}$ and $k(\omega), k\left(\omega_{1}\right), k\left(\omega_{2}\right)$ the respective Weil homomorphisms, the following commutative diagram allows to write $k(\omega)=k\left(\omega_{1}\right) \otimes k\left(\omega_{2}\right)$ :

where $L$ denotes the canonical isomorphism, $\pi$ is defined by $\pi(\alpha \otimes \beta)=p_{1}^{*} \alpha \wedge p_{2}^{*} \beta, \quad p_{i}: \mathrm{P}_{1} \times \mathrm{P}_{2} \longrightarrow \mathrm{P}_{i}$ the canonical projection, and $\bar{\Delta}^{*}$ being induced by the canonical homomorphism $\bar{\Delta}: P=P_{1}+P_{2} \longrightarrow P_{1} \times P_{2}$.

Using $\mathrm{L}: \mathrm{W}(g) \cong \mathrm{W}\left(g_{1}\right) \otimes \mathrm{W}\left(g_{2}\right)$, the canonical even decreasing filtration of $W(g)$ by G-DG-ideals can be written as
$\mathrm{F}^{2 p} \mathrm{~W}(g)=\underset{j \geqslant p}{\oplus} \Lambda^{\bullet} g^{*} \otimes \mathrm{~S}^{j} g^{*}$

$$
=\underset{j_{1}+j_{2}>p}{\oplus} \Lambda^{*} g^{*} \otimes S^{j_{1}} g_{1}^{*} \otimes S^{j_{2}} g_{2}^{*}, \quad p \geqslant 0
$$

and we can define a new even decreasing filtration of $W(g)$, also by G-DG-ideals, by

$$
' \mathrm{~F}^{2 p} \mathrm{~W}(g)=\underset{j \geqslant p}{\oplus} \Lambda^{\bullet} g^{*} \otimes \mathrm{~S}^{j} g_{1}^{*} \otimes \mathrm{~S}^{\bullet} g_{2}^{*}, p \geqslant 0
$$

Also, $\Omega^{\bullet}(\mathrm{P})$ has two decreasing filtrations by G-DG-ideals defined by the sheaves $\mathrm{Q}_{i}^{*}, i=1,2$, of local 1 -forms annihilating the foliation $\mathrm{F}_{i}$ on the base space M ; they are given by

$$
\begin{aligned}
& \mathrm{F}^{p} \Omega(\mathrm{P})=\Gamma\left(\mathrm{P}, \pi^{*} \Lambda^{p} \underline{\mathrm{Q}}_{2}^{*} \cdot \Omega_{\mathrm{P}}\right) \\
& \\
& \quad \mathrm{F}^{p} \Omega(\mathrm{P})=\Gamma\left(\mathrm{P}, \pi^{*} \Lambda^{p} \underline{\mathrm{Q}}_{1}^{*} \cdot \Omega_{p}\right), p \geqslant 0
\end{aligned}
$$

Then, the Weil homomorphism $k(\omega)$ of an adapted connection sum $\omega=\omega_{1}+\omega_{2}$ is filtration-preserving, that is

$$
k(\omega)\left(\mathrm{F}^{2 p} \mathrm{~W}(g)\right) \subset \mathrm{F}^{p} \Omega(\mathrm{P}), \quad p \geqslant 0
$$

and if $\omega_{1}$ and $\omega_{2}$ are basic, then

$$
k(\omega)\left(\mathrm{F}^{2 p} \mathrm{~W}(g)\right) \subset \mathrm{F}^{2 p} \Omega(\mathrm{P}), \quad p \geqslant 0
$$

Moreover, one easily proves
Proposition 2.1. - Let $\omega=\omega_{1}+\omega_{2}$ be an adapted connection sum in $\mathrm{P}=\mathrm{P}_{1}+\mathrm{P}_{2}$. Then $k(\omega)\left({ }^{\prime} \mathrm{F}^{2 p} \mathrm{~W}(g)\right) \subset{ }^{\prime} \mathrm{F}^{p} \Omega(\mathrm{P}), p \geqslant 0$. If $\omega_{1}$ and $\omega_{2}$ are basic, then $k(\omega)\left({ }^{\prime} \mathrm{F}^{2 p} \mathrm{~W}(g)\right) \subset{ }^{\prime} \mathrm{F}^{2 p} \Omega(\mathrm{P})$, $p \geqslant 0$.

Corollary 2.2. - For an adapted connection sum $\omega=\omega_{1}+\omega_{2}$,

$$
k(\omega) \mathrm{F}^{2\left(q_{2}+1\right)} \mathrm{W}(g)=0, \quad k(\omega)^{\prime} \mathrm{F}^{2\left(q_{1}+1\right)} \mathrm{W}(g)=0
$$

If $\omega_{1}$ and $\omega_{2}$ are basic,

$$
k(\omega) \mathrm{F}^{2\left(\left[q_{2} / 2\right]+1\right)} \mathrm{W}(g)=0, \quad k(\omega)^{\prime} \mathrm{F}^{2\left(\left[q_{1} / 2\right]+1\right)} \mathrm{W}(g)=0
$$

If we now consider the algebras of G-basic elements, we obtain similar properties for the Chern-Weil homomorphism $h(\omega): I(G)=I\left(G_{1} \times G_{2}\right) \longrightarrow \Omega(M)$ with respect to the following filtrations of $\mathrm{I}(\mathrm{G})$ and $\Omega(\mathrm{M})$ :

$$
\begin{aligned}
& \mathrm{F}^{2 p} \mathrm{I}(\mathrm{G})=\underset{j \geqslant p}{\oplus} \mathrm{I}^{2 j}(\mathrm{G}), \mathrm{F}^{2 p} \mathrm{I}(\mathrm{G})=\underset{j \geqslant p}{\oplus} \mathrm{I}^{2 j}\left(\mathrm{G}_{1}\right) \otimes \mathrm{I}^{\bullet}\left(\mathrm{G}_{2}\right), \quad p \geqslant 0 \\
& \mathrm{~F}^{p} \Omega(\mathrm{M})=\Gamma\left(\mathrm{M}, \Lambda^{p} \mathrm{Q}_{2}^{*} \cdot \Omega_{\mathrm{M}}\right), \\
&{ }^{\prime} \mathrm{F}^{p} \Omega(\mathrm{M})=\Gamma\left(\mathrm{M}, \Lambda^{p} \mathrm{Q}_{1}^{*} \cdot \Omega_{\mathrm{M}}\right), \quad p \geqslant 0 .
\end{aligned}
$$

That is, since $\mathrm{F}^{q_{2}+1} \Omega(\mathrm{M})=0$ and ${ }^{\prime} \mathrm{F}^{q_{1}+1} \Omega(\mathrm{M})=0$, we have
Corollary 2.3. - Let $\omega=\omega_{1}+\omega_{2}$ be an adapted connection sum in an $\left(\mathrm{F}_{1}, \mathrm{~F}_{2}\right)$-foliated bundle $\mathrm{P}=\mathrm{P}_{1}+\mathrm{P}_{2}$, and let $h(\omega)$ denote the Chern-Weil homomorphism of P . Then

$$
h(\omega) \mathrm{F}^{2\left(q_{2}+1\right)} \mathrm{I}(\mathrm{G})=0, h(\omega)^{\prime} \mathrm{F}^{2\left(q_{1}+1\right)} \mathrm{I}(\mathrm{G})=0
$$

If, moreover, $\omega_{1}$ and $\omega_{2}$ are basic, then

$$
h(\omega) \mathrm{F}^{2\left(\left[q_{2} / 2\right]+1\right)} \mathrm{I}(\mathrm{G})=0, h(\omega)^{\prime} \mathrm{F}^{2\left(\left[q_{1} / 2\right]+1\right)} \mathrm{I}(\mathrm{G})=0
$$

In particular, if $P$ is the bundle of transverse frames of ( $F_{1}, F_{2}$ ), then Corollary 2.3 is the Vanishing Theorem for subfoliations stated in [4].

Next, let $\mathrm{I} \subset \mathrm{W}(g)$ be the G-DG-ideal given by

$$
\begin{equation*}
\mathrm{I}=\mathrm{F}^{2\left(q_{2}+1\right)} \mathrm{W}(g)+{ }^{\prime} \mathrm{F}^{2\left(q_{1}+1\right)} \mathrm{W}(g) \tag{2.1}
\end{equation*}
$$

Then, by virtue of Corollary 2.2, $I \subset \operatorname{Ker}(k(\omega))$ and there is an induced G-DG-homomorphism $k(\omega): W(g)_{\mathrm{I}}=\mathrm{W}(g) / \mathrm{I} \longrightarrow \Omega(\mathrm{P})$.

For any subgroup $H \subset G$, there is the relative ideal $I_{H}$ of $\mathrm{W}(g, \mathrm{H})=\mathrm{W}(g)_{\mathrm{H}}$, and thus if we construct

$$
\mathrm{W}(g, \mathrm{H})_{\mathrm{I}}=\mathrm{W}(g, \mathrm{H}) / \mathrm{I}_{\mathrm{H}}=\left(\mathrm{W}(g)_{\mathrm{I}}\right)_{\mathrm{H}},
$$

we can consider the induced DG-homomorphism

$$
k(\omega)_{\mathrm{H}}: \mathrm{W}(g, \mathrm{H})_{\mathrm{I}} \longrightarrow \Omega(\mathrm{P})_{\mathrm{H}}
$$

Now, if we assume $H$ to be closed and $P$ having an $H$-reduction given by a section $s: M \longrightarrow \mathrm{P} / \mathrm{H}$ of the induced map $\hat{\pi}: \mathbf{P} / \mathrm{H} \longrightarrow \mathrm{M}$,
we can construct a DG-homomorphism as the composition

$$
\Delta(\omega)=s^{*} \circ k(\omega)_{\mathrm{H}}: \mathrm{W}(g, \mathrm{H})_{\mathrm{I}} \longrightarrow \Omega(\mathrm{P})_{\mathrm{H}} \cong \Omega(\mathrm{P} / \mathrm{H}) \longrightarrow \Omega(\mathrm{M}) .
$$

Definition 2.4.-We shall call generalized characteristic homomorphism of the $\left(\mathrm{F}_{1}, \mathrm{~F}_{2}\right)$-foliated bundle P the homomorphism $\Delta_{*}=\Delta_{\left(\mathrm{F}_{1}, \mathrm{~F}_{2}\right)}(\mathrm{P}): \mathrm{H}\left(\mathrm{W}(\mathrm{g}, \mathrm{H})_{\mathrm{I}}\right) \longrightarrow \mathrm{H}_{\mathrm{DR}}(\mathrm{M})$ induced by $\Delta(\omega)$ in cohomology.

Remark. - If both $\omega_{1}$ and $\omega_{2}$ are basic connections, then $k(\omega)$ vanishes on the ideal

$$
\mathrm{I}^{\prime}=\mathrm{F}^{2\left(\left[q_{2} / 2\right]+1\right)} \mathrm{W}(g)+{ }^{\prime} \mathrm{F}^{2\left(\left[q_{1} / 2\right]+1\right)} \mathrm{W}(g)
$$

and the generalized characteristic homomorphism of $\mathbf{P}$ will be $\Delta_{*}: \mathrm{H}\left(\mathrm{W}(\mathrm{g}, \mathrm{H})_{\mathrm{I}^{\prime}}\right) \longrightarrow \mathrm{H}_{\mathrm{DR}}(\mathrm{M})$ because, under these conditions, $\Delta(\omega)$ factorizes through $p: \mathrm{W}(g, \mathrm{H})_{\mathrm{I}} \longrightarrow \mathrm{W}(g, \mathrm{H})_{\mathrm{I}^{\prime}}$, the canonical projection induced by the injection $I \subset I^{\prime}$.
$\Delta_{*}=\Delta_{\left(\mathrm{F}_{1}, \mathrm{~F}_{2}\right)}(\mathrm{P})$ is independent of the choice of $\omega=\omega_{1}+\omega_{2}$ in the following sense. Let $\omega^{0}=\omega_{1}^{0}+\omega_{2}^{0}, \omega^{1}=\omega_{1}^{1}+\omega_{2}^{1}$ be two adapted connections sum in $P$. Let an $H$-reduction of $P$ be given by a section $s: \mathrm{M} \longrightarrow \mathrm{P} / \mathrm{H}$, and

$$
\Delta_{*}^{i}=\Delta\left(\omega^{i}\right)_{*}: \mathrm{H}\left(\mathrm{~W}(g, \mathrm{H})_{\mathbf{I}}\right) \longrightarrow \mathrm{H}_{\mathrm{DR}}(\mathrm{M})
$$

the homomorphism constructed using the connection $\omega^{i}, i=0,1$. Then,

Proposition 2.5. $-\Delta_{*}^{0}=\Delta^{1}$.
Proof. - Let $f: M \times[0,1] \longrightarrow M$ be the canonical projection, and let $f^{-1}\left(\mathrm{~F}_{k}\right), k=1,2$, the foliation inverse image of $\mathrm{F}_{k}$ via $f$. If $\mathrm{P}=\mathrm{P}_{1}+\mathrm{P}_{2}$ is an $\left(\mathrm{F}_{1}, \mathrm{~F}_{2}\right)$-foliated bundle over M then the inverse image $\mathrm{P}^{\prime}=f^{*}(\mathrm{P})=f^{*}\left(\mathrm{P}_{1}\right)+f^{*}\left(\mathrm{P}_{2}\right)$ of P via $f$ is $f^{-1}\left(\mathrm{~F}_{1}, \mathrm{~F}_{2}\right)=\left(f^{-1}\left(\mathrm{~F}_{1}\right), f^{-1}\left(\mathrm{~F}_{2}\right)\right)$-foliated. Moreover, the connection $\bar{\omega}$ given by

$$
\bar{\omega}(\mathrm{X})=t\left(f^{*} \omega^{1}\right)(\mathrm{X})+(1-t)\left(f^{*} \omega^{0}\right)(\mathrm{X}), \mathrm{X} \in \mathrm{~T}_{(u, t)}\left(\mathrm{P}^{\prime}\right)
$$

is obviously an adapted connection sum in $\mathbf{P}^{\prime}$.
On the other hand, if $j_{t}: M \longrightarrow \mathrm{M} \times[0,1]$ is the canonical injection $j_{t}(x)=(x, t)$, for each $t \in[0,1]$, then $j_{t}^{*}\left(\mathbf{P}^{\prime}\right)=\mathbf{P}$ for any $t \in[0,1], \bar{j}_{0}^{*} \bar{\omega}=\omega^{0}, \bar{j}_{1}^{*} \bar{\omega}=\omega^{1}$ where $\bar{j}_{t}: \mathrm{P} \longrightarrow \mathrm{P}^{\prime}$
denotes the canonical lift of $j_{t}$. Thus, using $\bar{\omega}$ to construct the generalized characteristic homomorphism of $\mathrm{P}^{\prime}: \bar{\Delta}_{*}=\Delta_{*}(\bar{\omega})$, we have $\Delta_{*}^{i}=\left(j_{i}^{*}\right)_{\mathrm{DR}} \circ \bar{\Delta}_{*}, \quad i=0,1$. But, since $\left(j_{0}^{*}\right)_{\mathrm{DR}}=\left(j_{1}^{*}\right)_{\mathrm{DR}}$, then $\Delta_{*}^{0}=\Delta_{*}^{1}$.

It is clear from the construction that $\Delta_{*}$ depends a priori upon the H-reduction of $\mathbf{P}$ given by $s$. However, this construction is visibly independent of $s$ if the closed subgroup $H \subset G$ contains a maximal compact subgroup of $G$.
$\Delta_{*}$ has also the following properties of functoriality.
(A) $\Delta_{*}$ is functorial under pullbacks.

This means more precisely the following. Let $\left(\mathrm{F}_{1}^{\prime}, \mathrm{F}_{2}^{\prime}\right)$ and ( $\mathrm{F}_{1}, \mathrm{~F}_{2}$ ) be ( $q_{1}, q_{2}$ )-codimensional subfoliations on $\mathrm{M}^{\prime}$ and M respectively, and let $f: \mathrm{M}^{\prime} \longrightarrow \mathrm{M}$ be a differentiable map such that $f_{*}\left(\mathrm{~F}_{i}^{\prime}\right) \subset \mathrm{F}_{i}, \quad i=1,2$. Let $\mathrm{P}=\mathrm{P}_{1}+\mathrm{P}_{2} \quad$ be an ( $\mathrm{F}_{1}, \mathrm{~F}_{2}$ )-foliated bundle over M , and let

$$
\mathbf{P}^{\prime}=f^{*} \mathbf{P}=f^{*} \mathbf{P}_{1}+f^{*} \mathbf{P}_{2}
$$

be the inverse image of $\mathbf{P}$ via $f$. Since each $f^{*} \mathrm{P}_{i}$ is $\mathrm{F}_{i}^{\prime}$-foliated ([1], Prop. 1.7), then $\mathrm{P}^{\prime}$ is, in fact, an ( $\mathrm{F}_{1}^{\prime}, \mathrm{F}_{2}^{\prime}$ )-foliated bundle over $\mathbf{M}^{\prime}$. Then, if $\mathbf{H \subset G}$ is a closed subgroup and $s: M \longrightarrow \mathrm{P} / \mathrm{H}$ the section given an H-reduction of $\mathbf{P}, s^{\prime}=f^{*} s: \mathbf{M}^{\prime} \longrightarrow \mathbf{P}^{\prime} / \mathbf{H}$ gives an $H$-reduction of $\mathbf{P}^{\prime}$ and we can easily prove

Proposition 2.6. $-\Delta_{*}\left(\mathrm{P}^{\prime}\right)=f_{\mathrm{DR}}^{*} \circ \Delta_{*}(\mathrm{P})$.
It is clear that this result is applied in the particular case of $f$ being transversal to the subfoliation ( $\mathrm{F}_{1}, \mathrm{~F}_{2}$ ) on M [4].
(B) $\Delta_{*}$ is functorial under $\rho$-extensions.

This means more precisely the following. Let

$$
\rho=\left(\rho_{1}, \rho_{2}\right): \mathrm{G}=\mathrm{G}_{1} \times \mathrm{G}_{2} \longrightarrow \mathrm{G}^{\prime}=\mathrm{G}_{1}^{\prime} \times \mathrm{G}_{2}^{\prime}
$$

a homomorphism of product Lie groups, that is, each $\rho_{i}: \mathrm{G}_{i} \longrightarrow \mathrm{G}_{i}^{\prime}$ a Lie group homomorphism, $i=1,2$. If P is an $\left(F_{1}, F_{2}\right)$-foliated principal bundle over $M$ and $\omega$ an adapted connection sum in $P$, then $P^{\prime}$, the extension of $P$ by $\rho$, is $\left(\mathrm{F}_{1}, \mathrm{~F}_{2}\right)$-foliated and $\omega^{\prime}$, extension of $\omega$ by $\rho$, is an adapted connection sum in $\mathbf{P}^{\prime}$.

Let $H, H^{\prime}$ be closed subgroups of $G$ and $G^{\prime}$, respectively,
such that $\rho(H) \subset H^{\prime}$; let $I^{\prime}$ and $I$ be the ideals of $W\left(g^{\prime}\right)$ and $\mathrm{W}(g)$ given by (2.1). Since $\mathrm{W}(d \rho)$ is graduation-preserving, then $\mathrm{W}(d \rho)\left(\mathrm{I}^{\prime}\right) \subset \mathrm{I}$ and diagram (4.72) in [7] can be used to state

PROPOSITION 2.7. $-\Delta_{*}\left(\mathrm{P}^{\prime}\right)=\Delta_{*}(\mathrm{P}) \circ \mathrm{W}(d \rho)^{*}$.
3. Relation between $\Delta_{*}(\mathrm{P})$ and $\Delta_{*}\left(\mathrm{P}_{i}\right), i=1,2$.

Between the generalized characteristic homomorphism $\Delta_{*}(\mathrm{P})$ of an $\left(F_{1}, F_{2}\right)$-foliated principal bundle $P=P_{1}+P_{2}$ and the generalized characteristic homomorphism $\Delta *\left(P_{t}\right)$ ([7]) of the $\mathrm{F}_{i}$-foliated principal bundle $\mathrm{P}_{i}, i=1,2$, there exists a canonical relation given as follows.

Let $\rho_{i}: G=G_{1} \times G_{2} \longrightarrow G_{i}$ be the canonical projection, $\mathrm{H}_{i} \subset \mathrm{G}_{i}$ a closed subgroup, $i=1,2$, and $\mathrm{H}=\mathrm{H}_{1} \times \mathrm{H}_{2} \subset \mathrm{G}$. Let $s: \mathrm{M} \longrightarrow \mathrm{P} / \mathrm{H}$ be a section defining an H -reduction of P and let $s_{i}: M \longrightarrow P_{i} / H_{i}$ be the induced section defining an induced $H_{i}$-reduction of $\mathrm{P}_{i}$. Then.

Proposition 3.1. - The diagram

is commutative for each $i=1,2$. In fact, this diagram is also commutative at the cochain level.

Proof. - Since $\mathrm{P}_{i}$ is isomorphic (as $\mathrm{F}_{i}$-foliated bundle) to the $\rho_{i}$-extension of $P$, and because $\omega_{i}=\left(\rho_{i}\right) * \omega$ is an adapted connection in $P_{i}, \omega=\omega_{1}+\omega_{2}$ being an adapted connection sum in P , the following diagram commutes for each $i=1,2$ :

and we are reduced to show that $\mathrm{W}\left(d \rho_{i}\right)\left(\mathrm{F}^{2\left(q_{i}+1\right)} \mathrm{W}\left(g_{i}\right)\right) \subset \mathrm{I}$ for each $i=1,2$.

For $i=2$, this follows easily because $W\left(d \rho_{i}\right)$ preserves the bigraduation and then

$$
\mathrm{W}\left(d \rho_{2}\right) \mathrm{W}^{p, 2 q}\left(g_{2}\right) \subset \mathrm{W}^{p, 2 q}(g)
$$

For $i=1$, the result follows from the fact that

$$
\mathrm{W}\left(d \rho_{1}\right)\left(\Lambda^{u} g_{1}^{*} \otimes \mathrm{~S}^{v} g_{1}^{*}\right) \subset \Lambda^{u} g^{*} \otimes \mathrm{~S}^{v} g_{1}^{*} \otimes \mathrm{~S}^{0} g_{2}^{*}, \quad u, v \geqslant 0
$$

since $\left(d \rho_{1}\right)^{*}: \mathrm{Sg}_{1}^{*} \longrightarrow \mathrm{Sg}{ }^{*}=\mathrm{Sg} g_{1}^{*} \otimes \mathrm{Sg} g_{2}^{*}$ is given by

$$
\left(d \rho_{1}\right)^{*}(\alpha)=\alpha \otimes 1
$$

Remarks. - 1) Since both $\omega=\omega_{1}+\omega_{2}$ and $\omega_{i}$ are $\mathrm{F}_{2}$-adapted connections, we can truncate the Weil algebras in diagram (3.1) at the degree $q_{2}$ and thus, going into cohomology, obtain a commutative diagram relating the generalized characteristic homomorphisms of $\mathbf{P}$ and $\mathbf{P}_{i}$ as $\mathrm{F}_{2}$-foliated principal bundles.
2) We can use $\omega=\omega_{1}+\omega_{2}$ to construct the generalized characteristic homomorphism of the $\mathrm{F}_{2}$-foliated bundle P :

$$
\Delta_{\mathrm{F}_{2}}(\mathrm{P}): \mathrm{H}\left(\mathrm{~W}(g, \mathrm{H})_{q_{2}}\right) \longrightarrow \mathrm{H}_{\mathrm{DR}}(\mathrm{M}) .
$$

Then, taking into account that the inclusion $\mathrm{F}^{2\left(q_{2}+1\right)} \mathrm{W}(g) \subset I$ induces a projection $p: \mathrm{W}(g, \mathrm{H})_{q_{2}} \longrightarrow \mathrm{~W}(g, \mathrm{H})_{\mathrm{I}}$, we obtain a commutative diagram

and, therefore, $\operatorname{Im} \Delta_{F_{2}}(P) \subset \operatorname{Im} \Delta_{\left(F_{1}, F_{2}\right)}(P)$.
3) Let $\rho: G=G_{1} \times G_{2} \longrightarrow G^{\prime}$ be a homomorphism of Lie groups and consider the structure of $F_{2}$-foliated bundle on the $\rho$-extension $\mathrm{P}^{\prime}=\rho_{*} \mathrm{P}$ induced by the structure of $\mathrm{F}_{2}$-foliated bundle underlying the $\left(F_{1}, F_{2}\right)$-foliated structure of $P=P_{1}+P_{2}$.

Then, for suitable closed subgroups $H \subset G, H^{\prime} \subset G^{\prime}$, the functoriality under $\rho$-extensions of the generalized characteristic homomorphism of foliated bundles ([7]) implies that the following diagram is commutative

which combined with (3.2) leads to the following

Proposition 3.2.-Let $\quad \mathbf{P}^{\prime} \longrightarrow \mathrm{M}$ be an $\mathrm{F}_{2}$-foliated principal bundle with structure group $\mathrm{G}^{\prime}$ and let $\mathrm{P}=\mathrm{P}_{1}+\mathrm{P}_{2}$ be an $\left(\mathrm{F}_{1}, \mathrm{~F}_{2}\right)$-foliated G -reduction of P . Assume $i: \mathrm{P} \longrightarrow \mathrm{P}^{\prime}$. be $\mathrm{F}_{2}$-foliated compatibly with the homomorphism

$$
\rho: \mathrm{G}=\mathrm{G}_{1} \times \mathrm{G}_{2} \longrightarrow \mathrm{G}^{\prime}
$$

and let $\mathrm{H}, \mathrm{H}^{\prime}$ be closed subgroups of $\mathrm{G}, \mathrm{G}^{\prime}$ respectively, verifying the suitable hypothesis. Then, the generalized characteristic homomorphism $\Delta_{\mathrm{F}_{2}}\left(\mathrm{P}^{\prime}\right)$ of $\mathrm{P}^{\prime}$ as $\mathrm{F}_{2}$-foliated bundle factorizes through the generalized characteristic homomorphism $\Delta_{\left(\mathrm{F}_{1}, \mathrm{~F}_{2}\right)}(\mathrm{P})$
of P as $\left(\mathrm{F}_{1}, \mathrm{~F}_{2}\right)$-foliated bundle, that is, the following diagram is commutative :


Example. - Let $\mathrm{P}^{\prime} \doteq \mathrm{L}\left(\mathrm{Q}_{2}\right) \cong \mathrm{L}\left(\nu\left(\mathrm{F}_{1}, \mathrm{~F}_{2}\right)\right) \quad$ be the canonically $F_{2}$-foliated bundle of transverse frames of $F_{2}$, and $P$ the $\left(F_{1}, F_{2}\right)$-foliated bundle of transverse frames of $\left(F_{1}, F_{2}\right)$, which is $a$ (not $F_{2}$-foliated) reduction of $P^{\prime}$ compatible with the canonical homomorphism $\rho: \operatorname{Gl}\left(q_{1}, \mathbf{R}\right) \times \operatorname{Gl}(d, \mathbf{R}) \longrightarrow \operatorname{Gl}\left(q_{2}, \mathbf{R}\right)$.

If we consider in $P^{\prime}$ the $\rho$-extension of the $F_{2}$-foliated structure of $P$, this is not the canonical $F_{2}$-foliated structure of $P^{\prime}$; but, as it can be easily shown using the Lemma 5.3 in [4] (see [8]), both are integrably homotopic. Then, for suitable $H$, $\mathrm{H}^{\prime}$ the proposition 3.2 provides the corresponding commutative diagram. If, moreover, $\mathrm{H}=\mathrm{O}\left(q_{1}\right) \times \mathrm{O}(d)$ and $\mathrm{H}^{\prime}=\mathrm{O}\left(q_{2}\right)$, then $\Delta_{F_{2}}\left(P^{\prime}\right)$ is just the characteristic homomorphism of the foliation $\mathrm{F}_{2}$, whereas $\Delta_{\left(\mathrm{F}_{1}, \mathrm{~F}_{2}\right)}(\mathrm{P})$ is the characteristic homomorphism of the subfoliation ( $\mathrm{F}_{1}, \mathrm{~F}_{2}$ ) [4], as it will be established later.

Now, let us remark that a $q$-codimensional foliation $F$ on $M$ can be considered as a subfoliation on $M$ in three different ways; $\quad\left(\mathrm{C}_{1}\right): \mathrm{F}_{1}=\mathrm{F}_{2}=\mathrm{F}, \quad q_{1}=q_{2}=q ; \quad\left(\mathrm{C}_{2}\right): \quad \mathrm{F}_{1}=\mathrm{TM}$, $\mathrm{F}_{2}=\mathrm{F}, q_{1}=0, q_{2}=q ;\left(\mathrm{C}_{3}\right): \mathrm{F}_{1}=\mathrm{F}, \mathrm{F}_{2}=0, q_{1}=q, q_{2}=n$. Then, all the previous results particularize to these cases as follows:

Case $\left(\mathrm{C}_{1}\right)$. - Here an $\left(\mathrm{F}_{1}, \mathrm{~F}_{2}\right)$-foliated bundle $\mathrm{P}=\mathrm{P}_{1}+\mathrm{P}_{2}$ is, in fact, an $F$-foliated bundle, the ideal $I$ coincides with $\mathrm{F}^{2(q+1)} \mathrm{W}(g), \quad p^{*}$ in diagram (3.2) is an isomorphism and $\Delta_{(\mathrm{F}, \mathrm{F})}(\mathrm{P})=\Delta_{\mathrm{F}}(\mathrm{P})$.

Case $\left(\mathrm{C}_{2}\right)$. - Here, $\quad \mathrm{P}=\mathrm{P}_{1}+\mathrm{P}_{2}$ is the sum of a flat bundle $P_{1}$ and an $F$-foliated bundle $P_{2}$; since

$$
\mathrm{I}=\mathrm{F}^{2(q+1)} \mathrm{W}(g)+{ }^{\prime} \mathrm{F}^{2} \mathrm{~W}(g)
$$

making calculations we obtain

$$
\begin{aligned}
& \mathrm{W}(g)_{\mathrm{I}} \cong \underset{j=0}{\stackrel{q}{\oplus}} \Lambda^{*} g^{*} \otimes \mathrm{~S}^{0} g_{1}^{*} \otimes \mathrm{~S}^{j} g_{2}^{*} \\
& \mathrm{~W}(g)_{q} \cong \mathrm{~W}(g)_{\mathrm{I}} \oplus\left(\underset{j=0}{q-1} \underset{i=0}{q-j} \Lambda^{*} g^{*} \otimes \mathrm{~S}_{1}^{i} g^{*} \otimes \mathrm{~S}_{2}^{j} g^{*}\right)
\end{aligned}
$$

and then $p^{*}$ in diagram (3.2) is surjective. Hence

$$
\operatorname{Im}\left(\Delta_{\mathrm{F}}(\mathrm{P})\right)=\operatorname{Im}\left(\Delta_{(\mathrm{TM}, \mathrm{~F})}(\mathrm{P})\right)
$$

Case $\left(\mathrm{C}_{3}\right)$. - In this case, $\mathrm{P}=\mathrm{P}_{1}+\mathrm{P}_{2}$ is simply an ordinary bundle (that is, 0 -foliated) which is not necessarily F-foliated. Thus, if we take $\mathrm{H}=\mathrm{G}$ in diagram (3.2) and denote $\boldsymbol{\tau}: \mathrm{I}(\mathrm{G}) \longrightarrow \mathrm{I}(\mathrm{G})_{n}$ the canonical projection, we have a commutative diagram

where $h^{*}$ denotes the Chern-Weil homomorphism of $P$. Thus, we can assert the following: if $P=P_{1}+P_{2}$ where $P_{1}$ is a foliated bundle, then the Chern-Weil homomorphism of $\mathbf{P}$ vanishes on $\operatorname{Ker}\left(p^{*} \circ \tau\right)$. Again, since any connection in $P_{2}$ is basic with respect to the foliation by points on $M$, if $P_{1}$ admits a basic connection then $h^{*}$ vanishes on the kernel of the composition

$$
\mathrm{I}(\mathrm{G}) \xrightarrow{r^{\prime}} \mathrm{I}(\mathrm{G})_{[n / 2]} \xrightarrow{p^{*}} \mathrm{I}(\mathrm{G})_{\mathrm{I}^{\prime}}
$$

## 4. Difference construction for $\Delta_{\left(F_{1}, F_{2}\right)}(P)$. Secondary invariants .

The computation of $\mathrm{H}\left(\mathrm{W}(\mathrm{g}, \mathrm{H})_{\mathrm{I}}\right)$ can be done from the general results in [7], Chapter 5, from where we shall take the notation.

We assume throughout that $G$ is either connected or $\mathrm{I}(\mathrm{G}) \cong \mathrm{I}\left(\mathrm{G}_{0}\right) \equiv \mathrm{I}(\mathrm{g})$ for the connected component $\mathrm{G}_{0}$ of G ; the closed subgroup $H \subset G$ is assumed to have finitely many connected components.

Then, let us consider in the G-DG-algebra $\mathrm{W}(g)_{\mathrm{I}}$ the canonical connection given by the projection $k: \mathrm{W}(g) \longrightarrow \mathrm{W}(g)_{\mathrm{I}}$.

If the pair $(g, h)$ is reductive $(h=$ Lie algebra of $H)$, in accordance with Theorem 5.82 in [7] there exists a homomorphism $\zeta\left(\mathrm{W}(g)_{\mathrm{I}}, \mathrm{H}\right): \mathrm{A}\left(\mathrm{W}(g)_{\mathrm{I}}, \mathrm{H}\right) \longrightarrow\left(\mathrm{W}(g)_{\mathrm{I}}\right)_{\mathrm{H}}=\mathrm{W}(g, \mathrm{H})_{\mathrm{I}} \quad$ which induces an isomorphism in cohomology. In this way, the generalized characteristic homomorphism $\Delta_{\left(F_{1}, F_{2}\right)}(\mathrm{P})$ of P will have the same image as the composition

$$
\left.\mathrm{H}\left(\mathrm{~A}\left(\mathrm{~W}(\mathrm{~g})_{\mathrm{I}}, \mathrm{H}\right)\right) \xrightarrow[\cong]{\cong} \mathrm{\xi(W(g)}_{\mathrm{I}}, \mathrm{H}\right)_{*} \mathrm{H}\left(\mathrm{~W}(\mathrm{~g}, \mathrm{H})_{\mathrm{I}}\right) \xrightarrow{\Delta_{\left(\mathrm{F}_{1}, \mathrm{~F}_{2}\right)}(\mathrm{P})} \mathrm{H}_{\mathrm{DR}}(\mathrm{M})
$$

induced by the cochain map $\tilde{\Delta}(\omega)=\Delta(\omega) \circ \zeta\left(W(g)_{I}, H\right)$. In fact, the evaluation of $\widetilde{\Delta}(\omega)$ on the complex

$$
A\left(W(g)_{\mathrm{I}}, \mathrm{H}\right)=\Lambda \mathrm{P}_{g} \otimes\left(\mathrm{~W}(g)_{\mathrm{I}}\right)_{g} \otimes \mathrm{I}(\mathrm{H})=\Lambda \mathrm{P}_{g} \otimes \mathrm{I}(\mathrm{G})_{\mathrm{I}} \otimes \mathrm{I}(\mathrm{H})
$$

is equal to that of Theorem 5.95 in [7] for the case of a foliated bundle.

If we now assume the pair ( $g, h$ ) to be special Cartan (CS), then, by Theorem 5.107 in [7], there is an isomorphism

$$
\left.\bar{\beta}: H\left(\hat{A}\left(\mathrm{~W}(g)_{\mathrm{I}}\right)\right) \otimes_{\mathrm{I}(\mathrm{~g})} \mathrm{I}(\mathrm{H}) \stackrel{(\mathrm{H}}{\cong} \mathrm{H}\left(\mathrm{~A}(\mathrm{~g})_{\mathrm{I}}, \mathrm{H}\right)\right)
$$

where $\hat{\mathrm{A}}\left(\mathrm{W}(g)_{\mathrm{I}}\right)=\Lambda \hat{\mathrm{P}} \otimes\left(\mathrm{W}(g)_{\mathrm{I}}\right)_{\mathrm{g}}$. Thus $\Delta_{\left(\mathrm{F}_{1}, \mathrm{~F}_{2}\right)}(\mathrm{P})$ has the same image as the composition $\Delta_{\left(\mathrm{F}_{1}, \mathrm{~F}_{2}\right)}(\mathrm{P}) \circ \zeta\left(\mathrm{W}(g)_{\mathrm{I}}, \mathrm{H}\right) \circ \bar{\beta}$. Then taking into account that $\hat{A}\left(W(g)_{I}\right) \subset A\left(W(g)_{I}, H\right)$, we consider the composition

$$
\hat{\Delta}(\omega): \hat{\mathrm{A}}\left(\mathrm{~W}(g)_{\mathrm{I}}\right) \longrightarrow \mathrm{A}\left(\mathrm{~W}(g)_{\mathrm{I}}, \mathrm{H}\right) \xrightarrow{\widetilde{\Delta}(\omega)} \Omega(\mathrm{M})
$$

and, thus, the characteristic homomorphism $\Delta_{\left(\mathrm{F}_{1}, \mathrm{~F}_{2}\right)}(\mathrm{P})$ will be realized by $\hat{\Delta}_{*} \otimes h_{*}^{\prime}: \mathrm{H}\left(\widehat{\mathrm{A}}\left(\mathrm{W}(g)_{\mathrm{I}}\right)\right) \otimes_{\mathrm{I}(\mathrm{G})} \mathrm{I}(\mathrm{H}) \xrightarrow{\xrightarrow{\left(\mathrm{F}_{1}, \mathrm{~F}_{2}\right)} \mathrm{H}_{\mathrm{DR}}(\mathrm{M}), h_{*}^{\prime}}$ being the characteristic homomorphism of the $H$-reduction $\mathbf{P}^{\prime}$ of P. See 5.112 in [7] for more details.

- In particular, let us assume that $P=P_{1}+P_{2}$ is the bundle of transverse frames of $\left(\mathrm{F}_{1}, \mathrm{~F}_{2}\right)$, and take

$$
\mathrm{H}=\mathrm{O}\left(q_{1}\right) \times \mathrm{O}(d) \subset \mathrm{G} 1\left(q_{1}, \mathbf{R}\right) \times \mathrm{G} 1(d, \mathbf{R})=\mathrm{G}
$$

Since $\mathrm{gl}\left(q_{1}, \mathbf{R}\right)$ and $\mathrm{gl}(d, \mathbf{R})$ are reductive Lie algebras and $\left(\mathrm{gl}\left(q_{1}, \mathbf{R}\right) \times \mathrm{gl}(d, \mathbf{R}), \mathrm{o}\left(q_{1}\right) \times \mathrm{o}(d)\right) \quad$ is symmetric, this pair will be special Cartan and the previous construction can be used. Then, $\Delta_{\left(F_{1}, F_{2}\right)}(P)$ can be considered as defined on $H\left(\hat{A}_{I}\right) \otimes_{I(G)} I(H)$, where $\quad \hat{\mathrm{A}}_{\mathrm{I}}=\hat{\mathrm{A}}\left(\mathrm{W}(g)_{\mathrm{I}}\right)=\Lambda \hat{\mathrm{P}} \otimes \mathrm{I}\left(\mathrm{g} 1\left(q_{1}, \mathbf{R}\right) \times \mathrm{gl}(d, \mathbf{R})\right)_{\mathrm{I}}$. But, as it happens in the case of the bundle of transverse frames of a foliation [7], $H\left(\hat{A}_{I}\right) \otimes_{I(G)} I(H) \cong H\left(\hat{A}_{I}\right)$, and then

$$
\hat{\Delta}_{\left(\mathrm{F}_{1}, \mathrm{~F}_{2}\right)}(\mathrm{P})=\hat{\Delta}_{*}: \mathrm{H}\left(\hat{\mathrm{~A}}_{\mathrm{I}}\right) \longrightarrow \mathrm{H}_{\mathrm{DR}}(\mathrm{M}) .
$$

On the other hand, $\mathrm{I}\left(\mathrm{gl}\left(q_{1}, \mathbf{R}\right)\right)=\mathbf{R}\left[c_{1}, \ldots, c_{q_{1}}\right]$, $\mathrm{I}(\mathrm{g} 1(d, \mathbf{R}))=\mathbf{R}\left[c_{1}^{\prime}, \ldots, c_{d}^{\prime}\right]$ and $\Lambda \hat{\mathrm{P}}=\Lambda \hat{\mathbf{P}}_{1} \otimes \Lambda \hat{\mathbf{P}}_{2}, \quad \hat{\mathrm{P}}_{i}$ being the Samelson subspace of the pair $\left(g_{i}, h_{i}\right), i=1,2$; since both pairs are special Cartan,

$$
\Lambda \hat{\mathrm{P}}_{1}=\Lambda\left(y_{1}, y_{2}, \ldots, y_{q_{1}^{\prime}}\right), \quad \Lambda \hat{\mathbf{P}}_{2}=\Lambda\left(y_{1}^{\prime}, y_{3}^{\prime}, \ldots, y_{d^{\prime}}^{\prime}\right)
$$

where $\quad y_{i}=\sigma c_{i}, \quad y_{i}^{\prime}=\sigma^{\prime} c_{i}^{\prime} \quad$ and $\quad q_{1}^{\prime}=2\left[\left(q_{1}+1\right) / 2\right]-1$, $d^{\prime}=2[(d+1) / 2]-1, \quad \sigma$ and $\sigma^{\prime}$ being the suspension maps. Therefore
$\hat{\mathrm{A}}_{\mathrm{I}}=\Lambda\left(y_{1}, y_{3}, \ldots, y_{q_{1}^{\prime}}\right) \otimes \Lambda\left(y_{1}^{\prime}, y_{3}^{\prime}, \ldots, y_{d^{\prime}}^{\prime}\right)$

$$
\otimes \frac{\mathbf{R}\left[c_{1}, \ldots, c_{q_{1}}\right] \otimes \mathbf{R}\left[c_{1}^{\prime}, \ldots, c_{d}^{\prime}\right]}{\mathrm{I}_{g}}
$$

where

$$
\mathrm{I}_{g}=\mathrm{I} \cap \mathrm{I}(g)=\left\langle\left\{\alpha \otimes \beta \in \mathrm{I}^{j_{1}}\left(g_{1}\right) \otimes \mathrm{I}^{j_{2}}\left(g_{2}\right) / j_{1}>q_{1} \text { or } j_{1}+j_{2}>q_{2}\right\}\right\rangle
$$

That is, $\hat{A}_{I}=W O_{I}$, the graded differential algebra defined in [4]. Therefore, the generalized characteristic homomorphism of the bundle of transverse frames of the subfoliation $\left(F_{1}, F_{2}\right)$ coincides with the characteristic homomorphism of ( $\mathrm{F}_{1}, \mathrm{~F}_{2}$ ) as defined in [4]

$$
\lambda_{\left(\mathrm{F}_{1}, \mathrm{~F}_{2}\right)}^{*}: \mathrm{H}\left(\mathrm{WO}_{\mathrm{I}}\right) \longrightarrow \mathrm{H}_{\mathrm{DR}}(\mathrm{M})
$$

From this point of view, the generalized characteristic homomorphism $\Delta_{\left(\mathrm{F}_{1}, \mathrm{~F}_{2}\right)}(\mathrm{P})$ of an $\left(\mathrm{F}_{1}, \mathrm{~F}_{2}\right)$-foliated bundle $\mathrm{P}=\mathrm{P}_{1}+\mathrm{P}_{2}$ generalizes the characteristic homomorphism of the subfoliation ( $\mathrm{F}_{1}, \mathrm{~F}_{2}$ ) in the same way as Kamber-Tondeur's characteristic homomorphism of a foliated bundle generalizes Bott's characteristic homomorphism of a foliation ([7], [2]).

In order to construct the algebra of secondary characteristic invariants, from now on, we shall consider an $\left(F_{1}, F_{2}\right)$-foliated bundle $P=P_{1}+P_{2}, \quad H \subset G \quad a \quad$ closed subgroup with finitely many connected components and such that the pair of Lie algebras $(g, h)$ be reductive. Let us denote $\mathrm{P}^{\prime}$ the $H$-reduction of $P$ used to define the characteristic homomorphism $\Delta_{\left(F_{1}, F_{2}\right)}(P)$ of $P$ and, to simplify the notation, put $A_{I}=A\left(W(g)_{I}, H\right)$.

Let $p: \mathrm{A}_{\mathrm{I}} \longrightarrow \mathrm{I}(\mathrm{G})_{\mathrm{I}} \otimes_{\mathrm{I}(\mathrm{G})} \mathrm{I}(\mathrm{H})$ the composition of the canonical projection along $\Lambda \mathrm{P}_{g}, \lambda: \mathrm{A}_{\mathrm{I}} \longrightarrow \mathrm{I}(\mathrm{G})_{\mathrm{I}} \otimes \mathrm{I}(\mathrm{H}) \quad$ with the canonical map.

Definition 4.1. $-\mathrm{H}\left(\mathrm{K}_{\mathrm{I}}\right)$, where $\mathrm{K}_{\mathrm{I}}=\operatorname{Ker} p$, is called the algebra of secondary characteristic invariants of $\mathbf{P}$.

Proposition 4.2. - There is a short exact sequence of algebras

$$
\begin{equation*}
0 \longrightarrow \mathrm{H}\left(\mathrm{~K}_{\mathrm{I}}\right) \longrightarrow \mathrm{H}\left(\mathrm{~W}(g, \mathrm{H})_{\mathrm{I}}\right) \longrightarrow \mathrm{I}(\mathrm{G})_{\mathrm{I}} \otimes_{\mathrm{I}(\mathrm{G})} \mathrm{I}(\mathrm{H}) \longrightarrow 0 \tag{4.1}
\end{equation*}
$$

Proof. - Consider the short exact sequence of complexes

$$
0 \rightarrow \mathrm{~K}_{\mathrm{I}} \longrightarrow \mathrm{~A}_{\mathrm{I}} \longrightarrow \mathrm{I}(\mathrm{G})_{\mathrm{I}} \otimes_{\mathrm{I}(\mathrm{G})} \mathrm{I}(\mathrm{H}) \longrightarrow 0
$$

Then (4.1) appears by writing up the associated long exact sequence of homology whose connecting homomorphism is null, and because $H\left(A_{I}\right) \cong H\left(W(g, H)_{1}\right)$.

The non-triviality of $\Delta_{\left(\mathrm{F}_{1}, \mathrm{~F}_{2}\right)}(\mathrm{P}) /_{\mathrm{H}\left(\mathrm{K}_{1}\right)}$ is a measure for the incompatibility of the $\left(F_{1}, F_{2}\right)$-foliated structure of $P=P_{1}+P_{2}$ with its $H$-reduction $P^{\prime}$; that is,

Proposition 4.3. - Let $\mathrm{P}=\mathrm{P}_{1}+\mathrm{P}_{2}$ be an $\left(\mathrm{F}_{1}, \mathrm{~F}_{2}\right)$-foliated bundle, $\mathrm{H}=\mathrm{H}_{1} \times \mathrm{H}_{2} \subset \mathrm{G}$ a closed subgroup and $\mathrm{P}^{\prime}$ an H -reduction of P which is $\left(\mathrm{F}_{1}, \mathrm{~F}_{2}\right)$-foliated and such that, if
$\iota: \mathrm{H} \longrightarrow \mathrm{G}$ is the injection, then the $\left(\mathrm{F}_{1}, \mathrm{~F}_{2}\right)$-foliated structure of P is, in fact, the 1 -extension of that of $\mathrm{P}^{\prime}$. Then

$$
\Delta_{\left(\mathrm{F}_{1}, \mathrm{~F}_{2}\right)}(\mathrm{P}) /_{\mathrm{H}\left(\mathrm{~K}_{\mathrm{I}}\right)}=0 .
$$

Proof. - Applying Proposition 2.7 to the homomorphism $\iota:(\mathrm{H}, \mathrm{H}) \longrightarrow(\mathrm{G}, \mathrm{H})$ we obtain the commutative diagram

and hence $\Delta_{*}(\mathrm{P}) /_{\mathrm{Ker}\left(\mathrm{W}(d)^{*}\right)}=0$.

Moreover, there is a commutative diagram

where $\psi$ is the canonical projection of

$$
\mathrm{I}(\mathrm{G})_{\mathrm{I}} \otimes_{\mathrm{I}(\mathrm{G})} \mathrm{I}(\mathrm{H}) \cong \mathrm{I}(\mathrm{H}) / \mathrm{I} \cdot \mathrm{I}(\mathrm{H})
$$

onto $\mathrm{I}(\mathrm{H})_{\mathrm{I}}=\mathrm{I}(\mathrm{H}) / \mathrm{I}$. Thus, going into cohomology, we obtain a factorization $\mathrm{H}\left(\mathrm{W}(g, \mathrm{H})_{\mathrm{I}}\right) \rightarrow \mathrm{I}(\mathrm{G})_{\mathrm{I}} \otimes_{\mathrm{I}(\mathrm{G})} \mathrm{I}(\mathrm{H}) \rightarrow \mathrm{I}(\mathrm{H})_{\mathrm{I}} \quad$ of the vertical homomorphism in (4.2). Then, because

$$
\mathrm{H}\left(\mathrm{~K}_{\mathrm{I}}\right)=\operatorname{Ker}\left\{\mathrm{H}\left(\mathrm{~W}(\mathrm{~g}, \mathrm{H})_{\mathrm{I}}\right) \rightarrow \mathrm{I}(\mathrm{G}) \otimes_{\mathrm{I}(\mathrm{G})} \mathrm{I}(\mathrm{H})\right\}
$$

by virtue of Proposition 4.2, we have $H\left(K_{\mathrm{I}}\right) \subset \operatorname{Ker}\left(\mathrm{W}(d \iota)^{*}\right)$.

Moreover, as in the usual case of foliated bundles [7], we have

Proposition 4.4. - There is a splitting homomorphism

$$
\kappa: \mathrm{I}(\mathrm{G})_{\mathrm{I}} \otimes_{\mathrm{I}(\mathrm{G})} \mathrm{I}(\mathrm{H}) \longrightarrow \mathrm{H}\left(\mathrm{~W}(g, \mathrm{H})_{\mathrm{I}}\right)
$$

of the short exact sequence (4.1) and the composition $\Delta_{*}(\mathbf{P}) \circ \kappa$ is induced by the characteristic homomorphism of $\mathrm{P}^{\prime}$ :

$$
h_{*}\left(\mathrm{P}^{\prime}\right): \mathrm{I}(\mathrm{H}) \longrightarrow \mathrm{H}_{\mathrm{DR}}(\mathrm{M})
$$

## 5. Restriction to the leaves.

In this section we shall discuss the restriction of an ( $\mathrm{F}_{1}, \mathrm{~F}_{2}$ )-foliated bundle $\mathrm{P}=\mathrm{P}_{1}+\mathrm{P}_{2}$ to the leaves of each foliation $\mathrm{F}_{i}, i=1,2$. In order to do that, let us previously discuss the restriction to the leaves of an $\mathrm{F}_{2}$-foliated bundle.

So, let $\left(\mathrm{F}_{1}, \mathrm{~F}_{2}\right)$ be a $\left(q_{1}, q_{2}\right)$-codimensional subfoliation on $\mathrm{M}, \mathrm{L}$ a leaf of $\mathrm{F}_{1}$ and $j: \mathrm{L} \longrightarrow \mathrm{M}$ the canonical immersion. Since $F_{2} \subset F_{1}, F_{2}$ induces on $L$ a foliation which will be denoted by $\mathrm{F}_{\mathrm{L}}$; note that $\operatorname{codim}\left(\mathrm{F}_{\mathrm{L}}\right)=d=q_{2}-q_{1}$ while codim $\left(\mathrm{F}_{2}\right)=q_{2}$. Obviously, $j$ maps the leaves of $\mathrm{F}_{\mathrm{L}}$ into leaves of $F_{2}$.

Now, let $\pi: P \longrightarrow M$ be a G-principal fibre bundle and denote $\mathbf{P}^{\prime}=j^{*} \mathbf{P}$ the inverse image of $\mathbf{P}$ via $j$. Then $\pi^{\prime}: \mathbf{P}^{\prime} \longrightarrow \mathrm{L}$, the restriction of $\mathbf{P}$ to L , is a G-principal fibre bundle and we shall denote $\bar{j}: \mathrm{P}^{\prime} \longrightarrow \mathrm{P}$ the canonical injection. The following result is known [1] :

Proposition 5.1. - If P is $\mathrm{F}_{2}$-foliated then $\mathrm{P}^{\prime}$ is $\mathrm{F}_{\mathrm{L}}$-foliated. Moreover, if $\omega$ is an adapted connection in P then $\bar{j}^{*} \omega$ is an adapted connection in $\mathrm{P}^{\prime}$.

Precisely the latter condition allows to consider, using connections $\omega$ and $\bar{j}^{*} \omega$, a commutative diagram

where $p: \mathrm{W}(g, \mathrm{H})_{q_{2}} \longrightarrow \mathrm{~W}(g, \mathrm{H})_{d} \quad$ is the canonical projection $(d \leqq q), \mathrm{H} \subset \mathrm{G}$ is a subgroup satisfying the usual hypothesis and $\Delta_{*}(\mathrm{P}), \Delta_{*}\left(\mathrm{P}^{\prime}\right)$ are the generalized characteristic homomorphisms of $\mathbf{P}$ and $\mathrm{P}^{\prime}$.

For example, $Q_{0}=F_{1} / F_{2}$ (the normal bundle of $F_{2}$ relative to $F_{1}$ ) is an $F_{2}$-foliated vector bundle on account of the existence on it of the so-called Bott connection [4], [1]. Moreover, $\mathrm{Q}_{\mathrm{L}}=\mathrm{TL} / \mathrm{F}_{\mathrm{L}}$, the normal bundle of $\mathrm{F}_{\mathrm{L}}$, is canonically isomorphic to $j^{*} \mathrm{Q}_{0}$ [1] in such way that the Bott connection in $\mathrm{Q}_{0}$ pulls back via $j$ to the Bott connection in $\mathrm{Q}_{\mathrm{L}}$. Therefore, the frame bundle of $\mathrm{Q}_{0}, \mathrm{P}$, is an $\mathrm{F}_{2}$-foliated $\mathrm{G} 1(d, \mathbf{R})$-principal bundle, and $\mathrm{P}^{\prime}=j^{*} \mathrm{P}$ is precisely the bundle of transverse frames of $F_{L}$. Thus, through the corresponding isomorphisms, diagram (5.1) becomes:

where $\Delta_{*}^{\prime}$ is just the usual characteristic homomorphism of foliation $F_{L}$ on $L$.

Next, we shall discuss the restriction to a leaf of $\mathrm{F}_{2}$. Thus, provided that we do not need to use the foliation $F_{1}$, we shall assume only one foliation $F$ on $M, L$ a leaf of $F$ and $j: \mathrm{L} \longrightarrow \mathrm{M}$ the canonical immersion. Now if $\pi: \mathrm{P} \longrightarrow \mathrm{M}$ is a G-principal bundle and $\mathbf{P}^{\prime}=j^{*} \mathrm{P}$ is the inverse image of P via $j$, we have

Proposition 5.2. - Each F-foliated bundle structure on $\mathbf{P}$ determines a flat bundle structure on $\mathrm{P}^{\prime}$ in such way that if $\omega$ is an adapted connection in P , then $\omega^{\prime}=\bar{j}^{*} \omega$ is a flat connection in $\mathbf{P}^{\prime}$.

Therefore, if we consider on $M$ the subfoliation ( $F, F$ ) then the foliation $F_{L}$ induced on $L$ is trivial, that is, $F_{L}=T L$,
and taking into account that $\mathrm{W}(g, \mathrm{H})_{0} \cong\left(\Lambda g^{*}\right)_{\mathrm{H}} \cong \Lambda(g / h)^{* H}$, diagram (5.1) becomes

$\Delta_{*}^{\prime}$ bêing the generalized characteristic homomorphism of $\mathbf{P}^{\prime}$ as flat bundle [7].

Example. - Let P be the bundle of transverse frames of F. Then, if $\nu \mathrm{F}=\mathrm{TM} / \mathrm{F}$ is the normal bundle of $\mathrm{F}, \quad \nu \mathrm{L}=\nu \mathrm{F} / \mathrm{L}$ is the normal bundle of the leaf $L$ of $F$ and $P^{\prime}=j^{*} P$ is just the bundle of frames of $\nu \mathrm{L}$. Following Goldman [6], any connection in $P$ adapted to its canonical structure of $F$-foliated bundle will be said a foliation connection, and a connection in $\mathbf{P}^{\prime}$ obtained as inverse image of a foliation connection will be said a leaf connection. In fact, Goldman showed that there is an unique leaf connection which is flat, and one easily checks that $\Delta_{*}^{\prime}$ in diagram (5.2) is nothing but the so-called holonomy homomorphism of the leaf $L$ [6].

Again, let $\left(\mathrm{F}_{1}, \mathrm{~F}_{2}\right)$ be a $\left(q_{1}, q_{2}\right)$-codimensional subfoliation on $\mathrm{M}, \mathrm{L}_{1} \quad$ a leaf of $\mathrm{F}_{1}, \quad j_{1}: \mathrm{L}_{1} \longrightarrow \mathrm{M}$ the canonical immersion, $\mathrm{F}_{\mathrm{L}_{1}}$ the foliation on $\mathrm{L}_{1}$ induced by $\mathrm{F}_{2}, \mathrm{P}=\mathrm{P}_{1}+\mathrm{P}_{2}$ an $\left(\mathrm{F}_{1}, \mathrm{~F}_{2}\right)$-foliated bundle on M and $\mathrm{P}^{\prime}=j_{1}^{*} \mathrm{P}$ its inverse image via $j_{1}$. Then, since $P$ is also $F_{2}$-foliated we can apply to it all previous results; so, in particular, we can construct a diagram (5.1) for this $P=P_{1}+P_{2}$. On the other hand,

$$
\mathbf{P}^{\prime}=j_{1}^{*} \mathrm{P}_{1}+j_{1}^{*} \mathrm{P}_{2}
$$

then, applying the previous results to each $j_{1}^{*} \mathrm{P}_{i}, i=1,2$, it follows that $P^{\prime}$ is $\left(\mathrm{TL}_{1}, \mathrm{~F}_{\mathrm{L}_{1}}\right)$-foliated over $\mathrm{L}_{1}$. Moreover, if $\omega$ is an adapted connection sum in P then $\omega^{\prime}=j_{1}^{*} \omega$ is an adapted connection sum in $\mathbf{P}^{\prime}$. If I and $\mathrm{I}^{\prime}$ are the ideals given by (2.1) for the pairs $\left(q_{1}, q_{2}\right)$ and $(0, d)$, respectively, then
$I \subset I^{\prime}$ and, for an appropiate subgroup $H$, we obtain a commutative diagram
where $p^{\prime *}$ is induced by the canonical projection. If we now combine (5.3) with (5.1) through (3.2), we obtain


Now, if $L_{2}$ is a leaf of $F_{2}$ and $j_{2}: L_{2} \longrightarrow M$ is its canonical immersion, then $\left(\mathrm{F}_{1}, \mathrm{~F}_{2}\right)$ induces on $\mathrm{L}_{2}$ the trivial subfoliation $\left(\mathrm{TL}_{2}, \mathrm{TL}_{2}\right)$. Therefore, the restriction to $\mathrm{L}_{2}$ of an $\left(F_{1}, F_{2}\right)$-foliated bundle $P=P_{1}+P_{2}$ is a flat bundle, and hence we obtain a commutative diagram similar to (5.4):


If we now assume that $\mathrm{L}_{1}$ contains $\mathrm{L}_{2}, j_{0}: \mathrm{L}_{2} \longrightarrow \mathrm{~L}_{1}$ being the canonical immersion with $j_{2}=j_{1} \circ j_{0}$, then, using Proposition 3.1 and taking the closed subgroups

$$
H_{1} \subset G_{1}, H_{2} \subset G_{2}, H=H_{1} \times H_{2}
$$

and $\rho_{i}: \mathrm{G}=\mathrm{G}_{1} \times \mathrm{G}_{2} \longrightarrow \mathrm{G}_{i}, \quad i=1,2$, the canonical projections, there is a commutative diagram


All these results, when particularized in certain examples, provide a starting point for a study of the holonomy of the leaves of a subfoliation similar to that of Goldman [6] for the leaves of a foliation.

Example. - With the previous notations, let

$$
P=L\left(Q_{1}\right)+L\left(Q_{0}\right)
$$

be the bundle of transverse frames of ( $\mathrm{F}_{1}, \mathrm{~F}_{2}$ ) and let ( $\mathrm{L}_{1}, \mathrm{~L}_{2}$ ) be a "leaf" of ( $\mathrm{F}_{1}, \mathrm{~F}_{2}$ ) (that is, $\mathrm{L}_{i}$ leaf of $\mathrm{F}_{i}$ and $\mathrm{L}_{2} \subset \mathrm{~L}_{1}$ ); then $\mathrm{P}^{\prime}=j_{2}^{*} \mathrm{P}=\mathrm{L}\left(j_{0}^{*}\left(\nu \mathrm{~L}_{1}\right)\right)+\mathrm{L}\left(j_{2}^{*}\left(\mathrm{Q}_{0}\right)\right)$ is a reduction of the bundle of frames of the "normal bundle of ( $\mathrm{L}_{1}, \mathrm{~L}_{2}$ )" defined as $\quad \nu\left(\mathrm{L}_{1}, \mathrm{~L}_{2}\right)=j_{0}^{*}\left(\nu \mathrm{~L}_{1}\right) \oplus j_{2}^{*}\left(\mathrm{Q}_{0}\right), \quad \nu \mathrm{L}_{1} \quad$ being the normal bundle of the leaf $L_{1}$ [6], that is, $\nu L_{1}=Q_{1} / L_{1}$. With a terminology analogous to that of Goldman, we call leaf connection any connection in $\mathrm{P}^{\prime}$ obtained by pull-back of any adapted connection sum in $\mathbf{P}$. Then, the following proposition can be easily proved :

Proposition 5.3. - There exists a unique leaf connection in $\mathbf{P}^{\prime}$. Moreover, this connection is flat.

Through this result, we can state easily vanishing and obstruction theorems for the leaves of a subfoliation similar
to those in [6] for the leaves of a foliation, because the real Pontrjagin ring of $\nu\left(\mathrm{L}_{1}, \mathrm{~L}_{2}\right)$ is trivial and this fact provides a necessary condition for a pair $\left(\mathrm{N}_{1}, \mathrm{~N}_{2}\right)$ of connected manifolds, with injective immersions $j_{i}: \mathrm{N}_{i} \longrightarrow \mathrm{M}, i=1,2, j_{0}: \mathrm{N}_{2} \longrightarrow \mathrm{~N}_{1}$ and $j_{2}=j_{1} \circ j_{0}$, to be a leaf of a subfoliation on M .

$$
\begin{aligned}
\text { Now, if } & \mathrm{P}^{\prime \prime}=\mathrm{L}\left(\mathrm{Q}_{2}\right) \text { and } \\
& \rho: \mathrm{Gl}\left(q_{1}, \mathbf{R}\right) \times \mathrm{Gl}(d, \mathbf{R}) \longrightarrow \mathrm{Gl}\left(q_{2}, \mathbf{R}\right)
\end{aligned}
$$

is the canonical homomorphism, then, using the example that follows Proposition 3.2 and taking a closed subgroup

$$
\mathrm{H}^{\prime} \subset \mathrm{G} 1\left(q_{2}, \mathbf{R}\right)
$$

such that $\rho(H) \subset H^{\prime}$, we first obtain a commutative diagram combining (5.2) vith (5.5):

and then, taking into account diagram (5.6):


$$
\begin{equation*}
\mathrm{H}\left(g l\left(q_{1}, \mathrm{R}\right), \mathrm{H}\right) \xrightarrow{\rho_{1}^{*}} \xrightarrow{\Delta_{*}\left(j_{1}^{*} \mathrm{P}_{1}\right)} \longrightarrow \mathrm{H}_{\mathrm{DR}}\left(\mathrm{~L}_{1}\right) \tag{5.8}
\end{equation*}
$$

Now, we assume $\mathrm{H}=\mathrm{O}\left(q_{1}\right) \times \mathrm{O}(d)$ and $\mathrm{H}^{\prime}=\mathrm{O}\left(q_{2}\right)$. In this case Goldman shows that $p^{*}$ in diagram (5.7) is the zero homomorphism and concludes that the secondary foliation classes of $\mathrm{F}_{2}$ vanish in the leaves $\mathrm{L}_{2}$. Essentially with the same arguments, one can prove that the homomorphism $p^{*}$ in diagram (5.7) is also zero and assert that the restriction to $L_{2}$ of every secondary subfoliation class of $\left(F_{1}, F_{2}\right)$ vanishes. Moreover, the homomorphism $\Delta_{*}\left(\mathrm{P}^{\prime}\right)$ is similar to the holonomy homomorphism defined by Goldman, and hence it can be called the holonomy homomorphism of the leaf $\left(L_{1}, L_{2}\right)$ and denoted by $\phi_{\mathrm{F}, \mathrm{L}}^{*}$. Then, diagram (5.8) relate the holonomy homomorphism of $\left(\mathrm{L}_{1}, \mathrm{~L}_{2}\right)$ with that of each $\mathrm{L}_{i}, i=1,2$. Through the canonical isomorphisms we obtain the following commutative diagram:

where $\quad \ell_{i}=2\left[\left(q_{i}+1\right) / 2\right]-1, \quad i=1,2 ; \quad \ell^{\prime}=2[(d+1) / 2]-1 ;$ $\ell^{\prime \prime}=\ell_{1}$.

Obviously, the case of a subfoliation with trivialized normal bundle can be also discussed; to do that, it suffices to take $\mathbf{H}^{\prime}$ as the trivial subgroup, and the diagram (5.8) becomes


This result may be used in order to obtain topological obstructions to the existence of subfoliations. Reinhart [10] exhibits a first example of these obstructions which can be expressed in our language as follows.

Let $\left(\mathrm{F}_{1}, \mathrm{~F}_{2}\right)$ be a $(1,2)$-codimensional subfoliation on a manifold $M$ with trivialized normal bundle; suppose $F_{1}$ defined by the global 1 -form $\alpha_{2}$ and $F_{2}$ defined by the global 1-forms $\alpha_{1}, \alpha_{2}$. Hence there exist 1 -forms $\tau_{11}, \tau_{21}, \tau_{22}$ on $M$ such that $d \alpha_{1}=\alpha_{1} \wedge \tau_{11}+\alpha_{2} \wedge \tau_{21}, d \alpha_{2}=\alpha_{2} \wedge \tau_{22}$.

If $\left(L_{1}, L_{2}\right)$ is a leaf of $\left(F_{1}, F_{2}\right)$, let us consider the 1 -forms on $\mathrm{L}_{2}$ given by

$$
\tau_{11}^{\mathrm{L}}=j_{2}^{*}\left(\tau_{11}\right), \quad \tau_{21}^{\mathrm{L}}=j_{2}^{*}\left(\tau_{21}\right), \quad \tau_{22}^{\mathrm{L}}=j_{2}^{*}\left(\tau_{22}\right)
$$

In this case, the previous diagram writes, at the cochain level, as

and, from it, we obtain the following holonomy classes:
a) for $L_{1}$ as leaf of $F_{1}$ :

$$
\phi_{\mathrm{F}_{1}, \mathrm{~L}_{1}}^{*}\left(h_{1}\right)=\left[\tau_{22 / \mathrm{L}_{1}}\right] \in \mathrm{H}_{\mathrm{DR}}\left(\mathrm{~L}_{1}\right)
$$

b) for $L_{2}$ as leaf of $F_{2}$ :

$$
\phi_{\mathrm{F}_{2}, \mathrm{~L}_{2}}^{*}\left(h_{1}\right)=\left[\tau_{11}^{\mathrm{L}}+\tau_{22}^{\mathrm{L}}\right] \in \mathrm{H}_{\mathrm{DR}}\left(\mathrm{~L}_{2}\right), \quad \phi_{\mathrm{F}_{2}, \mathrm{~L}_{2}}^{*}\left(h_{2}\right)=0
$$

since $h_{2} \in \operatorname{Ker} \rho^{*}$. In fact, Reinhart shows the vanishing of $\phi_{\mathrm{F}_{2}, \mathrm{~L}_{2}}^{*}\left(h_{2}\right)$ through a direct computation.
c) for $\left(L_{1}, L_{2}\right)$ as leaf of $\left(F_{1}, F_{2}\right)$ :

$$
\begin{gathered}
\phi_{\mathrm{F}, \mathrm{~L}}^{*}\left(h_{1}^{\prime}\right)=\left[\tau_{11}^{\mathrm{L}}\right] \in \mathrm{H}_{\mathrm{DR}}\left(\mathrm{~L}_{2}\right), \quad \phi_{\mathrm{F}, \mathrm{~L}}^{*}\left(h_{1}^{\prime \prime}\right)=\left[\tau_{22}^{\mathrm{L}}\right] \in \mathrm{H}_{\mathrm{DR}}\left(\mathrm{~L}_{2}\right) \\
\phi_{\mathrm{F}, \mathrm{~L}}^{*}\left(h_{1}^{\prime}+h_{1}^{\prime \prime}\right)=\left[\tau_{11}^{\mathrm{L}}+\tau_{22}^{\mathrm{L}}\right] \in \mathrm{H}_{\mathrm{DR}}\left(\mathrm{~L}_{2}\right)
\end{gathered}
$$

Now, by comparing with Reinhart results one can deduce :

1) the vanishing of certain holonomy classes of $L_{2}$ follows from the fact that they are obtained from elements of Ker $\rho^{*}$.
2) the image of $\Lambda\left(h_{1}^{\prime}\right)$ by $\phi_{\mathrm{F}, \mathrm{L}}^{*}$ gives holonomy classes which cannot be obtained if we consider each leaf separately.

## BIBLIOGRAPHY

[1] G. Andrzejczak, Some characteristic invariants of foliated bundles, Institute of Mathematics, Polish Academy of Sciences, Preprint 182, Warszawa, 1979.
[2] R. Bott, Lectures on characteristic classes and foliations, Lecture Notes in Math., Vol. 279, Springer, Berlin, 1972.
[3] L.A. Cordero and P.M. Gadea, Exotic characteristic classes and subfoliations, Ann. Inst. Fourier, Grenoble, 26-1 (1976), 225-237 ; errata, ibid. 27, fasc. 4 (1977).
[4] L.A. Cordero and X. Masa, Characteristic classes of subfoliations, Ann. Inst. Fourier, Grenoble, 31-2 (1981), 61-86.
[5] B.L. Feigin, Characteristic classes of flags of foliations, Funct. Anal. and its Appl., 9 (1975), 312-317.
[6] R. Goldman, The holonomy ring of the leaves of foliated manifolds, J. Differential Geometry, 11 (1976), 411-449.
[7] F.W. Kamber and Ph. Tondeur, Foliated bundles and characteristic classes, Lecture Notes in Math., Vol 493, Springer, Berlin, 1975.
[8] X. MASA, Characteristic classes of subfoliations II, preprint.
[9] R. Moussu, Sur les classes exotiques des feuilletages, Lecture Notes in Math., Vol. 392, Springer, Berlin, 1974, 37-42.
[10] B.L. Reinhart, Holonomy invariants for framed foliations, Lecture Notes in Math., Vol. 392, Springer, Berlin, 1974, 47-52.

Manuscrit reçu le 17 mai 1983
revisé le 8 novembre 1983.

José Manuel Carballés
Departamento de Geometría y Topología
Facultad de Matemáticas
Universidad de Santiago de Compostela
Santiago de Compostela (Espagne).

