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Crystal structures for canonical

Grothendieck functions

Graham Hawkes & Travis Scrimshaw

ABSTRACT We give a Ug(sl,)-crystal structure on multiset-valued tableaux, hook-valued
tableaux, and valued-set tableaux, whose generating functions are the weak symmetric, canon-
ical, and dual weak symmetric Grothendieck functions, respectively. We show the result is
isomorphic to a (generally infinite) direct sum of highest weight crystals, and for multiset-valued
tableaux and valued-set tableaux, we provide an explicit bijection. As a consequence, these
generating functions are Schur positive; in particular, the canonical Grothendieck functions,
which was not previously known. We also give an extension of Hecke insertion to express a
dual stable Grothendieck function as a sum of Schur functions.

1. INTRODUCTION

The Grassmannian Gr(n, k) is the set of k-dimensional hyperplanes in C". Lascoux
and Schiitzenberger [21, 22] introduced Grothendieck polynomials to represent the
K-theory ring of the Grassmannian. In particular, they correspond to the K-theory
classes of structure sheaves of Schubert varieties, and so they are indexed by permu-
tations in S,,. By taking the stable limit of n — oo, Fomin and Kirillov [7, 8] initiated
the study of stable Grothendieck functions, where they also replaced the sign corre-
sponding to the degree by a parameter 5 (which corresponds to taking the connective
K-theory [11]). Stable Grothendieck functions have been well-studied using a variety
of methods; see for example [1, 3, 4, 5, 9, 12, 13, 14, 15, 19, 23, 26, 27, 28, 29, 30, 31,
32, 33, 34, 35, 41, 43] and references therein.

The subset of stable Grothendieck functions corresponding to Grassmannian per-
mutations are called symmetric Grothendieck functions and form a basis for an ap-
propriate completion of the ring of symmetric functions over Z[3]. Recall that Schur
functions correspond to the characters of the general-linear Lie algebra gl,, when re-
stricted to n variables. Symmetric Grothendieck functions &, are known to be Schur
positive [23] with a finite expansion in each degree 3, and so we can apply the invo-
lution w that sends a Schur function s, to the Schur function s,  of the conjugate
p' of p. The resulting basis is known as the weak stable Grothendieck functions Jy.
Since the basis of Grothendieck functions is a (upper) filtered basis, we can consider
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its Hopf dual basis under the Hall inner product, which can be defined by consider-
ing Schur functions as an orthonormal basis, called the dual symmetric Grothendieck
functions and denoted by g». By also applying w, we obtain the dual weak symmetric
Grothendieck functions jy. Furthermore, each of the above families are known to have
combinatorial interpretations:

symmetric Grothendieck functions using set-valued tableaux,

weak symmetric Grothendieck functions using multiset-valued tableaux,
dual symmetric Grothendieck functions using reverse plane partitions, and
dual weak symmetric Grothendieck polynomials using valued-set tableaux.

In an effort to unify the bases {®,}, and {J}x by constructing a basis invariant
under w, Yeliussizov introduced in [44] the canonical Grothendieck functions £, and
fused the corresponding combinatorics in hook-valued tableaux. Furthermore, up to
a coefficient of (a4 ), the canonical Grothendieck functions have the same structure
coefficients and coproduct as the symmetric Grothendeick functions. Similarly, he
defined the dual canonical Grothendieck functions as the corresponding dual basis
and described it combinatorially using rim border tableaux and showed they are
Schur positive.

Since a Schur function restricted to n variables is a character of the special-linear
Lie algebra sl,, a generating function of some set B that is Schur positive implies
that there should be a U,(sl,,)-crystal structure [16, 17] on B with each connected
component isomorphic to the highest weight crystal B(\) for every s) summand. In-
deed, this was done for symmetric Grothendieck functions [27] and for dual symmetric
Grothendieck functions [10]. Thus, a natural question is to construct such crystals on
multiset-valued tableaux, hook-valued tableaux, valued-set tableaux, and rim border
tableaux. In this paper, we construct such a Uy (sl,,)-crystal structure on the first three
combinatorial objects: multiset-valued tableaux, hook-valued tableaux, and valued-set
tableaux.

Furthermore, we show that multiset-valued tableaux have many analogous results
from [27] for set-valued tableaux. More specifically, we extend the notion of the un-
crowding crystal isomorphism from [3, Sec. 6] to an explicit crystal isomorphism from
mutliset-valued tableaux to the usual crystal on semistandard tableaux. Furthermore,
we extend Hecke insertion [4] to give a crystal structure on weakly decreasing factor-
izations and give a positive Schur expansion of general weak stable Grothendieck
functions. We also have chosen our reading word on multiset-valued tableaux so that
it is a crystal embedding.

Conversely, whenever we have a crystal structure on a set B, the corresponding
generating function is Schur positive. Our final result is constructing a Uy (sl )-crystal
structure on hook-valued tableaux, which immediately implies that the canonical
Grothendieck functions are Schur positive. It was not previously known that the
canonical Grothendieck functions are Schur positive.

Our crystal structure on hook-valued tableaux is a combination of the crystal
structures on set-valued tableaux and multiset-valued tableaux. However, we are not
able to provide an explicit isomorphism with a highest weight crystal and instead
must rely on the Stembridge axioms [40]. Indeed, the set-valued (resp. multset-valued)
tableaux crystal structure preserves rows (resp. columns), each of which is isomorphic
to hook shape, and so the crystal structures are incompatible with no straightforward
extension of uncrowding.

In addition to the crystal structure on valued-set tableaux (which we describe
using two different reading words), we provide an analog of uncrowding that we call
inflation. That is we give an explicit crystal isomorphism from valued-set tableaux to
the usual crystal on semistandard tableaux that is based on [19, Thm. 9.8]. As with

Algebraic Combinatorics, Vol. 3 #3 (2020) 728



Crystal structures for canonical Grothendiecks

uncrowding, inflation is based on the Robinson—-Schensted-Knuth (RSK) algorithm
being a crystal isomorphism and recording the difference between the shapes.

Since dual canonical Grothendieck are Schur positive [44, Thm. 9.8], there should
exist a U, (sl,,)-crystal structure on rim border tableaux with an additional marking of
all interior boxes by either « or 8 as the exponent of (a4 /) corresponds to the number
of interior boxes. However, the crystal structure appears to be more complicated than
simply combining the crystal structures on reverse plane partitions and valued-set
tableaux. Thus, it remains an open problem to construct a U, (sl,,)-crystal on marked
rim border tableaux. Moreover, it is unlikely that inflation will extend to marked rim
border tableaux.

This paper is organized as follows. In Section 2, we provide the necessary back-
ground. In Section 3, we give a crystal structure on multiset-valued tableaux, the
uncrowding map, and a variation of Hecke insertion for weak stable Grothendieck
polynomials. In Section 4, we construct a crystal structure on hook-valued tableaux.
In Section 5, we construct a crystal structure on valued-set tableaux and give the
inflation map.

2. BACKGROUND

In this section, we give the necessary background on the crystal structure on set-
valued tableaux and on (weak) symmetric/canonical Grothendieck functions. We use
English convention for partitions and tableaux. Let x = (1, 22, 3, . . .) be a countable
sequence of indeterminants. Let sl,, denote the special linear Lie algebra (i.e. the
simple Lie algebra of type A,,_1) over C and U,(sl,) the corresponding Drinfel’d—
Jimbo quantum group. Let A = (A1, Ag,..., A¢) be a partition; a sequence of weakly
decreasing positive integers. Let £(\) = £ denote the length of .

2.1. SEMISTANDARD TABLEAUX, SET-VALUED TABLEAUX, AND CRYSTALS. A (semi-
standard) set-valued tableau of shape X is a filling T' of the boxes of Young diagram
of A by finite nonempty sets of positive integers so that rows are weakly increasing
and columns are strictly increasing in the following sense: For every set A to the
left of a set B in the same row, we have max A < min B, and for C below A in
the same column, we have max A < minC. A set-valued tableau is a semistandard
(Young) tableau if all sets have size 1. Let SVT™ () (resp. SST" (X)) denote the set of
set-valued (resp. semistandard) tableaux of shape A with entries at most n.

In [27], a Uy(sl,)-crystal structure, in the sense of Kashiwara [16, 17], was given
on SVT"(A). Recalling this crystal structure, we begin with the crystal operators
ei, fir SVI™(A) — SVI™"(A\) U {0}, where i € I :={1,...,n—1}.

DEFINITION 2.1. Fiz some T € SVT"(X) and i € I. Write + above each column of
T containing © but not i + 1, and write — above each column containing i + 1 but
not ©. Next cancel signs in ordered pairs —+ until obtaining a sequence of the form
+--+4+—---— called the i-signature.

e; Tt If there is not a — in the resulting sequence, then e;T = 0. Otherwise let b
correspond to the box of the leftmost uncanceled —. Then e;T is given by one
of the following:

o if there exists a box b immediately to the left of b that contains ani+1,
then remove the i + 1 from b and add an i to b;
e otherwise replace the i + 1 in b with an i.

fiT: If there is mot a + in the resulting sequence, then f;T = 0. Otherwise let b
correspond to the box of the rightmost uncanceled +. Then f;T is given by
one of the following:
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e if there exists a box b~ immediately to the right of b that contains an 1,
then remove the i from b™ and add an i+ 1 to b;
e otherwise replace the i in b with an v+ 1.

For a set-valued tableau T' € SVT™ () the weight is defined as

(1) WH(T) = a2y 2,
where m; is the number of occurrences of ¢ in 7. Denote |T'| := >_"" | m;. Define the
statistics

&i(T) = max{k € Zxg | eFT # 0}, 0i(T) = max{k € Zso | fI'T # 0}.

This gives a U,(sl,)-crystal structure on SVT™(X).() In particular, for T,T" €
SVT™()), we have

e T =T T = f;T'.

We say a T € SVT"(\) is highest weight if e;T = 0 for all i € . For more details on
crystals, we refer the reader to [6, 17].

When we restrict this crystal structure to semistandard Young tableaux of shape
A, we exactly recover the crystal B(A) of the irreducible highest weight U,(sl,)-
representation of highest weight A [16, 17]. Furthermore, the crystal operators from
Definition 2.1 also give a crystal structure on words of length ¢, which we naturally
equate with the tensor product B(A1)®* (for more details, we refer the reader to [6]).
The Lusztig involution is an involution on highest weight crystals : B(\) — B(\)
that sends the highest weight element to the lowest weight element and extended as
a crystal isomorphism

6i(T*) — (fnJrl,iT)*, fl(T*) — (6n+1,iT)*, Wt(T*) = Wo Wt(T),

where wy is the permutation that reverses all entries. We extend this functorially to
tensor products by applying it to every factor and then reversing the factors. The
Lusztig involution is also given by the Schiitzenberger involution (or evacuation) on
semistandard tableaux [24].

Recall that for two U, (sl,,)-crystals B, B’, a strict crystal morphism : B — B’ is
a map ¢: BU {0} — BU {0} such that

() =0,  Wleid) =ep(b),  U(fib) = fiv(b),  wt(y(b)) = wt(D),
where we consider e;0 = 0 and f;0 = 0. We say v is an embedding (resp. isomorphism,)
if p=1(0) = {0} (resp. v is a bijection). When there exists an isomorphism v: B — B/,
we say B is isomorphic to B’ and denote this by B = B'.

THEOREM 2.2 (Monical-Pechenik—Scrimshaw [27, Thm. 3.9]). Let A be a partition.
Then
SVI"(A) = @ B(u)®%,

ACH
where the S is the highest weight elements of weight p in SVI™(N).
For a partition A, we will sometimes write it as Z?:l c;\;, where ¢; denotes the
number of columns of height 7. This is the usual identification of partitions with the

dominant weights associated to sl,, using the fundamental weights.
See Figure 1 for an example of the crystal structure on set-valued tableaux.

(DThe standard references for crystal structures consider the weight as an additive group, but
we consider it as a multiplicative group because it useful for defining polynomials in the sequel.
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1 1
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FIGURE 1. The U,(sl3)-crystal structure on SVT? (EE) An j-arrow

b b represents the action of the crystal operator f;b =1b'.

2.2. CANONICAL GROTHENDIECK FUNCTIONS. From [3], we can define a symmetric
Grothendieck function as

6 8) = > BT w(D),
TESVT>=(A)

where |A| denotes the size of A (i.e. the number of boxes in A). The value |T| — |}| is
the so-called excess statistic. When 8 = 0, we recover the Schur function:
sa(x) = Z wt(T).
TESST> (1))
Note that when we restrict to n variables x1,xo,...,x,, we recover the 5-character
of SVIT™()\) and &, (and s,) is a polynomial (as opposed to a formal power series).

For more on Schur functions, we refer the reader to [39, Ch. 7].
The weak symmetric Grothendieck function is defined by

X1 T2 T3
2 Iax;a) =6
@) Ialx; ) A(laxl’laxg’laxg’ ,a>,

which recovers the definition given in [31, Thm. 6.11] when o = —1 and z; — —z;
(which is for the conjugate shape of the definition in [19]). Indeed, following [31] we
have
Lq 2 2,3 - k,.k+1
m:xi+axi+axi+...:kzoaxi s
which is equivalent to allowing multisets to fill the tableaux. More explicitly, define a
(semistandard) multiset-valued tableau of shape X to be a filling T' of the boxes of A
by finite nonempty multisets of positive integers such that rows are weakly increasing
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and columns are strictly increasing in the same sense as for set-valued tableaux.
Let MVT"()\) denote the set of all multiset-valued tableaux of shape A and max
entry n. Thus, we arrive at the combinatorial definition of [19] for weak symmetric
Grothendieck functions:

Inx;a) = Z a‘T‘fl)“Wt(T).

TEMVT™ ()

A third equivalent way to define a weak symmetric Grothendieck function is by using
the involution w on symmetric functions given by wsy(x) = sy (x), where X is the
conjugate partition of \.

PROPOSITION 2.3 (Lam—Pylyavskyy [19, Prop. 9.22]). We have
Iv(x;a) = wdy(x; ).

Unlike for symmetric Grothendieck functions, we do not obtain a polynomial when
we restrict a weak symmetric Grothendieck function to a finite number of variables
(i.e. it remains a formal power series).

Symmetric Grothendieck functions and weak symmetric Grothendieck functions
have a common generalization given by Yeliussizov [44]. A hook tableau is a semistan-
dard Young tableau T of the form

h|A || A,
Ly

Ly,

We call h the hook entry and the entries A(T) := (Ay, ..., Ag) the arm and L(T) :=
(L1,..., L) the leg. Let LT(T) := {h}UL(T) denote the extended leg.®) A (semistan-
dard) hook-valued tableau of shape X is a filling T of the boxes of A by hook tableaux
such that the rows are weakly increasing and the columns are strictly increasing the
in the same sense as for (multi)set-valued tableaux. Let HVT"()) denote the set of
hook-valued tableau of shape A with max entry n. Thus, following [44], we define the
canonical Grothendieck polynomial as

e f) = S aADIGEO gy,
TEHVT>®(})
Note that
A(x;0,0) = Ja(x; ), Dx(x50,8) = B (x; B).
Furthermore, Equation (2) follows from [44, Prop. 3.4].
2.3. DUAL CANONICAL GROTHENDIECK FUNCTIONS. A reverse plane partition of

shape X is a filling of A by positive integers such that rows and columns are weakly
increasing. Define the weight of a reverse plane partition P to be

wt(P) := a" x5 - xp,

where here m; is the number of columns that contain an i in P. As before, de-
note |P| := Y, m;. Let RPP"()) denote the set of reverse plane partitions with

(2)Note that Aj,...,Ag, L1,..., Ly, and h are all positive integers here.
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maximum entry n. The dual symmetric Grothendieck function gx(x;5) is defined
combinatorially by

axp) = Y pATPw(p),
PERPP>())
The dual symmetric Grothendieck functions were shown to form a basis Hopf
dual to the symmetric Grothendieck functions under the Hall inner product [19,
Thm. 9.15]. Furthermore, dual symmetric Grothendieck functions are known to be
Schur positive [19, Thm. 9.8], where RPP™(\) was given a U,(sl,)-crystal structure
by Galashin [10].

Let ja(x;a) denote the dual weak symmetric Grothendieck function, which we
can define by jx(x; @) = wgx (x;a). The dual weak symmetric Grothendieck func-
tions form the Hopf dual basis of the weak symmetric Grothendieck functions [19,
Thm. 9.15]. This was also given the following combinatorial interpretation [19]. Define
a valued-set tableaux of shape A to be a semistandard Young tableau of shape A such
that boxes within a particular row are divided into groups. Note that our description
is conjugate to that from [19]. Define the weight of a valued-set tableau V' to be

wt(V) i=a"ay? -y,

where here m; is the number of groups that contain an ¢ in V. As before, denote |P| :=

> m;. Thus, the dual weak symmetric Grothendieck function can be given by

iax;a) = Z APVt (v),
VEVST=(A)
where VST®()) is the set of all valued-set tableaux of shape A with max entry n.
EXAMPLE 2.4. Let A = E‘H The valued-set tableaux VST?()) are the semistandard

Young tableaux of shape A (see the leftmost connected component of Figure 1) and

11 1]1 1]2 2[2
2 2| 3 3/ 3 3] 3 3/
11 11 11 2 2
2[2] 2[3] 3[3) 3[3)
11 11 2 2
2 2 3 3/ 3 3]

Thus we have
ia(m1, T, 23; Q) = X325 + Tiwow3 + T1TET3 + XIS + T17275 + T3 + T3
+ a(:c%xg + {,C%il'g + x1T9T3 + .T%.’L'g
+ z122 + 212003 + a:lx?), + xzmg)
+ a2(x1x2 + x123 + T273)
= SEH(xl,:z:g, x3) + ostP(xl,xz,xg) + OZZSB(I‘l, X9, T3).

We also require some additional definitions on valued-set tableaux in the sequel.
We call the leftmost (resp. rightmost) entry in a group the buoy (resp. anchor). Thus,
m; in the weight is also equal to the number of buoys ¢ in a valued-set tableau V' and
|V| is the number of buoys (equivalently, anchors or groups). We will also consider

groups constructed by adding a vertical divider between certain pairs of entries ¢ in
the same row. For examples, see Example 5.2 and Example 5.12.
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2.4. STEMBRIDGE AXIOMS FOR CRYSTALS. We recall the Stembridge axioms [40], a
set of local criteria used to determine if a U,(sl,)-crystal is isomorphic to a direct
sum of highest weight crystals, but instead given the crystal and the crystal operators
rather than the crystal graph. Recall that the Cartan matrix for sl,, is given by
2 —1
-1 2 -1
-1
(Aij)?,j:1 = Lot
-1 2 -1
-1 2
Let B be a set with crystal operators e;, f;: B — B U {0} such that e; and f; are
computed using an i-signature; that is to say, e; (resp. f;) changes the rightmost —
(resp. leftmost +) into a + (resp. —). Furthermore, every contribution of a + (resp. —)

corresponds to multiplying x; (resp. x;1) to the weight. Define an i-string as a subset
of B closed under e; and f;. We require the following statistics

8i(b) := —max{k € Z>¢ | efb # 0}, 0i(b) := max{k € Z¢ | fFb # 0},
A;6;(b) := d;(esb) — 6;(b), Aipj(b) := pj(esb) — ¢;(b),
Vid;(b) := 6;(b) — 6;(fib), Vip;() := ¢ (b) — ¢ (fib).

The following are the Stembridge azioms:

(P1) All i-strings have no cycles (i.e. there does not exist a b such that f¥b = b for
some k > 0) and finite length.

(P2) For any b,b' € B, we have e;b =1 if and only if b = f;b'.

(P3) Aid;(b) + Aip;(b) = Ayj.

(P4) A;d;(b) <0 and Ajp;(b) < 0.

(P5) If ezb ejb # 0, then A;0;(b) = 0 implies y := e;e;b = e;e;b and V;¢;(y) = 0.

(P6) If e;b,e;b # 0, then A, 6J(b) j0;(b) = —1 implies y := eie?eib = e;jee;b
and Vip;(y) = V;pi(y) = —1-

(P5/) If fzb, fjb 7é 0, then quﬁj(b) = O 1mphes Yy = fzf]b = f]fzb and AJ(Si(y) = 0
and Aléj(y) = A](Sl(y) = —1.

THEOREM 2.5 (Stembridge [40, Thm. 3.3]). Let B be a crystal that satisfies the Stem-
bridge axioms such that every connected component C) contains a highest weight
element u™ of weight XV, then

B~ @ B\D).

-

Il
-

(2

We note that (P3) and (P4) are equivalent to one of three possibilities:
(Aij, A6 (b), Ajp; (b)) = (0,0,0), (—-1,-1,0), (1,0, -1).

From the weight condition of the i-signature, we have ¢;(b) + 6;(b) = m; — m;y1,

where wt(b) = z]™ --- 2. So along with (P2), B with the crystal operators satisfy
the abstract U, (sl,,)-crystal axioms [18].

3. MULTISET-VALUED TABLEAUX

In this section, we prove our first main result: there exists a U,(sl,,)-crystal structure
on MVT"()) such that it is isomorphic to a direct sum of irreducible highest weight
crystals B(p). After that, we discuss the relation with the usual crystal structure on
semistandard Young tableaux and some consequences for stable dual Grothendieck
polynomials.
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3.1. CRYSTAL STRUCTURE. In order to define the crystal structure, we start by defin-
ing the crystal operators

ei, fi: MVT™(X) — MVT"(\) U {0}.

We do so by following the signature rule as for set-valued tableaux in Definition 2.1,
for which we need to define an appropriate reading word. We write multisets as words
for compactness.

DEFINITION 3.1 (Reading word). Let T € MVT™(X). Let C be a column of T. Define
the column reading word rd(C) by first reading the smallest entry of each box from

bottom-to-top in C, then reading the remaining entries from smallest to largest in
each box from top-to-bottom in C. Define the reading word

rd(T) = rd(C1) rd(C2) - - - rd(Cy),

where C1,Cs, ..., Ck are the columns of T from left-to-right.

EXAMPLE 3.2. For the multiset-valued (column) tableau

113

4445

6

7899

we have

rd(C) = 764113445899.

DEFINITION 3.3 (Crystal operators). Fix T € MVT™(\) and i € I. Write + for each
i inrd(T) and — for each i+ 1 in rd(T) (ignore all other letters). Next, cancel signs
in ordered pairs —+ until obtaining a sequence of the form +---+—---— called the
1-signature.

e; T If there is no — in the resulting sequence, then e;T = 0. Otherwise let b corre-
spond to the box of the leftmost uncanceled —. Then e;T is given by one of
the following:

o if there exists a box b" immediately above b that contains an i, then
remove i + 1 from b and add i to b';
e otherwise replace the i + 1 in b with an i.

fill: If there is no + in the resulting sequence, then f;T = 0. Otherwise let b corre-
spond to the box of the rightmost uncanceled +. Then f;T is given by one of
the following:

o if there exists a box b¥ immediately below b that contains an i+ 1, then
remove the i from b and add an i+ 1 to b*;
e otherwise replace the i in b with an i + 1.
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EXAMPLE 3.4. The connected components in MVTS(AQ) with the crystal operators
from Definition 3.3 that correspond to o, o', and o? are

: |

1 2
3 3
1 1
22 23
11 12
3 3

1

3
/
2

1
3¢
2!

3

1

223

11 11 12

2

23 33 33
1 - - - 2
_ o 2
112 122
2 .

T
1 T Bt ) R

First we show that the crystal operators are well-defined and satisfy the requisite
properties.

LEMMA 3.5. Let T € MVT™(\) and suppose f;T # 0, then the i changed to i + 1
in ;T does not change its position in the reading word. That is to say, we have

rd(f;T) = fird(T).

Proof. Let T' = f;T, and suppose the changed ¢ is in box b. Clearly if ¢ becomes an
1+ 1 in the same box, then it does not change its position. Now consider when ¢ moves
from b and becomes an i + 1 in the box bt immediately below b. In this case, the
1 changed is the rightmost ¢ in the i-signature of 7', and hence the rightmost entry
of b in the reading word (we also have maxb = i since minb* = i + 1). Hence, the
changed i 4+ 1 in 7" must be read immediately after all entries of b* in 7" have been
read (consider this added i + 1 to be the second such letter), which means it remains
at the same position. O

1
/

—
—

—
V]
w ()
)

REMARK 3.6. We note that our reading word is the column version of the reading
word from [1, Def. 2.5]. Furthermore, when we consider the reading word from [1,
Def. 2.5] applied to SVT™(\), but otherwise keep the same crystal operators, then the
analog of Lemma 3.5 holds in that setting. In addition, our reading word and crystal
structure for a single column is similar to the one for the minimaj crystal from [2].

LEMMA 3.7. Let T, T" € MVT"™()\). Then

e;T € MVT"(\) U {0}, fiT' € MVT™(\) U {0}, eT =T «—T=fT.
Proof. We first show f;77 € MVT"(A\)U{0}, and if f;T" = 0, then the claim is trivially
true. Suppose T' = f;T" is formed by changing an ¢ to an ¢ + 1 within the same box
b. To show T' € MVT"()), we first note that we could not have an ¢ + 1 in the box

bt immediately below b. So it remains to show that there does not exist an i in the
box b~ immediately to the right of b. By semistandardness of 7", for the box b’
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immediately to the right of bt, we must have i +1 ¢ b™. Hence, the i € b~ must
correspond to an unpaired + to the right of the + from b, which is a contradiction.
Thus, we have T € MVT"()) in this case.

Now instead suppose T' = f;T’ is formed by moving an 7 from a box b to an 7 + 1
in b¥, the box immediately below b. Since i + 1 € b* already in 7", we have

T € MVT"()).

Next we show the claim e;7 = T” if and ouly if T = f;T’. From Lemma 3.5 (and
the analogous statement for e;), the i-signatures of 77 and T must differ by + + —
corresponding to the i <+ i+ 1 with no other cancellations. Hence e; changes ¢4+ 1 + 4
in the same box if and only if f; changes i — i + 1 in the same box. Therefore, we
have ¢;T = T" if and only if T = f;T".

Finally, the claim e,7 € MVT"()\) follows from the other two statements (this
claim could also be proven directly similar to f;77 € MVT"(\)). O

Next we show that the coefficient of a® for a weak symmetric Grothendieck of a
single column is isomorphic to a crystal of semistandard tableaux for hook shape.
Note that

T] =k =T = Al
PROPOSITION 3.8. Recall that 1¥ = Ay, is a single column of height k. Let
MVTL(Ag) :={T € MVT"(Ag) | |T| — k = a}.
Then

Proof. Let u = Agx + aA1. We prove the claim by constructing an explicit crystal
isomorphism ¢: MVT, (Ag) — B(u). We define ¢ by

my <op < < 0y mi| 01 | o | Oay [Oar+1] 7 | Oas | ** | Oay
Mo K 0g;4+1 <+ K Oqy ma
= )
Mg < 0gy_+1 <+ < Og, my

We note that m; < 04, < mit1 < 0q,+1 since the column is strictly increasing. Hence,
we have ¥(T") € SST" (i) for all T € MVT"(A). Note also that the reading words of
T and ¢ (T) are equal and so v is a crystal isomorphism by Lemma 3.5. O

THEOREM 3.9. Let A be a partition. For any T € MVT"™(\) such that T is a highest
weight element, the closure of T under the crystal operators is isomorphic to B(u),
where = wt(T'). Moreover, we have

MVT"(\) = @ B(w)®™,
B2A
where MY is the number of highest weight elements of weight p in MVT™(X), and

Ia(x;a) = Z ol =R arts, (x).
H2IA

Proof. Note that we can consider any multiset-valued tableau as a tensor product of
single column multiset-valued tableaux by the definition of the crystal operators and
the reading word. In particular, this gives a strict crystal embedding, which implies
that the image is a union of connected components. Hence the first claim follows from
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Proposition 3.8, Lemma 3.7, and that the tensor product of highest weight crystals
is a direct sum of highest weight crystals. The other two claims follow immediately
from the first. O

We remark that our proof technique is similar to that used in [27] in that we show
the isomorphism for the fundamental building blocks, here these are single columns
(Proposition 3.8), and using general properties of the tensor product rule (in [27], the
building blocks were single rows). We also note that Lemma 3.5 and Lemma 3.7 also
immediately yield Theorem 3.9 as every B(u) is a subcrystal of B(A;)®#l| where the
strict embedding is given by the reading word.

PROPOSITION 3.10. Suppose T € MVT"™()) is a highest weight element. Then the i-th
row of T' contains only instances of the letter i.

Proof. Tt is sufficient to show this for the rightmost column C' as the claim follows
for T' by semistandardness (in particular, that the rows must be weakly increasing).
Suppose the claim is false: there exists a highest weight element '€ MVT"()) such
that there exists an m in a box b in C' at row r > m. Let m be minimal such value.
By the signature rule for e,,_1, any + from an m — 1 that would cancel the — from
such an m must occur later in the reading word. If this m is not the smallest entry
in b or the multiplicity of m in b is at least 2, then there is no m — 1 after it in the
reading word by the column strictness of C' and that C' is the rightmost column in
T. Hence, we have e,, 1T # 0, which is a contradiction. Otherwise, in order to be
highest weight, there was an m —1 in row r—1, we would have m—1 > r—1. However,
this contradicts the minimality of m, and so the claim follows. O

COROLLARY 3.11. For any u 2 X\ such that B(u) € MVT™(\), we have £(u) = £(N).

Proof. This follows immediately from Proposition 3.10 as no k& > ¢ can appear in any
highest weight element of MVT"(\). O

COROLLARY 3.12. The number of highest weight multiset-valued tableaur of shape A
and weight p is the number of semistandard Young tableaux of shape pu/\ such that
all of the entries of the i-th row are in the (closed) interval [\ + 1 — X\;, \].

Proof. Let pn = (p1, p2, .- ., te). By Proposition 3.10, we have £ = r as we can con-
struct any highest weight element T € MVT" () of weight p by choosing the num-
ber of additional entries x;; > 0 of ¢ in each box at position (7,j) € A such that
Zlgjgk x5 = py — N for all 1 < ¢ < r. However, not all of these elements will be
highést weight by the signature rule; in particular, we require for each (4,j) € A that

(3) Ait1 + Z Tip1k < A + Z Tik-

F<k<Nit1 JH1<k<N

Note that this is equivalent to choosing a semistandard Young tableau of shape /A
with the entries of row ¢ being in the interval [A\; +1 — \;, A\1] by considering the k-th
extra j read from right to left in column Ay —4 to be an ¢ in row j of the semistandard
Young tableau. Indeed, we cannot have an entry in the interval [1,\; — \;] and the
bracketing condition (3) is equivalent to the column strictness of the Young tableau
and the skew shape. O
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ExAMPLE 3.13. Consider A = 32 = 2A5 + A; and p = 44 = 4A5. Then the following
are the highest weight MVT and their semistandard tableaux under Corollary 3.12:

11111 1 11111 1
— —

2 (222 212 22|22 213

11111 1 1 (11]1 2
— —

222| 2 313 222| 2 313

We note that if A = k™ = kA, is an r X k rectangle, the Corollary 3.12 implies
that the multiplicity is [SST*(u/A)| since [\ +1 = Aj, \i] = [E+1—k, k] = [1,k] is a
constant. Furthermore, in this case we can consider p/X as a straight shape given by
(1 — ko —ky ..., pr — k), where pp = (1, ft2, - - ., ftr), and so we can count them by
the hook content formula (see, e.g. [39, Thm. 7.21.2]).

EXAMPLE 3.14.Let A\ = 33 = 3A; and p = 54 = 4A5 + A;. The highest weight
multiset valued tableaux of shape A\ and weight p are in bijection with the set of
SSYT of shape 21 in the letters {1, 2, 3}:

111|111 111 11111 111
— —
2122] 2 2 2212 | 2 3
1 (1111 112 1 (1111 112
— —
2122] 2 2 2212 2 3
111 |11 113 111 |11 113
— —
2122 2 2 22|12 | 2 3
111|111 212 11111 213
— —
2122 2 3 2212 | 2 3

3.2. UNCROWDING THE CRYSTAL STRUCTURE. An increasing tableau is a semistan-
dard Young tableau that is also strictly increasing across its rows. Let ]-"ﬁ /A denote
the set of increasing tableaux of shape /A where the i-th column is strictly flagged

by i, that is to say the maximum entry in the i-th column is strictly less than :. We

call a tableau in ]-'ﬁ /) column flagged tableau. Let T 5K 77 denote the Robinson—

Schensted—Knuth (RSK) insertion (see, e.g. [39] for more details on RSK) of the read-
ing word of T” into T.
Next, we construct an explicit crystal isomorphism

T: MVT"(A\) = | | B(w) x F )5,
H2A
where the crystal structure on the codomain is given by f;(b x F)) = (f;b) x F for all
bx F € B(u) x .7-'/3//\ for any fixed p. We call the map T uncrowding as it is given
similar to the uncrowding map for set-valued tableaux (see [3, Sec. 6], [1, Sec. 5],
and [27, Thm. 3.12]; see also [36]), but working column-by-column and measuring
the growth of the diagram along columns. More specifically, for any T € MVT"())
we define Y(T') recursively starting with by, 11 X F)\,11 = @ X &. Suppose we are at
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step ¢ with the current state being b; x F;, and let C; denote the j-th column of 7.
Construct

b1 = 1d(Ci_1) <25 1d(C;) &5 L BB g0y, )@
Construct F;_; by starting first with F; of shape u; but shifting the necessary elements
to the right one step, so partially filling in the shape p;—1/A>;—1, where

(4) Asi—1 = (max(Ay —i+2,0),...,max(\¢ — i +2,0))

is the shape of the rightmost ¢ — 1 columns of A and p;_; is the shape of b;_1. Then
add entries in the unfilled boxes in column j with entry 5 — 1 until F;_; has been
filled in. Thus, we constructed the (i —1)-th step b;_1 X F;_1. Repeating this for every
column, the final result is T(T') = by x Fy.

ExAMPLE 3.15. Applying uncrowding to

111
T=|2|22 ,
33

we first start with by x Fy = @ x @. We then RSK insert the reading word 1 of the
rightmost column and obtain b3 x F3 = X . Next, we consider the insertion
tableau under RSK of 2121 and obtain

1
by X Fy = X .
SR PR D) 1

Finally, to obtain Y(T) = b; x F;, we perform RSK on 321132121 to obtain

b1><F1:2 212 X . -1 s
3 -1

where the 1 in the third column comes from F3 shifted to the right one step.

ExAMPLE 3.16. Applying uncrowding to

112| 22 256
33 |444] 7
T = ,
568
9

where rd(T") = 953112368 42244 7256, we obtain

by x Fy =0 X @,

R 5| 6\ . 1 |2\

3 3 — 7 9
b2 1]5]6| y 2]4]5]
2 X I'g = 1 > ,

(3)This is equivalent to RSK inserting (the reading word of) the image under the isomorphism
from Proposition 3.8 of the rightmost ¢ — 1 columns of T'.
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2 2|4|5|6\ 1T T2 4|5|7|8\

b1XF1:

1
3
5168 12
9

resulting in T(T') = by X Fj.
THEOREM 3.17. We have
MVT"(A) = @ B(u) i,
MDA
where the isomorphism is given by the uncrowding map Y, and so M{ = |.7-"ﬁ/)\|.
Moreover, we have
In(xsa) = Z a|“|_|A‘|]:;/,\\3u(X)~
HOA

Proof. Tt is sufficient to show that the map Y is a bijection as RSK insertion is a
crystal isomorphism (see, e.g. [6, 20]). By the construction, the result of Y satisfies
the flagging and row strictness conditions. By the standard properties of RSK and a
straightforward induction, the result of T also satisfies the column strictness condition.
So the map Y is well-defined. We can construct the inverse Y1 by conjugating by
the Lusztig involution and recursively by applying reverse RSK inserting the boxes in
the column flagged tableau that are maximal in their column and the extra column
added. Indeed, if we are at b; x F;, we first apply the Lusztig involution to b; to get
b} and perform reverse RSK insertion on the boxes of b} on the outer corners from
bottom to top, and then on the outer box in the row corresponding to a box b in
column j of F' such that j — 1 is the entry in b, doing this from left-to-right until no
longer possible. That is to say we treat all of these extra entries as being the same
value in the recording tableaux. This determines the i-th column after applying the
Lusztig involution again to the resulting word. Since RSK(w*)* = RSK(w), the result
is bj4+1 X Fj41. Thus this is the inverse procedure of Y. O

As a consequence of Theorem 3.17, we have M} = | Fuuyal. Furthermore, these are
the conjugate of the flagged increasing tableaux of Lenart [23], and so

B\ (x;6) = Z Mﬁf/su = Z Mﬁ\‘,wsul = wJa(x;6),
H2A K2

yielding a crystal-theoretic proof of Proposition 2.3 (recall that w is an involution).

We can construct the recording tableau we use to perform RSK ™! in the proof of
Theorem 3.17 recursively following the description in constructing Y=1(b; x F;). We
can clearly reconstruct F; by using the entries that are maximal in each column. For
the i-th step, suppose the i-th column has height h, we increase all of the current
entries by h + 1, then we set the rightmost unset entry in row j to j + 1. Finally, for
every entry in F; that is maximal in its column in row j, we set an entry to be 1 in
row j. We repeat this until we obtain a semistandard Young tableau.

ExamMPLE 3.18. Consider b; x F; from Example 3.16. Then we construct the corre-
sponding recording tableau @ as

.|1|1|2\ NI 2|4|4|5\

Algebraic Combinatorics, Vol. 3 #3 (2020) 741



GRAHAM HAWKES & TRAVIS SCRIMSHAW

1[1]2]4]4 5|7|7|8\
0 3046
7710
11
Performing the Lusztig involution on b; (in slyg), we obtain
1]4]5]6]6 7|7|9|9\
T _ 2(5(6[8]8
318 ’
4

and then RSK™!(7”, Q) gives the word w* = 4583 66886 247899751. When we apply
the Lusztig involution to w* and obtain w = 953112368 42244 7256, which is precisely
the reading word of T', and we can separate into columns based on the values of Q.

Next, we construct a bijection with the set from Corollary 3.12.

PROPOSITION 3.19. Let SSTAI(M/)\) be the set of semistandard Young tableauz from

Corollary 3.12. Then the map ¢: F, /5 — SSTM(,u/)\), where ¢(T') is constructed by
subtracting i — \1 to each entry of the i-th column of T, is a bijection.

Proof. 1t is easy to see that the strictly increasing rows condition in F, /) is equivalent
under ¢ to the weakly increasing rows condition in SST¥(u/)). Furthermore, the
maximum entry in column 7 being 4 condition in F,,/ is equivalent under ¢ to the
P .
largest entry in column 4 under ¢ in SST ™ (u/A) is i — (i — A1) = A1 (and hence for
every row). Similarly the minimum entry in row j for an increasing tableau in F, /5
A
is 1 in column ), which is equivalent to the minimum entry for row j in SST ' (/)
is1—(X\j—A) =X +1-X\;. Thus ¢ is well-defined and surjective. The map ¢ is
clearly invertible, and hence ¢ is a bijection. 0

3.3. WEAK STABLE GROTHENDIECK FUNCTIONS. The 0-Hecke monoid is the
monoid of all finite words in the alphabet {1,2,...,n} subject to the relations

o ij=jiif|i—j|>1,

o iji = jijif [j — 1| =1,

® i =1i.
For any w € S, let HX denote the set of words of length k that are equivalent to
some reduced expression for w in the 0-Hecke monoid (i.e. w = s;, - - - 8;, is considered
as i1 - - - i¢). Note that this does not depend on the choice of reduced expression for w
by Matsumoto’s theorem [25] (i.e. that any two reduced expressions for w are related
by the braid relations).

Next, let ﬁfum denote the set of two-line arrays

1 -~ 1 1 2 -+ 2 2 ... m -+ m
A1e; -0 Q12 G11 Q205 **+ A22 A21 *°* Ame, **° Aml

such that 1 < ap; <ape <+ <ap, <nforalll<p<m (with possibly ¢, = 0),

() (ae, -~ a11)(aze, -~ az1) -+ (@me,, - - Q1) = w,

and 37" | £, = k. Note that ﬁﬁm is equivalent to the ways of factorizing w’ € H¥
—k

into m weakly decreasing (possibly emtpy) factors as in Equation (5). Let H,, denote

the subset of H*  such that 1 < ap1 < apz < v < apg, <N forall 1 < p <m.

w,m
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The strictly increasing condition a,1 < -+ < aype, is equivalent to the notion of a
compatible pair of words from [4].

Let P, (\) denote the set of increasing tableaux of shape A such that reading the
entries of P from top-to-bottom, right-to-left (i.e. also known as the Far-Eastern read-
ing word) is equivalent to w in the 0-Hecke monoid. Let SVT(A)g (resp. MVT(A)x)
denote the set of set-valued (resp. multiset-valued) tableaux T such that |[wtT'| =

k. The (column) Hecke insertion defined in [4] is a bijection between ﬁﬁ],m and

LIy Pw(A) x SVT(A);. (Buch et al. [4, Lemma 1,Thm. 4]).*) Furthermore, we obtain
the following from [4, Lemma 2].

PROPOSITION 3.20. Define ’ﬁﬁ, = o ﬁﬁ,m Hecke insertion defines a bijection
between

b= | Pw(X) x MVT ().
A

DEFINITION 3.21. The weak stable Grothendieck polynomial is defined to be

k
Z W) Z Hxa”

k=£(w) (w,a)e’;[\ﬁ, =1
where a = a1as - - - ay € ’Hﬁ).
The discussion above immediately implies that
o0
RCED pete
k=£(w) (P.Q)

where we are summing over all (P,Q) € LIy Pw(A) x MVT(A);. Putting this all
together we obtain the following.

PROPOSITION 3.22. For any w € S,,, we have

DD IR ““’)stt@y

A PEP,(N) k=L(w)

where we take the sum over all @ € MVT(\)i such that @ is a highest weight element.
Moreover, we have

a) = Z M= P )3 (x5 ).
)

4. CRYSTAL STRUCTURE ON HOOK-VALUED TABLEAUX

Now we prove our second main result, that the hook-valued tableaux of [44] admits
a Ug(sl,)-crystal structure that is isomorphic to a direct sum of highest weight crys-
tals. We do so by constructing a common generalization of the crystal structures on
SVT"™(A) and MVT™(\). Thus, we define the reading word using the reading words
on SVT™(A\) and MVT"(A).

(We note that the row Hecke insertion given in, e.g. [31, 38, 42] would yield a recording tableau
that is the conjugate of a semistandard set-valued tableaux (i.e. rows would strictly increase and
columns would weakly increase).

Algebraic Combinatorics, Vol. 3 #3 (2020) 743



GRAHAM HAWKES & TRAVIS SCRIMSHAW

DEFINITION 4.1 (Reading word). Let T € HVT™(\). Let C be a column of T. Define
the column reading word rd(C) by first reading the extended leg from largest to smallest
in each box from bottom-to-top in C, then reading the entries in the arm from smallest

to largest in each box from top-to-bottom in C. Define the reading word rd(T) =
rd(Cy) rd(Cy) - - - vd(Cy), where Cy,Co, ..., Cy are the columns of T from left-to-right.

EXAMPLE 4.2. For the hook-valued tableau

11
3

447
T=|5" |7779),

[S17'°N

899
9

we have

rd(7T) = 986543114799754779.

Similarly, we define crystal operators by combining the set-valued crystal operators
and the multiset-valued crystal operators.

DEFINITION 4.3 (Crystal operators). Fixz T' € HVT"()\) and i € I. Write + for each
1 inrd(T") and — for each i + 1 in vd(T) (ignore all other letters). Next, cancel signs
in ordered pairs —+ until obtaining a sequence of the form +---+—---— called the
1-signature.

e; Tt If there is no — in the resulting sequence, then e;T = 0. Otherwise let b corre-
spond to the box of the leftmost uncanceled —. Then e;T is given by one of
the following:

(M) if there exists a box b' immediately above b that contains an i, then
remove an i+ 1 from A(b) and add i to A(bT);

(S) otherwise if there exists a box b immediately to the left of b that contains
an i+ 1 in L(b*"), then remove that i + 1 from L(b*") and add an i to
L+(b);

(N) otherwise replace the i + 1 in b with an i.

fill: If there is no + in the resulting sequence, then f;T = 0. Otherwise let b corre-
spond to the box of the rightmost uncanceled +. Then f;T is given by one of
the following:

(M) if there exists a box b* immediately below b that contains an i+ 1, then
remove the i from A(b) and add an i+ 1 to A(bY);

(S) otherwise if there exists a box b~ immediately to the right of b that
contains an i in LT (b™), then remove the i from LT (b™) and add an
i1+ 1 to L(b);

(N) otherwise replace the i in b with an ¢ + 1.

Since the hook element of b~ is min L*(b™), if the element ¢ we remove from
L*(b™) happens to also be the hook element, we can unambiguously give the new
hook element of b~ as min L(b™). Similarly, if the added element ¢ < min L™ (b), then
i becomes the new hook element in b. Furthermore, we note that Case (M) (resp. (S))
correspond to the multiset-valued (resp. set-valued) tableaux crystal operators. In
particular, we are in Case (S) when the i + 1 (resp. ¢) we are acting upon in b by e;
(resp. fi) is in LT (b).
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EXAMPLE 4.4. The following connected components in HVT?(2A;) are those that
correspond to af and both are isomorphic to B(As 4+ 2A4):

2] [ ] [ ] [ ] =+ [E ][]

// >

[TE) T8 L) L[]

]2 )1 2] 1 2] _1 22
D e KR e BN e BN il e d KX

R g F KN e FIER g F K g I KN

// e

BRI R \ﬁl\?’\ﬂ\”\?’\ﬂ\”\?’\

RN g KN E e d KN P d I b EIEY

Note that is not semistandard.

LEMMA 4.5. Let T, T’ € HVT™(X). Then
e;T € HVI*(\) L {0}, AT e AVI"(\)U{0}, T =T T =FfT.

Proof. We can assume ;T # 0 and f;T' # 0 as the claim is trivial in these cases.
When we are in Case (N) or Case (M) for the crystal operators, the proof of this
is similar to the proof of Lemma 3.7. Thus, we assume the crystal operators are in
Case (S), and we assume the crystal operator acts on the box b. Denote the following
boxes around b:

b [b~
bt ||

Consider f;T". Since there exists an i € b™, there cannot exist an i + 1 € b by
semistandardness. There also cannot be an i + 1 € bt (if it exists) as otherwise we
would be in Case (M), and by semistandardness i +1 ¢ b™ (if it exists). We note that
i € b™ must be canceled as otherwise we would be acting on b~ by the signature rule.
Hence, there must also exist an i+ 1 € L(b™). Thus, f;T" is defined and in HVT"(X).

From the above argument, we have that the ¢ +1 € b in T = f;7’, which now
cancels with the ¢ € b. Thus the i +1 € L*(b™) is now an unpaired —, and by the
semistandardness of T”, there does not exist an ¢ in the box immediately above b™.
Hence, we are in Case (S) for e;T and clearly e;T = T".

The final claim ;T € HVT™()) follows from the other two statements. O

Since either we have a pairing —+ or that &;(T) (resp. ¢;(T)) corresponds to the
number of unpaired — (resp. +), which corresponds to an i 4+ 1 (resp. 7), we have

(hi, wt(T)) :=m; — miy1 = pi(T) — &i(T),

recall that m; is the number of i’s that appear in T'.
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THEOREM 4.6. Let A be a partition. For any T € HVT™(X) such that T is a highest
weight element, the closure of T under the crystal operators is isomorphic to B(u),
where p = wt(T). Moreover, we have

HVT"(\) = @ B(u)®"%,
B2

where H{ is the number of highest weight elements of weight p in HVT"(X), and

s, B) = 3 adaer A2 et EO g (),
T

where the sum is taken over all highest weight elements in HVT"(X).

Proof. Let T € HVT™(\).

Clearly we have wt(f;T) = wt(T)-a; ', where a; = 2;2; * (this is the multiplicative
version of one of the crystal axioms). Thus, (P1) is satisfied by weight considerations
and that HVT™ () is a finite set and closed under the crystal operators (Lemma 3.7).
(P2) is satisfied by Lemma 3.7.

If |[i—j] > 1 (so A;; = 0), then by the signature rule, we have A;6;(T) = A;p;(T) =
0. Now assume |i—j| = 1. Then we have introduced an extra i in the j-signature of e; 7.
So by the signature rule, we have (A;8;(T), Aip;(T)) = (—1,0),(0,—1) depending
onif j =i+ 1 and if the 7 cancels in the j-signature or not. Hence, (P3) and (P4) are
satisfied.

To show (P5), if |[§ — j| > 1, then the signature rule implies (P5) since the j-
signatures of T' and e;T" are equal and similarly for the i-signatures of 7" and e;T.
Furthermore, it is clear that y := e;e;T = e;e; T with V,p;(y) = 0.

Therefore, assume j = ¢ £ 1 and A;d,;(T) = 0, that is to say €;(e;T) = ¢;(T).
Hence, the j-signature of e;T is formed by either removing an uncanceled +(®) (if
j =1i+1) or adding a canceling — (if j = ¢ — 1) to the j-signature of T" at position
p’. Note that only Case (S) for er moves a letter k + 1 in position p in the reading
word (as Lemma 3.5 naturally extends to this setting) immediately to the right of the
first k£ + 1 to the right of p, where it becomes a k. In any case, this does not affect
the leftmost uncanceled — at position p, and hence e; acts on a j + 1 in the same
position p in rd(T) and rd(e;T). Note that we must have p’ < p. Therefore, we form
the i-signature of e;1" from the i-signature of 7' by adding an uncanceled — to the
right of p’, which contributes the leftmost uncanceled — (which remains the leftmost
uncanceled —). Hence, e; acts on the same ¢ in 7" and e;T.

Next, suppose e; acts on box b in 7. Note that e;;1 cannot add an ¢ + 1 to the
box b immediately to the left of b unless there was already an i + 1 € b*". Since e¢;
acts on the same ¢ +1 in 7" and e;7’, the e;_; cannot move the only ¢ from the box bt
immediately above b. Hence, e; acts using the same case in T" as in ¢;T', and similarly
for e; acting by the same case in 7" and e;T'. Therefore, we have y := e;e;T = e;e;T
with V;¢;(y) = 0.

Now we show (P6), and so we assume A;;(T) = A;0;(T) = —1. Due to the
symmetry, we assume j = i + 1 without loss of generality. We must form the i-
signature (resp. (i + 1)-signature) of e; 11T (resp. e;T) from the i-signature (resp. (i +
1)-signature) of T' by adding an uncanceled — (resp. removing a canceling +). As a
result, if e; (resp. e;41) acts on position p (resp. p’) in the reduced word, we must have
p < p’ with an additional ¢ + 1 before position p. Let k = ¢ + 2. By semistandardness,

(5)The e; might act by removing a canceling + further to the left of the uncanceled + that is
ultimately removed.

Algebraic Combinatorics, Vol. 3 #3 (2020) 746



Crystal structures for canonical Grothendiecks

we have one of the following configurations on 4, j, k (where we ignore all other letters):

<1 <i|<1
<1 <1 <1|<1 <1 . .
- ik |’ i k| Fi s *j s <1l gk |, J k |,
Sty ik |k K|k B B
*1] | g J
* ] ’ ik ) ik )

and with the boxes not necessarily adjacent, where e; (resp. e;) acts on the rightmost
j (resp. k), the shaded boxes do not necessarily exist, and * < ¢ (with possibly more
than one entry in the arm). Note that if the boxes are not adjacent where a Case (S)
occurs in the above configurations, then we cannot have Case (S) occur in any of the
crystal operators, and so the result holds from Lemma 3.5, which holds in this setting
for Case (M) or Case (N), and the crystal of words. Similarly, if a Case (S) occurs in
a box that does not have one of the local configuration, then the result follows from
the crystal of words and the boxes do not interact. Thus, it is a finite check to see
that we have y := e;efe;T = ejefe; T and Vip;(y) = Vipi(y) = —1.

The proof of (P5') and (P6’) is similar. Hence the Stembridge axioms hold. Note
that the crystal operators preserve the sum of the arm lengths and the sum of the
leg lengths. Therefore, the exponent of x; in the weight of any 7" in a connected
component for a®B® is bounded above by a + b, and so every connected component
has a highest weight element. Therefore, we have

HVT'(\) = @ B, o f) = 3 alacrld®Ig2ucr FO o),
T

HOA

by Theorem 2.5. g

As an immediate consequence of Theorem 4.6, we have that ) (x;a, 3) is Schur
positive.

EXAMPLE 4.7. We have the following local relation in HVT?(2A;) on the left and
their corresponding reading words on the right:

Wl | —L—] 2|3 21132 ! - 21232
2 2 2 2

11 1 12 M 1 M

2| s eI 32113 - 32123

Let T be the upper-left hook-valued tableau. We note that while the position of the 1
that is acted on by f1 in T and f>7, it is still the second 1 in the reading word. Thus
©1(T) = p1(f2T), and we have f1foT = fof1T.

5. CRYSTAL STRUCTURE ON VALUED-SET TABLEAUX

In this section, we define a Uy(sl,)-crystal structure on valued-set tableaux that is
isomorphic to a direct sum of highest weight crystals. Furthermore, we give an explicit
crystal isomorphism with the usual crystal structure on semistandard Young tableaux
through the inflation map.
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5.1. CRYSTAL STRUCTURE.

DEFINITION 5.1 (Reading word). Let T' € VST"(X). Define the reading word rd(T)
to be the reading word of the usual reverse Far-Eastern (bottom-to-top, left-to-right)
reading word of the tableau where we only consider the buoy entries.

ExAMPLE 5.2. Consider the valued-set tableau

1 1]1 1 1 1]2]4 4]6]
T2 2 2|3 3/4|5 5
3]4[5]5 5 ’
5 5|8
77
where we have written the buoys in bold, and we have
rd(T) = 75321485153452456, wt(T) = e2a2adaiedrearras.

DEFINITION 5.3 (Crystal operators). Fix T' € HVT"()A) and i € I. Write + for each

1 inrd(T') and — for each i + 1 in vd(T) (ignore all other letters). Next, cancel signs

in ordered pairs —+ until obtaining a sequence of the form +---+—---— called the

1-signature.

e; Tt If there is no — in the resulting sequence, then e;T = 0. Otherwise let g corre-
spond to the group of the leftmost uncanceled —. Then e;T is given by one of
the following:

o if the entry immediately above the anchor of g is an i, move the divider
between g and the group immediately to the left g one step up;
e otherwise change every i + 1 to an i in g.

fiT: If there is no + in the resulting sequence, then f;T = 0. Otherwise let b corre-
spond to the box of the rightmost uncanceled +. Then f;T is given by one of
the following:

e if the entry immediately below the anchor of g in an i + 1, move the
divider between g and the group immediately to the left g one step down;
e otherwise change every i to an i+ 1 in g.

EXAMPLE 5.4. The following is a connected component in VST? (3A2) corresponding
to a? and is isomorphic to B(Ag + 2A1):

L] 2 [t 1] 2 [tt1] 2 [T11] 1 [222
B —
3[3]3

S b

1t 1) 2 [afr 1] 2 [ifr 1] 1 [1]2 2] 1 [2]2 2
2 2]2 2 23 3 3]3 3 3]3 3 3]3
i e
tfafu] 2 [afafa] r [ufef2] 1 [1f2]2] 1 [2][2]2
2 2 2 333 333 333 333
and a connected component isomorphic to B(2As3):
12 2] 2 [1]2 2] 1 [2]2 2
2[3 3 33 3[3 3
S
11 1] 2 [ifr 1] 2 [1]11
—_— —_—
2[2 2 213 3 3[3 3
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LEMMA 5.5. Let T,T" € VST"(X). Then, we have
e;T € VST”()\) (| {0}, flT/ S VST”()\) (] {O}, e, = T T = fiTl,
and rd is a strict crystal embedding of VST™(\)

Proof. 1t is clear all claims hold when a divider does not move, and so we assume
a divider moves under the crystal operators. In particular, if the divider does move
under f;, then it means locally the crystal operator f; does the steps

IE K S WA S v .
[i+1 | [i+1 | [i+1 [i+1]

Note that by the semistandardness, the anchor for the ¢ + 1 group must be weakly
to the left of the anchor for the left ¢ group, but the group for the ¢ + 1 may extend
further to the right than the right ¢ group. The operator e; does the above steps in
reverse order. Therefore, it is straightforward to see the claims follow by the definition
of the reading word. O

THEOREM 5.6. Let A be a partition. We have

VST () = @ B(u)®*!.
HCEX
where V' is the number of highest weight elements of weight p in VST™(X). Moreover,
we have

iax; ) = Z oMy (x).

HCA

Proof. First note that the numbers, b;, of buoy entries in column ¢ are preserved under
all crystal operations and therefore are the same amongst all elements of a connected
component of V.ST™(\). Moreover, it is not difficult to check that for any specified
values of b; there is at most one valued-set tableau of shape A for any given reading
word. Thus, within a connected component the map 7' — rd(7T') is injective. The result
now follows from Lemma 5.5 and that every B(yu) is a subcrystal of B(A1)®I#l. O

We also have analogs of Proposition 3.10, Corollary 3.11, and Corollary 3.12.

PROPOSITION 5.7. Suppose T € VST™()\) is a highest weight element. Then the i-th
row of T' contains only instances of the letter i.

Proof. This is similar to the proof of Proposition 3.10 (or for B())), for a highest
weight element T'. O

COROLLARY 5.8. If V} # 0, then £(X) = £(p).

Proof. This follows from Theorem 5.6, Proposition 5.7, and that every row of a valued-
set tableau must have at least one group. 0

Recall that a conjugate semistandard tableau is a tableau that is weakly increasing
down columns and strictly increasing across rows.

COROLLARY 5.9. The number of highest weight valued-set tableauz of shape A\ =
(A1, A2y, Ap) and weight = (1, 2, ..., (e) s the number of conjugate semis-
tandard tableauzx of shape (i1 — 1, ua —1,. .., g — 1) such that all of the entries of the
i-th row are strictly less than \;.
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Proof. This follows from Proposition 5.7, which allows us to construct a bijection such
that the value in box b in row i and column j of a such a conjugate semistandard
tableau corresponds to the position of the buoy (or anchor) of the j-th group of row
7 in a highest weight valued-set tableau with the last group in each row being fixed.
Note that the column weakly increasing condition precisely corresponds to canceling
pairs in the i-signature. O

We can also parameterize the highest weight elements analogous to Corollary 3.12.

COROLLARY 5.10. The number of highest weight valued-set tableauz of shape A and
weight p is the number of reverse plane partitions of shape \/u such that all of the
entries of the i-th row are in the (closed) interval [py + 1 — i, pa].

Proof. This follows from Proposition 5.7, which allows us to construct a bijection such
that the j-th box of the i-th row of A/p is N; ; + 1 — p;, where N; ; is the number
of buoy entries to the left of the j-th nonbuoy entry of row i of the highest weight
valued-set tableau. O

EXAMPLE 5.11. The following are the highest weight elements of VST?(3A5) and their
corresponding reverse plane partitions from Corollary 5.10:

1[1]1 1[1]1 1[1]1 :
'_> ) H ) '_> )
2[2]2 2 22 IBE 2 2 3
IEIEINERE IEEUEUAN 1 L1, 1
2 2 2 313" |2 22 1 [2]2 2 2]
11 1], 2 Loafef -] |1 111, 2
2[2 2 2" (2.2 2 2[2] 2 2 2 2[2)
AR ENE
2 2 2 1

Next we consider the crystal structure if we consider the reading word using the
anchors instead of the buoys.

ExXAMPLE 5.12. Consider the valued-set tableau from Example 5.2

111 11 1]2]4 4]6]
|22 2[5 3[4a[5 5]5]

3]4]5]5 5

5 58

ks

where we have written the anchors in bold, and the corresponding reading word is
rd_, (T') = 37541852534125546.

We also have

2[4]4]5]6]

RSK(rd, (7)) = RSK (rd(T)) =

’\IU\OO[\D)—*
QO = W|

PROPOSITION 5.13. We obtain the same crystal if we use the anchor entries instead
of the buoy entries to define the reading word.
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Proof. To contrast with Lemma 5.5, the f; operator moves dividers locally as
] i | i . [ i1
| i+1] | i+1] i+1]i+1]
This also preserves the reading word and yields the same result. Additionally note
that Proposition 5.7 and the bijection constructed in proving Corollary 5.9 holds in

either reading word. Since all highest weight words of weight p generate the same
crystal B(u), the claim follows. O

i

il
|

Proposition 5.13 holds if we instead define the reading word based on selecting any
entry in any group as long as the crystal operators move the selected entry within
each column (when moving dividers).

REMARK 5.14. In [10, Remark 9], it was essentially noticed that the crystal structure
on reverse plane partitions by taking the topmost entry in each column is the same
as taking the bottommost. This is analogous to Proposition 5.13.

5.2. INFLATION MAP. Define a column semistandard flagged tableau to be a conjugate
semistandard whose i-th column is strictly flagged by 4. Let §7 u denote the set of
column semistandard flagged tableaux of shape A/ u.

Next, we construct an explicit crystal isomorphism

vt VST™(A) = | | B(w) x F55,,
[TiSPN
where the crystal structure on the codomain is given by f;(b x F) = (f;b) x F for all
bx I € B(p)x Fyj, for any fixed p. We call the map ¢ inflation. For any T' € VST"(X),
we define ¢(T) recursively starting with by, 11 X Fy,+1 = @ X &. Suppose we are at
step ¢ with the current state being b; x Fj, and let C; denote the j-th column of T’
consisting only of the anchor entries. Construct
b1 = rd(Ci_1) 25 pd(cy) &2 B g (ey,).

Construct F;_; by starting first with F; of shape u; but shifting the elements to the
right one step and increasing them by 1, which partially fills in the shape A>;_1/pi—1,
where A>;_1 is from Equation (4) and p,;_; is the shape of b,_;. Then set all of the
unfilled boxes of F;_; to 1. Thus, we constructed the (i — 1)-th step b;—1 x F;_1.
Repeating this for every column, the final result is +«(T') = b; x F}.

ExAMPLE 5.15. Let T be the valued-set tableau from Example 5.2. Applying inflation
to T" we obtain

b11><F11:® X  J,
blOXFl():@ X D’

4 6‘ ) ‘
ngF9=5 X s
bsXF8:4 5|6‘ X ‘

5 1 ’
b 2]4]0]6] y |
7 X Iy B 13 )
R 4[5]6] y \
L PR I 23]
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1 4 5|6\ ] -1\
b5XF5:3 X 415 s
%] L
112]4 5|6\ I I R T 2\
by x Fy=|3 X 1|5 )
5 1
1 4 4|5|6\ N R I I I R 3\
2 1216
b3XF3:5 X 5 s
18] L
11 4 4|5|6\ T 7T 71 134
213 2037
b2XF2:4 ) X 13 s
58
L7 L
1]1]2]4 5|6\ 5
21315 304
b1><F1:3 4 X 1124 s
58
7 1
resulting in «(T) = by X Fy.

THEOREM 5.16. We have

VST" () = @ B(u)* 3w,
HCA
where the isomorphism is given by the inflation map ¢, and so V{' = | §ju|. Moreover,
we have
(g a) = o MTIHIES 1s, ().

HCA

Proof. This is similar to the proof as for [19, Thm. 9.8] except for conjugating by the
Lusztig involution and working column-by-column as in Theorem 3.17. Indeed, the
i-th step of ¢+ adds a vertical strip to b; by well-known properties of RSK, and thus
these boxes added to form b; 1 are precisely the boxes that are not filled with a 1
in F;_;. Therefore, the inverse map (deflation) :~! is given recursively by performing
inverse RSK (with conjugating by the Lusztig involution) on the boundary boxes of
b; that do not immediately have a 1 to the right in F;. It is clear that this is the
inverse procedure (the i-th column of the resulting valued-set tableaux is the leftmost
column of step ) and the claim follows. O

REMARK 5.17. The inflation map for valued-set tableaux is analogous to the bijection
from [19, Thm. 9.8] for reverse plane partitions, which is also a crystal isormorphism
using the crystal structure from [10]. Furthermore, as noted in the proof, this analogy
is the same as that for the uncrowding multiset-valued tableaux to uncrowding set-
values tableaux.
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EXAMPLE 5.18. Consider by x F; from Example 5.15. We will take the Lusztig invo-
lution in slg. Thus we have

4444|6\
57

414 4|4|8\

*

RSK
1= A

6,

| T | N
CoOl Ut | DN

|
’\]@U‘OJ)—*

I
|| Ot W=

where we performed inverse row bumping on the bold letter. Thus we have an anchor
entry of 3 = 6* in the first column of the resulting valued-set tableau of :=1(b; x Fy)
(the rest of the entries of the column are non-anchor entries in their groups). For the
next step, we have

]2 4]4]4]8] 1444|4|7\
34
b;=[5|5 =§8 5K g549,
68 -
l L

and (8542)* = 7541. We have now reconstructed the first two columns of 7T'.
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