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Abstract Our main theorem in [1] contained a mistake regarding the equivalence of two
conditions on a graph, which we correct here. Fortunately our main result is not impacted with
an additional assumption called the zero-three condition.

The following is a corrected version of the statement of our main theorem, Theo-
rem 1.2. We say a graph of gonality 3 satisfies the zero-three condition if there exists
a divisor D such that deg(D) = 3, r(D) = 1, and for any three distinct vertices a, b, c
with D ∼ (a) + (b) + (c), we have that a, b, c either share 0 edges or share 3 edges.

Theorem 1.2. If G is a 3-edge-connected combinatorial graph, then the following are
equivalent:

(1) G has (divisorial) gonality 3.
(2) There exists a non-degenerate harmonic morphism ϕ : G → T , where

deg(ϕ) = 3 and T is a tree.
Moreover, if G is simple and 3-vertex-connected, and also satisfies the zero-three con-
dition, these statements imply the following condition:

(3) There exists a cyclic automorphism σ : G → G of order 3 that does not fix
any edge of G satisfying the property that G/σ is a tree.

Condition (3) implies conditions (1) and (2), whether or not G satisfies the zero-three
condition.

Similarly, we have the following corrected version of Theorem 4.1.

Theorem 4.1. If G is a simple, 3-vertex-connected combinatorial graph satisfying the
zero-three condition, then the following are equivalent:

(1) G has gonality 3.
(2) There exists a non-degenerate harmonic morphism ϕ : G → T , where

deg(ϕ) = 3 and T is a tree.
(3) There exists a cyclic automorphism σ : G → G of order 3 that does not fix

any edge of G, such that G/σ is a tree.
The equivalence of (1) and (2) and the implication (3) implies (1) and (2) still hold
without the zero-three condition assumption.
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Figure 1. The wheel graph W5

To see that the zero-three condition is necessary, consider the graph in Figure 1,
which is the wheel graphW5 on 5 vertices. It has gonality 3: the divisor (w1)+(h)+(w3)
has positive rank; and since the graph has K4 as a minor, the treewidth of the graph,
and thus its gonality, is at least 3. It is also 3-vertex-connected. However, we claim that
it does not satisfy the zero-three condition. Let D be any effective rank 1 divisor of
degree 3 on W5. By Lemma 4.2, D must have support size 1 or 3, and it is equivalent
to some divisor with support size 3. If W5 satisfies the zero-three condition, then
since any three vertices have at least one edge in common, there must be a rank 1
divisor (a) + (b) + (c) on W5 where a, b, c are distinct and form a K3 in the graph. It
follows that (wi) + (wi+1) + (h) has rank 1 for some i, where addition is done modulo
4. However, this divisor does not have rank 1: starting Dhar’s burning algorithm
from wi+2 burns the whole graph. Thus W5 must not satisfy the zero-three condition.
Finally, the automorphism group ofW5 is the same as the automorphism group of the
cycle C4, namely the dihedral group of order 8. This group does not have any elements
of order 3. Thus, W5 is an example of a simple, 3-vertex-connected graph of gonality
3, not satisfying the zero-three condition, which does not have any automorphisms of
order 3.

The gap in the original argument, which did not assume the zero-three condition,
came when proving the map σ was an automorphism in Proposition 4.3. It was true
that σ was well-defined and preserved adjacency relations between different classes of
points under ∼D, but it was omitted to prove that we could send the three points in
the same class under ∼D to one another in a nontrivial way; this can be done precisely
when there are zero or three edges between them. Thus, the proof needs to assume
the zero-three condition, and we would add the following to the beginning of its proof:
“First consider the action of σ on a triple v1, v2, v3 where D ∼ (v1) + (v2) + (v3) and
v1, v2, v3 are all distinct. We are assuming our graph satisfies the zero-three condition,
so the map σ mapping v1 to v2 to v3 to v1 preserves the connectivity of v1, v2, and
v3, since either all share edges or none share edges.”

The only one of our other results or examples relying on the incorrect statements
of Theorems 1.2 and 4.1 was our consideration of the Frucht graph, in Figure 8. It is
no longer obvious that it cannot have gonality 3: we only know that if it does have
gonality 3, then it does not satisfy the zero-three property. However, we have still
computationally verified that the Frucht graph has gonality 4, as claimed.
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