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A Demazure Character Formula for the
Product Monomial Crystal

Joel Gibson

Abstract The product monomial crystal was defined by Kamnitzer, Tingley, Webster, Weekes,
and Yacobi for any semisimple simply-laced Lie algebra g, and depends on a collection of
parameters R. We show that a family of truncations of this crystal are Demazure crystals,
and give a Demazure-type formula for the character of each truncation, and the crystal itself.
This character formula shows that the product monomial crystal is the crystal of a generalised
Demazure module, as defined by Lakshmibai, Littelmann and Magyar. In type A, we show
the product monomial crystal is the crystal of a generalised Schur module associated to a
column-convex diagram depending on R.

1. Introduction
Let G be a semisimple simply-laced algebraic group over C, for example SLn (type
An−1), SO(2n) (type Dn), or one of the exceptional types E6, E7, E8. The aim of this
paper is to study a family of finite dimensional representations of G which appear in
the study of slices to Schubert varieties in the affine Grassmannian. Our main theorem
provides a Demazure-type character formula for these representations. In type A we
show that these representations are related to generalised Schur modules, and give an
explicit realisation for the crystal of a generalised Schur module. We now discuss our
motivations and results in more detail.

Our first motivation comes from the representation theory of algebras which quan-
tise slices to Schubert varieties in the affine Grassmannian. Let G be a reductive
algebraic group with Langlands dual G∨. The affine Grassmannian Gr of G∨ is a
Poisson ind-variety which plays an important role in geometric representation theory
(e.g. [20]). Gr is stratified by spherical orbits Gr =

⊔
λ∈P+ Grλ, where λ ranges over

the dominant weights P+ of G. The closure relation on these strata is given by the
positive root ordering on P+: Grλ =

⋃
µ6λ Grµ. Fixing a pair µ 6 λ in P+, consider

the transversal slice Wλ

µ to Grµ in Grλ. These slices inherit a Poisson structure, and
under the geometric Satake correspondence they (non-canonically) geometrise weight
spaces of the irreducible representation of g [2].

In [9] the authors initiate a program to construct quantisations of Wλ

µ, and study
the representation theory of the resulting algebras. These algebras are called trun-
cated shifted Yangians and denoted Y λµ (R). Here R ∈ Πi∈I Cλi/Sλi is a deformation
parameter, where λi = 〈λ, α∨i 〉.
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Modules over truncated shifted Yangians naturally afford a highest weight theory,
leading to a category O(Y λµ (R)), which is the “algebraic category O” in the sense
of [1]. This category plays an important role in the “symplectic duality” program of
Braden–Licata–Proudfoot–Webster. In [8] the algebra O(Y λµ (R)) was recently used
to prove the categorical symplectic duality between Nakajima quiver varieties and the
slices in the affine Grassmannian.

The representation theory of Y λµ (R) easily reduces to the case where R consists
of integers satisfying certain parity conditions (see Section 3 below). It is conjectured
in [7], and proven in [8], that the sum V(R) =

⊕
µO(Y λµ (R)) carries a categorical

g-action in the sense of Khovanov–Lauda and Rouquier [15, 16, 24]. Therefore the
(complexified) Grothendieck group of this category is a representation of g. This
representation is our main object of study:

V (R) = KC(V(R)).

While it is known that for generic (respectively singular) parameters V (R) is iso-
morphic to a tensor product of fundamental representations (respectively a single
irreducible representation), the representation V (R) in general is quite mysterious.
Let B(R) be the crystal of V (R), which is called the product monomial crystal due to
its realisation as a subcrystal of Nakajimas’s monomial crytal [7]. Our first main result
provides an explicit character formula for the crystal B(R), in terms of multiplications
by dominant weights and application of isobaric Demazure operators (Theorem 5.9).

Our proof relies on defining truncations of the crystal B(R), which are certain
subsets of B(R) (Section 5.1). Each of these truncations is described globally, however
we show that “nearby” truncations are related via a crystal-intrinsic operation, the
extension of strings. Determining a path of nearby truncations from the smallest
truncation to the largest gives a Demazure character formula (Section 5.2). We also
show that each truncation is a disjoint sum of Demazure crystals (Section 5.3), which
is not obvious from the global description of the truncation.

As a consequence of the categorification described above, the elements of weight
µ in B(R) are in bijection with the simple highest weight modules of Y λµ (R). In fact
the crystal structure provides even more refined data, for example the highest-weight
elements of weight µ in the crystal correspond precisely to the finite dimensional sim-
ple Y λµ (R)-modules [7, Proposition 3.17]. Thus, our character formula (Theorem 5.9)
provides combinatorial information about the representation theory of Y λµ (R).

Our second motivation comes from the study of generalised Schur modules. Recall
that for each partition λ, there is an endofunctor on vector spaces called the Schur
functor Sλ, and when V is the basic representation of GL(V ) over C, the representa-
tion Sλ(V ) is irreducible, of highest weight λ. The modules Sλ(V ) are well-studied
and are called Schur modules.

The partition λ can be thought of as a Young diagram, a configuration of boxes
in the plane, or a finite subset of N × N of a special form. In fact, to any finite
subset D ⊆ N × N, called a diagram, we can associate a generalised Schur functor
SD, and hence a generalised Schur module SD(V ). Considerably less is known about
these functors in complete generality, though there have been some combinatorics
developed for the class of “percentage-avoiding” diagrams [18, 22].

Our second main result describes the crystal of SD in the case where D is column-
convex (see Remark 6.16). More precisely, we associate a parameter R to D and prove
that B(R) is the crystal of SD (Theorem 6.23). This provides a model for the crystal
of SD in terms of Nakajima monomials (the other known model for this crystal is
due to Laksmibai, Littelmann, and Magyar [17] using Demazure operators).
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To prove Theorem 6.23, we compare our character formula (Theorem 5.9) for B(R)
in type An to a character formula for SD(Cn+1) given by Reiner and Shimozono [22,
Theorem 23], which shows that they have the same character when n is taken large
enough compared to D. We then derive some stability results for B(R) (Section 6.1),
which imply that B(R) is the character of SD(Cn+1) for any n.

Theorem 6.23 implies that in type A, the category V(R) defined by the trun-
cated shifted Yangians are categorifications of generalised Schur modules associated
to column-convex diagrams. We note that our result shows that any skew Schur mod-
ule is categorified by V(R), for some R.

2. Background
2.1. Notation. Let G be a reductive algebraic group over C, equipped with a
pinning T ⊆ B ⊆ G where B is a Borel subgroup and T is a maximal split torus. Let
I be a set such that |I| is the semisimple rank of G. This determines the following
combinatorial data:

(1) The weight lattice P = Hom(T,Gm).
(2) The simple roots αi ∈ P for all i ∈ I.
(3) The coweight lattice P∨ = Hom(Gm, T ).
(4) The simple coroots α∨i ∈ P∨ for all i ∈ I.
(5) The perfect pairing 〈−,−〉 : P∨ × P → Z.
(6) The dominant weights P+ = {λ ∈ P | 〈α∨i , λ〉 > 0 for all i ∈ I}.
(7) The simple reflection si ∈ GL(P ) defined by si(λ) = λ− 〈α∨i , λ〉αi.
(8) The Weyl group W = 〈si | i ∈ I〉 ⊆ GL(P ), and its longest element w◦.

Because of the proof of Theorem 3.2 relies on the theory of Nakajima quiver varieties,
we assume throughout that G is simply-laced, meaning that the Cartan matrix
〈α∨i , αj〉i,j is symmetric with all off-diagonal entries either 0 or −1. Define the Dynkin
diagram of G as the simple graph with vertex set I, where i ∼ j if and only if
〈α∨i , αj〉 = −1. We may then fix a two-colouring I = I0 t I1 of the Dynkin diagram,
and we say that the parity of a vertex i ∈ I is even if i ∈ I0 and odd if i ∈ I1.

A finite-dimensional module V over G decomposes into weight spaces V =⊕
λ∈P Vλ, where Vλ = {v ∈ V | t · v = λ(t)v for all t ∈ T}. Let Z[P ] denote the

group algebra of P written multiplicatively, so that eλeµ = eλ+µ. Then the formal
character of the module V is the sum chV =

∑
λ∈P (dimVλ)eλ ∈ Z[P ]W , where

Z[P ]W denotes the subalgebra invariant under the action si · eλ = esiλ of W .
For each dominant weight λ ∈ P+, let V (λ) denote the irreducible module of

highest-weight λ. The category of finite-dimensional G-modules is semisimple, with
the modules {V (λ) | λ ∈ P} forming a complete irredundant list of simple objects. The
characters of the V (λ) for λ ∈ P+ form a basis for Z[P ]W , and hence the isomorphism
class of any finite-dimensional G-module is determined entirely by its character.

Remark 2.1. We have restricted to the case of reductive G in order to simplify the
exposition, however our character formula Theorem 5.9 holds in the more general Kac–
Moody setting provided that the Dynkin diagram is still simply-laced and bipartite. In
order to state the analogous results in this more general setting, one would replace the
category of finite-dimensional G-modules by the category Oint for the corresponding
quantum group. In particular, our results apply to finite types A,D,E and their
untwisted affinisations, excluding A(1)

1 which is not simply-laced, and A(1)
n for n odd,

which is not bipartite.
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2.2. Crystals. Crystals were unearthed by Kashiwara [10, 11, 13]. There is a rather
general notion of a G-crystal, however we will only require the notion of an upper-
seminormal crystal, for which we can give some simplified axioms and definitions. We
follow the exposition of [6, Section 2] for this section.

An upper-seminormal abstract G-crystal is a set B, together with a weight function
wt: B → P , and for each i ∈ I, crystal operators ei, fi : B → B t {0} and maps
εi, ϕi : B → Z satisfying the following axioms:

(1) ϕi(b) = εi(b) + 〈α∨i ,wt b〉 for all i ∈ I, b ∈ B.
(2) eib = b′ if and only if b = fib

′, for all b, b′ ∈ B.
(3) For all b ∈ B, i ∈ I such that ei(b) ∈ B, we have wt(ei(b)) = wt b+ αi.
(4) εi(b) = max{k > 0 | eki b ∈ B}.

By the above axioms, the data of an upper-seminormal abstract crystal is entirely
determined by (B,wt, (ei)i∈I). The upper-seminormal abstract crystal B is called a
seminormal abstract crystal if it additionally satisfies ϕi(b) = max{k > 0 | fki b ∈ B}
for all i ∈ I, b ∈ B.

Each crystal defines a crystal graph, a directed graph on the vertex set B, with an i-
labelled edge from b to b′ whenever fi(b) = b′. The edge-labelled graph is equivalent to
the data of the ei or fi, and hence an upper-seminormal abstract crystal is determined
entirely by its weight function and graph. We say that B is connected if the underlying
undirected graph of its crystal graph is connected. An element b ∈ B is called primitive
if ei(b) = 0 for all i ∈ I, or equivalently if it has no incoming edges in the crystal
graph. An element b ∈ B is called highest-weight if it is both primitive, and there is
a directed path in the crystal graph from b to every element of B.

There are two different rules for forming the tensor product of two abstract crystals,
we use the convention from [13]. If B1, B2 are abstract G-crystals, then their tensor
product B1 ⊗ B2 has underlying set the Cartesian product B1 × B2, with pairs of
elements written b1 ⊗ b2, the convention that 0⊗ b2 = b1 ⊗ 0 = 0, and maps given by

wt(b1 ⊗ b2) = wt(b1) + wt(b2),(1)
εi(b1 ⊗ b2) = max{εi(b1), εi(b2)− 〈α∨i ,wt b1〉},(2)
ϕi(b1 ⊗ b2) = max{ϕi(b2), ϕi(b1) + 〈α∨i ,wt b2〉},(3)

fi(b1 ⊗ b2) =
{
fib1 ⊗ b2 if ϕi(b1) > εi(b2),
b1 ⊗ fib2 if ϕi(b1) 6 εi(b2),

(4)

ei(b1 ⊗ b2) =
{
eib1 ⊗ b2 if ϕi(b1) > εi(b2),
b1 ⊗ eib2 if ϕi(b1) < εi(b2).

(5)

This gives the category of abstract crystals the structure of a monoidal category (the
tensor product of two upper-seminormal crystals is again upper-seminormal).

It has been shown [11] that for each λ ∈ P+, the highest-weight module V (λ)
admits a seminormal crystal base B(λ). We say that an abstract G-crystal is simply a
G-crystal if it is a disjoint union of various B(λ). Each B(λ) is connected as a graph,
with a unique vertex bλ ∈ B(λ) satisfying ei(bλ) = 0 for all i ∈ I. Such a vertex bλ is
called highest weight, since it is both primitive (meaning it is killed by all the ei) and
also generates the whole of B(λ) under the fi operators.

The subcategory of g-crystals is closed under tensor product, and the decomposition
multiplicities of the B(λ) agree with those of the V (λ):

[B(λ) : B(µ)⊗ B(ν)] = [V (λ) : V (µ)⊗ V (ν)] for all λ, µ, ν ∈ P+.

For each λ ∈ P we denote by Bλ = {b ∈ B | wt b = λ} the λ-weight elements of B.
The formal character of an abstractG-crystal is the sum chB =

∑
λ∈P |Bλ| eλ ∈ Z[P ].

Algebraic Combinatorics, Vol. 4 #2 (2021) 304



A Demazure Character Formula for the Product Monomial Crystal

If the abstract G-crystal is seminormal, then chB ∈ Z[P ]W . For each λ ∈ P+, we
have chV (λ) = chB(λ).

2.3. Demazure modules and Demazure crystals. Fix a λ ∈ P+. The elements
of the Weyl group orbit W ·λ are called the extremal weights of V (λ), and their corre-
sponding weight spaces V (λ)wλ are all one-dimensional. The B-submodule generated
by V (λ)wλ is called the Demazure module Vw(λ). As vector spaces we have Ve(λ) =
V (λ)λ, the one-dimensional highest-weight space, and Vw◦(λ) = V (λ) the whole mod-
ule. We say that Vw(λ) is the Demazure module of Demazure lowest weight wλ.

For each µ ∈ P , let D(µ) denote the Demazure module of Demazure lowest weight
µ. The collection {D(µ) | µ ∈ P} is a complete irredundant list of Demazure modules,
and furthermore the Demazure characters {chD(µ) | µ ∈ P} form a basis for Z[P ].
(The triangularity property chD(µ) = eµ +

∑
ν>µ cνe

ν shows that the Demazure
characters are linearly independent, while the fact that they span follows from the
fact that Z[P ] is a limit of finite-dimensional subspaces of the form SpanZX forX ⊆ P
Weyl-invariant).

A character formula for the Demazure modules was first given in [4], with a more
recent proof in the arbitrary symmetrisable Kac–Moody setting appearing in [12]. For
each i ∈ I, define the Z-linear Demazure operator πi : Z[P ]→ Z[P ] by

πi(eλ) = eλ − esiλ−αi
1− e−αi(6)

=


eλ + eλ−αi + eλ−2αi + · · ·+ esiλ if 〈α∨i , λ〉 > 0,
0 if 〈α∨i , λ〉 = −1,
−eλ+αi − eλ+2αi − · · · − esiλ−αi if 〈α∨i , λ〉 6 −2.

(7)

The Demazure operators define a 0-Hecke action on Z[P ], that is to say each is
idempotent (π2

i = πi for all i ∈ I) and they satisfy the braid relations (if i ∼ j then
πiπjπi = πjπiπj , and if i 6∼ j then πi and πj commute). The Demazure character
formula states that when (i1, . . . , ir) is a reduced decomposition for w, then
(8) chVw(λ) = πi1 · · ·πireλ.

It was shown [12] that each Demazure module Vw(λ) for λ ∈ P+ admits a crystal
base Bw(λ), called a Demazure crystal (although Bw(λ) is in general an abstract G-
crystal rather than a crystal). Moreover, the crystal Bw(λ) can be obtained from B(λ)
in the following way. Define the extension of i-strings operator Di, which acts on a
subset X ⊆ B of an abstract G-crystal:
(9) Di(X) =

⋃
n>0
{fni (x) | x ∈ X} = {b ∈ B | eni (b) ∈ X for some n ∈ N}.

The operators Di satisfy X ⊆ DiX ⊆ B, and Di(DiX) = DiX. Then let (i1, . . . , ir)
be a reduced decomposition for w ∈W , and we have
(10) Bw(λ) = Di1 · · ·Dir{bλ},
where bλ ∈ B(λ) is the highest-weight element. Note that Eq. (10) only defines a
subset of B(λ): we equip this subset with its canonical abstract upper-seminormal
crystal structure coming from the restrictions of wt and ei for i ∈ I.

2.4. Multisets. We will use multisets throughout the paper. Multisets will always
be denoted using boldface type, such as R,S,T, or Q. Given a set X, a multiset
based in X is a function R : X → N, where we write R[x] for the value of R at
x ∈ X, henceforth called the multiplicity of x in R. The support of R is the subset
Supp(R) = {x ∈ X | R[x] > 0} ⊆ X, and a multiset is finite if its support is finite.
Any summations or products over R are taken with multiplicity, so for example if
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f : X → G is a function into an abelian group (written multiplicatively) and R is
a finite multiset based in X, then

∏
x∈R f(x) :=

∏
x∈X f(x)R[x]. If R and Q are

multisets based in X, their multiset union is the function R + Q. We say Q is a sub-
multiset of R if Q[x] 6 R[x] for all x ∈ X, and in this case, their multiset difference
is the function R −Q.

The notation we use for multisets is similar to set notation, with exponents denoting
multiplicity. For example, if X = {x, y, z} is a base set, then R = {x2, y} denotes
a multiset R based in X where x appears with multiplicity 2, and y appears with
multiplicity 1 (or treating R as a function R : X → N, we have R[x] = 2,R[y] =
1,R[z] = 0).

3. Definition of the product monomial crystal
The product monomial crystal is defined as a certain subcrystal of the Nakajima
monomial crystal. The Nakajima monomial crystal is not only a crystal, but also
has an abelian group operation given by multiplication of monomials. The product
monomial crystal will be the monomial-wise product of certain subcrystals of the
Nakajima monomial crystal.

3.1. The Nakajima monomial crystal. Let G be a pinned reductive group as in
Section 2.1, we now define the Nakajima monomial crystalM(G) as in [5, Section 2].
Let Z{I × Z} denote the free abelian group of monomials in the variables {yi,c | i ∈
I, c ∈ Z}. Let A(G) = P × Z{I × Z} be the product of abelian groups, written such
that a typical element p ∈ A is of the form

(11) p = ewt(p)
∏

(i,c)∈I×Z

y
p[i,c]
i,c ,

for some element wt(p) ∈ P and coefficients p[i, c] ∈ Z, finitely many of which are
nonzero. For each i ∈ I and c ∈ Z, define the auxiliary monomial

(12) zi,k = eαiyi,k+1yi,k−1
∏
j∼i

y−1
j,k .

Definition 3.1. The Nakajima monomial crystalM(G) is defined to be the submodule
of A(G) satisfying the two conditions

(1) 〈α∨i ,wt(p)〉 =
∑
c∈Z p[i, c] for all i ∈ I, and

(2) p[i, c] = 0 if i and c have opposite parities.
For each monomial p ∈M(G), define

(1) ϕki (p) =
∑
l>k p[i, l], the upper column sum.

(2) ϕi(p) = maxk ϕki (p), the largest upper column sum.
(3) εki (p) = −

∑
l6k p[i, l], the negated lower column sum.

(4) εi(p) = maxk εki (p), the largest negated column sum.
(5) If ϕi(p) 6= 0, let Fi(p) = max{k ∈ Z | ϕki (p) = ϕi(p)}, the largest k maximis-

ing ϕki (p).
(6) If εi(p) 6= 0, let Ei(p) = min{k ∈ Z | εki (p) = εi(p)}, the smallest k maximis-

ing εki (p).
The crystal structure onM(G) is then defined by wt, εi, and ϕi as above, and

(13) ei(p) =
{

0 if εi(p) = 0,
pzi,Ei(p) otherwise,

fi(p) =
{

0 if ϕi(p) = 0,
pz−1
i,Fi(p)−2 otherwise.

It is routine to verify that (M(G),wt, εi, ϕi, ei, fi) is an abstract seminormal G-
crystal.
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Theorem 3.2 ([14]). The monomial crystalM(G) is a G-crystal.

Because of the parity condition (2) appearing in Definition 3.1, it is convenient
to introduce the following notation. Let I×̇Z ⊆ I × Z denote the subset of parity-
respecting pairs
(14) I×̇Z = {(i, c) ∈ I × Z | i and c have the same parity}.
The monomial crystal without condition (2) coincides with the crystal defined in [14,
Section 3]. Restricting to monomials yi,c for (i, c) ∈ I×̇Z forms a “good” subset in
the sense of [14, Proposition 3.1], hence Theorem 3.2.

We often picture elements ofM(G) in the following way. Place the Dynkin diagram
I in the plane, then place the grid I×̇Z above the Dynkin diagram as an infinite strip
of points. A monomial p ∈M(G) is a finitely supported assignment (i, c) 7→ p[i, c] of
points to integers, together with a weight wt p ∈ P . The statistics ϕki (p) and εki (p)
can then be pictured as a sum over points in a half-infinite column i. An example for
G = SL6 is shown in Fig. 1.

A5

2

−2

2

5

6

−4

1 2 3 4 5

21

22

23

24

20

19

Z ϕ20
2 (p) = 2

ε224 (p) = 6

Figure 1. The group G = SL6 has Dynkin diagram A5, a path on
5 vertices. Pictured above is the monomial

p = e2$2+5$3+2$4 · y2
2,20 · y−2

2,22 · y2
2,24 · y5

3,23 · y6
4,20 · y−4

4,24.

The two shaded regions are showing computations of ϕ20
2 (p) and

ϕ22
4 (p) respectively.

3.2. The product monomial crystal. From this point onwards, we fix a sys-
tem {$i}i∈I of fundamental weights, meaning any collection of elements satisfying
〈αi, $j〉 = δij . Note that in general the $i are members of P ⊗Z Q rather than the
weight lattice P , and for general G such a system is not unique, a notable exception
being when G is semisimple.

Definition 3.3. A fundamental subcrystal ofM is a subcrystal generated by an ele-
ment of the form en$iyni,c for some n > 0 such that n$i ∈ P+. Denote this subcrystal
byM(i, c)n.

It is straightforward to check that such a monomial p = en$iyni,c is highest-weight,
and therefore generates a subcrystal ofM isomorphic to B(n$i) by Theorem 3.2.
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As the monomial crystal M is a subgroup of A, it inherits the group operation
given by multiplication of monomials. Explicitly, for p, q ∈ M we have wt(p · q) =
wt(p) + wt(q), and (p · q)[i, c] = p[i, c] + q[i, c]. For subsets X,Y ⊆M, we define their
product X · Y = {x · y | x ∈ X, y ∈ Y } as usual, and call this the monomial-wise
product of subsets.

Definition 3.4. For any finite multiset R based in I×̇Z, define the product monomial
crystal

(15) M(R) =
∏
(i,c)

M(i, c)R[i,c] ⊆M(G)

as the monomial-wise product of subsets of the fundamental subcrystalsM(i, c)R[i,c].
We setM(∅) = {1}, the trivial monomial.

Remark 3.5. After fixing the system of fundamental weights, the weight of a mono-
mial p ∈ M(R) is given by wt p =

∑
i,c p[i, c]$i. So we can safely omit the eλ term

from monomials from now on, instead relying on our fixed system of fundamental
weights to reconstruct λ from the monomial p.

Example 3.6. Let G = SL3, where I = {1, 2} with Dynkin diagram
1 2

.

(1) Taking R = ∅ givesM(R) = {1}, the trivial crystal.
(2) Taking R = {(1, 1)} givesM(R) =M(1, 1) = {y1,1, y1,1z

−1
1,−1, y1,1z

−1
1,−1z

−1
2,−2},

a connected crystal of highest-weight $1.
(3) Taking R = {(1, 1)2} gives M(R) = M(1, 1) · M(1, 1), which in terms of

elements is

M(R) =
{
y2

1,1, y
2
1,1z
−1
1,−1, y

2
1,1z
−1
1,−1z

−1
2,−2, y

2
1,1z
−2
1,−1, y

2
1,1z
−2
1,−1z

−1
2,−2, y

2
1,1z
−2
1,−1z

−2
2,−2

}
.

This subset is closed under the crystal operators, and its only highest-weight
element is y2

1,1, showing thatM(R) ∼= B(wt y2
1,1) = B(2$1) as SL3-crystals.

We may denote the monomials above pictorially, as in Fig. 1.

ya1,1y
b
2,0y

c
1,−1y

d
2,−2 =

a
b

c
d

, z−1
1,−1 =

−1
1

−1
0
, z−1

2,−2 =
0
−1

1
−1

We then obtain the following pictures for the three connected crystalsM(∅),M(1, 1)
andM(1, 1)2.

0
0

0
0

1
0

0
0

0
1

−1
0

2
0

0
0

1
1

−1
0

0
2

−2
0

0
0

0
−1

1
0

0
−1

0
1

−1
1

0
0

0
−2

f1

f2

f1 f1

f2 f2

f1

f2
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It is perhaps surprising that the monomial-wise productM(1, 1)·M(1, 1) turns out
to be again a G-subcrystal ofM(G), since the monomial-wise product is not obviously
related to the crystal operators. In fact, the subset M(R) is always a subcrystal of
M, justifying the name product monomial crystal. The proof of Theorem 3.7 uses an
explicit isomorphism between M(R) and the crystal defined by a graded Nakajima
quiver variety depending on R. The author does not know of a purely combinatorial
proof, and the use of quiver varieties is the reason for the simply-laced restriction on G.

Theorem 3.7 ([7, Corollary 7.8]). For any finite multiset R based in I×̇Z, the set
M(R) is a strict subcrystal of M. Hence the product monomial crystal M(R) is a
crystal.

Remark 3.8. Our notation differs from [7] in three ways. Firstly, they use the symbol
B(R) rather than M(R) to denote the product monomial crystal. Secondly, they
define the monomial crystal only for semisimple Lie algebras, and hence the eλ weight
term is missing as explained in Remark 3.5. Thirdly, they use a collection (Ri)i∈I of
multisets where Ri is a multiset based in 2Z+parity(i); to go between these notations,
set R[i, k] = Ri[k].

Define the dominant weight wt(R) =
∑

(i,c) R[i, c]$i. It was noted in [7, Theo-
rem 2.2] that there exist embeddings of crystals

(16) B(wt(R)) ↪→M(R) ↪→
⊗

(i,c)∈R
B($i)

and that furthermore, by varying R while keeping wt R fixed, both extremesM(R) ∼=
B(wt(R)) andM(R) ∼=

⊗
(i,c)∈R B($i) can be achieved.

Example 3.9. Let G = SL4, and fix wt(R) = 2$2. Then depending on R, there are
three possibilities for the isomorphism class ofM(R):

• If R = {(2, k)2} for some k, thenM(R) ∼= B(2$2).
• If R = {(2, k), (2, k + 2)} for some k, thenM(R) ∼= B(2$2)⊕ B($1 +$3).
• Otherwise,M(R) ∼= B(2$2)⊕ B($1 +$3)⊕ B(0) ∼= B($2)⊗2.

4. Analysis of the product monomial crystal
In this section we give a high-level analysis of the product monomial crystal, which will
lay the foundation for the more precise analysis in Section 5 leading to the character
formula. The results of this section appear in [7], however we go into more detail here.

4.1. Labelling elements of the product monomial crystal. Let R and S be
finite multisets based in I×̇Z, and define the auxiliary monomials
(17)
yR :=

∏
(i,c)∈R

yi,c, zS :=
∏

(i,k)∈S

zi,k =
∏

(i,k)∈S

yi,kyi,k+2∏
j∼i yj,k+1

, z−1
S = (zS)−1

.

By the definition of the monomial crystalM(G), each element p ∈ M(i, c)n is of
the form p = yni,cz

−1
S for some finite multiset S based in I×̇Z. Hence each element p of

the product monomial crystalM(R) is of the form yRz
−1
S for some finite multiset S.

In fact, by the linear independence of the zi,k in the abelian groupM(G), the multiset
S is uniquely determined by p. Using this labelling scheme, when p = yRz

−1
S ∈M(R)

the exponent p[i, k] is

(18) p[i, k] = R[i, k]− S[i, k − 2]− S[i, k] +
∑
j∼i

S[j, k − 1].
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Remark 4.1. In type A, the S multisets arising inM(R) may be interpreted in terms
of partitions “hung from pegs”, with each peg corresponding to an element of R. For
more details (and a picture of this), see [25, Section 2.5.3]. While we do not apply
this interpretation explicitly in this paper, the author found it invaluable to make the
connection betweenM(R) and the generalised Schur modules.

4.2. A partial order, upward-closed and downward-closed sets. We as-
sume from now on that the Dynkin diagram I is connected. Define a partial order 6
on the set I×̇Z as the transitive closure of (i, c) 6 (i, c+ 2) and (i, c) 6 (j, c+ 1) for
all j ∼ i.

A subset J ⊆ I×̇Z is called upward-closed if whenever x ∈ J and y ∈ I×̇Z satisfy
x 6 y, then y ∈ J . If J is upward-closed, a minimal element x ∈ J is one such that
for all y ∈ I×̇Z, either x 6 y or x and y are incomparable. Every upward-closed set is
a union of the upward-closed sets generated by its minimal elements. For any subset
X ⊆ I×̇Z, define up(X) = {y ∈ I×̇Z | x 6 y} to be the upward-closed set generated
by X, and define down(X) similarly.

For each i ∈ I, define the i-boundary of an upward-closed set J to be ∂iJ = (i, k),
where (i, k) ∈ J but (i, k − 2) /∈ J . The boundary of an upward-closed set J is
∂J = {∂iJ | i ∈ I}. A minimal point of J is a boundary point, but boundary points
are not necessarily minimal.

D5A5

Figure 2. Each diagram depicts an upward-closed set J ⊆ I×̇Z, as
the points enclosed within and above the green region. The points
marked with a cross are minimal points of J . Both upward-closed
sets shown above have five boundary points.

A good reason to introduce this order is that the fundamental subcrystalsM(i, c)n
always “grow downwards” from the point (i, c) with respect to this partial order, as
made precise in the following lemma.

Lemma 4.2. If yni,cz−1
S ∈M(i, c)n, then Supp S ⊆ down({(i, c− 2)}).

Proof. The claim is vacuous for the highest-weight element yni,c since its associated S-
multiset is empty. AsM(i, c)n is connected, it is enough to show that the fi operators
preserve the above property.

Suppose that p = yni,cz
−1
S ∈ M(i, c) satisfies Supp S ⊆ down({(i, c − 2)}), and

fj(p) 6= 0, so fj(p) = pz−1
j,k−2 (fj(p) adds the point (j, k − 2) to S). In particular,

the definition of ϕj gives that p[j, k] > 0; this inequality together with Eq. (18) then
implies

(19) R[j, k] +
∑
l∼j

S[l, k − 1] > S[j, k] + S[j, k − 2] > 0

where R is the multiset R = {(i, c)n}.
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If R[j, k] = n, then (j, k) = (i, c), and in this case (j, k − 2) = (i, c− 2) and so the
property holds. Otherwise, R[j, k] = 0 and since

∑
l∼j S[l, k−1] is strictly positive, at

least one upward neighbour of (j, k − 2) is already included in Supp S, and the claim
follows by the transitivity of 6. �

A6 D6

Figure 3. An illustration of Lemma 4.2. Within each picture, a red
circled point represents a chosen (i, c) ∈ I×̇Z, and the green region
directly below shows down({(i, c − 2)}). If yni,cz−1

S ∈ M(i, c)n, then
Supp S ⊆ down({(i, c−2)}). Taking the red circled points as defining
a multiset R, then yRz

−1
S ∈M(R) implies that Supp S is contained

in the union of green regions.

4.3. Supports of monomials, highest-weight monomials. Given a monomial
p = yRz

−1
S ∈ M(R), its R-support is defined to be the set SuppR(p) = Supp R ∪

Supp S. Note that the R-support is defined in terms of the S-labelling, and can be
large compared to the support of the original monomial in terms of the yi,c, as the
next example shows.
Example 4.3. When G = SL4 and R = {(1, 1), (3, 5)}, we have 1 = yRz

−1
S where the

multiset S = {(1, 1), (2, 2), (3, 3)}, and so SuppR(1) = {(1, 1), (2, 2), (3, 3), (3, 5)}.
For a monomial p ∈M(R), Eq. (18) shows that if p[i, k] 6= 0, then (i, k) is contained

in the upward-closed set generated by SuppR(p). The next lemma shows that if the
R-support of a monomial p extends below R itself, then p cannot be highest-weight.
Lemma 4.4. Let p ∈ M(R), and suppose that (i, k) is minimal in SuppR(p) and
(i, k) /∈ Supp R. Let n = εi(p) and q = eni (p) be the element at the top of p’s i-string.
Then n > 0, and SuppR(q) ⊆ SuppR(p) r (i, k).
Proof. Let p = yRz

−1
S and q = yRz

−1
T . Since SuppR q ⊆ SuppR p, by minimality of

(i, k) we have that p[i, r] = q[i, r] = 0 for r < k, and hence εki (p) = −S[i, k] and
εki (q) = −T[i, k]. Then n = εi(p) > S[i, k] > 0 shows that n > 0, and 0 = εi(q) >
T[i, k] shows that (i, k) /∈ SuppR q. �

Corollary 4.5. If p ∈M(R) is highest-weight, then SuppR(p) ⊆ up(R).

5. Truncations and a character formula
In this section, we define a family of subsetsM(R, J) of the product monomial crystal
M(R), parametrised by an upward-closed set J ⊆ I×̇Z. Each subset M(R, J) is
closed under the crystal raising operators (ei)i∈I , and in fact is a Demazure crystal
(as defined in Section 2.3). We show how to relate the subsetsM(R, J) for varying R
and J , leading to an inductive Demazure-type character formula for eachM(R, J).
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5.1. Truncations defined by upward sets. We saw in Corollary 4.5 that the
highest-weight elements p ∈ M(R) satisfy SuppR(p) ⊆ up(R). LetM(R, up(R)) be
the subset of all monomials in M(R) whose R-support is contained in up(R). The
subset M(R, up(R)) is closed under the crystal raising operators ei, and contains
all highest-weight elements of M(R). It is the prototypical example of one of our
truncations.

Definition 5.1. Let J ⊆ I×̇Z be an upward-closed set containing Supp R. The trun-
cation ofM(R) by J is the subset

(20) M(R, J) = {p ∈M(R) | SuppR p ⊆ J} ⊆ M(R).

We equip this subset with the canonical upper-seminormal abstract crystal structure
coming from the restrictions of wt and ei to the subsetM(R, J).

Some facts about these subsets are already clear:
(1) Each truncation M(R, J) contains every highest-weight element of M(R),

by Corollary 4.5 and the fact that J contains Supp R.
(2) Each truncationM(R, J) is closed under the crystal raising operators (ei)i∈I ,

since each ei will either act by zero, or by removing an element from the S-
multiset of a monomial.

(3) If p ∈M(R, J), then the exponent p[i, c] = 0 for any (i, c) /∈ J , by Eq. (18).
Suppose we have two upward-closed sets J, J ′ which both contain R, and differ by

a single element: J ′ = J ∪ {(i, c)}. Then the two truncations defined by J and J ′ can
be related by purely crystal-theoretic terms: the larger one will be the extension of
i-strings (see Section 2.3) of the smaller one.

Lemma 5.2. Let J and J ′ be two upward-closed sets containing Supp R, which differ
in a single element: J ′ = J ∪ {(i, k)}. Then M(R, J ′) = DiM(R, J), where Di is
defined in Section 2.3.

Proof. Suppose that q ∈M(R, J ′). If (i, k) /∈ SuppR q, then q ∈M(R, J). Otherwise,
if (i, k) ∈ SuppR q, then (i, k) is in fact minimal in SuppR q, since both J and J ′

are upward-closed sets. Hence Lemma 4.4 gives that there is some n > 0 for which
eni (q) ∈M(R, J).

Conversely, suppose that p ∈ DiM(R, J). As (i, k) /∈ J , we have that p[i, r] = 0
for all r 6 k. It follows from the definition of fi that both fni (p)[i, k] 6 0 and
fni (p)[i, r] = 0 for all n > 0, r < k, and hence SuppR fni (p) ⊆ J ′. �

The consequence of Lemma 5.2 is that although the two subsets M(R, J) and
M(R, J ′) are defined in terms of supports of monomials, they are related via a purely
crystal-theoretic means (the extension of i-strings Di). However, Lemma 5.2 can only
be used when both the upward-closed sets J and J ′ include Supp R. The next lemma
shows how to relate various parameter multisets R and R′, while holding the trun-
cating set J fixed.

Lemma 5.3. Suppose that J is an upward-closed set containing Supp R, and Q is a
multiset supported along the boundary of J : Supp Q ⊆ ∂J . Then M(R + Q, J) =
yQ · M(R, J), where · denotes a product as monomials.

Proof. Suppose that p ∈ M(R, J) and q ∈ M(Q, J). By linear independence of the
zi,k monomials, we have SuppR+Q(pq) = SuppR(p) ∪ SuppQ(q), which shows that
M(R, J) · M(Q, J) = M(R + Q, J). (Note that M(R) · M(Q) = M(R + Q) by
definition of the product monomial crystal). Since Q lies along the boundary ∂J ,
Lemma 4.2 gives thatM(Q, J) = {yQ}, and the claim follows. �
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Example 5.4. We will use the lemmas above to compute the decomposition of the
SL4 crystalM(R) for R = {(1, 3), (3, 1), (3, 3)}. These steps are shown pictorially in
Fig. 4.

(1) Begin with J0 = up({(2, 2)}) and R0 = ∅ to getM(R0, J0) = {1}.
(2) Let R1 = {(1, 3), (3, 3)} and J1 = J0. Since R1 lies along ∂J1 we may apply

Lemma 5.3 to findM(R1, J1) = y1,3y3,3 · M(R0, J0) = {y1,3y3,3}.
(3) Let R2 = R1 and J2 = up{(3, 1)}. Since J2 differs in exactly one ele-

ment from J1 we apply Lemma 5.2 to get M(R2, J2) = D3M(R1, J1). The
extension of 3-strings introduces one more element, giving M(R2, J2) =
{y1,3y3,3, y1,3y3,3z

−1
3,1}.

(4) Let R3 = R2 ∪ {(3, 1)} and J3 = J2. Since (3, 1) lies on the boundary ∂J2,
we may apply Lemma 5.3 once more to findM(R3, J3) = y3,1 ·M(R2, J2) =
{y1,3y3,3y3,1, y1,3y3,3y3,1z

−1
3,1}.

The two elements inM(R3, J3) =M(R, J3) are both highest-weight, and so Corol-
lary 4.5 implies that these are precisely the highest-weight elements ofM(R). Taking
their weights gives the decomposition
(21) M(R) ∼= B($1 + 2$3)⊕ B($1 +$2).

·y1;3y3;3 D3 ·y3;1

1 y1;3y3;3 y1;3y3;3

y1;3y3;3z
−1
3;1

y1;3y3;3y3;1

y1;3y3;3y3;1z
−1
3;1

f3

Figure 4. An illustration of Example 5.4 for SL4. In each diagram
the green shaded region is an upward-closed set J , the red circled
points are a parameter multiset R, and below the diagram the trun-
cated crystalM(R, J) is shown.

5.2. A Demazure character formula. An i-root string in an abstract crystal
B is a subset of the form S = {. . . , e2

i (b), ei(b), b, fi(b), f2
i (b), . . .} for some b ∈ B. If

B is seminormal it decomposes into disjoint i-root strings, each of finite length. The
following definition and theorem are due to Kashiwara [12]:
Definition 5.5. A subset X of the abstract G-crystal B has the string property if,
for every i-root string S in B, S ∩X is one of S, ∅, or {uS}, where uS ∈ S satisfies
ei(uS) = 0.
Example 5.6. Take B = B($1 + $2) the connected SL3-crystal of the adjoint rep-
resentation, shown on the left of Example 5.6. The subset of B consisting of the six
vertices shown in the centre of Example 5.6 does not have the string property, as the
1-string of length two violates the conditions of Definition 5.5. However, the subset
of B consisting of the seven vertices shown on the right of Example 5.6 does have the
string property.

Recall from Section 2.3 the definition of the Demazure operator πi and the
extension-of-strings operator Di. The following theorem of Kashiwara establishes a
commutation property of the character function with πi and Di.
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f1

f2

f2

f2

f2

f1

f1

f1

Figure 5. On the left, the connected SL3 crystal of highest-weight
$1 +$2. In the middle, a subset without the string property, and on
the right a subset which does have the string property.

Theorem 5.7 ([3, 12]). If X is a subset of an abstract G-crystal B, and X satisfies
the string property, then ch(DiX) = πi(chX) for all i ∈ I.

It is not true that if some subset X has the string property, then Di(X) has the
string property — for a counterexample, see [3, Chapter 13]. However, we can verify
directly that all of the truncations we have been considering have the string property.

Lemma 5.8. If J is an upward-closed set containing Supp R, then M(R, J) has the
string property.

Proof. Since M(R, J) is closed under the ei operators, it suffices to show that for
any p ∈ M(R, J) with fi(p) /∈ M(R, J) t {0}, that ei(p) = 0. Suppose we have
such a p = yRz

−1
S , then by Lemma 5.2 we must have fi(p) = z−1

i,k−2p ∈ DiM(R, J),
where (i, k) ∈ ∂J . By definition of ϕi, k is largest such that ϕki (p) = ϕi(p), and
hence ϕl+2

i (p) < ϕki (p) for all l > k. But since p[i, r] = 0 for all r < k, we have that
εli(p) = ϕki (p)− ϕl+2

i (p) > 0 for all l > k, and hence εi(p) = 0 and ei(p) = 0. �

We then arrive at an inductive character formula for any truncationM(R, J) by
interpreting both Lemma 5.2 and Lemma 5.3 in terms of characters, using Theo-
rem 5.7.

Theorem 5.9. The following rules give an inductive character formula for any trun-
cationM(R, J):

(1) chM(∅, J) = 1 for any J .
(2) Suppose J is an upward-closed set containing Supp R, and Q lies along the

boundary ∂J . Then chM(R + Q, J) = ewt(Q) · chM(R, J).
(3) Suppose J is an upward-closed set containing Supp R, and J ′ = J ∪ {(i, k)}

is another upward-closed set such that J rJ ′ = {(i, k)}. Then chM(R, J ′) =
πi chM(R, J).

Proof. Each rule is justified as follows:
(1) The truncationM(∅, J) is the trivial monomial {1}, which has character 1.
(2) If p ∈ M is any monomial and X ⊆ M is any subset, then ch(p · X) =

ewt p · ch(X). Hence (2) follows from Lemma 5.3.
(3) By Lemma 5.2, M(R, J ′) = DiM(R, J), and by Lemma 5.8, M(R, J) has

the string property. The result then follows by taking characters and applying
Theorem 5.7. �

Algebraic Combinatorics, Vol. 4 #2 (2021) 314



A Demazure Character Formula for the Product Monomial Crystal

Example 5.10. Let G = GL4 with the parameter multiset R = {(1, 3), (3, 1), (3, 3)},
similarly to Example 5.4. We previously determined that when J = up({(3, 1)}) then
we had the equality of sets

(22) M(R, J) = y3,1 ·D3(y1,3y3,1 · {1}).

Applying the rules in Theorem 5.9, we get

(23) chM(R, J) = e$3 · π3(e$1+$3 · 1),

which is most easily computed using the isomorphism Z[P ] ∼= Z[x1, x2, x3, x4], choos-
ing our system of fundamental weights to be $1 = x1, $2 = x1x2 and $3 = x1x2x3:

chM(R, J) = x1x2x3 · π3(x2
1x2x3)(24)

= x3
1x

2
2x3 · π3(x3)(25)

= x3
1x

2
2x3(x3 + x4)(26)

= x3
1x

2
2x

2
3 + x2

1x2(27)
= e$1+2$3 + e$1+$2 .(28)

As $1 + 2$3 and $1 +$2 are dominant, each of e$1+2$3 and e$1+$2 is a Demazure
character, and hence the Demazure character formula implies

(29) M(R) ∼= B($1 + 2$3)⊕ B($1 +$2).

5.3. Truncations are Demazure crystals. The procedure given in Theorem 5.9
looks quite similar to the construction of a Demazure crystal (Section 2.3), and we
will show that each truncationM(R, J) is in fact a Demazure crystal. We rely on the
main result of [6], which states that if X is a Demazure crystal and b is a highest-
weight element of some crystal, then {b}⊗X is a Demazure crystal. We use this result
by formulating Lemma 5.3 in purely crystal-theoretic terms.

Lemma 5.11. Let J be an upward-closed set containing Supp R, and let Q be a multiset
supported along the boundary of J , so Supp Q ⊆ ∂J . Set µ = wt(Q), and write
bµ ∈ B(µ) for the highest-weight element. There is a bijective, weight-preserving map

(30) Φ :M(R + Q, J)→ B(µ)⊗M(R, J), Φ(p) = bµ ⊗ p/yQ,

which is equivariant under the crystal raising operators, Φ(eip) = ei(Φ(p)) for all
i ∈ I. HenceM(R + Q, J) ∼= B(µ)⊗M(R, J) as abstract crystals.

Proof. The map is defined as a consequence of Lemma 5.3, and is bijective and weight-
preserving, so all that remains to be seen is the ei-equivariance. Let us recall the rule
(Eq. (5)) for applying ei to a tensor product of two crystal elements:

ei(bµ ⊗ p/yQ) =
{
eibµ ⊗ p/yQ if ϕi(bµ) > εi(p/yQ),
bµ ⊗ ei(p/yQ) if ϕi(bµ) < εi(p/yQ)

(31)

=
{

0 if 〈α∨i , µ〉 > εi(p/yQ),
bµ ⊗ ei(p/yQ) if 〈α∨i , µ〉 < εi(p/yQ).

(32)

Fix an i ∈ I, and let (i, k) ∈ ∂J be that unique point on the boundary of J lying
in column i. Let p ∈M(R +Q, J) be arbitrary. Since the support of Q lies in ∂J , the
only element of Q in column i which could have nonzero multiplicity is (i, k), where
it has multiplicity Q[i, k] = 〈α∨i , µ〉. Since p[i, l] = 0 for all l < k, we then have

(33) εli(p) =
{

0 for l < k,

〈α∨i , µ〉+ εli(p/yQ) for l > k.
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If ei(p) = 0, then εli(p) > 0 for all l, and hence 〈α∨i , µ〉 > −εli(p/yQ) for all l > k,
and hence 〈α∨i , µ〉 > maxl−εli(p/yQ) = εi(p/yQ). Then we are in the first case of
Eq. (32), and ei(Φ(p)) = 0.

On the other hand, if ei(p) = zi,rp for some r > k, then 0 < −εri (p) = εi(p), and
applying Eq. (33) gives that 〈α∨i , µ〉 < −εri (p/yQ) 6 εi(p/yQ). So we are in the second
case of Eq. (32), and all that remains to check is that ei(p/yQ) = zi,rp/yQ. However,
this is clear from Eq. (33) since adding a constant 〈α∨i , µ〉 to the values of the ε·i will
not change the value r, as r is defined as the least l such that εli(p) is minimised. �

Theorem 5.12. Let J be an upward-closed set containing Supp R. Then the truncation
M(R, J) is a Demazure crystal.

Proof. We have already shown (Theorem 5.9) that every truncation such asM(R, J)
can be built by starting with the trivial monomial {1} and repeatedly applying one of

(1) The extension of i-string operators Di for i ∈ I; or
(2) Multiplication by a monomial of the form yQ, for some finite multiset Q

based in I×̇Z.
The trivial crystal {1} is a Demazure crystal. It follows by [12, Proposition 3.2.3] that
the property of being a Demazure crystal is preserved under extension of i-strings,
and by the main theorem of [6], the property of being a Demazure crystal is preserved
under forming the tensor product with a single highest-weight element bµ for any
µ ∈ P+. �

As a Demazure crystal, the truncation M(R, J) enjoys several nice properties,
such as being determined up to isomorphism by its character chM(R, J).

Remark 5.13. It is certainly not true that arbitrary subsets of crystals are determined
(up to isomorphism as edge-labelled graphs) by their characters. For example, consider
the SL2 crystal B(2) ⊕ B(0) = {a, b, c, d}, pictured in Fig. 6. Both the subsets X =
{a, d} and Y = {a, b} have character e$1 + e0, however Y is not a Demazure crystal
while X is.

a b c

d

Figure 6. The SL2-crystal B(2)⊕B(0).

Corollary 5.14. Since G is a reductive group, M(R) is a finite crystal and the
Weyl group W possesses a unique longest element w◦. The character of M(R) may
be computed as
(34) chM(R) = πw◦ chM(R, J)
for any upward-closed set J containing Supp R.

Proof. By the Demazure character formula, a Demazure character is of the form
πx(eλ) for some x ∈ W and λ ∈ P+. As the πi operators braid and are idempotent,
they define a 0-Hecke action on Z[P ], in other words a representation of the Hecke
algebra associated to W with defining relation E2

i = Ei for all i ∈ I. The standard
basis element Ew◦ of this Hecke algebra satisfies EiEw◦ = Ew◦ = Ew◦Ei for all
i ∈ I, and hence so do the Demazure operators: πw◦πx = πw◦ . We then have that
πw◦πx(eλ) = πw◦e

λ = chV (λ) by the Demazure character formula.
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Now,M(R, J) is a disjoint sum
⊕

λ,w cλ,wBw(λ) of Demazure crystals. Since every
highest-weight element of M(R) appears in the truncation M(R, J) we have that
M(R) ∼=

⊕
λ,w cλ,wB(λ) as G-crystals. On the level of characters, this becomes

�(35) chM(R) =
∑
λ,w

cλ,w chB(λ) = πw◦
∑
λ,w

cλ,wπw(eλ) = πw◦ chM(R, J).

6. The product monomial crystal in type A
We show that in type A, the product monomial crystal M(R) is isomorphic to the
crystal of a generalised Schur module SD, a GLn-module defined by a diagram D
depending on R. The generalised Schur modules have a stable decomposition when
D is fixed and n increases, and the character of each is given by a Demazure-type
formula [21, 22]. We first show that the product monomial crystalM(R) has a stable
decomposition when R is fixed and n increases, and then compare characters to show
that the stable decompositions of SD andM(R) agree.

6.1. Stability of decomposition in type A. Throughout this section we will
relate crystals of GLn for different n. In order to fix notation, we give an explicit
realisation of the based root datum associated to the reductive algebraic group GLn.
Definition 6.1. For n > 1, the root datum of GLn is defined as follows:

(1) The indexing set In = {1, 2, . . . , n− 1}.
(2) The cocharacter lattice P∨n = Z{ε∨1 , . . . , ε∨n}, and character lattice Pn =

Z{ε1, . . . , εn}, with pairing 〈ε∨i , εj〉 = δij.
(3) The simple coroots α∨i = ε∨i − ε∨i+1.
(4) The simple roots αi = εi − εi+1.
(5) The symmetric map (i, i) = 2, (i, j) = −1 if |i− j| = 1 and 0 otherwise.

(i, j) =


2 if i = j,

−1 if |i− j| = 1,
0 otherwise.

Furthermore, we fix a system $1, . . . , $n−1 of fundamental weights, where $i = ε1 +
· · ·+ εi. Define chardetn = ε1 + · · ·+ εn, then ($1, . . . , $n−1, chardetn) forms a basis
of Pn.
Remark 6.2. For the root datum GLn, the associated Kac–Moody algebra is gln, and
the Weyl group is isomorphic to the symmetric group on n letters, with si : Pn → Pn
swapping εi and εi+1 and leaving the other εj fixed. The weight λ =

∑n
i=1 λiεi is

dominant if and only if λ1 > · · · > λn, and furthermore we call λ a polynomial weight
if it is dominant and λi > 0 for all 1 6 i 6 n.

Let In = {1, . . . , n − 1} and I∞ = {1, 2, 3, . . .}. For a finite multiset R based in
I∞×̇Z, we will say that R lives over In if Supp R ⊆ In×̇Z. If R lives over both In
and Im, it defines a GLn crystalM(GLn,R) and a GLm crystalM(GLm,R). Given
two finite multisets R and S living over In, we define the Nakajima monomial
(36)

v(GLn,R,S) = yRz
−1
S =

 ∏
(i,c)∈R

e$iyi,c

 ∏
(i,k)∈S

∏
j∼In i

yj,k+1

yi,kyi,k+2

 ∈M(GLn)

where we have included the full formula to make it clear that the z−1
S term depends

on n. In general we have v(GLn,R,S) 6= v(GLm,R,S) because of this dependence
on n. However, for n 6 m there is a map of sets from the smaller crystal to the larger
one, defined by the S-parametrisation.
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Lemma 6.3. Suppose that n 6 m and let R be a finite multiset living over In. Then
there is an injective map of sets
(37) Ψn,m :M(GLn,R)→M(GLm,R), v(GLn,R,S) 7→ v(GLm,R,S).
Furthermore, the image of this map is precisely
(38) Im Ψn,m = {q ∈M(GLm,R) | SuppR q lives over In}.

Proof. The claim is trivial for n = m, so assume that n < m. The map is a priori
an injective map into the monomial crystal M(GLm), so we need to show that the
image is contained inM(GLm,R), and the description of the image is correct.

From the definition of the monomial crystalM(GLn), we have for p = v(GLn,R,S)
that
(39) ϕki (p) =

∑
l>k

R[i, l]− S[i, l − 2]− 2
∑
l>k

S[i, l] +
∑
l>k
j∼In i

S[j, l − 1].

Only the last summand depends on n, and we see that for q = v(GLm,R,S) that

(40) ϕki (q)− ϕki (p) =
∑
l>k
j∼Im i
j 6∼In i

S[j, l − 1] =
{

0 if i 6= n− 1,∑
l>k S[n, l − 1] = 0 if i = n− 1.

Since S lives over In we must have S[n,−] = 0 and hence ϕki (p) = ϕki (q) for all
i ∈ In. This implies that if fiv(GLn,R,S) = v(GLn,R,S′) then fiv(GLm,R,S) =
v(GLm,R,S′) for all i ∈ In.

Now consider the case of a fundamental subcrystal, where R is a single element
R = {(i, c)}. Clearly Ψn,m sends the highest-weight element yR ∈ M(GLn,R) to
yR ∈ M(GLm,R), and sinceM(GLn,R) is generated by the fi for i ∈ In, the pre-
vious paragraph shows that Φn,m(M(GLn,R)) ⊆ M(GLm,R). Furthermore, since
the crystal is connected it is clear that the subset of M(GLm,R) of monomials liv-
ing over In is precisely those generated under only fi for i ∈ In, those monomials
q ∈M(GLm,R) such that SuppR(q) lives over In.

The claim follows for general R by factorisation into a product of monomials coming
from various fundamental subcrystals. �

The image of the inclusion map Ψn,m can be described purely in terms of weights,
rather than monomials.

Lemma 6.4. Let n 6 m and R be a finite multiset living over In. Then
(41) Im Ψn,m = {q ∈M(GLm,R) | 〈ε∨i ,wt q〉 = 0 for all i > n}.

Proof. Let p = v(GLn,R,S). Then since wt(p) is a linear combination of ε1, . . . , εn it
is certainly true that 〈ε∨i ,wt Ψn,m(p)〉 = 0 for all i > n. Conversely, suppose that q =
v(GLm,R,S) satisfies 〈ε∨i ,wt q〉 = 0 for all i > n. Writing wt q = wt R −

∑
i∈Im kiαi

for some integers ki > 0, we have
(42) 0 = 〈ε∨1 + · · ·+ ε∨m,wt q − wt R〉 = 〈ε∨1 + · · ·+ ε∨n ,wt q − wt R〉 = −knαn,
showing that kn = 0 and hence S[n,−] = 0. The same trick can be applied to show
that ki = 0 for all i > n, showing that SuppR q lives over In. Hence the claim follows
by the second statement of Lemma 6.3. �

If p is highest-weight then so is Ψn,m(p), and therefore the map Ψn,m(p) restricts
to an injection on the highest-weight elements of each crystal:
(43) ψn,m :M(GLn,R)h.w. ↪→M(GLm,R)h.w.,
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where we use the notation Bh.w. for the highest-weight elements of the crystal B.

Lemma 6.5. Fix a finite multiset R based in I∞×̇Z, let X be the intersection of up(R)
and down({(i, c − 2 | (i, c) ∈ R)}), and let n > 1 be smallest such that X lives over
In. Then:

(1) For all m > n, the inclusion ψn,m is bijective and weight-equivariant, under
the inclusion Pn ↪→ Pm taking εi to εi.

(2) For k 6 n, the image of the inclusion ψk,n is described purely in terms of
weights, by

(44) Imψk,n = {p ∈M(GLn,R)h.w. | 〈ε∨i ,wt p〉 = 0 for all i > k}.

Proof.
(1) If q ∈ M(GLm,R)h.w., then by both Lemma 4.2 and Corollary 4.5 we have

SuppR(q) ⊆ X, and hence the ψn,m is surjective by the description of Im Ψn,m

in Lemma 6.3. The weight-equivariance follows from the definition of Ψn,m.
(2) Follows from Lemma 6.4. �

The previous lemma shows that the decomposition of M(GLn,R) stabilise when
R is held fixed and n is allowed to grow, with the smallest n guaranteed to agree with
the stable decomposition given in the statement of the lemma.

Definition 6.6. Let R be a finite multiset living over I∞, and let n be such that
ψn,m is bijective for all m > n. Define the decomposition multiplicities cλR ∈ N by the
equation

(45) M(GLn,R) ∼=
⊕
λ

B(GLn, λ)⊕c
λ
R ,

where the sum is over all weights λ ∈ P+
n . For clarity we write B(GLn, λ) for the

GLn-crystal B(λ).

The fact that the constants cλR are well-defined is a consequence of the first part of
Lemma 6.5. The second part of Lemma 6.5 gives us the following rule for using the
coefficients cλR to decomposeM(GLn,R) when n is not stable for R.

Corollary 6.7. The decomposition of M(GLn,R) for any n > 1 is given in terms
of the cλR as

(46) M(GLn,R) ∼=
⊕

`(λ)6n
B(GLn, λ)⊕c

λ
R ,

where only partitions with length at most n appear in the sum.

Recall that a weight λ = λ1ε1+· · ·+λnεn of GLn is called polynomial if λi > 0 for all
1 6 i 6 n, and is both dominant and polynomial if and only if λ1 > · · · > λn > 0, or in
other words if (λ1, . . . , λn) is a partition with at most n parts. Let Partn denote the set
of partitions with at most n parts, Part =

⋃
n>0 Partn denote the set of all partitions.

We briefly remind the reader how to go between partitions and weights of GLn.
A partition λ = (λ1 > · · · > λk > 0) is a weakly decreasing list of positive integers,

and the length of the partition λ is `(λ) = k, the length of the list. We draw partitions
as Young diagrams using English notation, so that for example λ = (4, 3, 1, 1) is
represented as the diagram

(47) λ = .
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A partition λ of length at most n may be interpreted as a dominant weight of GLn,
by taking 〈λ, α∨i 〉 to be the number of columns of length i for each 1 6 i 6 n− 1, and
taking the number of columns of length n to be the multiplicity of the determinant.
For example, the same partition λ = (4, 3, 1, 1) would represent the weight $1 +2$2 +
chardet of GL4.

Example 6.8. We give a worked example of starting from a finite multiset R, deter-
mining the stable coefficients cλR, and specialising those stable coefficients to any GLn.

Let R = {(1, 5), (3, 1), (4, 6)}. The set up(R) ∩ down({(i, c − 2) | (i, c) ∈ R}) are
depicted as the green shaded regions in Fig. 7, showing the smallest stable n for this
particular multiset is n = 6.

Using a computer, we determine the decomposition ofM(GL6,R) to be

(48) M(GL6,R) ∼= B(2$4)⊕ B($3 +$5)⊕ B($2 + chardet6)
⊕ B($1 +$3 +$4)⊕ B($1 +$2 +$5)⊕ B(2$1 + chardet6).

In terms of partitions, the λ for which cλR = 1 are

(49) ,

and cλR = 0 for all other partitions λ.
Since R lives over I5 it makes sense to specialise to M(GL5,R), whose decom-

position we can compute from the stable coefficients cλR by Corollary 6.7: we simply
need to throw away the two partitions whose length is more than 5. In terms of
fundamental weights, we obtain the decomposition
(50)
M(GL5,R) ∼= B(2$4)⊕B($3 +chardet5)⊕B($1 +$3 +$4)⊕B($1 +$2 +chardet5).

I5 I6

Figure 7. An illustration of the sets X∩I5×̇Z and X of Lemma 6.5
for the multiset R = {(1, 5), (3, 1), (4, 6)}. The smallest stable n is
n = 6.

Algebraic Combinatorics, Vol. 4 #2 (2021) 320



A Demazure Character Formula for the Product Monomial Crystal

Remark 6.9. Most of the above discussion of stability applies to the family Dn for
n > 4, with the Dynkin diagram labelled as

4

1

2 3 5 6 n

However, we do not know the correct analogue of generalised Schur modules in type
Dn, so we have not treated this case here explicitly.

6.2. Specht modules associated to arbitrary diagrams. Let D ⊆ N × N be
a finite subset with cardinality d, which we call a diagram with d boxes. A bijection
T : D → {1, . . . , d} is called a tableau of D, and the symmetric group Sd acts on
the set of tableaux by postcomposition: σ · T = σ ◦ T . A choice of tableau T defines
two subgroups of the symmetric group Sd, the row stabilising subgroup RT which
permute the entries of T within their rows, and the column stabilising subgroup CT
which permute the entries of T within their columns. Using these two subgroups we
may define the Young symmetriser yT =

∑
r∈RT ,c∈CT (−1)rrc, a pseudo-idempotent

element of the group algebra C[Sd]. The left submodule ΣT = C[SD]yT is called the
generalised Specht module associated to the diagram D and tableau T . A different
choice of T gives an isomorphic module, and so we define ΣD ∼= ΣT for any tableau
T of D, noting ΣD is only defined up to isomorphism.

When D is the Young diagram corresponding to a partition λ of d, Σλ is called a
Specht module, and is irreducible. Furthermore, as λ runs through the partitions of
d, the Σλ give a complete set of irreducible modules for C[Sd]. The decomposition
numbers cλD := [Σλ : ΣD] are called generalised Littlewood–Richardson coefficients,
and are invariant under row and column permutations of the diagram D.

Example 6.10. Let D = {(1, 1), (2, 2), (3, 2), (2, 3), (4, 3)} ⊆ Z × Z. This diagram,
along with a tableau T : D → {1, 2, 3, 4, 5} is pictured in Fig. 8. The row-stabilising
subgroup RT is generated by the transposition (24), while the column-stabilising
subgroup CT is generated by (23) and (45). The diagram D may be made into a
skew diagram D′ by applying the permutation (234) to the rows, followed by (132)
to the columns. We then use the theory of skew Schur functions to compute that
ΣD ∼= ΣD′ ∼= Σ(2,1,1,1) ⊕ Σ(3,1,1) ⊕ Σ⊕2

(2,2,1) ⊕ Σ(3,2). For example, the generalised
Littlewood–Richardson coefficient c(2,2,1)

D = 2.

1

2

3

4

5

1

5

2

3

4

Figure 8. On the left is a diagram
D = {(1, 1), (2, 2), (3, 2), (2, 3), (4, 3)},

pictured as a collection of squares in the plane. We index positions
in the plane like matrices, so that the first coordinate goes down
the page, and the second coordinate goes right along the page. In
the middle is a tableau T : D → {1, . . . , 5}, and on the right is a
rearrangement of the rows and columns of D to a second diagram D′

which is skew, of shape (3, 2, 2, 1)/(2, 1).
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Remark 6.11. Not all diagrams can be made into a skew shape via row and column
permutations, even if we restrict to only row and column permutations. One such
example is the diagram

D =

which has the decomposition ΣD ∼= Σ(4,1,1) ⊕ Σ⊕2
(3,2,1) ⊕ Σ(2,2,2). (This decomposition

is computed in Example 6.18).

6.3. Schur modules associated to arbitrary diagrams. Let V be a finite-
dimensional C-vector space, and D be a diagram with d boxes. The tensor power
V ⊗d is naturally a (GL(V ),Sd) bimodule, and we define the generalised Schur module
to be (up to isomorphism) the left GL(V )-module SD(V ) ∼= V ⊗d ⊗C[Sd] ΣD. As
a consequence of Schur–Weyl duality, the generalised Schur module decomposes as
SD(V ) ∼=

⊕
`(λ)6dimV c

λ
DSλ(V ). The restriction on partitions having length at most

dimV is not strictly necessary, since in this case we would have Sλ(V ) = 0.
The main theorem to be shown is that in type A, the product monomial crystal is

always a crystal of a generalised Schur module.

6.4. Schur and Flagged Schur modules. In order to study the characters of
the Schur module SD(V ), it is convenient to introduce a more concrete definition of
the Schur module (note that our previous definition was only up to isomorphism), as
well as a quotient of the Schur module, called the flagged Schur module. While the
Schur module is a module for the whole of GL(V ), the flagged Schur module will be a
module for a Borel subgroup of GL(V ), and will only be defined when dimV is large
enough compared to D. In the following discussion, we adopt the definitions from [23].

For a diagram D, let colj(D) ⊆ D denote the subset of boxes in column j, and
rowi(D) ⊆ D denote the subset of boxes in row i. Let

∧k(V ), T k(V ), and Sk(V )
denote the exterior, tensor, and symmetric algebras of degree k of V . We define the
map ψD as the composition
(51)⊗

j

colj(D)∧
(V ) ∆⊗···⊗∆−−−−−−→

⊗
j

T colj(D)(V )→
⊗
i

T rowi(D)(V ) m⊗···⊗m−−−−−−→
⊗
i

Srowi(D)(V ),

where the first map is comultiplication in each exterior algebra, the second map is
the natural rearrangement, and the third map is multiplication in the symmetric
algebra. The Schur module SD(V ) is defined as the GL(V )-submodule ImψD. Note
that rearranging the columns of D leaves SD(V ) invariant, while rearranging the rows
of D yields a different (but isomorphic) Schur module.

Now, suppose that the diagram D satisfies D ⊆ {1, . . . , r} × N (the diagram fits
within rows 1 through r), and n = dimV > r. Fix a full flag of quotient spaces
V• = (Vn → Vn−1 → · · · → V1), by which we mean that dimVi = i and each map
Vi → Vi−1 is surjective. We may postcompose ψD with the projection

(52) φD :
⊗
i

Srowi(D)(V )→
⊗
i

Srowi(D)(Vi),

and define the flagged Schur module S flag
D (V•) = Im(φD ◦ψD). Let B(V•) ⊆ GL(V ) is

the subgroup fixing the flag of quotients, then S flag
D (V•) will be a B(V•) module, but

rarely a GL(V ) module. Note that again, the module S flag
D (V•) is unchanged under

column permutations of D, but is no longer invariant under row permutations. This
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construction (and its dual, the Weyl and flagged Weyl modules) are given in full detail
in [23], sections 2 and 5.
Example 6.12. Let λ be a partition with at most r rows, and D be its Young diagram,
placed so that the longest row of λ is in the first row of D. Then SD(Cr) ∼= V (λ), the
irreducible GLr-module of highest weight λ, and S flag

D (Cr → Cr−1 → · · · → C1) ∼=
V (λ)λ, the highest-weight space. If the diagram is placed upside-down, so that the
longest row of λ is in row r, then both the Schur and flagged Schur modules are
isomorphic to V (λ).

Many of the results known about the generalised Schur modules SD(V ) are due to
geometric constructions of this module as sections of a line bundle over a (generally
singular) variety, in [18, 19]. In this setting, the flagged Schur module (or its dual,
the flagged Weyl module) naturally arise, and in [21, 22], a Demazure-type character
formula is given for the characters of the flagged Schur modules of percentage-avoiding
diagrams D. Fortunately, the diagrams we will encounter are northwest, which are au-
tomatically percentage-avoiding, and so these results apply. (A diagramD is northwest
if whenever (j, k), (i, l) ∈ D with i < j and k < l, then (i, k) ∈ D.)

6.5. Diagrams and multisets defined by partition sequences. It is quite awk-
ward to directly state the map from a multiset R to a corresponding diagram D.
Instead, we will define each of R and D from a common partition sequence.
Definition 6.13. A partition sequence of length r is a sequence λ = (λ(1), . . . , λ(r))
of partitions, such that `(λ(i)) 6 i. For each 0 6 i 6 r, let λi = (λ(1), . . . , λ(i)) denote
the prefix of λ of length i.
Definition 6.14. Let λ be a partition sequence of length r. The diagram D(λ) asso-
ciated to λ is defined inductively as follows:

(1) For i = 0, D(λ0) = ∅, the empty diagram.
(2) For i > 0, D(λi) is obtained from D(λi−1) by shifting the contents of D(λi−1)

down one row, and placing the Young diagram of λ(i) to the right of the
previous diagram, with the longest row of λ(i) in row 1.

Example 6.15. Given the partition sequence λ = (∅, (1, 1), (2, 1), (1, 1, 1, 1), (2, 1, 1)),
we obtain the sequence of diagrams D(λ0) = D(λ1) = ∅, then D(λ2), . . . , D(λ5) are
given by:

D(λ2) = 1
2

D(λ3) = 1
2
3

D(λ4) = 1
2
3
4

D(λ5) = 1
2
3
4
5

Remark 6.16. All of the results of [22] apply to the class of column-convex diagrams,
which are diagrams where the columns have no gaps: if (i1, j) ∈ D and (i2, j) ∈ D
for i1 < i2, then all of (i1, j), (i1 + 1, j), . . . , (i2, j) ∈ D. We note that diagrams of
the form D(λ) are always column-convex, and conversely that every column-convex
diagram D is of the form D(λ) after applying a column permutation.
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Lemma 6.17. Let λ be a partition sequence of length r, and let V be a vector space of
dimension n > r, with a fixed full quotient flag V•. Then the characters of the flagged
Schur modules S flag

D(λi)(V•) satisfy the following recurrence:

(1) For i = 0, ch S flag
D(λ0)(V•) = 1.

(2) For i > 0, ch S flag
D(λi)(V•) = eλ

(i) ·π1 · · ·πi−1(ch S flag
D(λi−1)(V•)) as GL(V ) char-

acters.

Proof. The case of i = 0 is clear. The inductive case follows from [22, Theorem 23],
noting moving the diagram D(λi−1) down one row can be done by the successive
row permutations s(i−1,i), . . . , s(1,2), corresponding to the application of Demazure
operators πi−1, . . . , π1. �

Example 6.18. Recall the diagram D from Remark 6.11:

D =

which (after sorting columns) corresponds to the partition sequence

λ = ((1), (1), (2, 1, 1)).

We get the sequence of diagrams (where we have expanded out the row-swapping
steps)

1
2
3

→ → → → → → ∅

which gives the character formula

(53) ch S flag
D (C3) = e(2,1,1) · π1π2(e(1) · π1(e(1) · 1))

which we compute to be (writing x1 · · ·xi = e$i , and using the shorthand xa1xb2xc3 =
xabc)

(54) ch S flag
D (C3) = x411 + x231 + 2x321 + x312 + x222

which decomposes as a sum of Demazure characters

(55) ch S flag
D (C3) = κ411 + κ231 + κ312 + κ222

showing the claimed decomposition ΣD ∼= Σ(4,1,1) ⊕ Σ⊕2
(3,2,1) ⊕ Σ(2,2,2).

Definition 6.19. Let λ be a partition sequence of length r. Define the multiset R(λ)
associated to λ and the upward-closed set J(λ) associated to λ inductively as follows:

(1) For i = 0, R(λ0) = ∅, and let J(λ0) be the complement of the downward-
closed set generated by (1,−1).

(2) For i > 0, let J(λi) be the union of J(λi−1) with the upward-closed set gener-
ated by (1,−2i+ 1), and let R(λi)−R(λi−1) be supported on J(λi)rJ(λi−1)
and have weight λ(i).

Example 6.20. As in Example 6.15, let λ = (∅, (1, 1), (2, 1), (1, 1, 1, 1), (2, 1, 1)). As a
sequence of weights, expressed in terms of the fundamental weights, we would instead
have (0, $2, $1 +$2, $4, $1 +$3). The multiset R(λ5) is shown in Fig. 9 as the red
circled points, with the differences in the truncations Ji = J(λi) also shown.
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J1 n J0

J2 n J1

J3 n J2

J4 n J3

J5 n J4

(1; 1)

J0

I1

Figure 9. An illustration of Example 6.20.

Remark 6.21. If λ is a partition sequence of length r, then R(λ) is stable for GLr and
henceM(GLr, λ) may be used to compute the stable coefficients cλR of Definition 6.6.

Lemma 6.22. Let λ be a partition sequence of length r. Then the characters of the
truncated product monomial crystals M(GLr,R(λi), J(λi)) satisfy the following re-
currence:

(1) For i = 0, chM(R(λ0), J(λ0)) = chM(∅, J(λ0)) = 1.
(2) For i > 0,

chM(R(λi), J(λi)) = eλ
(i)
· chM(R(λi−1), J(λi))(56)

= eλ
(i)
· π1 · · ·πi−1 chM(R(λi−1), J(λi−1)).(57)

Proof. The case of i = 0 is clear. The inductive character formula given in Theorem 5.9
implies the inductive case. �

The recurrences appearing in Lemma 6.17 and Lemma 6.22 are identical, showing
that for a partition sequence λ of length r, the character of the flagged Schur module
SD(λ)flag(V•) is equal to the character of the truncated crystalM(GLr,R(λ), J(λ)).

Theorem 6.23. Let λ be a partition sequence of length r, and let R = R(λ) and
D = D(λ). Then the stable coefficients of R and D coincide, i.e. we have cµR = cµD for
all partitions µ, and furthermore for any n such that R(λ) lives over In (equivalently,
D(λ) has columns of length at most n), we have chM(GLr,R) = ch SD(Cn) and
hence the monomial crystalM(GLr,R) is the crystal of the generalised Schur module
SD(Cn).

Proof. Since the recurrences Lemma 6.17 and Lemma 6.22 are identical, letting J =
J(λ) we have the equality of characters ch S flag

D (V•) = chM(GLr,R, J). Applying the
Demazure operator πw◦ to both sides yields (by Corollary 5.14 and [22, Theorem 21])
the equality of characters ch SD(Cr) = chM(GLr,R). Since both D and R are stable
for GLr we have cµR = cµD for all partitions µ. Comparing the two restriction rules
given in Corollary 6.7 and Section 6.3 completes the proof. �
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Remark 6.24. Theorem 6.23 applies to all finite multisets R since we may assume
that R is contained in down({(1,−1)}) after performing a vertical shift on the whole
of R, which does not change the isomorphism class ofM(R). We may always write
the shifted R as R(λ) for some partition sequence λ, thenM(GLn,R) is the crystal of
SD(λ)(Cn). Conversely, every column-convex diagram is D(λ) for some λ, and hence
Theorem 6.23 gives a positive combinatorial formula for ch SD(Cn) in terms of a sum
over elements of the corresponding product monomial crystal.
Remark 6.25. By [8], the category O of truncated shifted Yangians provides cate-
gorifications of g-modules whose associated crystal is the product monomial crystal.
Hence, by Theorem 6.23, we deduce that in type A these are categorifications of
generalised Schur modules, in the column-convex case. In particular, the truncated
shifted Yangians produce (the first known) categorifications of skew Schur modules.
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