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Subword complexes via triangulations of
root polytopes

Laura Escobar & Karola Mészáros

Abstract Subword complexes are simplicial complexes introduced by Knutson and Miller to
illustrate the combinatorics of Schubert polynomials and determinantal ideals. They proved
that any subword complex is homeomorphic to a ball or a sphere and asked about their geo-
metric realizations. We show that a family of subword complexes can be realized geometrically
via regular triangulations of root polytopes. This implies that a family of β-Grothendieck poly-
nomials are special cases of reduced forms in the subdivision algebra of root polytopes. We
can also write the volume and Ehrhart series of root polytopes in terms of β-Grothendieck
polynomials.

1. Introduction
In this paper we provide geometric realizations of pipe dream complexes PD(π) of
permutations π = 1π′, where π′ is a dominant permutation on 2, 3, . . . , n as well as the
subword complexes that are the cores of the pipe dream complexes PD(π). We realize
PD(π) as (repeated cones of) regular triangulations of the root polytopes P(T (π)).

Subword complexes are simplicial complexes introduced by Knutson and Miller
in [10, 11] to illustrate the combinatorics of Schubert polynomials and determinantal
ideals. Since the appearance of Knutson’s and Miller’s work in there has been a
flurry of research into the geometric realization of subword complexes with progress
in realizing families of spherical subword complexes: [2, 3, 4, 5, 20, 21, 22, 24]. This
paper is the first to succeed in realizing a family of subword complexes which are
homeomorphic to balls.

Subword complexes were first shown to relate to triangulations of root polytopes
by Mészáros in [17], where the author gives a geometric realization of the pipe dream
complex of [1, n, n − 1, . . . , 2] and whose work served as the stepping stone for the
present project. In the papers [12, 14, 15, 16] Mészáros studied triangulations of root
polytopes that we utilize in this work (some of the mentioned papers are in the
language of flow polytopes, but in view of [17, Section 4] some of their content can
also be understood in the language of root polytopes).

The main theorem of this paper is the following, which has several interesting
consequences explored in the paper. For the definitions needed for this theorem see
the later sections.
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Theorem 1.1. Let π = 1π′ ∈ Sn, where π′ is dominant. Let C2(π) be the core of
PD(π) coned over twice. The canonical triangulation of the root polytope P(T (π))
(which is a regular triangulation) is a geometric realization of C2(π).

The roadmap of this paper is as follows. In Sections 2 and 3 we explain the necessary
background about subword complexes and root polytopes, respectively. In Section 4
we prove a geometric realizations of pipe dream complexes PD(π) of permutations
π = 1π′, where π′ is a dominant permutation on 2, 3, . . . , n, via triangulations of
root polytopes P(T (π)). In Section 5 we use the previous result to show that β-
Grothendieck polynomials are special cases of reduced forms in the subdivision algebra
of root polytopes while in Section 6 we show how to express the volume and Ehrhart
series of root polytopes in terms of Grothendieck polynomials. Appendix A is devoted
to proving a certain uniqueness property of the reduced form in the subdivision algebra
that we used in Section 5.

2. Background on pipe dream complexes
We let Sn denote the set of permutations of size n.

Definition 2.1. The (Rothe) diagram of a permutation π ∈ Sn is the collection of
boxes D(π) = {(πj , i) : i < j, πi > πj}. It can be visualized by considering the boxes
left in the n× n grid after we cross out the boxes appearing south and east of each 1
in the permutation matrix for π.

•
•

•
•

Figure 1. The diagram for π = [4132].

Notice that no two permutations can give the same diagram. We will consider
permutations of the form π = 1π′ where π′ is a dominant permutation of {2, . . . , n},
i.e., the diagram of π is a partition with north-west most box at position (2, 2).
Dominant permutations can be equivalently defined as the 132-avoiding permutations,
and there are Catalan many for fixed size. Our convention is to encode the partition
by the number of boxes in each column.

•

•

•

•
•

•

Figure 2. The diagram for π = [164235] which corresponds to λ = (4, 2)

Definition 2.2. A pipe dream for π ∈ Sn is a tiling of an n × n matrix with two
tiles, crosses and elbows ��, such that

(1) all tiles in the weak south-east triangle of the n× n matrix are elbows, and
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(2) if we write 1, 2, . . . , n on the left and follow the strands (ignoring second cross-
ings among the same strands) they come out on the top and read π.

A pipe dream is reduced if no two strands cross twice.

1 4 2 3

1 �� �� �� �
2 �� �
3 �
4 �

Figure 3. A reduced pipe dream for π = [1423].

Definition 2.3. The pipe dream complex PD(π) of a permutation π ∈ Sn is the
simplicial complex with vertices given by entries on the northwest triangle of an n×n-
matrix and facets given by the elbow positions in the reduced pipe dreams for π.

Pipe dream complexes are a special case of the subword complexes defined by
Knutson and Miller in [10, 11]. We proceed to explain the correspondence. The group
Sn is generated by the adjacent transpositions s1, . . . , sn−1, where si transposes i↔
i+1. Let Q = (q1, . . . , qm) be a word in {s1, . . . , sn−1}, i.e., Q is an ordered sequence.
A subword J = (r1, . . . , rm) of Q is a word obtained from Q by replacing some of its
letters by −. There are a total of 2|Q| subwords of Q. Given a subword J , we denote by
QrJ the subword with k-th entry equal to − if rk 6= − and equal to qk otherwise for,
k = 1, . . . ,m. For example, J = (s1,−, s3,−, s2) is a subword of Q = (s1, s2, s3, s1, s2)
and Q r J = (−, s2,−, s1,−). Given a subword J we denote by

∏
J the product of

the letters in J , from left to right, with − behaving as the identity.

Definition 2.4 ([10, 11]). Let Q = (q1, . . . , qm) be a word in {s1, . . . , sn−1} and
π ∈ Sn. The subword complex ∆(Q, π) is the simplicial complex on the vertex set Q
whose facets are the subwords F of Q such that the product

∏
(Q r F ) is a reduced

expression for π.

In this language, PD(π) is the subword complex ∆(Q, π) corresponding to the tri-
angular word Q = (sn−1, sn−2, sn−1, . . . , s1, s2, . . . , sn−1) and π. The correspondence
between pipe dreams and subwords is induced by the labeling of the entries in the
northwest triangle of an n× n-matrix by adjacent transpositions, as depicted in Fig-
ure 4, and by making a in a pipe dream correspond to a − in a subword and a�� correspond to the si in its entry. In order to go from a pipe dream to a subword,
we read the entries in the northwest triangle from left to right starting at the bottom.

s4

s4

s4

s4

s3

s3

s3

s2

s2s1 · · ·

...

Figure 4. Labeling of the entries in the northwest triangle by ad-
jacent transpositions.
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Definition 2.5. Let cone(π) be the set of vertices of PD(π) that are in all its facets.
We define the core of π, denoted by core(π), to be the simplicial complex obtained by
restricting PD(π) to the set of vertices not in cone(π).

Notice that PD(π) is obtained from its core by iteratively coning the simplicial
complex core(π) over the vertices in cone(π). This is a standard definition for simplicial
complexes. In the language of pipe dream complexes, the core is the restriction to the
entries in the n×nmatrix that are a cross in some reduced pipe dream for π. Following
the correspondence described in Figure 4, this restriction induces a subword Q′ of the
triangular word and so core(π) is the subword complex ∆(Q′, π).

Example 2.6. Figure 3 shows a reduced pipe dream for π = [1423]. The pipe dream
complex PD(1423) is three dimensional with vertices (1, 1), (1, 2), (1, 3), (2, 1), (2, 2),
and (3, 1). Every facet contains the vertices (1, 1) and (1, 3) since every reduced pipe
dream must have elbows on these positions. Therefore, one can recover PD(1423)
from its core, shown in Figure 5, by coning twice.

• • • •
(1, 2) (2, 2) (2, 1) (3, 1)

1 4 2 3

1 �� �� �� �
2 �� �
3 �
4 �

1 4 2 3

1 �� �� �
2 �� �� �
3 �
4 �

1 4 2 3

1 �� �� �
2 �� �
3 �� �
4 �

Figure 5. The core of PD(1423). The facets are labelled by the
reduced pipe dreams for [1423].

Since we are only considering permutations of the form 1π′ with π′ a dominant
permutation, core(1π′) is easy to describe. Given a diagram of a permutation there
are two natural reduced pipe dreams for π, referred to as the bottom reduced pipe
dream of π and the top reduced pipe dream of π, one obtained by aligning the diagram
to the left and replacing the boxes with crosses and the other one by aligning the
diagram up. See Figure 6.

1 6 4 2 3 5

1 �� �� �� �� �� �
2 �� �� �
3 �� �
4 �� �
5 �
6 �

(a) Aligned left is the bottom
reduced pipe dream

1 6 4 2 3 5

1 �� �� �� �
2 �� �� �
3 �� �� �
4 �� �
5 �� �
6 �

(b) Aligned up is the top reduced
pipe dream

Figure 6. Two reduced pipe dreams for [164235] obtained by align-
ing the diagram to the left and to the top.

The core of 1π′ is the simplicial complex obtained by restricting PD(π) to the
vertices corresponding to the positions of the crosses in the superimposition of these
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two pipe dreams. We refer to the region itself as the core region, and denote it by
cr(π). See Figure 7 for an example. Note that different permutations can have the
same core region, as is the case for [15342] and [15432].

Figure 7. The core region of [164235]

In [1], Bergeron and Billey introduced an algorithm to construct all reduced pipe
dreams for π. Given a reduced pipe dream P for all permutations π, a ladder admitting
rectangle is a connected k × 2 rectangle inside P such that k > 2 and the only ��
inside this rectangle are in the top row and in the southeast corner, see the diagram
on the left in Figure 8. A ladder move on P moves the in the southwest corner of
a ladder admitting rectangle to the northeast corner. Notice that the resulting pipe
dream is a reduced pipe dream for π.

2 1�� ��

�
7−→

2 1��

�� �
Figure 8. Ladder move.

Theorem 2.7 ([1]). The set of all reduced pipe dreams of π equals the set of pipe
dreams that can be derived from the bottom reduced pipe dream by a sequence of ladder
moves.

The boundary of a pure simplicial complex ∆ is the simplicial complex ∂∆ with
facets the codimension 1 faces of ∆ that are in exactly one facet of ∆. A face F of ∆
is interior if F is not in ∂∆.

3. Background on root polytopes
We follow the exposition of [17, Section 4] in this section. A root polytope of type An
is the convex hull of the origin and some points in Φ+ = {ei− ej | 1 6 i < j 6 n+ 1},
the set positive roots of type An, where ei denotes the ith coordinate vector in Rn+1.
An important family of root polytopes studied by Gelfand, Graev and Postnikov in [7]
are the full root polytopes

P(A+
n ) = ConvHull(0, ei − ej | 1 6 i < j 6 n+ 1).

In this paper we restrict ourselves to a class of root polytopes including P(A+
n ), which

have subdivision algebras as defined in [12]. We discuss subdivision algebras in relation
to Grothendieck polynomials in Section 5.
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Let G be a forest on the vertex set [n+ 1]. Define
• VG = {ei − ej | (i, j) ∈ E(G), i < j}, a set of vectors associated to G;
• cone(G) = 〈VG〉 := {

∑
ei−ej∈VG cij(ei − ej) | cij > 0}, the cone associated to

G; and
• VG = Φ+ ∩ cone(G), all the positive roots of type An contained in cone(G).

The root polytope P(G) associated to the forest G is
(3.1) P(G) := ConvHull(0, ei − ej | ei − ej ∈ VG).
The root polytope P(G) associated to a graph G can also be defined as
(3.2) P(G) = P(A+

n ) ∩ cone(G).
Note that P(A+

n ) = P(Pn+1) for the path graph Pn+1 on the vertex set [n+ 1].
The reduction rule for graphs: Given a graph G0 on the vertex set [n + 1] and

(i, j), (j, k) ∈ E(G0) for some i < j < k, let G1, G2, G3 be graphs on the vertex set
[n+ 1] with edge sets

(3.3)
E(G1) = E(G0)\{(j, k)} ∪ {(i, k)},
E(G2) = E(G0)\{(i, j)} ∪ {(i, k)},
E(G3) = E(G0)\{(i, j), (j, k)} ∪ {(i, k)}.

We say that G0 reduces to G1, G2, G3 under the reduction rules defined by equa-
tions (3.3).

Lemma 3.1 (Reduction Lemma for Root Polytopes, [12]). Given a forest G0 with d
edges let (i, j), (j, k) ∈ E(G0) for some i < j < k and G1, G2, G3 as described by
equations (3.3). Then

P(G0) = P(G1) ∪ P(G2)
where all polytopes P(G0),P(G1),P(G2) are d-dimensional and

P(G3) = P(G1) ∩ P(G2) is (d− 1)-dimensional.

The Reduction Lemma says that performing a reduction on a forest G0 is the same
as dissecting the d-dimensional polytope P(G0) into two d-dimensional polytopes
P(G1) and P(G2), whose vertex sets are subsets of the vertex set of P(G0), whose
interiors are disjoint, whose union is P(G0), and whose intersection is a facet of both.

The following theorem in [12] describes a triangulation of the root polytope P(G)
for any forest G. Its proof is based on the Reduction Lemma stated above. We now
define the terminology used in the theorem. A graph G on the vertex set [n + 1] is
said to be noncrossing if there are no 1 6 i < j < k < l 6 n+ 1 such that (i, k), (j, l)
are edges of G. The graph G is said to be alternating if at each vertex v of G all
edges are either of the form (v, i) for v < i or of the form (i, v) for i < v. Finally,
the directed transitive closure of the graph G on the vertex set [n + 1], denoted by
Ḡ, is Ḡ := (V (G), E(G) ∪ {(i, j) | (i, j) 6∈ E(G) and there exist i < i1 < · · · < ik <
j with (i, i1), (i1, i2), . . . , (ik, j) ∈ E(G)}).

Theorem 3.2 ([12]). Let T1, . . . , Tk be the noncrossing alternating spanning trees of
the directed transitive closure of the noncrossing forest G. Then P(T1), . . . ,P(Tk) are
top dimensional simplices in a regular triangulation of P(G).

We note that there is a version of Theorem 3.2 in [12] that does not require the
noncrossing condition on G; however, in the present paper we only invoke the above
version which has the advantage that it is easier to state.

We refer to the triangulation specified in Theorem 3.2 as the canonical triangulation
of P(G). We remark that the polytopes P(Ti), i ∈ [k], in Theorem 3.2 are simplices,
because the graphs Ti, i ∈ [k], are alternating trees, and as such they are their own
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transitive closure, with the roots corresponding to the edges of each of them linearly
independent. Since each simplex P(Ti), i ∈ [k], contains the vertex 0, it follows that
the canonical triangulation of P(G) also induces a triangulation of the vertex figure
of P(G) at 0, which we also call the canonical triangulation of the vertex figure of
P(G) at 0. We sumarize some facts about the canonical triangulation in the following
proposition.

Proposition 3.3. Let C(G) denote the simplicial complex induced by the canonical
triangulation of the vertex figure of P(G) at 0. The vertices of C(G) are in bijection
with edges (i, j) in the directed transitive closure of G; the vertex of C(G) corresponding
to (i, j) is the intersection of the ray pointing to ei − ej and the hyperplane by which
we intersect P(G) to obtain the considered vertex figure.

4. Pipe dream complexes as triangulations of root polytopes
In this section we give geometric realizations of pipe dream complexes of permuta-
tions π = 1π′, where π′ is dominant, in terms of triangulations of root polytopes.
Indeed, we construct a geometric realization of the subword complex that is the core
of PD(1π′). To this end we start by defining a tree T (π) for each permutation π = 1π′,
π′ dominant.

4.1. Construction of the tree T (π). Let π = 1π′, where π′ is dominant. Denote
by S(π) the subword complex that is the core(π) coned over the vertex of PD(π)
corresponding to the entry (1, 1). Denote the region that is the union of (1, 1) and cr(π)
by R(π). In order to determine the tree T (π), we will label the southeast boundary
with some numbers and we will place dots in some entries of R(π), see Figure 9.
The boundary of the core region starting from the southwest (SW) corner of it to the
northeast (NE) corner can be described as a series of east (E) and north (N) steps. Let
A be the set consisting of all the N steps together with some E steps. The step E ∈ A
if the bottom reduced pipe dream is bounded by E but not by the N step directly
preceding E. As we traverse this lower boundary from the SW corner we write the
numbers 1, . . . ,m in increasing fashion below the E steps and to the right of the N
steps that belong to A. For the E steps that we did not assign a number, we consider
their number to be the number assigned to the N step directly preceding them.

We now describe how to place dots in R(π). Consider the bottom reduced pipe
dream drawn inside R(π) and with elbows replaced by dots. Drop these dots south.
Define T (π) to be the tree on m vertices such that there is an edge between vertices
i < j if there is a dot in the entry in the column of the E step labeled i and in the
row of the N step labeled j. Let t(π) be the number of edges of T (π).

•

•

• • •

1

22
34

55
6

7−→
•
•
• •

•

1

22
34

55
6

7−→
1 2 3 4 5 6

Figure 9. Let π = [15342], on the left we see the bottom reduced
pipe dream for π drawn inside R(π) with dots instead of elbows, this
gives the labeling of the boundary. We then drop the dots to the
south to get the dots encoding T (π), which is depicted on the right.
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Lemma 4.1. For permutations π = 1π′, where π′ is dominant, the graph T (π) con-
structed above is a tree.

Proof. Our proof that T (π) is acylic and connected is based on the following obser-
vations which we number for convenience.

Observation 1. Consider the bottom reduced pipe dream drawn inside R(π) and with
elbows replaced by dots as in the leftmost diagram in Figure 9. Each box in the top
row of R(π) contains a dot. In every other row of R(π) there is either zero or one dot
depending on whether or not the N step on the right of the considered row is adjacent
to the bottom pipe dream or not.

Observation 2. The only dots that can change position when dropping them in the
above construction are the ones on the top row of R(π).

First we show that T (π) is acylic. Note that after dropping the dots south, if there
is a dot in the box (i, j) of R(π) then there are dots on all positions (k, l) with k > i
or j > l. Indeed, if T (π) has a cycle then the labelled southeast boundary of R(π)
together with the dropped dots must have a piece that looks like:

•

•
•

•••

...

· · ·

a

bb

c

Consider the step before dropping the dots in R(π). By Observation 2, there is a
crossing on the box on top of the box bounded by the N step for b. In order for b to
be the label of both the N and E step noted in the above figure, we conclude that
before dropping the dots in R(π) we must have the following confirguration:

•

+
•

•••

...

· · ·

a

bb

c

However, this contradicts the very construction of R(π). Therefore, T (π) is acyclic.
To show that T (π) is a tree, since it is acyclic it suffices to show that it has

t(π) = m− 1 edges, where m is the number of distinct labels used in the boundary.
By construction, the number of dots in R(π) is m1 +m2−1 where m1 = l(λ)+1 is

the number of dots in the first row before they are dropped, and m2 is the number of
N steps in the boundary not adjacent to the bottom pipe dream. Observation 1 and
the fact that the last dot in the first row is to the left of an N step yields that the
number of dots in R(π), which is also t(π), is m1 +m2 − 1.

On the other hand, note that m, the number of labels equals m1 +m2 concluding
our proof. Indeed, the number of E steps along the boundary equals m1 and they
all have distinct labels. Moreover, there are exactly m2 N steps that have labels not
occurring among the labels of the E steps. �

Remark 4.2. We note that the construction of T (π) can be simplified in the special
case of π = 1π′ with D(π′) a partition with distinct parts. Indeed, in the above
construction the first string of E steps are in A. Furthermore, the E steps that can
be seen as the boundary of the bottom reduced pipe dream B of π and such that E
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bounds row r of length lr of B and the row below row r of length lr+1 is at least two
boxes shorter than row r and moreover, step E is not (lr+1 + 1)st from the left side
are also in A. Also, we are placing dots in the rightmost boxes of the core region as
well as in positions (lr+1 + 1)st until (lr − 1)th in rows r of the bottom reduced pipe
dream B that are longer than row r + 1 by at least two boxes. In the case in which
π = 1π′ where π′ is dominant with its diagram having all parts distinct, then the
decoration on the core diagram is much simpler. The first string of E steps consist of
only one E step and this is also the only E step in A, so the number of vertices of
T (π) is 2 more than the size of the largest column of the diagram of π. The dots are
placed on the rightmost boxes of cr(π), see Figure 10.

•
•
•
•
•

1
2

3
4

5
6

7−→
1 2 3 4 5 6

Figure 10. Obtaining T (π) from R(π), where π = [164235].

4.2. Bijection between the vertices of S(π) and the vertices of C(T (π)).
The vertices of S(π) are in bijection with configurations of one elbow and |R(π)| − 1
crosses in R(π), where |R(π)| equals the number of entries in R(π). Denote these
vertices by v1, . . . , vk. We define a map M from the vertices of the simplicial complex
S(π) to the vertices of C(π) := C(T (π)). Recall that C(π) is the canonical triangulation
of the vertex figure at 0 of the root polytope P(T (π)) and by Proposition 3.3 the
vertices of the triangulation are in bijection with edges (i, j) in the directed transitive
closure of T (π). The latter in turn are in bijection with the boxes of R(π) by the map
that takes a box to the edge (i, j) if the E step below the box and in the boundary
of R(π) is labeled by i and the N step to the right of the box and in the boundary of
R(π) is labeled by j. The map M is defined analogously as follows.
Definition 4.3. Consider a vertex of S(π); this can be seen as a sole elbow tile in
R(π). M maps this vertex to the vertex of C(π) corresponding to (i, j) if the box
containing the elbow tile yields the edge (i, j) in T (π) (that is to the intersection of
the ray pointing to ei−ej and the hyperplane by which we intersect P(T (π)) to obtain
the considered vertex figure).

Theorem 4.4. The triangulation C(π) is a geometric realization of the subword com-
plex S(π).
Proof. We show that the map M described above respects the simplicial complex
structure of S(π) and C(π). Since both S(π) and C(π) are pure simplicial complexes
of the same dimension by Lemma 4.7 it suffices to show that the map M is a bijection
on the facets of S(π) and C(π). This is proven in Theorem 4.8. �

Proof of Theorem 1.1. Since C(π) is the canonical triangulation of the vertex figure at
0 of the root polytope P(T (π)) then we must cone this triangulation once to obtain the
canonical triangulation of P(T (π)). By Theorem 4.4 it follows that this triangulation
of P(T (π)) is a geometric realization of the subword complex S(π), coned over once.
This simplicial complex equals C2(π). �
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•
•
•

1
2

3
4

5
6

7−→
1 2 3 4 5 6

Figure 11. A few examples of the image of M . Each colored dot
represents the vertex with an elbow at that position.

4.3. Geometric realization of core(π). Next we show that from Theorem 4.4 it
follows that we can also realize core(π) geometrically, which is a subword complex as
explained in Section 2 after Definition 2.5. To this end we prove an auxiliary lemma
first.

Lemma 4.5. Let π = 1π′, with π′ dominant. If C(π) has an interior vertex, then it is
the unique vertex in C(π) on the ray between 0 and e1 − em. Moreover, C(π) has an
interior vertex if and only if π = 1n(n− 1) . . . 2.

Proof. C(π) has an interior vertex if and only if the cone generated by ei − ej for
(i, j) ∈ T (π) has an interior point ek − el, where (k, l) is in the directed transitive
closure of T (π). Since ei − ej for (i, j) ∈ T (π) are linearly independent, an interior
point can be expressed as

∑
(i,j)∈T (π) cij(ei − ej) with cij > 0, (i, j) ∈ T (π). If

T (π) = ([m], {(i, i + 1) | i ∈ [m − 1]}), then e1 − em =
∑

(i,j)∈T (π)(ei − ej) is an
interior point; moreover, ek − el for 1 6 k < l 6 m is an interior point if and only
if k = 1 and l = m. We have T (π) = ([m], {(i, i + 1) | i ∈ [m − 1]}) exactly for
π = 1m(m − 1) . . . 2. For T (π) 6= ([m], {(i, i + 1) | i ∈ [m − 1]}), there is no (k, l) in
the directed transitive closure of T (π) such that ek−el =

∑
(i,j)∈T (π) cij(ei−ej) with

cij > 0. �

Theorem 4.6. Let π = 1π′, with π′ dominant. Let v be the unique vertex in C(π)
on the ray between 0 and e1 − em. For π 6= 1m(m − 1) . . . 2, v is in the boundary of
C(π), and core(π) is realized by the induced triangulation of the vertex figure of C(π)
at v. For π = 1m(m− 1) . . . 2, core(π) is realized by the induced triangulation of the
boundary of C(π).

Proof. The vertex v, which is the unique vertex in C(π) on the ray between 0 and
e1 − em, is the unique coning point of the geometric realization of S(π). If v is in the
boundary of C(π), which happens exactly when π 6= 1m(m − 1) . . . 2 by Lemma 4.5,
then the induced triangulation of the vertex figure at v of C(π) is a geometric real-
ization of core(π) (which is homeomorphic to a ball). For π = 1m(m − 1) . . . 2, the
coning point v lies in the interior of C(π), then since it is the only point in the interior
of the canonical triangulation C(π) by Lemma 4.5, then the induced triangulation of
the boundary of C(π) is a geometric realization of core(π) (which is homeomorphic to
a sphere). �

We now proceed to prove an auxiliary lemma used in the proof of Theorem 4.4.

Lemma 4.7. The core of the pipe dream complex of π = 1π′, where the diagram of π′
is a partition, is of dimension t(π) − 2. The dimension of the root polytope P(T (π))
is t(π) and its vertex figure at 0 is of dimension t(π)−1. In particular, both S(π) and
C(π) are of dimension t(π)− 1.
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Proof. Since subword complexes are pure, then the dimension of the core of the pipe
dream complex of π equals the dimension of one of its facets. Consider the facet given
by the bottom reduced pipe dream drawn inside the core region. The dimension of this
facet equals one less than the number of elbows in the core and from the construction
of T (π) this equals t(π)−2. The dimension of the root polytope P(T (π)) is the number
of edges in T (π), which by definition is t(π). �

4.4. Bijection between reduced pipe dreams for π and simplices of C(π).
The map M can be easily extended to a map between pipe dreams P of π drawn
inside R(π) and forests F on m vertices as follows. For each elbow tile in P add the
edge (i, j) corresponding to the box of the elbow to F . Moreover, add the edge (1,m)
to F .

Theorem 4.8. The reduced pipe dreams of π = 1π′, where the diagram of π′ is a par-
tition, are in bijection with the noncrossing alternating spanning trees of the directed
transitive closure of T (π) via the map M .

We prove Theorem 4.8 by induction on the number of columns in the diagram. We
break it down in several lemmas.

Lemma 4.9. Take the permutation π = 1π′, where the diagram of π′ is λ = (k). The
reduced pipe dreams of π are in bijection with the noncrossing alternating spanning
trees of the directed transitive closure of T (π) via the map M.

Proof. The edges of T (π) for such a π are (1, 2) and (2, j) for j = 3, . . . , k + 2 and
thus for the transitive closure of T (π) we add the edges (1, j) with j = 3, . . . , k + 2.
See Figure 12.

•
•
•
•
•

1
2

3
4
5
6

M7−→

1 2 3 4 5 6

Figure 12. The region R(π) and the tree T (π) for λ = (4)

For l = 2, . . . , k + 2 let Tl be a tree on the vertex set [k + 2] consisting of the
edges (2, i) for 2 < i 6 l and (1, j) for j > l. Then Tl, l = 2, . . . , k + 2, are all of
the noncrossing alternating spanning trees of the directed transitive closure of T (π).
The map M applied to the bottom reduced pipe dream of π yields Tk+2. Moreover,
after performing 0 6 i 6 k ladder moves (there is only one way to do this) on the
bottom reduced pipe dream of π, we obtain a reduced pipe dream whose image under
M is Tk+2−i. By Theorem 2.7 these are indeed all of the reduced pipe dreams of π
concluding the proof. �

Lemma 4.10. Given π = 1π′, where the diagram of π′ is a partition and that has more
than one nonzero column, let its rightmost (shortest) column be of size k. Then in a
reduced pipe dream of π the only configurations of crosses and elbows that can occur
in the rightmost column of cr(π) are, as read from above, l crosses and k − l elbows,
for l = 0, . . . , k.

Proof. This follows immediately from Theorem 2.7. �
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Lemma 4.11. Let π = 1π′, where the diagram of π′ is a partition λ = (λ1, . . . , λz)
that has more than one nonzero column. Consider all reduced pipe dreams of π where
the configuration of crosses and elbows in the rightmost column of cr(π) is set to have
l crosses and k − l elbows for a fixed 0 6 l 6 k. These are in bijection with reduced
pipe dreams of the permutation 1wl, where wl has diagram (λ1 − (k − l), λ2 − (k −
l), . . . , λz−1 − (k − l)).

Proof. Since the bottom k − l boxes of the rightmost column of cr(π) are elbows, it
can be seen using Theorem 2.7 that the k − l rows containing crosses one step to the
south and one step to the west of these k − l boxes can never move anywhere.

Moreover, the fixed rows of crosses do not affect the ladder moves we can make on
the remaining crosses. This allows us to get exactly the reduced pipe dreams for the
permutation 1w, where the diagram of w is the diagram of π after ignoring the fixed
rows and shortest column, i.e., w has diagram (λ1 − (k − l), λ2 − (k − l), . . . , λz−1 −
(k − l)). �

The following example illustrates the lemma above.

Example 4.12. Let 1π = [164235] and suppose l = 1, i.e., we are fixing one cross
in position (1, 3) and elbow in position (2, 3), see Figure 13. The elbow in entry
(2, 3) causes row 3 to consist of only crosses. Therefore the reduced pipe dreams for
[164235] with a cross in entry (1, 3) and elbow in (2, 3) correspond with the reduced
pipe dreams for [15234]. The diagram of this latter permutation has fewer columns.

��

(a) Core of the permutation
with diagram λ = (4, 2)

7−→

(b) Core of the permutation
with diagram λ = (3)

Figure 13. New core after applying the reduction of Lemma 4.11
for l = 1 to the core on the left.

Lemma 4.13. Given π = 1π′, π′ dominant, where the length of the shortest column
of the diagram of π′ is k, the set S of noncrossing alternating spanning trees of the
directed transitive closure of T (π) is a disjoint union S = S0 t · · · t Sk, where

(4.1) Sl = {T ∈ S : (m− k,m− j) /∈ E(T ) for j = 0, . . . , l − 1}
∪ {T ∈ S : (m− k,m− j) ∈ E(T ) for j = l, . . . , k − 1},

for 0 6 l 6 k, where m is the number of vertices of T (π).

Note that m − k is the label on the bottom of the last column of the core of
π. Thus, Sl consists of the noncrossing alternating spanning trees of the directed
transitive closure of T (π) that do not contain the edges corresponding to the top l
crosses in last column of the core of π and contain the edges corresponding to the
bottom k − l elbows in last column of the core.

Proof of Lemma 4.13. This follows immediately from the definition of T (π). �
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Lemma 4.14. Let π = 1π′, π′ dominant of shape (λ1, . . . , λz) and let 1wl be the per-
mutation where wl has diagram (λ1 − (k − l), λ2 − (k − l), . . . , λz−1 − (k − l)). Use
Lemma 4.11 to draw the core region of 1wl inside the core region of π. Then all the
edges corresponding to the entries outside the core region of 1wl in a tree T ∈ Sl are
forced by the last column.

��
12
13 23

15 25
26

1
2

3
4

5
6

7−→

1
2

3
5
6

12
13 23
15 25

26

Figure 14. Edge labeling for the core of 1w1 coming from the core
of [164235] on the left.

Proof. If λz < λz−1, then the edges inside cr(π) and outside of cr(1wl) are precisely
those in the last column and in the (k − l) rows one step to the south of the k − l
boxes fixed to be elbows. The boxes in these rows are crosses and thus we conclude
that in this case all the edges corresponding to boxes outside cr(1wl) are indeed fixed
after fixing the last column. If λz = λz−1 = · · · = λz−j < λz−j−1, then aside from
the boxes outside of cr(1wl) described in the previous sentence, we also have the j
boxes to the left of the top most elbow on the last column. We will show that a tree
T ∈ Sl must contain the edge corresponding to these boxes. Let T ∈ Sl, u be the
E step below the leftmost of these boxes and v be the N step to the right of these
boxes. Since T is an alternating spanning tree, then v must be adjacent either to u
or to a vertex before u. Similarly, u must be adjacent either to v or to a vertex after
v. The only way noncrossing is preserved is if (u, v) is an edge of T . We continue in
this fashion by looking at the second leftmost box and taking the E step below it and
again prove that the edge corresponding to that box is in T . �

Lemma 4.15. The set Sl, 0 6 l 6 k, as in Lemma 4.13 is in bijection with re-
duced pipe dreams of the permutation 1wl, where wl has diagram (λ1 − (k − l), λ2 −
(k − l), . . . , λz−1 − (k − l)), via the map M .

We prove this lemma and Theorem 4.8 together by using induction on the number
of columns of the diagram of π′.

Proof of Theorem 4.8 and Lemma 4.15. We use induction on the number of columns
of the diagram of π′. The base case for Theorem 4.8 where this diagram contains one
column is proved in Lemma 4.9. Notice that in the proof of this lemma the base case
for Lemma 4.15 is also proven.

By Lemma 4.13 the noncrossing alternating spanning trees of the directed transitive
closure of T (π) can be broken down into the sets Sl, l = 0, 1, . . . , k. Consider the
permutation 1wl where wl has diagram (λ1− (k− l), λ2− (k− l), . . . , λz−1− (k− l)).
By inductive hypothesis, we know that 1wl satisfies Theorem 4.8, i.e., its reduced
pipe dreams are in bijection with the noncrossing alternating spanning trees of the
directed transitive closure of T (1wl) via the map M. By Lemma 4.14 we have that
the noncrossing alternating spanning trees of the directed transitive closure of T (1wl)
yield the set Sl. Finally, by Lemma 4.11 we know that the reduced pipe dreams of the
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permutations 1wl, as l = 0, 1, . . . , k, are in bijection with the reduced pipe dreams of
π, concluding the proof. �

5. Reduced forms in the subdivision algebra and Grothendieck
polynomials

In this section we show that Grothendieck polynomials of permutations π = 1π′,
π′ dominant, are special cases of reduced forms in the subdivision algebra of root
polytopes. To this end we start by defining the notions appearing in the previous
sentence.

The subdivision algebra of root polytopes S(β) is a commutative algebra generated
by the variables xij , 1 6 i < j 6 n, over Q[β], subject to the relations xijxjk =
xik(xij + xjk + β), for 1 6 i < j < k 6 n. This algebra is called the subdivision
algebra, because its relations can be seen geometrically as subdividing root polytopes
via Lemma 3.1. The subdivision algebra has been used extensively for subdividing
root (and flow) polytopes in [12, 13, 14, 15, 16, 17, 18].

A reduced form of the monomial in the algebra S(β) is a polynomial obtained by
successively substituting xik(xij + xjk + β) in place of an occurrence of xijxjk for
some i < j < k until no further reduction is possible. Note that the reduced forms
are not necessarily unique.

A possible sequence of reductions in algebra S(β) yielding a reduced form of
x12x23x34 is given by

(5.1)

x12x23x34 → x12x24x23 + x12x34x24 + βx12x24

→ x24x13x12 + x24x23x13 + βx24x13 + x34x14x12 + x34x24x14

+ βx34x14 + βx14x12 + βx24x14 + β2x14

→ x13x14x12 + x13x24x14 + βx13x14 + x24x23x13 + βx24x13

+ x34x14x12 + x34x24x14 + βx34x14 + βx14x12 + βx24x14

+ β2x14

where the pair of variables on which the reductions are performed is in boldface. The
reductions are performed on each monomial separately.

Given a noncrossing tree T on the vertex set [n], let m[T ] :=
∏

(i,j)∈T xij . The
canonical reduced form CrfT (xij | 1 6 i < j 6 n) ofm[T ] is the reduced form obtained
by performing reductions on the tree T from front to back (or back to front) on the
topmost edges always. This can of course be translated into an algebraic context as
follows. For xij = ti we denote by CrfT (t1, . . . , tn−1) = CrfT (xij | 1 6 i < j 6 n).
While the reduced form of a monomial in the subdivision algebra is not necessarily
unique, once we set xij = ti it becomes unique. This is the statement of the next
theorem which we prove in Appendix A.

Theorem 5.1. Given a noncrossing tree T on the vertex set [n], let RT (xij | 1 6 i <
j 6 n) be an arbitrary reduced form of m[T ]. Let RT (t1, . . . , tn−1) be the reduced form
RT (xij | 1 6 i < j 6 n) when we let xij = ti. Then,

(5.2) RT (t1, . . . , tn−1) = CrfT (t1, . . . , tn−1).

We will use the notation R̃T (t) when instead of setting xij = ti, we do the following.
Let i1 < · · · < iv be the vertices of T that have outgoing edges. Therefore, the only
xij ’s appearing in a reduced form must have i ∈ {i1, . . . , iv}. The reduced form R̃T (t)
is then obtained from RT (xij | 1 6 i < j 6 n) by setting xik,j = tk for k ∈ [v] and all
j ∈ [n].
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The following theorem provides a combinatorial way of thinking about double
Grothendieck polynomials.
Theorem 5.2 ([6, 10]). The double Grothendieck polynomial Gw(x,y) for w ∈ Sn,
where x = (x1, . . . , xn−1) and y = (y1, . . . , yn−1) can be written as

(5.3) Gw(x,y) =
∑

P∈Pipes(w)

(−1)codimPD (w)F (P )wtx,y(P ),

where Pipes(w) is the set of all pipe dreams of w (both reduced and nonreduced), F (P )
is the interior face in PD(w) labeled by the pipe dream P , codimPD(w)F (P ) denotes
the codimension of F (P ) in PD(w) and wtx,y(P ) =

∏
(i,j)∈cross(P )(xi − yj + xiyj),

with cross(P ) being the set of positions where P has a cross.
Note that in the product

∏
(i,j)∈cross(P )(xi− yj +xiyj) appearing in the statement

of Theorem 5.2 we are assuming a certain labeling of rows and columns. Conven-
tionally, rows are labeled increasingly from top to bottom and columns are labeled
increasingly from left to right. Also recall that the lowest degree terms of Gw(x,y)
give the Schubert polynomial Sw(x,y). Except in Theorem 5.4, we will be working
with the single Grothendieck polynomial

Gw(x) := Gw(x,0).
In other words, for single Grothendieck polynomials we use the weight wtx(P ) =∏

(i,j)∈cross(P ) xi instead of wtx,y(P ) =
∏

(i,j)∈cross(P )(xi−yj+xiyj) in equation (5.3).
In the spirit of Theorem 5.2, we use the following definition for the β-Grothendieck

polynomial:

(5.4) Gβw(x) :=
∑

P∈Pipes(w)

βcodimPD (w)F (P )wtx(P ).

If we set β = 0 in (5.4), then we recover the single Schubert polynomial Sw(x).
Note that if in (5.4) we assume that β has degree −1, while all other variables are of
degree 1, then the powers of β’s simply make the polynomial Gβw(x) homogeneous. We
chose this definition of β-Grothendieck polynomials, as it will be the most convenient
notationwise for our purposes.
Theorem 5.3. Given π = 1π′, π′ dominant, we have that for any reduced form of
m[T (π)]

(5.5) R̃T (π)(t) =
(
n−1∏
i=1

tgii

)
Gβπ−1(t−1

1 , . . . , t−1
n−1),

where gi is the number of boxes in the ith column from the left in R(π).
A special case of Theorem 5.3 for π = 1n(n− 1) . . . 2 appears in [9].
Note that for π = 1π′, π′ dominant then π−1 is also of this form.
We now relate the canonical reduced form to the double Grothendieck polynomial.

For β = −1 denote the canonical reduced form by Crfβ=−1
T (xij | 1 6 i < j 6 n).

Before we can state and prove Theorem 5.4 we need to define a map φ from the labels
(i, j) that the boxes in the region R(π) inherit from the labeling of its boundary (as
described in Figure 9) to the conventional labeling where rows are labeled increasingly
from top to bottom and columns are labeled increasingly from left to right. We call
the former labeling the tree labeling and when unclear which labeling we are talking
of we put a T index on it: (i, j)T . The map φ simply takes the tree label (i, j) to the
conventional label (φij(i), φij(j)) of the corresponding box. In the example of Figure 9
we have that φ((1, 6)) = (1, 1), φ((2, 3)) = (3, 2), φ((5, 6)) = (1, 4), φ((4, 5)) = (2, 3),
and so forth.
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Theorem 5.4. Given π = 1π′, π′ dominant, we have that

(5.6) Crfβ=−1
T (π)

(
xij = 1

xφij(i) − yφij(j) + xφij(i)yφij(j)
| 1 6 i < j 6 n

)

=

 ∏
(i,j)T∈R(π)

1
xφij(i) − yφij(j) + xφij(i)yφij(j)

Gπ(x,y).

Proof. By definition we have that

(5.7) CrfT (π)(xij | 1 6 i < j 6 n) =
∑

G∈L(T (π))

βcodimP(T (π))P(G)wt(G),

where wt(G) =
∏

(i,j)∈G xij , L(T (π)) denotes the set of graphs corresponding to the
terms of the reduced form of m[T (π)], and P(G) denotes the simplex in the canonical
triangulation of P(T (π)) corresponding to G. Together with Theorem 4.4 using the
map M and Theorem 5.2, we obtain (5.6). �

6. Volumes and Ehrhart series of root polytopes
In this section we state the two immediate corollaries regarding volumes and Ehrhart
series of root polytopes following from Theorem 1.1. Recall that the normalized vol-
ume of a d-dimensional polytope P is d! times its usual volume, which is always
integral for lattice polytopes.

Papers [12, 13] explore a systematic way of calculating volumes of root polytopes.
Indeed, the subdivision algebra and the (canonical) reduced form as defined in the
previous section is the main tool. An immediate corollary of the results in [12] (relying
on the Reduction Lemma for Root polytopes, Lemma 3.1) is:

Lemma 6.1 ([12]). For a forest G the normalized volume of P(G) is equal to the
evaluation of the canonical reduced form CrfT at xij = 1 for all i, j and β = 0.

Lemma 6.1 together with Theorem 5.3 readily imply:

Theorem 6.2. Let π = 1π′, where π′ is a dominant permutation. Then the normalized
volume of P(T (π)) is equal to the number of reduced pipe dreams of π. This can be
written as

(6.1) vol(P(T (π))) = Gβ=0
π (1).

Recall that for a polytope P ⊂ RN , the tth dilate of P is tP = {(tx1, . . . , txN ) |
(x1, . . . , xN ) ∈ P}. The number of lattice points of tP, where t is a nonnegative
integer and P is a convex polytope, is given by the Ehrhart function i(P, t). If P has
integral vertices then i(P, t) is a polynomial.

In order to state the Ehrhart series of root polytopes we need the following lemma,
which follows from the well-known relationship of f - and h-vectors. We note that we
take h(C, x) =

∑d
i=0 hix

i to be the h-polynomial of a (d − 1)-dimensional simplicial
complex C.

Lemma 6.3 ([23]). Let C be a (d− 1)-dimensional pure simplicial complex homeomor-
phic to a ball and f◦i be the number of interior faces of C of dimension i. Then

(6.2) h(C, β + 1) =
d−1∑
i=0

f◦i β
d−1−i
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Lemma 6.1 straightforwardly generalizes to encode the h-polynomial of P(G) in
terms of the evaluation of the canonical reduced form CrfT at xij=1 for all i, j; see [12,
17] for more details. Lemma 6.4 below states the specialized result for the polytopes
P(T (π)) considered in this paper.
Lemma 6.4 ([17]). For any permutation π the following holds:

Gβ−1
π (1) = h(PD(π), β).

Theorem 6.5. Let π = 1π′, where π′ is a dominant permutation. Then

(6.3) Gβ−1
π (1) =

∑
m>0

(
i
(
P(T (π)),m

)
βm
)

(1− β)dim
(
P(T (π))

)
+1.

Proof. Since canonical triangulation of P(T (π)) is unimodular and it is equivalent as
a simplicial complex to C2(π), we have [23]

(6.4) h(C2(π), β) =
∑
m>0

(
i
(
P(T (π)),m

)
βm
)

(1− β)dim
(
P(T (π))

)
+1.

By Theorem 1.1 and Lemma 6.3 we get that h(C2(π), β) = h(PD(π), β). Together
with Lemma 6.4 this concludes the proof. �

Appendix A. Uniqueness of t-reduced forms
The aim of this appendix is to prove Theorem 5.1, which states that when we let
xij = ti for all i, then the reduced form becomes unique. For clarity we call the
reduced forms with the substitution xij = ti, the t-reduced forms. Since the first
appearance of this paper alternative proofs have been found for a more general case
of this uniqueness property in [8, 19].

In order to prove Theorem 5.1 we recall several definitions and results from [12].
A reduction on the edges (i, j), (j, k) of a noncrossing graph G is noncrossing if the

graphs resulting from the reduction are also noncrossing. Analogously we can define
noncrossing reductions on m[G].
Theorem A.1 ([12]). Let T be a noncrossing tree on the vertex set [n]. Performing
noncrossing reductions on m[T ], regardless of order, we obtain a unique reduced form
RnoncrossT (xij | 1 6 i < j 6 n) for m[T ].

Consider a noncrossing tree T on [n]. We define the pseudo-components of T in-
ductively. The unique simple path P from 1 to n is a pseudo-component of T . The
graph T\P is an edge-disjoint union of trees T1, . . . , Tk, such that if v is a vertex of P
and v ∈ Tl, l ∈ [k], then v is either the minimal or maximal vertex of Tl. Furthermore,
there are no k − 1 trees whose edge-disjoint union is T\P and that satisfy all the
requirements stated above. The set of pseudo-components of T , denoted by ps(T ) is
ps(T ) = {P} ∪ ps(T1) ∪ · · · ∪ ps(Tk). A pseudo-component P ′ is said to be on [i, j],
i < j if it is a path with endpoints i and j. A pseudo-component P ′ on [i, j] is said to
be a left pseudo-component of T if there are no edges (s, i) ∈ E(T ) with s < i and a
right pseudo-component if there are no edges (j, s) ∈ E(T ) with j < s. See Figure 15
for an example.
Theorem A.2 ([12]). Let T be a noncrossing tree. Then RnoncrossT (xij | 1 6 i < j 6 n)
is the sum of the monomials corresponding to the following graphs weighted with
powers of β (of degree 1) to obtain a homogeneous polynomial. The graphs are: all
noncrossing alternating spanning forests of the directed transitive closure of T on the
vertex set [n] containing edge (1, n) and at least one edge of the form (i1, j) with i1 6 i
for each right pseudo-component of T on [i, j] and at least one edge of the form (i, j1)
with j 6 j1 for each left pseudo-component of T on [i, j].
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1 2 3 4 5 6 7 8

Figure 15. The edge sets of the pseudo-components in the graph de-
picted are {(1, 5), (5, 8)}, {(2, 5)}, {(3, 4), (4, 5)}, {(5, 6), (6, 7)}. The
pseudo-component with edge set {(1, 5), (5, 8)} is a both a left and
right pseudo-component, while the pseudo-components with edge sets
{(2, 5)}, {(3, 4), (4, 5)} are left pseudo-components and the pseudo-
component with edge set {(5, 6), (6, 7)} is a right pseudo-component.

We note that in the above we assume that the vertices of our graphs are drawn on
a line from left to right in increasing order, 1, 2, . . . , n. This condition is of course not
an essential condition for the above theorems, and if we rearrange the order of the
vertices of our graphs, then we can reinterpret the above results accordingly.

Consider the noncrossing tree T on the vertex set [n] with vertices drawn from
left to right in increasing order 1, 2, . . . , n. Let (k, l), (l,m) be a pair of nonalternat-
ing edges in T . If the reduction performed on (k, l), (l,m) is noncrossing, then we set
Tklm = T with Tklm drawn identically to T . If the reduction performed on (k, l), (l,m)
is not noncrossing, then let C1 = (V1, E1) and C2 = (V2, E2) be the connected compo-
nents containing the vertices k and m, respectively, in the graph T −{(k, l), (l,m)} =
([n], E(T )\{(k, l), (l,m)}). Then we define Tklm = T to be drawn with its vertices
arranged from left to right in the following order: v1

1 , . . . , v
p
1 , w1, . . . , wq, v

1
2 , . . . , v

r
2,

where V1 = {v1
1 < · · · < vp1}, V2 = {v1

2 < · · · < vr2}, [n]\(V1 ∪V2) = {w1 < · · · < wq, }.
The tree Tklm is then a noncrossing tree. See Figure 16.

1 2 3 4 5 6 7 8
T

2 3 1 4 8 5 6 7
T245

Figure 16. Reduction performed on the edges (2, 4), (4, 5) of T is
not noncrossing, however when performed on T245 it is noncrossing.

Lemma A.3. For a noncrossing tree T on the vertex set [n] and any two edges
(k, l), (l,m) of T that are nonalternating, we have that
(A.1) RnoncrossT (ti | 1 6 i 6 n− 1) = RnoncrossTklm

(ti | 1 6 i 6 n− 1).

Proof. We prove this lemma by induction on the number of increasing paths in T .
Suppose there is a vertex v 6= l that is nonalternating. Perform noncrossing reductions
at v in both T and Tklm obtaining three descendants. Note that the graphs obtained
in this fashion from T and Tklm are in natural bijection, and they each have fewer
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number of increasing paths than does T , so by inductive hypothesis the lemma is true
for them. However, RnoncrossT (ti | 1 6 i 6 n − 1) and RnoncrossTklm

(ti | 1 6 i 6 n − 1)
is the sum of the t-reduced forms corresponding to the mentioned graphs, so we are
done.

It remains to prove the case when the only nonalternating vertex of T is l. This is
accomplished in Lemma A.4 below. �

Lemma A.4. For T := T l = ([n], {(i, l), (l, j) | 1 6 i < l, l < j 6 n}), for some
2 6 l 6 n − 1, and any two edges (k, l), (l,m) of T that are nonalternating, we have
that
(A.2) RnoncrossT (ti | 1 6 i 6 n− 1) = RnoncrossTklm

(ti | 1 6 i 6 n− 1).

Proof. The only both left and right pseudo-component of T is {(1, l), (l, n)}, its left
pseudo-components are {(i, l) | 2 6 i 6 l − 1}, and its right pseudo-components are
{(l, i) | l + 1 6 i 6 n− 1}. Similarly, the only both left and right pseudo-component
of T is {(k, l), (l,m)}, its left pseudo-components are {(i, l) | i 6= k, 1 6 i 6 l − 1},
and its right pseudo-components are {(l, i) | i 6= m, l + 1 6 i 6 n}. Using this one
can prove by induction on l that there is a bijection between the forests described in
Theorem A.2 for T and for those of Tklm such that the number of edges emanating
from any vertex i ∈ [n] is preserved. While such a proof is not hard, it is technical to
describe, and we leave it to the interested reader. �

Proof of Theorem 5.1. We proceed by induction on the number of increasing paths
in T . If we start by a noncrossing reduction (k, l), (l,m) in T , then no matter how we
reduce the three descendants of T which each have fewer number of increasing paths,
we obtain that the t-reduced form of m[T ] we get is CrfT (t).

Suppose we start with a reduction (k, l), (l,m) in T that is a crossing reduction.
Redraw the tree T as Tklm. Since we can apply the inductive hypothesis to all three
descendants of Tklm, we get that the t-reduced form of m[T ] obtained this way is
CrfTklm(t).

However, by Lemma A.3 CrfT (t) = CrfTklm(t), thereby proving the theorem. �

Acknowledgements. The authors are grateful to Allen Knutson for many helpful dis-
cussions and references about topics related to this research. The authors also thank
Ed Swartz for several helpful discussions. Special thanks go to Sergey Fomin for an
extensive conversation about Grothendieck polynomials. We thank Avery St. Dizier
and the anonymous referee for their careful reading and suggestions which resulted in
the significant improvement of the exposition.

References
[1] Nantel Bergeron and Sara Billey, RC-graphs and Schubert polynomials, Exp. Math. 2 (1993),

no. 4, 257–269.
[2] Nantel Bergeron, Cesar Ceballos, and Jean-Philippe Labbé, Fan realizations of type A subword

complexes and multi-associahedra of rank 3, Discrete Comput. Geom. 54 (2015), no. 1, 195–231.
[3] Cesar Ceballos, On associahedra and related topics, Ph.D. thesis, Freie Universität Berlin (Ger-

many), 2012.
[4] Cesar Ceballos, Jean-Philippe Labbé, and Christian Stump, Subword complexes, cluster com-

plexes, and generalized multi-associahedra, J. Algebr. Comb. 39 (2014), no. 1, 17–51.
[5] Laura Escobar, Brick manifolds and toric varieties of brick polytopes, Electron. J. Comb. 23

(2016), no. 2, article ID P2.25 (18 pages).
[6] Sergey Fomin and Anatol N. Kirillov, Grothendieck polynomials and the Yang-Baxter equation,

in Formal power series and algebraic combinatorics, DIMACS, 1994, pp. 183–189.
[7] Israel M. Gelfand, Mark I. Graev, and Alexander Postnikov, Combinatorics of hypergeomet-

ric functions associated with positive roots, in The Arnold-Gelfand mathematical seminars,
Birkhäuser, 1997, pp. 205–221.

Algebraic Combinatorics, Vol. 1 #3 (2018) 413



L. Escobar & K. Mészáros

[8] Darij Grinberg, t-unique reductions for Mészáros’s subdivision algebra, https://arxiv.org/
abs/1704.00839, 2017.

[9] Anatol N. Kirillov, On some quadratic algebras, Dunkl elements, Schubert, Grothendieck, Tutte
and reduced polynomials, RIMS preprint, 2014.

[10] Allen Knutson and Ezra Miller, Subword complexes in Coxeter groups, Adv. Math. 184 (2004),
no. 1, 161–176.

[11] , Gröbner geometry of Schubert polynomials, Ann. Math. 161 (2005), no. 3, 1245–1318.
[12] Karola Mészáros, Root polytopes, triangulations, and the subdivision algebra. I, Trans. Am.

Math. Soc. 363 (2011), no. 8, 4359–4382.
[13] , Root polytopes, triangulations, and the subdivision algebra, II, Trans. Am. Math. Soc.

363 (2011), no. 11, 6111–6141.
[14] , h-polynomials via reduced forms, Electron. J. Comb. 22 (2015), no. 4, article ID P4.18

(17 pages).
[15] , Product formulas for volumes of flow polytopes, Proc. Am. Math. Soc. 143 (2015),

no. 3, 937–954.
[16] , h-polynomials of reduction trees, SIAM J. Discrete Math. 30 (2016), no. 2, 736–762.
[17] , Pipe dream complexes and triangulations of root polytopes belong together, SIAM J.

Discrete Math. 30 (2016), no. 1, 100–111.
[18] Karola Mészáros and Alejandro H. Morales, Flow polytopes of signed graphs and the Kostant

partition function, Int. Math. Res. Not. (2015), no. 3, 830–871.
[19] Karola Mészáros and Avery St. Dizier, From generalized permutahedra to Grothendieck polyno-

mials via flow polytopes, https://arxiv.org/abs/1705.02418, 2017.
[20] Vincent Pilaud and Michel Pocchiola, Multitriangulations, pseudotriangulations and primitive

sorting networks, Discrete Comput. Geom. 48 (2012), no. 1, 142–191.
[21] Vincent Pilaud and Francisco Santos, The brick polytope of a sorting network, Eur. J. Comb.

33 (2012), no. 4, 632–662.
[22] Luis Serrano and Christian Stump, Maximal fillings of moon polyominoes, simplicial complexes,

and Schubert polynomials, Electron. J. Comb. 19 (2012), no. 1, article ID P16 (18 pages).
[23] Richard P. Stanley, Combinatorics and commutative algebra, Progress in Mathematics, vol. 41,

Birkhäuser, 1996.
[24] Christian Stump, A new perspective on k-triangulations, J. Comb. Theory, Ser. A 118 (2011),

no. 6, 1794–1800.

Laura Escobar, University of Illinois at Urbana-Champaign, Department of Mathematics, 1409
W. Green Street, Urbana, IL 61801, USA
E-mail : lescobar@illinois.edu

Karola Mészáros, Cornell University, Department of Mathematics, 310 Malott Hall, Ithaca, NY
14850, USA
E-mail : karola@math.cornell.edu

Algebraic Combinatorics, Vol. 1 #3 (2018) 414

https://arxiv.org/abs/1704.00839
https://arxiv.org/abs/1704.00839
https://arxiv.org/abs/1705.02418
mailto:lescobar@illinois.edu
mailto:karola@math.cornell.edu

	1. Introduction
	2. Background on pipe dream complexes
	3. Background on root polytopes
	4. Pipe dream complexes as triangulations of root polytopes
	4.1. Construction of the tree T(pi)
	4.2. Bijection between the vertices of S(pi) and the vertices of C(T(pi))
	4.3. Geometric realization of core(pi)
	4.4. Bijection between reduced pipe dreams for pi and simplices of C(pi)

	5. Reduced forms in the subdivision algebra and Grothendieck polynomials
	6. Volumes and Ehrhart series of root polytopes
	Appendix A. Uniqueness of t-reduced forms
	References

