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Webs of type Q

Gordon C. Brown & Jonathan R. Kujawa

Abstract Howe dualities lead to diagrammatic categories which describe the representations
of Lie-type objects as a monoidal category (that is, via generators and relations). Applying this
philosophy to the type Q Howe duality of Cheng–Wang and Sergeev, we introduce diagrammatic
web supercategories of type Q via generators and relations and show they describe the full
subcategory of supermodules for the Lie superalgebra of type Q given by the tensor products
of supersymmetric tensor powers of the natural supermodule.

1. Introduction
1.1. Background. The enveloping algebra of a complex Lie algebra is a Hopf algebra
and, hence, the category of finite-dimensional U(g)-modules is naturally a monoidal C-
linear category. In trying to understand the representation theory of U(g) it is natural
to ask if we can describe this category (or a well-chosen subcategory) as a monoidal
category. Even when the category in question is semisimple it is not obvious how
to describe such a category by, say, generators and relations or combinatorially. The
rank one case follows from work of Rumer, Teller, and Weyl [31]. Kuperberg completed
the rank 2 case by giving a diagrammatic presentation for the monoidal subcategory
generated by the fundamental representations [24]. For g = sl(n) a diagrammatic
presentation for the monoidal category generated by the fundamental representations
was conjectured for n = 4 by Kim [23] and for general n by Morrison [25].

In 2014, Cautis–Kamnitzer–Morrison gave a complete combinatorial description of
the monoidal category generated by the fundamental representations of U(sl(n)) [11];
that is, the full subcategory of all modules of the form Λk1(Vn)⊗· · ·⊗Λkt(Vn), where Vn
is the natural module for sl(n). Perhaps of greater significance is the method of proof
used therein. They show that a diagrammatic description of the category follows from
a skew Howe duality between gl(m) and sl(n). More generally, centralizing actions
are now understood to naturally lead to presentations of monoidal categories. This
philosophy has since been applied in a number of settings. For example, Tubbenhauer–
Vaz–Wedrich give a presentation of the monoidal category of gl(n)-modules generated
by the exterior and symmetric powers of the natural module [37]. See [28, 29, 32]
for further examples. In turn, these combinatorial presentations allow for explicit
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calculations, bases, and cellular structures on the representation theory side [19] as
well as constructing categorifications and Khovanov–Rozansky homology theories via
foams (e.g. [27, 30]) and interesting decategorifications via traces (e.g. [1]).

1.2. Webs of Type Q. The setting of this paper is within C-linear monoidal su-
percategories. A supercategory is a category enriched over the category of superspaces
(that is, Z/2Z-graded vector spaces) that satisfies graded versions of the usual axioms
for a C-linear monoidal category. For example, the interchange law now requires a sign
according to the parity of the morphisms (see (3) for a diagrammatic version). Unless
otherwise specified, all categories will be assumed to be C-linear monoidal supercat-
egories and all functors will be assumed to be C-linear monoidal even superfunctors
as defined in [9, Section 2].

In Definition 4.1 we introduce the supercategory of upward oriented webs of type
Q, q-Web↑. The objects are monoidally generated by the set

{↑k| k ∈ Z>0} .
That is, objects are words in symbols from this set. The generating morphisms are
certain diagrams which we call dots, merges, and splits.

The Z/2Z-grading is given by declaring dots to be of degree 1̄ and the merges and
splits to be of degree 0̄. As customary for diagrammatic categories, composition is
given by vertical concatenation (read bottom to top) and the monoidal (or tensor)
product is given by horizontal concatenation (read left to right). A diagram obtained
by a finite sequence of these operations is called a web and a general morphism is
a linear combination of webs. For example, the following web is a morphism from
↑4↑9↑6↑7 to ↑6↑5↑1↑4↑8↑2:

(1)

4 9 6 7

6 5 1 4 8 2

3 1
7

11
4

2

8

5
3 7

52

5

.

Morphisms are subject to an explicit list of diagrammatic relations. See Definition 4.1
for details.

In Definition 6.1 we introduce the oriented version, q-Web↑↓. The objects are
monoidally generated by the set

{↑k, ↓k| k ∈ Z>0} .
The generating morphisms of q(n)-Web↑↓ are the dots, merges, and splits from be-
fore along with two new morphisms called cups and caps. Cups and caps are declared
to have even parity. Again morphisms are linear combinations of webs and are sub-
ject to an explicit list of diagrammatic relations. By definition, q-Web↑↓ is a rigid
supercategory with ↓k being left and right dual to ↑k.

In Sections 4 and 6 we describe the structure of these categories. Let ↑k1 denote
the k-fold tensor product ↑1↑1 · · · ↑1. An important ingredient in our analysis is a
thorough understanding of the endomorphism algebra

Endq-Web↑(↑k1).
In Proposition 5.6 we show it is isomorphic to the Sergeev superalgebra and that
it admits a natural analogue of the Jones–Wenzl projector which we call the clasp
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idempotent (see Definition 4.8). Using these we introduce braiding isomorphisms for
general objects and show these categories are symmetric braided monoidal supercat-
egories.

1.3. The Lie superalgebra of type Q. Let q(n) be the Lie superalgebra of 2n×2n
complex matrices of the form

q(n) =
{(

A B
B A

)}
,

where A and B are n× n matrices and where the Lie bracket is given by the graded
matrix commutator (see Section 3.2 for details).

The representations of q(n) do not have a classical analogue. Despite the impor-
tant early work done by Penkov–Serganova, Brundan, and others to obtain character
formulas and other information (see [26, 3] and references therein), the representa-
tion theory in type Q remains mostly mysterious. For example, only very recently
the structure of category O for q(n) became clear thanks to the work of Chen [13],
Cheng–Kwon–Wang [14], and Brundan–Davidson [7, 8].

If Vn denotes the natural q(n)-supermodule given by column vectors of height 2n,
then we can consider the degree k supersymmetric tensors Sk(Vn). Let q(n)-ModS
and q(n)-ModS,S∗ denote the monoidal supercategory generated by the supersym-
metric tensors, and supersymmetric tensors and their duals, respectively. That is,
q(n)-ModS is the full subcategory of all q(n)-supermodules of the form Sk1(Vn)⊗· · ·⊗
Skt(Vn) for t > 0 and various nonnegative integers k1, . . . , kt. Similarly, q(n)-ModS,S∗
is the full subcategory of all q(n)-supermodules which are of a similar form but where
some symmetric powers are replaced with their duals. The category q(n)-ModS is
semisimple but the category q(n)-ModS,S∗ and the category of all finite-dimensional
q(n)-supermodules are not.

We allow all morphisms, not just grading preserving ones. This causes new phenom-
ena to arise. For example, Vn is a simple q(n)-supermodule and yet Schur’s Lemma
in this setting implies Endq(n)(Vn) is two-dimensional. Similarly, for all k > 1 there
is a degree reversing isomorphism between Sk(Vn) and Λk(Vn) and a degree preserv-
ing isomorphism between Sk(Vn)∗ and Sk(V ∗n ). Hence, q(n)-ModS also contains the
exterior powers of the natural supermodule and q(n)-ModS,S∗ also contains the sym-
metric and exterior powers of the dual of the natural supermodule. The main goal
of the present work is to show the supercategories q-Web↑ and q-Web↑↓ provide
combinatorial models for q(n)-ModS and q(n)-ModS,S∗ , respectively, in the spirit
of the work discussed in Section 1.1.

1.4. Main Results. Using a Howe duality for q(m) and q(n) first introduced by
Cheng–Wang [15] and Sergeev [35] and the strategy of Cautis–Kamnitzer–Morrison,
our first main result provides essentially surjective full functors of monoidal supercat-
egories for all n > 1:

Ψ↑n : q-Web↑ → q(n)-ModS ,
Ψ↑↓n : q-Web↑↓ → q(n)-ModS,S∗ .

The functor Ψ↑↓n is also a functor of rigid monoidal supercategories.
The functors Ψ↑n and Ψ↑↓n are given explicitly on objects and morphisms. On objects

Ψ↑n(↑k) = Ψ↑↓n (↑k) = Sk(Vn) and Ψ↑↓n (↓k) = Sk(Vn)∗. For example,

Ψ↑↓n (↑2↓3↑5↑3) = S2(Vn)⊗ S3(Vn)∗ ⊗ S5(Vn)⊗ S3(Vn).
The description of Ψ↑n and Ψ↑↓n on generating morphisms is equally explicit, see Propo-
sition 5.3 and Theorem 6.8.
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We further show these functors fit into a commuting square of monoidal functors:

q-Web↑ q(n)-ModS

q-Web↑↓ q(n)-ModS,S∗ ,

Ψ↑n

Ψ↑↓n

where the vertical functors are fully faithful inclusion functors. It should also be
emphasized that the categories q-Web↑ and q-Web↑↓ do not depend on n. In this
sense q-Web↑ and q-Web↑↓ provide universal combinatorial models for q(n)-ModS
and q(n)-ModS,S∗ for all n > 1.

For n > 1 and k = (n + 1)(n + 2)/2, we follow Sergeev and introduce an ex-
plicit quasi-idempotent eλ(n) ∈ Endq-Web↑(↑k1) ∼= Endq-Web↑↓(↑k1). Define q(n)-Web↑
and q(n)-Web↑↓ to be, respectively, the monoidal supercategories given by the same
generators and relations as q-Web↑ and q-Web↑↓ along with the additional relation

eλ(n) = 0.

The second main result of the paper is given in Theorem 7.2. We show the above
functors induce equivalences of monoidal supercategories

Ψ↑n : q(n)-Web↑
∼=−→ q(n)-ModS ,

Ψ↑↓n : q(n)-Web↑↓
∼=−→ q(n)-ModS,S∗ .

These functors also fit into a commuting square of monoidal functors:

q(n)-Web↑ q(n)-ModS

q(n)-Web↑↓ q(n)-ModS,S∗ ,

Ψ↑n

Ψ↑↓n

where the vertical functors are fully faithful inclusion functors.
In short, the supercategories q(n)-Web↑ and q(n)-Web↑↓ provide complete combi-

natorial models for their respective categories of q(n)-supermodules. More generally,
these functors induce equivalences between the additive and idempotent completions
of q(n)-Web↑ and q(n)-Web↑↓ and the respective full subcategories of all finite-
dimensional q(n)-supermodules which are isomorphic to a direct summand of a direct
sum of tensor products of symmetric powers of the natural supermodule (resp. natural
supermodule and its dual). In this way q(n)-Web↑ completely describes what can be
seen to be the full category of polynomial representations of q(n) (a semisimple cate-
gory) and q(n)-Web↑↓ completely describes the full subcategory of q(n)-supermodules
which are obtained from tensor products of polynomial representations and their du-
als (a non-semisimple category). In either case all such q(n)-supermodules can, in
principle, be studied using the combinatorics of webs.

1.5. Related Work. This paper is part of a larger program to develop diagram-
matic categories of type Q. That is, monoidal supercategories which have degree 1̄
morphisms which square to a non-zero scalar multiple of the identity. In [5] Brundan,
Comes, and the second author introduced the oriented Brauer–Clifford category OBC
and its affine analogue AOBC. The category OBC can be viewed as the special case
of oriented webs where all edges have label 1. One corollary of the present work is
an analogue for OBC of this paper’s main results. In other work the first author uses
the category q-Web↑ to give a complete combinatorial description of the full subcat-
egory of permutation supermodules for the Sergeev algebra [3]. In [12] Chang–Wang
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introduce a quantum Howe duality of type Q. This is done by defining an action of
quantized enveloping algebras of type Q on a quantized symmetric algebra which also
appeared in [2]. In [4] the authors and Davidson show this Howe duality can be used to
obtain quantum analogues of the results presented here. In that context the braidings
are no longer be symmetric and we show that one can obtain several interesting knot
invariants from the quantum web supercategory of type Q and its relatives. Finally, in
a somewhat different direction, Comes and the second author intend to show diagram-
matic categories of type Q can be used to categorify the twisted Heisenberg algebra
at arbitrary integral level. One can consider the additive and Karoubi envelopes of
OBC, q-Web↑, and q-Web↑↓. The Grothendieck ring and the trace decategorification
of these monoidal supercategories will define superalgebras. It would be interesting
to determine them.

2. Monoidal supercategories
In this section we give a brief introduction to monoidal supercategories following [9,
Section 2]. We refer the reader to op. cit. for further details.

2.1. Superspaces. Throughout the ground field will be the complex numbers, C.
A superspace V = V0̄ ⊕ V1̄ is a Z/2Z-graded C-vector space where elements of V0̄
(resp. V1̄) are said to have parity 0̄ or to be even (resp. parity 1̄ or odd). Given a
homogeneous element v ∈ V we write |v| ∈ Z/2Z for the parity of the element. Given
two superspaces V and W , the set of all linear maps HomC(V,W ) is naturally Z/2Z-
graded by declaring that f : V → W has parity ε ∈ Z/2Z if f(Vε′) ⊆ Vε+ε′ for all
ε′ ∈ Z/2Z. Let svec denote the category of all superspaces with Homsvec(V,W ) =
HomC(V,W ). Note that we allow maps which do not preserve the Z/2Z-grading. Let
svec denote the underlying purely even category; that is, the subcategory of svec
consisting of all C-superspaces, but only the grading preserving linear maps.

Given superspaces V and W , the tensor product V ⊗W as vector spaces is also
naturally a superspace with Z/2Z-grading given by declaring |v ⊗ w| = |v| + |w| for
all homogeneous v ∈ V and w ∈ W . The tensor product of linear maps between
superspaces is defined via (f ⊗ g)(v⊗w) = (−1)|g||v|f(v)⊗ g(w). This gives svec (but
not svec) the structure of a monoidal category with unit object 1 = C (viewed as
superspace concentrated in even parity). The graded flip map v⊗w 7→ (−1)|v||w|w⊗v
gives svec the structure of a symmetric monoidal category. Here and elsewhere we write
formulas only for homogeneous elements with the general case given by extending
linearly.

2.2. Monoidal supercategories. We generally follow the conventions of [9] and
only give a brief summary here. Details can be found therein. By a supercategory
we mean a category enriched in svec. That is, each morphism space is a super-
space, and composition and tensor product of morphisms each induces an even linear
map. Similarly, a superfunctor F : A → B between supercategories is a functor
enriched in svec. That is, the maps HomA(a, a′) → HomB(F (a), F (a′)), f 7→ F (f)
are even linear maps for objects a, a′ ∈ A. Given two supercategories A and B,
there is a supercategory A � B whose objects are pairs (a, b) of objects a ∈ A
and b ∈ B and whose morphisms are given by the tensor product of superspaces
HomA�B((a, b), (a′, b′)) = HomA(a, a′)⊗HomB(b, b′) with composition given by

(2) (f ⊗ g) ◦ (h⊗ k) = (−1)|g||h|(f ◦ h)⊗ (g ◦ k).
By a monoidal supercategory we mean a supercategory A equipped with a functor

−⊗− : A�A → A, a unit object 1, and even supernatural isomorphisms (−⊗−)⊗
− ∼−→ − ⊗ (− ⊗ −) and 1 ⊗ − ∼−→ − ∼←− − ⊗ 1 called coherence maps satisfying
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certain axioms analogous to the ones for a monoidal category (see [22, Chapter 1]
for the coherence axioms in the enriched setting). A monoidal supercategory is called
strict if its coherence maps are identities. A monoidal functor between two monoidal
supercategories A and B is a functor F : A → B equipped with an even supernatural
isomorphism (F−) ⊗ (F−) ∼−→ F (− ⊗ −) and an even isomorphism 1B

∼−→ F1A
satisfying axioms analogous to the ones for a monoidal functor.

A braided monoidal supercategory is a monoidal supercategory A equipped with
a svec-enriched version of a braiding. More precisely, let T : A � A → A denote
the functor defined on objects by (a, b) 7→ b ⊗ a and on morphisms by f ⊗ g 7→
(−1)|f ||g|g ⊗ f . A braiding on A is a supernatural isomorphism γ : − ⊗ − → T
satisfying the usual hexagon axioms. A symmetric monoidal supercategory is a braided
monoidal supercategory A with γ−1

a,b = γb,a for all objects a, b ∈ A. In this paper all
braidings will be even.

Given a monoidal supercategory A and an object a ∈ A, by a (left) dual to a
we mean an object a∗ equipped with evaluation and coevaluation morphisms eva :
a∗⊗a→ 1 and coeva : 1→ a⊗a∗, respectively, in which eva and coeva have the same
parity and satisfy the super version of the usual adjunction axioms. In our case the
evaluation and coevaluation maps will be even and, hence, satisfy the usual adjunction
axioms (see (38) for a diagrammatic example). For example, given a finite-dimensional
superspace V with homogeneous basis {vi | i ∈ I}, then V ∗ = HomC(V,C) with the
evaluation and coevaluation given by f⊗v 7→ f(v) and 1 7→

∑
i∈I vi⊗v∗i respectively,

where v∗i ∈ V ∗ is defined by v∗i (vj) = δi,j . Note that the coevaluation map is indepen-
dent of choice of homogenous basis. A monoidal supercategory in which every object
has a (left) dual is called (left) rigid.

The following two examples will be relevant for this paper.

Example 2.1. The tensor product and braiding defined in Section 2.1 give svec the
structure of a symmetric monoidal supercategory with 1 = C (viewed as a superspace
concentrated in parity 0̄). The symmetric braiding M ⊗N → N ⊗M is given by the
graded flip map. The full subcategory of finite-dimensional superspaces is rigid.

Example 2.2. Let g = g0̄ ⊕ g1̄ be a complex Lie superalgebra. That is, a superspace
with a Lie bracket which satisfies graded versions of the Lie algebra axioms. See
Section 3.2 where the Lie superalgebra g = q(n) is defined. Let g -smod denote the
category of all g-supermodules. That is, superspacesM = M0̄⊕M1̄ with an action by
g which respects the grading in the sense that gε.Mε′ ⊆ Mε+ε′ . The tensor product
M ⊗ N has action given by x.(m ⊗ n) = (x.m) ⊗ n + (−1)|x||m|m ⊗ (x.n) for all
homogeneous x ∈ g,m ∈M , and n ∈ N and the graded flip map provides a symmetric
braiding. The unit object 1 is the ground field C concentrated in parity 0̄ and with
trivial g-action. In this way g -smod is a symmetric monoidal supercategory. The full
subcategory of finite-dimensional g-supermodules is rigid with the action given onM∗
by (x.f)(m) = −(−1)|x||f |f(x.m) for homogeneous elements. We will frequently omit
the prefix “super” from supermodule in what follows.

When working with monoidal supercategories it will sometimes be convenient to
use the following notation. Given objects a and b in a monoidal supercategory, we
write ab := a⊗ b. We will also write ar := a⊗ · · · ⊗ a︸ ︷︷ ︸

r times

.

2.3. String calculus. There is an established string calculus for strict monoidal su-
percategories which generalizes that of strict monoidal categories (cf. [20]). We briefly
describe it here and refer the reader to [9] for details. A morphism f : a→ b is drawn
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as

f

a

b
or simply as f

when the objects are left implicit. (Recall that the convention used in this paper is to
read diagrams from bottom to top.) The products of morphisms f ⊗ g and f ◦ g are
given by horizontal and vertical stacking respectively:

⊗f g = f g , ◦f g =
f

g
.

Pictures involving multiple products should be interpreted by first composing hori-
zontally, then composing vertically. For example,

f g

h k

should be interpreted as (f⊗g)◦(h⊗k). In general, this is not the same as (f◦h)⊗(g◦k)
because of the super interchange law given in (2). Diagrammatically:

(3)
f

g
= f g = (−1)|f ||g|

f

g
.

2.4. Supercategories and idempotent superalgebras. Let C be a (small) C-
linear supercategory and let Λ be a complete irredundant set of objects. To C we can
associate an associative C-superalgebra AC . As a superspace,

AC =
⊕

λ,µ∈Λ
HomC(λ, µ),

and the multiplication is given by extending composition of morphisms linearly. In
particular, the set of identity morphisms, {1λ : λ→ λ | λ ∈ Λ}, is a distinguished set
of orthogonal even idempotents which make AC a locally unital superalgebra. For each
even C-linear functor F : C → svec one can define an AC-supermodule by setting

M = ⊕λ∈ΛMλ,

where Mλ := F (λ). Given g ∈ HomC(λ, µ) we have the C-linear morphism F (g) :
F (λ) → F (µ). The action of g ∈ HomC(λ, µ) on Mγ is given by g.x = F (g)(x) if
γ = λ and g.x = 0 if γ 6= λ; the action is given in general by extending linearly. This
makes M into an AC-supermodule. Moreover, we see that M is locally unital since 1λ
acts on M by projecting onto Mλ for each λ ∈ Λ.

Conversely, if A is a locally unital superalgebra with a distinguished set of or-
thogonal even idempotents {1λ | λ ∈ Λ}, then one can define a supercategory CA as
follows. The objects are the elements of the set Λ and HomCA(λ, µ) := 1µA1λ for all
λ, µ ∈ Λ. The composition of morphisms is given by multiplication in A. If M is a
locally unital A-supermodule, then there is an even k-linear functor FM : CA → svec
given by F (λ) = 1λM and, given g ∈ HomCA(λ, µ) = 1µA1λ, F (g) : 1λM → 1µM is
the linear map given by the action of g.

These mutually inverse constructions are the super analogues of the of the classical
(non-super) relation between categories and idempotent algebras. We will freely switch
between the categorical and superalgebra points of view when convenient.
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2.5. Monoidal supercategories and tensor ideals. The notion of a tensor
ideal in a monoidal category also has a natural super analogue. Suppose C is a
monoidal supercategory. A (two-sided) tensor ideal I of C consists of a subsuperspace
I(a, b) ⊆ HomC(a, b) for each pair of objects a, b in C, such that for all objects a, b,
c, d we have h ◦ g ◦ f ∈ I(a, d) whenever f ∈ HomC(a, b), g ∈ I(b, c), h ∈ HomC(c, d)
and g ⊗ idc ∈ I(a⊗ c, b⊗ c) and idc⊗g ∈ I(c⊗ a, c⊗ b).

The quotient C/I of C by the tensor ideal I is the supercategory with the same ob-
jects as C and morphisms given by HomC/I(a, b) = HomC(a, b)/I(a, b). It is straight-
forward to check that the quotient of a monoidal supercategory by a tensor ideal is
again a monoidal supercategory. Moreover, the quotient of a braided (resp. symmetric)
monoidal supercategory is again braided (resp. symmetric).

Since the intersection of tensor ideals is again a tensor ideal, there is a unique
minimal tensor ideal which contains a given fixed collection of morphisms. We call
this the tensor ideal generated by this collection of morphisms. If F : C → D is an
even functor of monoidal supercategories, then the kernel, K, of F given by setting
K(a, b) = {f ∈ HomC(a, b) | F (f) = 0} is a tensor ideal of C and there is an induced
even functor F̃ : C/K → D.

If C is a supercategory without a monoidal structure, then one can instead consider
an ideal I as above which satisfies only the condition on composition. One can then
form the quotient supercategory C/I as above and similar non-monoidal statements
still hold.

3. Lie superalgebras of type Q
In this section we summarize the results we will need from the structure and represen-
tation theory of associative superalgebras and Lie superalgebras. The more diagram-
matically inclined reader may choose to skip to Section 4 and return to this section
as needed.

3.1. Representations of superalgebras. We give a brief overview of the repre-
sentation theory of associative unital superalgebras over C. Details can be found in,
for example, [16, Section 3.1] or [10, Section 2]. In what follows we say a superspace
V = V0̄ ⊕ V1̄ has dimension m|n if dimC V0̄ = m and dimC V1̄ = n. Let A be a finite-
dimensional superalgebra and let M be an A-supermodule. The parity shift of M is
the A-supermodule ΠM obtained by reversing the grading (i.e. (ΠM)ε = Mε+1̄ for
ε ∈ Z/2Z). Because we allow for odd morphisms an A-supermodule is isomorphic to
its parity shift and we do not distinguish between the two.

Let A be a finite-dimensional superalgebra and let S be a simple A-supermodule.
We call S type M if it remains irreducible as an A-module (i.e. if Z/2Z-gradings are
ignored). Otherwise we call S type Q. In the former case EndA(S) is 1|0-dimensional
and in the latter case EndA(S) is 1|1-dimensional and S admits an odd involution. This
dichotomy is the analogue of Schur’s Lemma in the Z/2Z-graded setting. Correspond-
ingly, there are two types of simple finite-dimensional associative superalgebras: the
superalgebra of linear endomorphisms of an m|n-dimensional superspace V , M(V ),
and the superalgebra of linear endomorphisms of an n|n-dimensional superspace V
which preserve an odd involution, Q(V ). In both cases V is the unique simple super-
module and is of type M and type Q, respectively. More generally, if A is a semisimple
finite-dimensional associative unital superalgebra, then

A ∼=

( ⊕
V of type M

M(V )
)⊕( ⊕

V of type Q
Q(V )

)
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as superalgebras where the direct sum is over a complete irredundant set of simple
supermodules for A.

If A and B are associative superalgebras and S and T are simple A- and B-
supermodules, respectively, then A ⊗ B is naturally a superalgebra and the outer
tensor product S � T is naturally a supermodule for A ⊗ B. If both S and T are of
typeM , then S�T is a simple A⊗B-supermodule of typeM . If exactly one of S and
T are of type Q, then S � T is a simple A⊗B-supermodule of type Q. If both S and
T are of type Q, then S � T is a direct sum of two isomorphic A ⊗ B-supermodules
of type M . We write S ~ T for this simple A⊗ B-supermodule. We extend notation
by declaring S ~ T to be the simple A⊗B-supermodule S � T in the other cases.

3.2. The Lie superalgebra q(n). In the next several sections we summarize what
we need to know about q(n), Sergeev superalgebras, and Sergeev and Howe dualities.
The reader may consult [16] for further details. Fix an n|n-dimensional superspace
V = V0̄⊕V1̄. Fix a homogeneous basis v1, . . . , vn, v1̄, . . . , vn̄ with |vi| = 0̄ and |vī| = 1̄
for i = 1, . . . , n. We write I = I(n|n) for the index set

{
1, . . . , n, 1̄, . . . , n̄

}
and I0 =

I0(n|n) for the set {1, . . . , n}. There is an involution on I given by i 7→ ī and ī 7→ i

for any i = 1, . . . , n. It is convenient to adopt the convention that ¯̄i = i for all i ∈ I.
Let c : V → V be the odd linear map given by c(vi) = (−1)|vi|

√
−1vī for all i ∈ I,

where
√
−1 is a fixed square root of −1.

The vector space of all linear endomorphisms of V , gl(V ), is naturally Z/2Z-graded
as in Section 2.1. Furthermore, gl(V ) is a Lie superalgebra under the graded com-
mutator bracket; this, by definition, is given by [x, y] = xy − (−1)|x||y|yx for all
homogeneous x, y ∈ gl(V ). For i, j ∈ I we write ei,j ∈ gl(V ) for the linear map
ei,j(vk) = δj,kvi. These are the matrix units and they form a homogeneous basis for
gl(V ) with |ei,j | = |vi|+ |vj |.

By definition q(V ) is the Lie subsuperalgebra of gl(V ) given by

q(V ) = {x ∈ gl(V ) | [x, c] = 0} .

Then q(V ) has a homogenous basis given by e0̄
i,j := ei,j + eı̄,̄ and e1̄

i,j := eı̄,j + ei,̄ for
1 6 i, j 6 n. Note that |eεi,j | = ε for all 1 6 i, j 6 n and ε ∈ Z/2Z.

Remark 3.1. Realized as matrices with respect to our choice of basis for V , gl(V ) =
gl(n|n) is all 2n× 2n matrices with entries from C. In this matrix realization q(V ) =
q(n) is the subspace

(4) q(V ) = q(n) =
{(

A B
B A

)}
⊆ gl(n|n).

Then q(n)0̄ (resp. q(n)1̄) is the subspace of all such matrices with B = 0 (resp. A = 0).

Fix the Cartan subalgebra of h ⊆ q(n) consisting of matrices as in (4) with A

and B both diagonal. For i = 1, . . . , n, let εi : h0̄ → C be defined by εi(e0̄
j,j) = δi,j .

Set X(T ) = X(Tn) = ⊕ni=1Zεi ⊆ h∗0̄. Fix the Borel subalgebra b ⊆ q(n) consist-
ing of matrices with A and B both upper triangular. Corresponding to this choice,
the set of roots, positive roots, and simple roots are {αi,j = εi − εj | 1 6 i, j 6 n},
{αi,j = εi − εj | 1 6 i < j 6 n}, and {αi = εi − εi+1 | 1 6 i 6 n− 1}, respectively.

A q(n)-supermodule is a superspace W = W0̄ ⊕W1̄ with a linear action by q(n)
which respects the Z/2Z-grading and [x, y].m = x.(y.m)−(−1)|x||y|y.(x.m) for all ho-
mogeneous x, y ∈ q(n), w ∈W . A weight supermodule for q(n) is a q(n)-supermodule
W for which there is a superspace decomposition W =

⊕
λ∈h∗0̄

Wλ where Wλ is the
λ-weight space,

Wλ := {w ∈W | h.w = λ(h)w for all h ∈ h0}.
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We identify X(T ) with Zn via the map
∑
i aiεi ↔ (a1, . . . , an). All supermodules

considered in this paper will be weight supermodules with weights lying in X(T ).
Given a superspaceW and d > 0, let Sd(W ) denote the dth supersymmetric power

of W and Λd(W ) the dth skew supersymmetric power. If W is a supermodule for
a Lie superalgebra, then Sd(W ) and Λd(W ) are naturally supermodules for the Lie
superalgebra via the coproduct (see Example 2.2). Furthermore, if ΠW denotes the
parity shift of W , then Sd(W ) ∼= Λd(ΠW ) as supermodules.

Remark 3.2. In this paper we will be interested in the case whenW = Vn is the natu-
ral module for q(n). In this case Vn ∼= ΠVn and, more generally, Sd(Vn) ∼= Sd(ΠVn) ∼=
Λd(Vn). Consequently, while we only consider the symmetric powers, our results im-
plicitly include the exterior powers as well.

3.3. The Sergeev algebra. For each k > 1 the Sergeev superalgebra Serk is defined
to be the associative unital superalgebra generated by the even elements s1, . . . , sk−1
and odd elements c1, . . . , ck subject to the relations:

(5)
c2i = 1, cicj = −cjci,

s2
i = 1, sisj = sjsi if i 6= j ± 1, sisi+1si = si+1sisi+1,

cisj = sjci if i 6= j ± 1, sici = ci+1si, sici+1 = cisi

for all admissible i, j. As a superspace Serk ∼= Ck ⊗ CΣk, where Ck is the Clifford
superalgebra on odd generators c1, . . . , ck, and CΣk is the group algebra of the sym-
metric group viewed as a superalgebra concentrated in parity 0̄. Then Ck ∼= Ck ⊗ 1
and CΣk ∼= 1⊗CΣk as superalgebras and we have the mixed relation sci = cs(i)s for
all s ∈ Σk.

A strict partition of k is a non-increasing sequence of nonnegative integers λ =
(λ1, λ2, λ3, . . . ) such that

∑
i λi = k and λi = λi+1 implies λi = 0. Let SP(k) denote

the set of all strict partitions of k. For a partition λ ∈ SP(k), set |λ| =
∑
i λi, `(λ)

equal to the number of nonzero parts in λ, and

δ(λ) =
{

0, `(λ) is even;
1, `(λ) is odd.

It is known (e.g. see [10, Lemma 3.6]) that Serk is semisimple and the simple
supermodules are labeled by the strict partitions of k. If we write Tλ for the simple
supermodule labeled by λ ∈ SP(k), then Tλ is of type M or Q if δ(λ) = 0 or 1,
respectively. That is, as discussed in Section 3.1,

(6) Serk '
⊕

λ∈SP(k)
δ(λ)=0

M(Tλ)⊕
⊕

λ∈SP(k)
δ(λ)=1

Q(Tλ)

as superalgebras.
We next recall the definition from [34] of certain quasi-idempotents eλ ∈ Serk

parameterized by SP(k). To every strict partition λ we associate to λ the shifted
frame [λ], the array of squares with λi squares in row i for 1 6 i 6 l(λ), such that
row i has been shifted to the right i− 1 units. Here we use the English convention of
reading Young diagrams from top to bottom. For example,

[(4, 3, 1)] = .

For strict partitions λ, µ, we write λ ⊆ µ if λi 6 µi for all i, or, equivalently, if [λ] is
a shifted subframe of [µ].
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For 1 6 i < j 6 k − 1, define the elements si,j , τi,j , πj ∈ Serk by letting si,j ∈ Σk
be the transposition interchanging i and j and setting π1 = 0, and

τi,j = 1√
2

(ci − cj)si,j ,(7)

πj = τ1,j + τ2,j + · · ·+ τj−1,j .(8)
The πj are the odd Jucys–Murphy elements of [34].

For λ ∈ SP(k), let Tλ be the canonical filling of [λ] obtained by numbering the
squares 1, 2, 3, . . . left-to-right in each row, starting from the top and working down;
for example,

T(4,3,1) = 1 2 3 4
5 6 7

8

.

Given Tλ, let col(i) be the number of the column occupied by i in Tλ. Define
aλ ∈ Serk by

aλ =
k∏
i=1

(
col(i)(col(i) + 1)

2 − π2
i

)
.

For example,
a(4,3,1) = 1 · (3− π2

2)(6− π2
3)(10− π2

4)(3− π2
5)(6− π2

6)(10− π2
7)(6− π2

8).
Let Rλ ⊆ Σk denote the row stabilizer of Tλ and set bλ ∈ Serk to be

bλ =
∑
σ∈Rλ

σ.

Finally, define eλ ∈ Serk to be
(9) eλ := aλbλ.

By [34, Corollary 3.3.4], each eλ is quasi-idempotent. Moreover, Serk eλ is a di-
rect summand of the Tλ-isotypic component of the regular supermodule, Serk. In
particular, eλ lies in the summand of (6) corresponding to Tλ.

One of Sergeev’s quasi-idempotents will play a distinguished role in what follows.
For n ∈ Z>0, define the strict partition λ(n) := (n+1, n, n−1, . . . , 3, 2, 1). The shifted
frame of this partition will be an inverted staircase. For example,

[λ(2)] = .

For k = (n+ 1)(n+ 2)/2, there is the corresponding quasi-idempotent
(10) eλ(n) ∈ Serk .

3.4. Sergeev Duality. We have the following Sergeev duality established by
Sergeev [33] (see also [16, Section 3.4.1]).

Theorem 3.3. Let V = Vn be the natural q(n)-supermodule and let V ⊗k denote its
k-fold tensor product. Then:

(a) If r 6= s, then Homq(n) (V ⊗r, V ⊗s) = 0.
(b) There is a homomorphism

ψ : Serk → Endq(n)
(
V ⊗k

)
given by:

ψ(si)(v1 ⊗ · · · ⊗ vi ⊗ vi+1 ⊗ · · · ⊗ vk) = (−1)|vi||vi+1|v1 ⊗ · · · ⊗ vi+1 ⊗ vi ⊗ · · · ⊗ vk,

ψ(ci)(v1 ⊗ · · · ⊗ vi ⊗ · · · ⊗ vk) = (−1)|v1|+···+|vi−1|v1 ⊗ · · · ⊗ c(vi)⊗ · · · ⊗ vk.
(c) The homomorphism ψ is surjective.
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(d) There is an isomorphism of U(q(n))⊗ Serk-supermodules:

V ⊗k ∼=
⊕

λ∈SP(k)
`(λ)6n

Ln(λ)~ Tλ.

Here Ln(λ) is the simple q(n)-supermodule of highest weight λ ∈ X(Tn) and
Tλ the simple Serk-supermodule labeled by λ ∈ SP(k). These simple super-
modules are both of type M if δ(λ) = 0 and are both of type Q otherwise.

We have the following description of the kernel of the homomorphism ψ.

Proposition 3.4. For each k, n > 1 the kernel of the homomorphism ψ : Serk →
Endq(n)(V ⊗kn ) is generated as a (two-sided) ideal by

(11) {eλ | λ ∈ SP(k), `(λ) > n} .

Moreover, ψ is an isomorphism if and only if k < (n+ 1)(n+ 2)/2.

Proof. Since Serk is a semisimple superalgebra by Section 3.3, we may apply the re-
sults of Section 3.1. In light of the decomposition into simple superalgebras given in
Section 3.1, a direct summand given there will be in the kernel of ψ if and only if Tλ
does not appear as a summand of the Serk-supermodule V ⊗kn . By (6) this happens if
and only if `(n) > n. On the other hand, since eλ lies in the simple summand corre-
sponding to Tλ, it follows that the kernel is generated by {eλ | λ ∈ SP(k), `(λ) > n},
as claimed. The last statement follows from Theorem 3.3 and observing there exist
strict partitions of length greater than n if and only if k is greater than or equal to
the given bound. �

3.5. The shifted Littlewood–Richardson rule. The proof of Theorem 7.2 will
need the description of the kernel of ψ given in Proposition 3.4 to be extended to a
description of the morphisms which vanish under the functors Ψ↑n and Ψ↑↓n . To do so
requires Corollary 3.9, a claim about the appearance of certain composition factors in
tensor products of q(m)-modules. This follows from the Littlewood–Richardson rule
formulated by Stembridge for shifted strict tableaux, as we now explain.

Let A denote the ordered alphabet A = {1′ < 1 < 2′ < 2 < · · · }. We say the letters
1′, 2′, 3′, . . . are marked, and use the notation a to denote the unmarked version of
any a ∈ A.

Definition 3.5.Given a strict partition λ, a shifted tableau of shape λ is a filling of
the boxes of the shifted frame [λ] with elements of A in such a way that

• the entries in each row are nondecreasing,
• the entries in each column are nondecreasing,
• each row has at most one a′ for a = 1, 2, 3, . . . , and
• each column has at most one a for a = 1, 2, 3, . . . .

An example of a shifted tableau of shape (4, 3, 1) is
1 2′ 3 3

2′ 4′ 4
5′

.

Given a shifted tableau T of shape λ and i = 1, 2, 3, . . . , let νi be the number of
entries a in T such that a = i. The content of T is then defined to be ν = (ν1, ν2, . . . ).
When writing contents we often choose to supress the trailing zeros. For example, the
content of the shifted tableau above is (1, 2, 2, 2, 1).

If λ ⊆ µ are strict partitions, then the skew shifted frame [µ/λ] is the array of
boxes obtained by removing [λ] from [µ]. For example, if µ = (4, 3, 1) and λ = (3, 1),
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then we have
[µ/λ] = .

A shifted tableau of shape µ/λ is a filling of the boxes of [µ/λ] with elements of A in
such a way that the four conditions of Definition 3.5 are satisfied.

The word w = w(T ) = w1w2 · · · associated to a (possibly skew) shifted tableau T
is the sequence of elements of A obtained by reading the rows of T from left to right,
starting with the bottom row and working up. For example, the word of the shifted
tableau above is 5′2′4′412′33.

Given a word w = w1 · · ·wn in the alphabet A, define a series of statistics mi(j)
for i ∈ A and j = 1, . . . , 2n as follows:

• mi(j) = multiplicity of i among wn−j+1, . . . , wn, for 0 6 j 6 n, and
• mi(n+ j) = mi(n) + multiplicity of i′ among w1, . . . , wj , for 0 < j 6 n.

In particular, mi(0) will be zero for all i ∈ A.

Definition 3.6.We say a word w = w1 · · ·wn has the lattice property if whenever
mi(j) = mi−1(j) we have

(1) wn−j 6= i, i′ if 0 6 j < n, and
(2) wj−n+1 6= i− 1, i′ if n 6 j < 2n.

Let w := w1 · · ·wn denote the unmarked version of w. We are now ready to state
the shifted Littlewood–Richardson rule. For a strict partition λ, let Pλ denote the
Schur P -function labeled by λ as in [36]. Define fλµ,ν by

PλPν =
∑
µ

fµλ,νPµ.

Stembridge provides the following combinatorial rule for computing these structure
constants.

Theorem 3.7. [36, Theorem 8.3] The coefficient fµλ,ν is the number of shifted tableaux
T of shape µ/λ and content ν such that

(1) the word w = w(T ) satisfies the lattice property, and
(2) the leftmost i of w is unmarked in w for 1 6 i 6 l(ν).

We call a shifted tableau T satisfying (1) and (2) a shifted Littlewood–Richardson
tableau.

Recall the strict “staircase” partition λ(n) = (n+ 1, n, . . . , 2, 1) as defined in Sec-
tion 3.3. It is easy to verify every µ ∈ SP with `(µ) > n has µ ⊇ λ(n).

Proposition 3.8. For every strict partition µ with l(µ) > n, there exists a strict
partition ν of shape µ/λ(n) such that the shifted Littlewood–Richardson coefficient
fµλ(n),ν is nonzero.

Proof. For every such µ, we construct a shifted Littlewood–Richardson tableaux Tµ,n
of shape µ/λ(n) whose content ν is also a strict partition, proving the proposition.

First, we define a hook to be a left-justified array of boxes in which only the first
row may have more than one box:

· ·

:

Given the shape of λ(n), the skew shape [µ/λ(n)] is an ordinary partition and, hence,
can be thought of as consisting of a series of hooks wedged inside each other with
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the corner of each hook lying on the diagonal of [µ/λ(n)]. We number the hooks of
[µ/λ(n)] from the upper left to the lower right.

We define Tµ,n to be the shifted tableau of shape [µ/λ(n)] whose i-th hook has the
form

i′ i i · · i
i′

i′

:
i′

i

.

The unmarked i at the very bottom takes priority over all of the i′, so that if the i-th
hook has only one row then every entry will be i. For example, if µ = (8, 5, 4, 2) and
n = 2, then we have

Tµ,2 = 1′ 1 1 1 1
1′ 2′ 2
1′ 2′ 3
1 2

whose corresponding word is w(Tµ,2) = 121′2′31′2′21′1111.
Clearly Tµ,n satisfies the conditions of Definition 3.5 and is a shifted tableau. Since

νi is just the number of boxes in the i-th hook, the content ν = (ν1, ν2, . . . ) of Tµ,n is
a strict partition. Indeed, at its largest, the (i+ 1)-st hook extends as far to the right
and one box farther down than the i-th hook, which is precisely when νi+1 = νi − 1;
otherwise νi+1 < νi − 1. And, as was previously observed, property (2) of the shifted
Littlewood–Richardson rule is satisfied.

It remains to show that Tµ,n has the lattice property. Let i > 2 and let l denote
the length of the word w = w(Tµ,n). Suppose mi(j) = mi−1(j) for 0 6 j < l. If
mi(j) = mi−1(j) = 0, then wl−j ∈ {1, 1′, 2, 2′, . . . , i − 1, (i − 1)′} so wl−j 6= i, i′.
The case of mi(j) = mi−1(j) > 0 occurs precisely if the width of the (i− 1)-st hook
exceeds that of the i-th hook by one box (e.g. the 2nd and 3rd hooks in the example).
In that case wl−j lies in the (i−1)-st hook, so wl−j ∈ {i−1, (i−1)′} and wl−j 6= i, i′.
Thus Tµ,n satisfies condition (1) of the lattice property. Since mi(l) 6 mi−1(l) − 1,
and between every pair of i′ in w is at least one (i− 1)′, we have mi(j) 6= mi−1(j) for
l 6 j 6 2l. Thus Tµ,n satisfies condition (2) of the lattice property, completing the
proof. �

The simple q(m)-supermodule labeled by the strict partition λ, Lm(λ), has
character given by a power of two multiple of the Schur P -function Pλ(x1, . . . , xm)
(e.g. see [16, Theorem 3.48]). Furthermore, tensor products of q(m)-supermodules
corresponds to the multiplication of functions. Consequently, fµλ,ν 6= 0 if and only
Lm(µ) is a direct summand of Lm(λ)⊗ Lm(ν).

Corollary 3.9. Fix a strict partition µ with n < `(µ) and fix a m > `(µ). Then
there is a strict partition ν such that the simple q(m)-supermodule Lm(µ) is a direct
summand of the tensor product Lm(λ(n)) ⊗ Lµ(ν) and, hence, is a direct summand
of Lm(λ(n))⊗ V |ν|m .

Proof. By Proposition 3.8 there exists a strict partition ν with |ν| = |µ| − |λ(n)|,
of shape µ/λ(n), and with fµλ(n),ν 6= 0. This implies Lm(µ) is a direct summand of
Lm(λ(n))⊗Lm(ν), as asserted. The final statement follows from the fact that Lm(ν)
is a direct summand of V |ν|m by Theorem 3.3. �

3.6. Howe duality of type Q. We now describe a Howe duality of type Q first
introduced by Cheng–Wang [15]. Let Vm and Vn denote the natural supermodules
of q(m) and q(n), respectively. Recall, c : Vm → Vm and c : Vn → Vn are the odd
involutions used to define q(m) and q(n).
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Let Vm�Vn denote the U(q(m))⊗U(q(n))-supermodule given by the outer tensor
product of Vm and Vn. Since both are of type Q, Vm � Vn ∼= Vm ~ Vn ⊕ Vm ~ Vn
as discussed in Section 3.1. This decomposition can be made overt as follows. There
is an even supermodule involution p :=

√
−1c � c : Vm � Vn → Vm � Vn given on

homogeneous pure tensors by p(va ⊗ vb) = (−1)|va|
√
−1c(va)⊗ c(vb). Since this map

is an involution we may decompose Vm�Vn into ±1-eigenspaces. This decomposition
is as U(q(m)) ⊗ U(q(n))-supermodules and it provides the decomposition described
above. We choose Vm ~ Vn to be the +1 eigenspace of p.

We can describe Vm ~ Vn completely explicitly as follows. Set

xi,j = vi ⊗ vj +
√
−1vi ⊗ vj ,(12)

yi,j = vi ⊗ vj −
√
−1vi ⊗ vj .

Then we have the following:
• The superspace Vm~Vn has a homogeneous basis {xi,j , yi,j | i ∈ I0(m|m), j ∈
I0(n|n)} with the parity of xi,j (resp. yi,j) equal to 0̄ (resp. 1̄);

• As a U(q(m))-supermodule Vm ~ Vn ∼= V ⊕nm with the U(q(m)) acting on xi,j
(resp. yi,j) as on vi (resp. −

√
−1vī);

• As a U(q(n))-supermodule Vm~Vn ∼= V ⊕mn with U(q(n)) acting on xi,j (resp.
yi,j) as on vj (resp. vj̄).

Note that since U(q(m)) and U(q(n)) are Hopf superalgebras, there is a natu-
ral Hopf superalgebra structure on U(q(m))⊗ U(q(n)). In particular, the symmetric
superalgebra

S := S (Vm ~ Vn) =
⊕
k>0

Sk (Vm ~ Vn)

is a U(q(m))⊗U(q(n))-supermodule via the coproduct. As a superalgebra S is the free
supercommutative superalgebra generated by {xi,j , yi,j | i ∈ I0(m|m), j ∈ I0(n|n)},
where we recall that a superalgebra A is supercommutative if ab = (−1)|a||b|ba for all
homogeneous a, b ∈ A.

A direct calculation verifies that S is a weight supermodule for q(m) with weights
lying in

X(Tm)>0 :=
{
λ =

m∑
i=1

λiεi ∈ X(Tm)

∣∣∣∣∣λi > 0 for i = 1, . . . ,m
}
.

Since the actions of U(q(m)) and U(q(n)) commute, the decomposition of S into
weight spaces for U(q(m)) is a decomposition into q(n)-supermodules. Given t > 0
and a tuple of nonnegative integers, λ = (λ1, λ2, . . . , λt), we set the shorthand

Sλ := Sλ1(Vn)⊗ · · · ⊗ Sλt(Vn).

A straightforward computation using (12) verifies the following.

Lemma 3.10. Let
S =

⊕
λ∈X(Tm)

Sλ

be the decomposition into weight spaces with respect to the Cartan subalgebra of q(m).
Then Sλ 6= 0 if and only if λ ∈ X(Tm)>0. Furthermore, if λ =

∑m
i=1 λiεi ∈ X(Tm)>0,

then as a q(n)-supermodule

Sλ ∼= Sλ = Sλ1(Vn)⊗ · · · ⊗ Sλm(Vn).

For the full statement of Howe duality in type Q see [15, Theorem 3.1].
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3.7. The supercategory U̇(q(m)). We now introduce a C-linear supercategory
U̇(q(m)) via generators and relations. The reader may find it helpful to compare
with the C(q)-linear category U̇q(gl(m)) given in [11, Section 4.1]. When writing
compositions of morphisms we often write them as products (e.g. fg = f ◦ g). To
lighten notation we use the same name for morphisms between different objects and
leave the objects implicit when there is no risk of confusion (e.g. when a statement is
true for all morphisms for which it makes sense regardless of domain and range). With
this convention in mind, if f is a family of morphisms of the same name which can be
composed and k > 1, then f (k) denotes the morphism fk/k!. Finally, when a statement
requires that we specify the domain and/or range, we do so by pre/post-composing
with the relevant identity morphisms. In what follows recall {αi | i = 1, . . . ,m− 1} ⊂
X(Tm) denotes the set of simple roots for q(m) (see Section 3.2).

Definition 3.11. Let U̇(q(m)) be the C-linear supercategory with set of objects X(Tm)
and with the morphisms generated by ei, eī : λ → λ + αi, fi, fī : λ → λ − αi, and
hj̄ : λ→ λ for all λ ∈ X(Tm), i = 1, . . . ,m− 1, j = 1, . . . ,m. For all i, j the parities
of ei and fi are even and the parities of eī, fī, and hj̄ are odd. We write 1λ : λ→ λ
for the identity morphism.

The morphisms in U̇(q(m)) are subject to the following relations for all objects λ
and all admissible i, j:

h2
i
1λ = λi1λ,

hihj = −hjhi if i 6= j,(Q1)

hiej − ejhi = δi,jej − δi,j+1ej ,

hifj − fjhi = −δi,jfj + δi,j+1fj ,

hiej + ejhi = (δi,j + δi,j+1)ej ,(Q3)
hifj + fjhi = (δi,j + δi,j+1)fj ,

(eifj − fjei)1λ = δi,j(λi − λi+1)1λ,
(eifj + fjei)1λ = δi,j(λi + λi+1)1λ,

eifj − fjei = δi,j(hi − hi+1),(Q4)
eifj − fjei = δi,j(hi − hi+1),

eiej − ejei = eiej + ejei = 0 if i 6= j ± 1,
fifj − fjfi = fifj + fjfi = 0 if i 6= j ± 1,(Q5)
eiej − ejei = fifj − fjfi = 0 if |i− j| > 1,

eiei+1 − ei+1ei = eiei+1 + ei+1ei,

eiei+1 − ei+1ei = eiei+1 − ei+1ei,

fifi+1 − fi+1fi = fifi+1 + fi+1fi,(Q6)
fifi+1 − fi+1fi = fifi+1 − fi+1fi,

e
(2)
i ej − eiejei + eje

(2)
i = 0 if i = j ± 1,

eieiej − eiejei − eiejei + ejeiei = 0 if i = j ± 1,

f
(2)
i fj − fifjfi + fjf

(2)
i = 0 if i = j ± 1,(Q7)

fififj − fifjfi − fifjfi + fjfifi = 0 if i = j ± 1
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where

e
(k)
i := eki

k! , f
(k)
i := fki

k!
are the divided powers.

Remark 3.12.As discussed in Section 2.4, the supercategory U̇(q(m)) defines a lo-
cally unital superalgebra

U̇(q(m)) =
⊕

λ,µ∈X(Tm)
HomU̇(q(m))(λ, µ).

Using the presentation given in [18, Proposition 2.1] one sees that U̇(q(m)) is an
idempotent version of the enveloping superalgebra U(q(m)).

Definition 3.13. Let U̇(q(m))>0 be the quotient of U̇(q(m)) given by setting 1λ =
0 for all λ 6∈ X(Tm)>0 (i.e. it is U̇(q(m))/I, where I is the ideal generated by
{1λ | λ /∈ X(Tm)>0}).

Applying the discussion in Section 2.4, the corresponding superalgebra U̇(q(m))>0 is
the quotient of U̇(q(m)) by the ideal generated by {1λ | λ /∈ X(Tm)>0}.

Define q(n)-ModS to be the monoidal supercategory of q(n)-supermodules
monoidally generated by {Sp(Vn) | p > 0}. That is, it is the full subcategory of
q(n)-supermodules consisting of objects of the form

Sp1(Vn)⊗ · · · ⊗ Spt(Vn),

where t, p1, . . . , pt ∈ Z>0. In particular, by convention, S0(Vn) is the trivial super-
module, C.

Since S is a weight supermodule for U(q(m)) with all weights lying in X(Tm), it is
a supermodule for the idempotent version of the enveloping superalgebra, U̇(q(m)).
Moreover, since the weight space Sλ equals zero whenever λ 6∈ X(Tm)>0, this repre-
sentation factors through and defines a representation of U̇(q(m))>0. In an abuse of
notation we write

φ : U̇(q(m))>0 → Endq(n) (S)
for this representation. As discussed in Section 3.7, the notion of a supermodule for
a locally unital superalgebra with a distinguished set of idempotents is equivalent to
having a functor U̇(q(m))>0 → svec. The fact that the action of U̇(q(m))>0 on S
commutes with the action of q(n) implies that this functor can be viewed as having
codomain the category of q(n)-supermodules. The existence of this functor is summa-
rized in the following result.

Proposition 3.14. For every m,n > 1 there exists a functor of supercategories

Φm,n : U̇(q(m))>0 → q(n)-ModS .

On objects,
Φm,n(λ) = Sλ ∼= Sλ1(Vn)⊗ · · · ⊗ Sλm(Vn),

for all λ =
∑m
i=1 λiεi ∈ X(Tm)>0. On a morphism x ∈ HomU̇(q(m))(λ, µ),

Φm,n(x) = φ(x).

Remark 3.15. Let m′,m be positive integers with m′ > m. Given an element λ =
(λ1, . . . , λm) ∈ X(Tm) we can view λ as the element λ = (λ1, . . . , λm, 0, . . . , 0) ∈
X(Tm′) by extending by m′ − m zeros. With this identification in mind, there is a
functor of supercategories,

Θm,m′ : U̇(q(m))→ U̇(q(m′)),
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given by sending the objects and generating morphisms of U̇(q(m)) to the objects and
morphisms of the same name in U̇(q(m′)). Moreover this functor defines a functor,
which we call by the same name,

Θm,m′ : U̇(q(m))>0 → U̇(q(m′))>0.

For any fixed n > 1 the functors Φm,n and Φm′,n are compatible in the sense that
Φm′,n ◦Θm,m′ and Φm,n are canonically isomorphic.

4. Upward Webs
4.1. Upward Webs of Type Q. In what follows we introduce the diagrammatic
supercategory of webs of type Q. Much of our exposition parallels that of [37].

Definition 4.1. Let q-Web↑ be the monoidal supercategory generated by the objects
{↑k| k ∈ Z>0}, and with generating morphisms

k

k

,

k+l

k l

,

k+l

k l

for k, l ∈ Z>0. We call these dots, merges, and splits, respectively. The Z/2Z-grading
is given by declaring merges and splits to have parity 0̄ and dots to have parity 1̄. The
morphisms in q-Web↑ are subject to the relations (13)–(18), (20), and (21).

We use the diagrammatic calculus described in Section 2.3 to work with morphisms
in q-Web↑. In particular, diagrams are read bottom to top. Vertical concatenation is
composition and horizontal concatenation is the monoidal product. In this way any
finite sequence of these operations applied to merges, splits, and dots yields a diagram
which is a morphism in q-Web↑. We call such a diagram a web. If a = (a1, . . . , ar)
is a tuple of nonnegative integers, then we write ↑a for the object ↑a1↑a2 · · · ↑ar . If
a = (a1, . . . , ar) and b = (b1, . . . , bs) are tuples of positive integers, then we say a web
is of type a → b if it is a morphism from ↑a→↑b. For example, the web in (1) is of
type (4, 9, 6, 7)→ (6, 5, 1, 4, 8, 2).

We follow the convention that an edge labeled by zero is understood to mean the
edge is omitted. We declare any web containing an edge labeled by a negative integer
to be the zero morphism. When no confusion is possible, we sometimes choose to
suppress edge labels.

An arbitrary morphism from a to b is a linear combination of webs of type a→ b.
To write the relations for q-Web↑ it is convenient to set the following shorthand. A
ladder is a web which is finite sequence of monoidal products and compositions of
identities, dots, and webs of the form

lk

l−jk+j
j :=

lk

l−jk+j

j
,

k l

k−j l+j
j :=

k l

k−j l+j

j
.
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for k, l ∈ Z>0 and j ∈ Z>0. The edge which connects two vertical strands is called
a rung. Note that by choosing a suitable k, l, and j every merge and split is itself a
ladder (for example, by choosing j = l and k = 0 in the first ladder).

The morphisms in q-Web↑ are subject to the following relations for all nonnegative
integers h, k, l, along with the relations obtained by reflecting the webs in (16) across
a vertical axis, and by reversing all rung orientations of the ladders in (20) and (21),
where edge labels at the top of the diagram are changed as needed to make a valid
web. In what follows, to avoid confusing scalars with edge labels we usually choose to
write the scalars in parentheses. Also, as usual,

(
k+l
l

)
= (k+l)!

k!l! .

(13)

h k

h+k

l

h+k+l

=

lk

k+l

h

h+k+l

,

lk

k+l

h

h+k+l

=

h k

h+k

l

h+k+l

,

(14)

k+l

k+l

k l =
(
k + l

l

)
k+l

k+l

,

(15)

k

k

= (k)

k

k

,

(16)

1+k

1 k

=

1+k

1 k

+

1+k

1 k

,

1+k

1 k

=

1+k

1 k

+

1+k

1 k

,

(17)

1 1

1 1

2 −

1 1

1 1

2 = (2)

1 1

1 1

,

(18)

k

k

l

l

1

k−1

1

l+1 −

k

k

l

l

1

k+1

1

l−1 = (k − l)

k l

k l

,
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k

k

l

l

1

k−1

1

l+1 −

k

k

l

l

1

k+1

1

l−1 =

k l

k l

−

k l

k l

(19)

=

k

k

l

l

1

k−1

1

l+1 −

k

k

l

l

1

k+1

1

l−1 ,

(20)

h

h+1

k

k

l

l−1

1

1

−

h

h+1

k

k

l

l−1

1

1

=

h

h+1

k

k

l

l−1

1

1

+

h

h+1

k

k

l

l−1

1

1

,

(21)

h

h+1

k

k

l

l−1

1

1

−

h

h+1

k

k

l

l−1

1

1

=

h

h+1

k

k

l

l−1

1

1

−

h

h+1

k

k

l

l−1

1

1

.

Remark 4.2.While we choose to work over the complex numbers, the definition of
q(n)-Web↑ makes sense over the integers and, more generally, any commutative ring
with 1.

4.2. Additional Relations. From the defining relations of q-Web↑ we deduce the
following useful consequences.

Lemma 4.3. For all k > 1 the following relations holds in q-Web↑:
(a)

(22)

2

2

1 1 = 0 ,

(b)

(23)

k

k

1 k−1 =

k

k

=

k

k

k−1 1 .
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Proof. To prove (22) is a direct calculation similar to the analogous result for type
A [37, Lemma 2.9] (keeping in mind the super interchange law) and is as follows:

2

2

1 1

(14)=
(

1
2

)

2

2

1 1

1 1

2
(17)=
(

1
2

)

2

2

1 1

1 1

2 +

2

2

1 1
(3)= −

(
1
2

)

2

2

1 1

1 1

2 +

2

2

1 1

(15)= −
(

1
2

)

2

2

1 1

1 1

2 +

2

2

1 1
(14)= −

2

2

1 1 +

2

2

1 1 = 0.

To prove (23), we first prove the case of k = 2. For this, we start by computing that

(24)

2

2

(14)=
(

1
2

)
2

2

1 1
(16)= 1

2


2

2

1 1 +

2

2

1 1

 .

Next, we compose (16) on bottom with followed by a split to get

2

2

1 1 =

2

2

1 1 +

2

2

1 1 .

Using (22) on the left, and (2) and (15) on the right, this becomes

0 =

2

2

1 1 −

2

2

1 1 .
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Combining the above with (24) and symmetry, we have (23) in case k = 2. For general
k, we use (16) repeatedly to get

(25)

k

k

1 1· · · =

k

k

1 1· · · + · · ·+

k

k

1 1· · ·

where the small dots indicate k-strands which have been completely “exploded” into
k separate 1-strands. By (13) the order this is done does not matter. The sum is over
the k different webs with a dot on a unique 1-strand. By (13) and the k = 2 case, the
summands are pairwise equal and we have, for example,

(26)

k

k

1 1· · · = (k)

k

k

1 1· · ·

where, on the right, only the leftmost 1-strand has a dot. We finish the proof by
computing that

k

k

(14)= 1
k!

k

k

1 1· · ·
(26)= 1

(k − 1)!

k

k

1 1· · · (14)=

k

k

1 k−1

and noting that the other side of (23) follows by symmetry. �

Lemma 4.4. For h, k, l, r, s > 0,
(a)

(27)

k

k+r+s

l

l−r−s

r

k+r

s

l−r =
(
r + s

s

)
k

k+r+s

l

l−r−s

r+s ,

(b)

(28)

k

k−r1 +r2

l

l+r1−r2

r1

k−r1

r2

l+r1 =
∑
s>0

(
k − r1 + r2 − l

s

)
k

k−r1+r2

l

l+r1−r2

r2−s

k+r2−s

r1−s

l−r2+s ,
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(c)

(29)

h

h+2

k

k−1

l

l−1

1

2

−

h

h+2

k

k−1

l

l−1

1

1
1

+

h

h+2

k

k−1

l

l−1
1

2

= 0,

(d)

(30)

k

k

l

l

1

k−1

1

l+1 +

k

k

l

l

1

k+1

1

l−1 = (k + l)

k l

k l

,

(e)
(31)

h

h+2

k

k−1

l

l−1

1
1

1

−

h

h+2

k

k−1

l

l−1

1

1
1

−

h

h+2

k

k−1

l

l−1

1

1
1

+

h

h+2

k

k−1

l

l−1

1

1
1

= 0.

In addition, we have the equations obtained by reversing all rung orientations of the
ladders in (27) (relabeling the tops of diagrams as needed to make a valid web). We
also have the equations obtained from (29) and (31) by reversing all rung orientations,
reflecting across the vertical line through the middle arrow, and both reversing and
reflecting.

Proof. Since the relations (27)–(29) do not have dots and since the defining relations
of q-Web↑ without dots are a version of type A web relations, the type A proofs of
these statements apply. The reader who would like to verify these relations will find
(27) follows from (13) and (14); (28) follows from (30) by an induction argument; and
(29) can be proven arguing as in the proof of [37, Lemma 2.10(c)].

The proof of (30) is similar to [37, Lemma 2.10(b)]. It involves first applying (18)
on the edges labeled l + 1 (viewed as a square with left side labeled by 0) and k + 1
(viewed as square with right side labeled by zero) in the webs on the left. The result
is four diagrams, two of which can be reduced using (14) and (15) and two of which
can be reduced using (14) and (17). After simplifying one obtains the right hand side
of (30).

To prove (31) one can use (20) to rewrite the middle two diagrams on the left hand
side into a linear combination of six diagrams. Combining (13) and (22) shows the
two diagrams which have neighboring rungs with dots are equal to zero. Two of the
four remaining diagrams cancel out and the remaining two cancel with the other two
diagrams given on the left side of (31). �

4.3. Crossings and the Sergeev Algebra. We introduce the following additional
diagram as a shorthand. Define the upward crossing morphism in Endq-Web↑(↑21) by

1

1

1

1

=

1 1

1 1

2 −

1

1

1

1

.
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More generally, we introduce the following notation.

Definition 4.5. Fix k ∈ Z>0. For i = 1, . . . , k and j = 1, . . . , k − 1, define the
morphisms ci, sj ∈ Endq-Web↑(↑k1) by

ci =
1

1

1

1

1

1

1

1

1

1

· · · · · · , sj =
1

1

1

1

1

1

1

1

1

1

1

1

· · · · · ·

where the dot on ci is on the ith strand and sj is the crossing of the jth and (j + 1)st
strands.

Drawing these morphisms as crossings is justified by the following lemma.

Lemma 4.6. For any k > 2 the following relations hold in q-Web↑ for all admissible
i, j:

(a) s2
j = 1;

(b) sisj = sjsi if |i− j| > 1;
(c) sisi+1si = si+1sisi+1;
(d) sicj = cjsi if |i− j| > 1;
(e) sici = ci+1si.

Proof. Statements (b) and (d) follow immediately from the super interchange law,
while the rest can be verified by direct calculations involving (14), (18), and (19). �

Comparing the previous lemma to the defining relations of the Sergeev algebra
given in Section 3.4 we see there is a homomorphism of superalgebras

(32) ξk : Serk → Endq-Web↑(↑k1)

for any k > 1 which sends the generators of Serk to the morphisms in Endq-Web↑(↑k1) of
the same name. In Section 5.3 we will see that this map is an isomorphism. Meanwhile,
for x ∈ Serk we abuse notation by writing x ∈ Endq-Web↑(↑k1) for ξk(x). In particular,
in what follows we do this for elements of the symmetric group Σk via our identification
of CΣk as a subalgebra of Serk in Section 3.3.

In what follows we allow ourselves to draw merges and splits of multiple strands.
For example, define

· · ·

k1 + · · ·+ kt

k1 kt

to be the vertical concatenation of t− 1 merge diagrams. By (13) the resulting mor-
phism is independent of how this is done. We define the split into multiple strands
similarly.

Lemma 4.7. Let k ∈ Z>0 and let σ ∈ Σk. Then,

(33)
· · ·

· · ·

σ

k

1 1

=
· · ·

k

1 1

.

Algebraic Combinatorics, Vol. 4 #6 (2021) 1050



Webs of type Q

Proof. First, note that

(34)

2

1 1

= 1 1

1 1

2

−

2

1 1

(14)= (2)

2

1 1

−

2

1 1

=

2

1 1

.

The first equality is by definition and the second follows from (14). Since every per-
mutation is a product of simple transpositions, a straightforward calculation using
(34) and (13) proves the statement in general. �

4.4. The clasp idempotents.

Definition 4.8. For k ∈ Z>1, the k-th clasp Clk ∈ Endq-Web↑(↑k1) is given by

Clk = 1
k!

1
· · ·

1

1
· · ·

1

k .

In addition, Cl1 ∈ Endq-Web↑(↑1) is understood to be the identity.

Note that a calculation using (14) shows Clk is an idempotent for all k ∈ Z>1.
The following lemma shows clasps admit recursion formulas similar to those of the

Jones–Wenzl projectors in the Temperley–Lieb algebra (e.g. see [40]).

Lemma 4.9. For k ∈ Z>1,

(a) Clk =

1 1 1 1

1 1 1 1
· · ·

· · ·

Clk−1 + k − 1
k

1 1 1 1

1 1 1 1

21 1

· · ·

· · ·

· · ·

Clk−1

Clk−1

,

and

(b) Clk = k − 1
k

1 1 1 1

1 1 1 1

21 1

· · ·

· · ·

· · ·

Clk−1

Clk−1

− k − 2
k

1 1 1 1

1 1 1 1
· · ·

· · ·

Clk−1 .

Proof. The proof of the first recursion identical to [29, Lemma 2.13]. See also [37,
Lemma 2.12]. The second recursion follows from the first by applying (17) to the
rightmost webs. �

An inductive argument using the recursion formulas yields the following closed
formula for the clasps. This can be seen as a super analogue of the classical formula
of the Jones–Wenzl projector in terms of permutations, (e.g. see [21, Section 3.2]).
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Lemma 4.10. For k > 1 we have

(35) Clk = 1
k!
∑
σ∈Σk

· · ·

· · ·

σ

1 1

1 1

.

4.5. Symmetry on q-Web↑. We now introduce braidings between arbitrary objects
of q-Web↑ and show that this provides a symmetric braiding. We first define the
braiding between two generating objects.

Definition 4.11. For k, l ∈ Z>0 define

β↑k,↑l =
k

l

l

k

= 1
k! l!

1 111

1 111

· · · · · ·

· · · · · ·

l k

k l

.

The following lemma shows that β↑k,↑l is its own inverse. It also shows that if one
web can be obtained from another by isotopies and sliding dots, merges, and splits
along strands, then they are equal in q-Web↑.

Lemma 4.12. The following relations hold in q-Web↑ for all h, k, l ∈ Z>0.

(a)

k

k

l

l

=

k

k

l

l

,

(b)

h

l

k

k

l

h

=

h

l

k

k

l

h

,

(c)

h+k

h k l

l

=

h+k

kh

l

l

,

h+k

khl

l

=

h+k

h k

l

l

,
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h+k

h k

l

l

=

h+k

khl

l

,

h+k

kh

l

l

=

h+k

h k l

l

,

(d)

k

l

l

k

=

k

l

l

k

,

l

k

k

l

=

l

k

k

l

.

Proof. The first three sets of relations do not have dots and so hold from the analogous
results in type A. If the reader prefers, they can verify that all four sets of relations
follow from straightforward calculations where Definition 4.13 is used to rewrite the
crossings as crossings of strands labeled by 1, Lemma 4.10 is used to rewrite clasps
as crossings labeled by 1, and by applications of the relations given in Section 4.2
and Lemma 4.6. �

We now define the braiding for arbitrary objects in q-Web↑.

Definition 4.13. Let a = (a1, . . . , ar) and b = (b1, . . . , bs) be two tuples of nonnega-
tive integers and let ↑a and ↑b be the corresponding objects of q-Web↑. Define

β↑a,↑b =

· · ·

· · ·

· · ·

· · ·

a1 ar b1 bs

b1 bs a1 ar

.

With these and Lemma 4.12, the following is immediate.

Theorem 4.14. The morphisms β↑a,↑b define a symmetric braiding on the monoidal
supercategory q-Web↑.

5. Functors Πm and Ψ, and Endq-Web↑(↑k1)

We next relate the combinatorial category q-Web↑ to the supercategory U̇(q(m)) and
to the representations of q(n). Namely, as in [29, 37], we will show for all m there is a
functor of supercategories Πm : U̇(q(m))>0 → q-Web↑ and for all n a monoidal func-
tor of supercategories Ψn : q-Web↑ → q(n)-ModS such that the following diagram
commutes:

(36)

U̇(q(m))>0 q(n)-ModS

q-Web↑

Φm,n

Πm Ψn

.
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5.1. The Functor Πm. In what follows, recall if a diagram has an edge labeled by
a negative integer then the morphism given by that diagram is understood to be zero
and an edge labeled by zero in a web can always be erased (or added). Also we recall
the definition of the divided power morphisms can be found in Section 3.7.

Proposition 5.1. For every m > 1 there exists a functor of monoidal supercategories
Πm : U̇(q(m))>0 → q-Web↑

given on objects λ =
∑m
i=1 λiεi ∈ X(T )>0 by

Πm (λ) =↑λ=↑λ1↑λ2 · · · ↑λm ,
and on the divided powers of the generating morphisms by

Πm(e(j)
i 1λ) =

λi

λi+j

λi+1

λi+1−j

j

λ1 λi−1

λ1 λi−1

· · ·

λi+2 λm

λi+2 λm

· · · ,

Πm(f (j)
i 1λ) =

λi

λi−j

λi+1

λi+1+j

j

λ1 λi−1

λ1 λi−1

· · ·

λi+2 λm

λi+2 λm

· · · ,

Πm(e(j)
i

1λ) =

λi

λi+j

λi+1

λi+1−j

j

λ1 λi−1

λ1 λi−1

· · ·

λi+2 λm

λi+2 λm

· · · ,

Πm(f (j)
i

1λ) =

λi

λi−j

λi+1

λi+1+j

j

λ1 λi−1

λ1 λi−1

· · ·

λi+2 λm

λi+2 λm

· · · ,

Πm(hi1λ) =

λ1 λi−1

λ1 λi−1

· · ·

λi

λi

λi+1 λm

λi+1 λm

· · · .

Moreover, Πm is a full functor onto the full subcategory of q-Web↑ consisting of
objects

{
↑a| a ∈ Zm>0

}
.

Proof. To show Πm is well-defined it suffices to verify the defining relations of
U̇(q(m))>0 hold in q-Web↑. This follows by direct calculations using the defining
relations of q-Web↑ along with the identities proven in Section 4.2. For example, the
first two equations of (Q4) hold because of (18) and (30). The first two equations of
(Q7) hold because of (29) and (31). The other defining relations of U̇(q(m))>0 are
similar.

That the image of Πm lies in the given subcategory is immediate. That the functor
is full amounts to the fact that the images of the generating morphisms of U̇(q(m))>0
also generate the morphisms of q-Web↑. As discussed in Section 4.1, every merge
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and split is a special case of a ladder. Using this observation it it is straightforward
to verify one can obtain every possible merge, split, and dot (possibly monoidally
multipled by identity strands on the left and/or right) which lies in this subcategory.
Since every web which is a morphism in this subcategory is a composition of such
diagrams, it follows that Πm is full. �

Remark 5.2. Recall the functors Θm′,m from Remark 3.15. The Π functors are com-
patible in the sense that Πm′ ◦Θm′,m and Πm are isomorphic functors for all positive
integers m′ > m.

5.2. The Functor Ψ↑. Let w1, . . . , wk+l be homogeneous elements of Vn. Given sets
I = {i1 < · · · < ik} and J = {j1 < · · · < jl} such that I ∪ J = {1, · · · , k + l}, then
wi1 · · ·wikwj1 · · ·wjl and w1 · · ·wk+l are elements of Sk+l(Vn) and are equal up to a
sign. Define εI,J ∈ Z/2Z by the formula

wi1 · · ·wikwj1 · · ·wjl = (−1)εI,Jw1 · · ·wk+l.

Proposition 5.3. For every n > 1 there exists an essentially surjective functor of
monoidal supercategories,

Ψ↑n : q-Web↑ → q(n)-ModS ,

given on objects by

Ψ↑n (↑λ) = Sλ = Sλ(Vn) = Sλ1(Vn)⊗ · · · ⊗ Sλt(Vn),

where λ = (λ1, . . . , λt). On morphisms the functor is defined by sending the dot,
merge, and split, respectively, to the following maps (where all wi are homogeneous
elements of Vn):

Sk(Vn)→ Sk(Vn),

w1 · · ·wk 7→
k∑
t=1

(−1)|w1|+···+|wt−1|w1 · · · c(wt) · · ·wk;

Sk(Vn)⊗ Sl(Vn)→ Sk+l(Wn),
w1 · · ·wk ⊗ u1 · · ·ul 7→ w1 · · ·wku1 · · ·ul;

Sk+l(Cn)→ Sk(Vn)⊗ Sl(Wn),

w1 · · ·wk+l 7→
∑

I={i1<···<ik}
J={j1<···<jl}
I∪J={1,··· ,k+l}

(−1)εI,Jwi1 · · ·wik ⊗ wj1 · · ·wjl .

Proof. That the functor is essentially surjective is clear. Direct calculations verify
these maps are q(n)-linear and satisfy the defining relations of q-Web↑. For example,
if w1, . . . , wk ∈ Vn are homogeneous, then we can verify (15) as follows. Under the
morphism defined on the left-hand side of (15) w1 · · ·wk maps to∑

16u<t6k
(−1)|wu|+···+|wt−1|w1 · · · c(wu) · · · c(wt) · · ·wk

+
k∑
t=1

w1 · · · c2(wt) · · ·wk

+
∑

16t<u6k
(−1)|c(wt)|+···+|wu−1|w1 · · · c(wt) · · · c(wu) · · ·wk.
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Each term in the first sum pairs up with a term in the third sum. Since |c(wu)| =
|wu| + 1̄ they have opposite sign and cancel. Since c2 : Vn → Vn equals the identity
the second sum simplifies to kw1 · · ·wk, as desired.

Similarly, (17) can be proven as follows. The leftmost diagram in (17) is the map

w1 ⊗ w2 7→ w1w2 7→ w1 ⊗ w2 + (−1)|w1||w2|w2 ⊗ w1.

The second diagram in (17) is the map

w1 ⊗ w2 7→ (−1)|w1|c(w1)⊗ c(w2)

7→ (−1)|w1|c(w1)c(w2)

7→ (−1)|w1|c(w1)⊗ c(w2) + (−1)|w1|+|c(w1)||c(w2)|c(w2)⊗ c(w1)

7→ (−1)|w1|+|c(w1)|w1 ⊗ w2 + (−1)|w1|+|c(w1)||c(w2)|+|c(w2)|w2 ⊗ w1

= (−1)|w1|+(|w1|+1̄)w1 ⊗ w2 + (−1)|w1|+(|w1|+1̄)(|w2|+1̄)+(|w2|+1̄)w2 ⊗ w1

= −w1 ⊗ w2 + (−1)|w1||w2|w2 ⊗ w1.

Subtracting the second from the first yields the map w1⊗w2 7→ 2w1⊗w2, as desired.
We leave the others to the reader. �

One can verify β↑k,↑l is sent to the graded flip map Sk(Vn) ⊗ Sl(Vn) → Sl(Vn) ⊗
Sk(Vn) given by v1 · · · vk ⊗ w1 · · ·wl 7→ (−1)(|v1|+···+|vk|)(|w1|+···+|wl|)w1 · · ·wl ⊗
v1 · · · vk. Also, we could have defined the functor Ψ↑n using the functors Φm,n using
the following remark.

Remark 5.4. Recall the functors Φm,n from Proposition 3.14. Then,

Ψ↑n


k

k
 = Φ↑1,n(h11(k)),

Ψn


k+l

k l

 = Φ↑2,n(e(l)
1 1(k,l)),

Ψn


k+l

k l
 = Φ2,n(f (l)

1 1(k+l,0)).

In particular, for any m,n > 1 we have Ψ↑n ◦ Πm = Φm,n. The well-definedness
of Ψ↑n can also be deduced from the well-definedness of the functors Φm,n and the
compatibility given in Remark 3.15.

5.3. Description of Endq-Web↑(↑k1). We next describe the endomorphism alge-
bras Endq-Web↑(↑k1). In particular, as promised in the discussion after Lemma 4.6,
Endq-Web↑(↑k1) will turn out to be isomorphic to the Sergeev algebra.

Lemma 5.5. The superalgebra Endq-Web↑(↑k1) is generated by c1, . . . , ck, s1, . . . , sk−1.

Proof. It suffices to prove that every web diagram w ∈ Endq-Web↑(↑k) can be written
as a linear combination of webs containing only upward crossings and dotted 1-strands.
Given w, we may assume without loss of generality that every dot in w is on a 1-strand
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by (23). Next, every merge and split in w can have its edges expanded into 1-strands
using (14). For example, here is an expanded merge:

h+l

h l

= 1
h! l! (h+ l)!

h+l

h l

1 1· · ·

· · ·1
1· · · 1

1

.

By (13), the web enclosed by the dashed rectangle above is (h + l)!Clh+l. By
Lemma 4.10 each such clasp idempotent can be rewritten as a sum of upward
crossings. The result follows. �

Proposition 5.6. For every k ∈ Z>0 the map

ξk : Serk → Endq-Web↑(↑k1)

of (32) is a superalgebra isomorphism. Moreover, the map obtained by composing this
homomorphism with Ψ↑n : Endq-Web↑(↑k1)→ Endq(n)

(
V ⊗k

)
coincides with the map ψ

given in Theorem 3.3.

Proof. As discussed regarding (32), ξk gives a well-defined homomorphism. By
Lemma 5.5, ξk is surjective.

It only remains to prove injectivity. Fix n > k and let 1k = (1, . . . , 1) ∈ Zk.
Since S1k = V ⊗kn , the functor Ψn induces a map of superalgebras Endq-Web↑(↑k1) →
Endq(n)(V ⊗kn ) which we call by the same name. Taken together with the superalgebra
map ψ : Serk → Endq(n)(V ⊗kn ) from Theorem 3.3 we have the following diagram of
superalgebra maps.

Serk Endq(n)(V ⊗kn )

Endq-Web↑(↑k1)

ψ

ξk
Ψ↑n

.

A direct calculation on generators verifies this diagram commmutes. The injectivity of
ξk follows from the fact that ψ is an isomorphism by Theorem 3.3 (since n > k). �

5.4. The fullness of Ψ↑n.

Theorem 5.7. For every n > 1, the functor Ψ↑n : q-Web↑ → q(n)-ModS is full.

Proof. Let a = (a1, . . . , ar) and b = (b1, . . . , bs) be objects of q-Web↑. We first
observe that Homq-Web↑(a, b) = 0 unless |a| = |b|. Likewise, by weight considerations
Homq-Web↑(n)(Sa(Vn), Sb(Vn)) = 0 unless |a| = |b|. Thus we can assume |a| = |b| in
what follows.

There is a map of superspaces

α = αa,b : Homq-Web↑(a, b)→ Homq-Web↑

(
↑|a|1 , ↑|b|1

)
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given by using merges and splits to “explode” all the boundary strands:

· · ·

· · ·

u

b1

a1

bs

ar

7→

· · ·

· · ·

u

b1

a1

bs

ar

· · ·

· · ·

· · ·

· · ·

11

11

1 1

1 1

.

This map is an embedding. Up to a scalar the left inverse is given by applying a
complementary set of splits and merges to rejoin the strands and applying relation
(14). Since the map is given by composing and monoidally multiplying diagrams,
via the functor there is corresponding map, α̃, such that the following commutative
diagram of superspace maps,

(37)

Homq-Web↑(a, b) Homq-Web↑

(
↑|a|1 , ↑|b|1

)

Homq-Web↑(Sa(Vn), Sb(Vn)) Homq-Web↑

(
V
⊗|a|
n , V

⊗|b|
n

)
.

α

Ψ↑n Ψ↑n

α̃

Furthermore, ea = Cla1 ⊗ · · · ⊗ Clar , eb = Clb1 ⊗ · · · ⊗ Clbs ∈ Endq-Web↑(↑
|a|
1 ) are

idempotents, the image of α is precisely eb Homq-Web↑(↑a, ↑b)ea, and the image of α̃
is Ψ↑n(eb) Homq(n)(V a, V b)eaΨ↑n(ea). By Proposition 5.6 and Theorem 3.3 the Ψ↑n on
the right side of (37) is surjective. This along with a diagram chase implies Ψ↑n is
surjective on the left side of the diagram. Together with the discussion in the first
paragraph it follows Ψ↑n is a full functor. �

6. Oriented Webs
In this section we introduce oriented webs. On the representation theory side this
corresponds to including the duals of symmetric powers of the natural supermodule
for q(n). Our approach follows that of oriented Brauer and tangle categories (e.g. as
in [39, 38]). We were particularly inspired by [6] where we learned the handy technique
of declaring a morphism to be invertible as part of defining a monoidal category.

6.1. Oriented Webs.

Definition 6.1. The category q-Web↑↓ is the monoidal supercategory with generating
objects

{↑k, ↓k| k ∈ Z>0}
and generating morphisms

k

k

,

k+l

k l

,

k+l

k l

,
k k

,
k k

,

for all k, l ∈ Z>0. We call these the dot, merge, split, cup, and cap, respectively. The
parity is given by declaring the dot to be odd and the other generating morphisms to
be even.
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The relations imposed on the generators of q-Web↑↓ are the relations (13)–(18),
(20), and (21) of q-Web↑, along with leftward and rightward oriented versions of the
relations given in (38), declaring the morphism given in (39) to be invertible, and
relation (42).

The first relation is the following straightening rules for cups and caps:

(38)

k

k

=

k

k

and

k

k

=

k

k

.

To state the second relation, we first define the leftward crossing in q-Web↑↓ for
all k, l > 1 by

(39)
k

l

l

k

:=

k l

l k

.

We impose on q(n)-Web↑↓ the requirement that every leftward crossing is invertible.
In other words, for every k, l > 1 we assume the existence of another generating
morphism of type ↑l↓k→↓k↑l which we draw as the rightward crossing

l

k

k

l

.

Furthermore, we assume it is a two-sided inverse to leftward crossing under compo-
sition:

(40)

k

k

l

l

=

k

k

l

l

,

k

k

l

l

=

k

k

l

l

.

Note that dots freely move through leftward crossings and, consequently, through
rightward crossings.

Using the rightward crossing, we define the rightward cup and cap by

(41)
k

:= k
,

k :=
k

.

We impose the relation that these morphisms satisfy the rightward oriented versions
of (38).

The final relation we impose on q-Web↑↓ is that the following holds for all k > 1:

(42) k = 0.
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Note that, like q-Web↑, the relations for q-Web↑↓ are symmetric with respect to
reflection across a vertical axis. We will sometimes invoke this symmetry to reduce
the number of cases which need to be checked in various calculations.

6.2. Additional Relations. We define the downward dot by

(43)

k

k

:=

k

k

.

We define downward merges, splits, and crossings by:

(44)

k+l

k l

:=

k+l

k l

,

k+l

k l

:=

k+l

lk

,

(45)
k

l

l

k

:=

k l

l k

.

By applying cups and caps to (13)–(18), (20), and (21) one obtains a parallel set of
relations on downward oriented diagrams. We freely use these downward relations in
what follows. For relations with one or fewer dots, the rotated relations are straight-
forward. However, when computing relations the reader is advised to keep in mind the
effect of the super interchange law when diagrams have multiple dots. For example,
applying the definition of the downward dot, the super interchange law, (15), and (38)
yields the following downward version of (15):

(46)

k

k

=

k

k

= (−1)

k

k

= (−k)

k

k

= (−k)

k

k

.

The following additional relations hold in q-Web↑↓.

Lemma 6.2. For any k, l > 1, the following relations hold. When then orientation of a
strand is omitted, the given relation holds regardless of the orientation of the strand.

(a)

(47)

k

l

l

k

=

k

l

l

k

,

l

k

k

l

=

l

k

k

l

,
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(b)

k k

=
k k

,
k k

=
k k

,(48)

k k

=
k k

,
k k

=
k k

,(49)

(c)

k = 0, k = k = 0,(50)

(d)

(51)

k

k

=

k

k

=

k

k

Proof. For the first relation given in (48), we compute:

k k (43)=

k k

(38)=
k k

.

Proof of the second relation given in (48) is similar.
With (48) in hand we next prove the relations given in (47). These relations were

already proven in Lemma 4.12 when both strands are upward oriented. This along
with the fact dots freely go over leftward cups and caps proves that dots freely move
through leftward and downward crossings. Finally, the fact dots move through leftward
crossings implies dots also move through their inverses, the rightward crossings. The
fact that dots freely move through leftward caps and cups and through rightward
crossings shows the relations given in (49).

The first relation of (50) follows by writing the writing the rightward cup using
(41), passing the dot through the rightward crossing, using (41) again to rewrite the
resulting diagram with a rightward cup, and applying (42). The second follows from

k

(15)=
(

1
k

)
k

(48)=
(

1
k

)
k

(3)=
(
−1
k

)
k

(48)=
(
−1
k

)
k

(15)= − k .

The counterclockwise oriented circle is handled similarly
We prove the first equality in (51) for the upward orientation and then the second

equality for the upward orientation will follow from reflecting the first across the
vertical axis. As the label will be irrelevant to the calculation, we chose to omit it.
The first of the following equalities is the definition of the rightward oriented cap, the
second is (38), the third is the definition of the leftward crossing, the fourth is the the
fact the rightward crossing is, by definition, the inverse of the leftward crossing, and
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the last is another application of (38):

= = = = = .

The downward oriented versions of (51) are entirely similar. �

Lemma 6.3. The relations given in Lemma 4.12 hold for all possible strand orienta-
tions and all possible h, k, l ∈ Z>1.

Proof. That appropriately oriented crossings are inverses is immediate from the def-
inition. The braid relation on crossings follows from [39, Lemma 3.3] once we note
that our choice of strand orientations is the opposite of Turaev’s choice. Namely, the
relations verified so far for q-Web↑↓ show that the defining relations of the category
of colored ribbon tangles are satisfied by the strands in q-Web↑↓. Since the braid
relation holds in the tangle category, it holds here as well. The fact that merges, splits
and dots pass through strands follows from the fact they freely pass through upward
crossings and over leftward oriented cups and caps. �

Lemma 6.4. The following relations hold in q-Web↑↓ for all possible strand orienta-
tions and all possible h, k, l ∈ Z>1.

(a)

h k

=
hk

,
h k

=
hk

.

(b)

k k

l

l

=

k k

l

l

,

kk

l

l

=

kk

l

l

,

k k l

l

=

k k l

l

,

kkl

l

=

kkl

l

.

Proof. In the following calculations we leave the edges unlabeled as the labels play
no role in the arguments.

For (a) we only prove the first equality as the second follows by entirely similar
arguments. If the web is of type ↓↑↑→↑ then using the definition of the leftward
crossing and (38), we have:

= = = .
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If the diagram is of type ↓↓↑→↓, then using the definition of the downward crossing
and (38) we have:

= = = .

We next consider the left equality in (a) in the cases when the cap has a rightward
orientation. As the orientation of the other strand will not matter, we handle both
cases at once. By applying the definition of the rightward cap, Lemma 6.3, and the
fact the first equality for (a) holds for leftward oriented caps we have:

= = =

= = = .

The identities in (b) follow from those in (a) by applying a suitably oriented crossing
to both sides and simplifying. �

6.3. Duals and braidings in q-Web↑↓. We next show that q-Web↑↓ has duals and
braidings for arbitrary objects. These constructions are standard and can be found
in [39, XII.2.2], for example. We let |k represent either ↑k or ↓k. More generally, for any
tuple of nonnegative integers a = (a1, . . . , ar) we write |a = |a1 |a2 · · · |ar . For a tuple
a = (a1, . . . , ar) we write←−a = (ar, . . . , a1). Let ↑′k=↓k and ↓′k=↑k. More generally, let
|′a = |′a1

· · · |′ar .
For an arbitrary object a in q-Web↑↓, we can use appropriately oriented caps (or

cups) to define morphisms eva : |′←−a ⊗ |a → 1 and coeva : 1→ |a ⊗ |′←−a via

eva =

· · ·· · ·

and coeva =
· · ·· · ·

.

Repeated use of the leftward and rightward oriented versions of (38) shows that that
for any object |a the evaluation and coevaluation morphisms satisfy the multi-strand
version of (38) as well as its rightward oriented analogue. That is, q-Web↑↓ is a rigid
category with |a having |′←−a as its left and right dual.

For arbitrary objects a, b in q-Web↑↓, one can use the appropriately oriented ver-
sion of Definition 4.13 to define the braiding isomorphism β|a,|b : |a ⊗ |b → |b ⊗ |a.
For example, the braiding β↑k1↓k2↓k3 ,↓l1↑l2 :↑k1↓k2↓k3 ⊗ ↓l1↑l2→↓l1↑l2 ⊗ ↑k1↓k2↓k3 is
given by

k3k2k1 l1 l2

l1 l2 k1 k2 k3

.
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Using the evaluation, coevaluation, and braiding morphisms defined above for ar-
bitrary objects, one can generalize the diagrams given in Lemma 6.3 and Lemma 6.4,
the leftward and rightward oriented versions of (38), and (51) to arbitrary objects of
q-Web↑↓. Using repeated applications of these relations in the cases already estab-
lished allows one to verify the analogous identities also hold for the generalizations.
We record this fact in the following lemma.

Lemma 6.5. The analogues of the relations in Lemma 6.3 and Lemma 6.4, the left-
ward and rightward oriented versions of (38), and (51) hold for arbitrary objects in
q-Web↑↓.

Theorem 6.6. The supercategory q-Web↑↓ is a rigid, symmetric, monoidal supercat-
egory. Moreover, any two webs in q-Web↑↓ which are related by an isotopy which fixes
all dots are equal as morphisms in q-Web↑↓.

Proof. The fact that the evaluation, coevaluation, and braiding morphisms introduced
in this section make q-Web↑↓ a rigid, symmetric, monoidal supercategory follows from
Lemma 6.5 and the other relations verified in this section.

The second assertion follows from [39, Lemma 3.4]. Namely, let q-Web0
↑↓ denote

the subcategory of q-Web↑↓ consisting of all objects and all morphisms which can
be written as a linear combination of webs which have no dots. Then q-Web0

↑↓ is
a strict monoidal category with duality and a symmetric braiding. Let RIBq-Web0

↑↓

denote the category of ribbon graphs over q-Web0
↑↓ as in [39, Section 2.3]. By [39,

Lemma 3.4] there is a full functor RIBq-Web0
↑↓
→ q-Web0

↑↓ where the generators
listed in [39, Lemma 3.1.1] go as expected (keeping in mind that we have the oppo-
site convention on edge orientation) to crossings, evaluations, and coevaluations in
q-Web0

↑↓ and where the twist maps go to identity morphisms. The fact the relations
listed in [39, Lemma 3.4] are satisfied follows from the relations established above.
SinceRIBq-Web0

↑↓
is a ribbon category and the functor is full, this implies the relations

of a ribbon category hold in q-Web0
↑↓. In particular, since twist maps are identities,

strands of arbitrary label and orientation satisfy the Reidemeister moves and, hence,
isotopic diagrams in q-Web0

↑↓ are equal. Therefore two diagrams in q-Web↑↓ which
are related by an isotopy which fixes all dots are equal as morphisms in q-Web↑↓. �

It is worth observing that one can combine the previous result and the fact that
dots freely move through crossings to show that rotating morphisms using leftward
oriented cups and caps agrees with rotating using rightward oriented cups and caps.
That is, for any morphism f : a→ b in q-Web↑↓ we have:

f = f = f = f = f .

6.4. Isomorphisms between morphism spaces in q-Web↑↓. We now introduce
isomorphisms between various morphism spaces which will be useful in what follows.
These isomorphisms are well-known to experts and can be found in the literature
(e.g. see [17, Section 5]). We include them here for completeness.

The symmetric group on t letters, Σt, acts by place permutation on the set of all
objects of q-Web↑↓ which are the monoidal product of exactly t generating objects.
For example, if a = |a1 |a2 · · · |at and σ ∈ Σt, then σ · a = |aσ−1(1)

|aσ−1(2)
· · · |aσ−1(t)

.
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Moreover, for any object a and σ ∈ Σt the braiding morphisms in q-Web↑↓ give a
morphism,

dσ = dσ,a ∈ Homq-Web↑↓(a, σ · a),
which is an invertible morphism in q-Web↑↓ with d−1

σ = dσ−1 . More generally, given
objects a and b which are the monoidal product of t and u generators, respectively,
and any σ ∈ Σt and τ ∈ Σu, then the map w 7→ dτ ◦ w ◦ dσ−1 defines a superspace
isomorphism

(52) Homq-Web↑↓ (a, b)
∼=−→ Homq-Web↑↓(σ · a, τ · b).

In addition, given objects of the form a =↑a1 · · · ↑ar↓ar+1 · · · ↓at and b =↓b1
· · · ↓bs↑bs+1 · · · ↑bu , then there is a superspace map,
(53)
Homq-Web↑↓(a, b)

∼=−→ Homq-Web↑↓
(
↑bs · · · ↑b1↑a1 · · · ↑ar , ↑bs+1 · · · ↑bu↑at · · · ↑ar+1

)
,

given on diagrams by

w

ar+1 ata1

· · · · · ·
ar

bs+1

· · ·· · ·
bub1 bs

7→ w

bs

· · ·

· · ·

b1 a1

· · ·

· · ·

ar

bs+1

· · ·

· · ·

bu at

· · ·

· · ·

ar+1

.

The inverse is given by a similar map (thanks to relation (38)).
As in the proof of Theorem 5.7, whenever a morphism between Hom-spaces in

q-Web↑↓ is defined by applying some combination of compositions and monoidal
products of morphisms we can apply the functor Ψ and obtain a corresponding mor-
phism in the category of q(n)-modules. In particular, commuting diagrams go to
commuting diagrams and isomorphisms go to isomorphisms.

6.5. Further Functors.

Theorem 6.7. There is a full functor of symmetric monoidal supercategories
Ω : q-Web↑ → q-Web↑↓

which takes objects and morphisms in q-Web↑ to objects and morphisms of the same
name in q-Web↑↓.

Proof. By construction the defining relations on morphisms of q-Web↑ hold in
q-Web↑↓. Consequently, there is a well-defined functor of monoidal supercategories.
Now let a, b be objects of q-Web↑ and let d be a web diagram which lies in
Homq-Web↑↓(a, b). Using the generating morphisms of q-Web↑↓, we may assume d
is assembled from vertical and horizontal concatenations of upward oriented dots,
merges, splits, cups and caps, and rightward crossings. Since isotopic webs in q-Web↑↓
are equal as morphisms, we may use cups and caps to rotate rightward crossings so
they become upward oriented crossings. We may also assume each dot, merge, split,
cup, cap, and crossing are at different heights in d.

We call a strand a segment if it connects any two elements of the set of merges,
splits, crossings, and upper and lower boundary points of d, and if there is nothing
between the two other than cups, caps, and dots. In particular, both ends of a seg-
ment connect to upward oriented merges, splits, crossings or endpoints (the latter
are upward oriented because a and b are objects of q-Web↑). Since dots freely move
through cups and caps, each segment can be isotopied while leaving its ends fixed to
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a segment which is continuously upward oriented, possibly with with dots. Doing this
to all the segments in d results in a diagram which is upward oriented everywhere.
Furthermore, by (42) and Lemma 6.2 there are no bubbles in d.

Taken together, this shows d is equal to a web diagram which lies in the image of
Homq-Web↑(a, b) in Homq-Web↑↓(a, b). That is, the functor is full. �

This functor will turn out to be faithful (see Corollary 7.3) and, hence, we will be
able to identify q-Web↑ as a full subcategory of q-Web↑↓ via this functor.

Let q(n)-ModS,S∗ denote the full monoidal subsupercategory of q(n)-supermodules
generated by the objects {

Sp (Vn) , Sp (Vn)∗ | p > 1
}
.

We next show the functor Ψ↑n : q-Web↑ → q(n)-ModS may be extended to a functor
Ψ↑↓n : q-Web↑↓ → q(n)-ModS,S∗ . Set the notation

evk : Sk(Vn)∗ ⊗ Sk(Vn)→ C,(54)
coevk : C→ Sk(Vn)⊗ Sk(Vn)∗,(55)

for the evaluation and coevaluation maps defined in Section 2.2.

Theorem 6.8. There is an essentially surjective, full functor of rigid symmetric
monoidal supercategories

Ψ↑↓n : q-Web↑↓ → q(n)-ModS,S∗

given on generating objects by

Ψ↑↓n (↑k) = Sk(Vn),
Ψ↑↓n (↓k) = Sk(Vn)∗

and on generating morphisms by defining it on the dot, merge, and split as in Propo-
sition 5.3 and

Ψ↑↓n

(
k k

)
= coevk, Ψ↑↓n

(
k k

)
= evk .

Proof. Since Ψ↑n is already known to preserve (13)–(18), (20), and (21) of q-Web↑, it
suffices to verify the leftward and rightward oriented versions of relation (38), relation
(42), and the invertibility of (39). This follows from a direct calculations as follows.

Let W be a finite-dimensional superspace with homogeneous basis {wi | i ∈ I} and
let fj ∈W ∗ be defined by fj(wi) = δi,j (note that the parity of fj matches the parity
of wj). For the left relation in (38) the given sequence of maps given by the left hand
side of the equality evaluate on a basis element of W = Sk(Vn) by

wt 7→
∑
i∈I

wi ⊗ fi ⊗ wt 7→
∑
i∈I

wifi(wt) = wt.

That is, the map is the identity on W = Sk(Vn), as claimed.
For the right relation in (38) the given sequence of maps given by the left hand

side of the equality evaluate on a basis element of W ∗ = Sk(Vn)∗ by

ft 7→
∑
i∈I

ft ⊗ wi ⊗ fi 7→
∑
i∈I

ft(wi)fi = ft.

That is, the map is the identity on W ∗ = Sk(Vn)∗, as claimed.
We next verify that the leftward crossing goes to the graded flip map (see Sec-

tion 2.1) Sk(Vn)∗ ⊗ S`(Vn)→ S`(Vn)⊗ Sk(Vn)∗. Let W = Sk(Vn) and W ′ = S`(Vn)
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with homogeneous bases {wi | i ∈ I} and
{
w′j | j ∈ J

}
and dual bases {fi | i ∈ I} and{

f ′j | j ∈ J
}
, respectively. Computing the leftward crossing on a basis element yields

fu ⊗ w′t 7→
∑
i∈I

fu ⊗ w′t ⊗ wi ⊗ fi 7→
∑
i∈I

(−1)|w
′
t||wi|fu ⊗ wi ⊗ w′t ⊗ fi

7→
∑
i∈I

(−1)|w
′
t||wi|fu (wi)w′t ⊗ fi

= (−1)|w
′
t||wu|w′t ⊗ fu

= (−1)|w
′
t||fu|w′t ⊗ fu,

where the last equality follows from the fact the parity of wu equals the parity of
fu. Thus the leftward crossing goes to the flip map, as claimed. With this in hand,
calculations similar to those in the previous paragraph verify the rightward oriented
versions of (38).

To verify the relation given in (42), we now assume W admits an odd involution.
We further assume we have chosen a basis of even vectors w1, . . . , ws for W0̄ and set
wī to be the image in W1̄ of wi under the involution. Thus w1̄, . . . , ws̄ is a basis for
W1̄. That is, the involution takes wi to wī and vice versa. Computing the sequence of
maps given by the lefthand side of (42) for W = Sk(Vn) yields

1 7→
s∑
i=1

(wi ⊗ fi + wī ⊗ fī) 7→
s∑
i=1

(fi ⊗ wi − fī ⊗ wī)

7→
s∑
i=1

(fi ⊗ wī − fī ⊗ wi)

7→
s∑
i=1

(fi(wī)− fī(wi)) = 0,

where the negative appears due to the grade flip map. Thus the morphism is identically
zero as claimed.

Next we show the morphism (39) goes to an invertible map. Let W = Sk(Vn)
and W ′ = S`(Vn) with homogeneous bases {wi | i ∈ I} and

{
w′j | j ∈ J

}
and dual

bases {fi | i ∈ I} and
{
f ′j | j ∈ J

}
, respectively. Computing the morphism on a basis

element of W ∗ ⊗W ′ = Sk(Vn)⊗ S`(Vn)∗ yields

fu ⊗ w′t 7→
∑
i∈I

fu ⊗ w′t ⊗ wi ⊗ fi 7→
∑
i∈I

(−1)|wi||w
′
t|fu ⊗ wi ⊗ w′t ⊗ fi

7→
∑
i∈I

(−1)|wi||w
′
t|fu (wi)w′t ⊗ fi

7→ (−1)|wu||w
′
t|w′t ⊗ fu = (−1)|fu||w

′
t|w′t ⊗ fu,

where the last equality follows from the fact the parity of wu equals the parity of
fu. Thus the diagram on the left hand side of (39) goes to the graded flip map
W ∗ ⊗W ′ →W ′ ⊗W ∗, which is certainly invertible.

Finally, note that by construction Ψ↑↓n is a functor of rigid, symmetric, and
monoidal supercategories. �

Self-evidently, Ψ↑↓n ◦ Ω = Ψ↑n.

Remark 6.9. The oriented Brauer–Clifford supercategory OBC was introduced in [5].
It is given as a monoidal supercategories with generating objects ↑ and ↓, three even
generating morphisms : 1 →↑↓, : ↓↑→ 1, : ↑↑→↑↑, and one odd
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generating morphism : ↑→↑. These morphisms are subject to certain relations
which we omit. There is a fully faithful functor of symmetric monoidal supercategories

Υ : OBC → q-Web↑↓.
On objects one has Υ(↑) =↑1 and Υ(↓) =↓1. The functor Υ sends the generating
morphisms of OBC to the similarly drawn morphisms of q-Web↑↓ which have all
edges labeled by 1. In this sense q-Web↑↓ is a “thickened” version of OBC.

As explained in [5], for each n > 1 there is a functor of monoidal supercategories
Γn : OBC → q(n)-modules.

Furthermore, Γn = Ψ↑↓n ◦Υ.

7. Main Theorems
7.1. Equivalences of Categories. For n > 1, set k = (n+ 1)(n+ 2)/2 and recall
the quasi-idempotent

eλ(n) ∈ Serk ∼= Endq-Web↑
(
↑k1
) ∼= Endq-Web↑↓

(
↑k1
)

defined in Section 3.3. The first isomorphism is by Proposition 5.6 and the second
isomorphism is the surjective map induced by the functor Ω defined in Theorem 6.7.
If we compose this map with the map given by the functor Ψ↑↓n we obtain a surjective
map to Endq(n)

(
V ⊗kn

)
. Since this endomorphism space is isomorphic to Serk whenever

n is sufficiently large (thanks to Proposition 5.6), it follows that the map given by Ω
is in fact an isomorphism. We identify these superalgebras via these maps.

Definition 7.1. Let I↑ be the tensor ideal of q(n)-Web↑ generated by eλ(n) and let
I↑↓ be the tensor ideal of q(n)-Web↑↓ generated by eλ(n). Set

q(n)-Web↑ := q-Web↑/I↑,
q(n)-Web↑↓ := q-Web↑↓/I↑↓.

Informally, q(n)-Web↑ and q(n)-Web↑↓ are given by the same generators and re-
lations as q-Web↑ and q-Web↑↓ with the extra relation eλ(n) = 0. Both are monoidal
supercategories as discussed in Section 2.5. It is worth emphasizing that both of these
categories depend on n (unlike q-Web↑ and q-Web↑↓).

We are now prepared to state and prove one of the main theorems of the paper.

Theorem 7.2. The functors Ψ↑n : q-Web↑ → q(n)-ModS and Ψ↑↓n : q-Web↑↓ →
q(n)-ModS,S∗ induce functors

Ψ↑n : q(n)-Web↑ → q(n)-ModS ,
Ψ↑↓n : q(n)-Web↑↓ → q(n)-ModS,S∗ .

These functors are equivalences of symmetric monoidal supercategories.

Proof. Since both Ψ↑n and Ψ↑↓n are functors of monoidal categories, and Ψ↑n(eλ(n)) =
Ψ↑↓n (eλ(n)) = 0 by Proposition 5.6 and Proposition 3.4, it follows from the discussion
in Section 2.5 that Ψ↑n and Ψ↑↓n induce functors of monoidal categories which we call
by the same name. By construction they are essentially surjective.

It remains to show they are full and faithful in both cases. By the discussion in
Section 6.4 we may assume without loss of generality that both a and b consist of
only up arrows. Combining Theorem 6.7 and Theorem 5.7 it follows that Ψ↑n and Ψ↑↓n
are full. For faithfulness we consider the case of Ψ↑↓n since the same argument also
applies to Ψ↑n and is easier.

Let I = I↑↓, the tensor ideal of q-Web↑↓ which defines q(n)-Web↑↓. To show
faithfulness amounts to showing that if f ∈ Homq-Web↑↓(a, b) and Ψ↑↓n (f) = 0, then
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f ∈ I(a, b). Just as in the proof of Theorem 5.7, we may assume |a| = |b| since
otherwise Ψ↑↓n is trivially faithful. We may again assume without loss of generality
that both a and b consist of only up arrows. Set k = |a| = |b|. In what follows we
identify Serk and Homq(n)-Web↑↓

(
↑k1 , ↑k1

)
via the isomorphism given at the top of this

section.
As in the proof of Theorem 5.7, we can compose with merges and splits and induce

the following commutative diagram of morphisms:

(56)
Homq-Web↑↓(a, b) Homq-Web↑↓

(
↑k1 , ↑k1

)
Homq(n)(Sa(Vn), Sb(Vn)) Homq(n)

(
V ⊗kn , V ⊗kn

)
.

α

Ψ↑↓n Ψ↑↓n

α̃

Consequently, for f ∈ Homq-Web↑↓(a, b) we have Ψ↑↓n (f) = 0 if and only if
Ψ↑↓n (α(f)) = 0. We claim α(f) ∈ I

(
↑k1 , ↑k1

)
. It follows from Proposition 5.6 that

α(f) =
∑t
i=1 gieγihi for gi, hi ∈ Endq-Web↑↓(↑k1), where eγi are Sergeev quasi-

idempotents labeled by strict partitions of k with `(γi) > n.
We next claim if γ is a strict partition of k with `(γ) > n, then eγ ∈ I

(
↑k1 , ↑k1

)
.

Since I is closed under composition and linear combinations, it will follow that α(f) ∈
I
(
↑k1 , ↑k1

)
. Letm > 0 be fixed and large enough so that ψ : Serk → Endq(m)(V ⊗km ) is an

isomorphism. Furthermore, recall this map is compatible with the isomorphism given
in Proposition 5.6. We identify the Sergeev superalgebra and these endomorphism
superalgebras via these isomorphisms.

In showing the claim we make use of the fact that, through Schur–Weyl–Sergeev
duality, idempotents of Serr correspond to projection onto direct summands of V ⊗rm as
a q(m)-module. In particular, for any strict partition of r, µ, the image of the Sergeev
quasi-idempotent eµ ∈ Serr is a direct summand of the Lm(µ)-isotypic component
of V ⊗rm . By Corollary 3.9, since γ is a strict partition of k with `(γ) > n, Lm(γ) is
a direct summand of Lm(λ(n)) ⊗ V ⊗(k−|λ(n)|)

m in V ⊗km . That is, there are elements
a, b ∈ Serk so that xγ := a

(
eλ(n) ⊗ Id⊗(k−|λ(n)|)

Vm

)
b is a nonzero idempotent of Serk

which projects onto a summand of V ⊗km isomorphic to Lm(γ) and, hence, lies in the
direct summand of (6) labeled by γ. However, since eλ(n) is an element of the tensor
ideal I, it follows that xγ ∈ I(↑k1 , ↑k1). Furthermore, since the direct summand of (6)
labeled by γ is a simple ideal of Endq-Web↑↓

(
↑k1
)

= Serk, this in turn implies that
the entire summand lies in I(↑k1 , ↑k1). In particular, eγ lies in I(↑k1 , ↑k1) as originally
claimed and, hence, α(f) ∈ I(↑k1 , ↑k1).

Finally, recall that α has a left inverse given by composing by merges and splits.
Since I is a tensor ideal, α−1 takes elements of I(↑k1 , ↑k1) to I(a, b). In particular,
f = α−1(α(f)) ∈ I(a, b). As explained in the third paragraph, this implies Ψ↑↓n is
faithful. �

Recall the functor Ω : q-Web↑ → q-Web↑↓ from Theorem 6.7. Since Ω(I↑) ⊆ I↑↓,
it induces a functor Ωn : q(n)-Web↑ → q(n)-Web↑↓.

Corollary 7.3. The functors Ω : q-Web↑ → q-Web↑↓ and Ωn : q(n)-Web↑ →
q(n)-Web↑↓ are faithful.

Proof. Given a web in q-Web↑ of type a→ b, if one draws a horizontal line through
the web at any height which does not intersect a merge, split, or dot, then the sum of
the labels of the strands which cross that line is constant. Since the sum of the labels
in any web which appears in eλ(n) equals k := (n+ 1)(n+ 2)/2 and this sum can only
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weakly increase under vertical and horizontal concatenations, it follows that I↑(a, b) =
0 whenever |a| < k. That is, for any fixed morphism d ∈ Homq-Web↑(a, b) one can
choose n sufficiently large and ensure the functor Ψ↑n is faithful on that morphism
space. Choosing n in this way means the first commutative square of functors in
Section 1.4 induces a commutative square of linear maps on morphism spaces which
is injective on the top row. The right side is evidently also injective. Taken together
this implies the left side must be injective. Thus the functor Ω is faithful. Using Ω
we identify q-Web↑ as a full subcategory of q-Web↑↓. Since Ω is also full we have
I↑ = q-Web↑ ∩ I↑↓ and, hence, Ωn is also faithful. �

Let q(n)-ModV,V ∗ denote the full monoidal subcategory of all q(n)-supermodules
generated by Vn and V ∗n . Recall from Remark 6.9 that the diagrammatic supercategory
OBC can be identified as a full subcategory of q-Web↑. SetOBC(n) to be the monoidal
supercategory given by imposing the relation eλ(n) = 0 on OBC. Then OBC(n) can be
identified with a monoidal subsupercategory of q(n)-Web↑. This identification along
with the previous theorem readily yields the following result.

Corollary 7.4. The monoidal supercategories OBC(n) and q(n)-ModV,V ∗ are equiv-
alent.
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