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Inclusion-exclusion on Schubert polynomials

Karola Mészáros & Arthur Tanjaya

Abstract We prove that an inclusion-exclusion inspired expression of Schubert polynomials
of permutations that avoid the patterns 1432 and 1423 is nonnegative. Our theorem implies a
partial affirmative answer to a recent conjecture of Yibo Gao about principal specializations of
Schubert polynomials. We propose a general framework for finding inclusion-exclusion inspired
expression of Schubert polynomials of all permutations.

1. Introduction
Schubert polynomials, introduced by Lascoux and Schützenberger in [15], represent
cohomology classes of Schubert cycles in the flag variety. They are also multidegrees
of matrix Schubert varieties [12] and wield an impressive collection of combinatorial
formulas [1,3,7,9,14,16,19,24]. Yet, only recently have their supports been established
as integer points of generalized permutahedra [5, 20]. There have also been several
exciting recent developments about the coefficients of Schubert polynomials:

(1) they are known to be log-concave along root directions in their Newton poly-
topes [11];

(2) the set of permutations whose Schubert polynomials have all their coefficients
less than or equal to a fixed integer m is closed under pattern containment [6].

Recall that π = π1 . . . πk ∈ Sk is a pattern of σ = σ1 . . . σn ∈ Sn if and only if there
are indices 1 6 i1 < i2 < · · · < ik 6 n so that the relative order of π1, . . . , πk and of
σi1 , . . . , σik are the same.

1.1. Nonnegative linear combinations of Schubert polynomials with
monomial coefficients. In this paper we investigate nonnegativity proper-
ties of linear combinations of Schubert polynomials with monomial coefficients
in Z[x1, . . . , xn] associated to patterns of a fixed permutation. A first step in this
direction is a recent result by Fink, St. Dizier and the first author of the present paper:

Theorem 1.1 ([6, Theorem 1.2]). Fix σ ∈ Sn and let π ∈ Sn−1 be the pattern of
σ with Rothe diagram D(π) obtained by removing row k and column σk from D(σ).
Then

Sσ(x1, . . . , xn)−Mσ,π(x1, . . . , xn)Sπ(x1, . . . , x̂k, . . . , xn) ∈ Z>0[x1, . . . , xn](1)
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where

Mσ,π(x1, . . . , xn) =

 ∏
(k,i)∈D(σ)

xk

 ∏
(i,σk)∈D(σ)

xi

 .

In particular, Theorem 1.1 implies that the set of permutations whose Schubert
polynomials have all their coefficients less than or equal to a fixed integer m is closed
under pattern containment.

The first result of this paper is a broad extension of Theorem 1.1 for 1432 and 1423
avoiding permutations:

Theorem 1.2. Let w ∈ Sn be a 1432 and 1423 avoiding permutation and let u be a
subword of w. Then

(2)
∑

u6v6w

(−1)|w|−|v|Mw,vSperm(v)(xw−1(v)) ∈ Z>0[x1, . . . , xn],

where
Mw,v :=

∏
(i,j)∈D(w)rD̂(w)|v

xi.

In Theorem 1.2 we use the relation of containment on words: for words u, v, we say
u 6 v if u occurs as a subword in v. Moreover, for a word v of length n, π = perm(v) is
the permutation in Sn such that the relative order of π1, . . . , πn and of v1, . . . , vn are
the same. For these and other definitions used in Theorems 1.1 and 1.2 see Sections 2
and 3 which lay them out in detail. Here we give an example of Theorem 1.2 for
illustration. For w = 1342 and u = 42 we have {v | u 6 v 6 w} = {1342, 142, 342, 42},
so the alternating sum in (2) becomes

Mw,1342S1342(x1, x2, x3, x4)
−Mw,142S132(x1, x3, x4)−Mw,342S231(x2, x3, x4) +Mw,42S21(x3, x4)

= 1 · (x1x2 + x1x3 + x2x3)− x2 · (x1 + x3)− 1 · (x2x3) + x2 · (x3)
= x1x3,

which indeed has nonnegative coefficients. See Figure 3 for an illustration.
An immediate corollary of Theorem 1.2 is the following theorem:

Theorem 1.3. Let w ∈ Sn be a 1432 and 1423 avoiding permutation. If u is a subword
of w, then

(3)
∑

u6v6w

(−1)|w|−|v|Sperm(v)(1) > 0,

where Sperm(v)(1) denotes the value of the Schubert polynomial Sperm(v) with all its
variables set to 1.

Theorem 1.3 is closely related to a recent conjecture of Gao [10, Conjecture 3.2]
regarding the principal specialization of Schubert polynomials as we now explain. We
also conjecture (Conjecture 5.1) in Section 5 that Theorem 1.3 holds for all permuta-
tions w ∈ Sn.

1.2. Principal specializations of Schubert polynomials. Macdonald [17,
Eq. 6.11] famously expressed the principal specialization Sσ(1) of the Schubert
polynomial Sσ in terms of the reduced words of σ. Fomin and Kirillov [8] placed
this expression in the context of plane partitions for dominant permutations, while
after two decades Billey et al. [2] provided a combinatorial proof. In 2017, Stan-
ley [23] considered the asymptotics of Sσ(1) as well as the role pattern containment
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plays in its value. The asymptotics question was partially answered by Morales,
Pak and Panova [21], while the pattern avoidance question inspired Weigandt [25]
and Gao [10], among others, to seek an understanding of Sσ(1) in terms of the
permutation patterns of σ. Weigandt showed that Sσ(1) > 1 + p132(σ), where pπ(σ)
is the number of patterns π in the permutation σ, while Gao improved this to
Sσ(1) > 1+p132(σ)+p1432(σ). Gao conjectured that there exist nonnegative integers
cw, for w ∈ S∞, such that

Sσ(1) =
∑
π∈S∞

cπpπ(σ).

Equivalently:

Conjecture 1.4 ([10, Conjecture 3.2]). ) There exist nonnegative integers cw, for
w ∈ S∞, such that

Sw(1) =
∑
v6w

cperm(v),

where v 6 w denotes that v occurs as a subword in w.

It follows readily via inclusion-exclusion that for w ∈ S∞:

(4) cw =
∑
v6w

(−1)|w|−|v|Sperm(v)(1).

Thus, Theorem 1.3 settles Gao’s conjecture 1.4 for 1432 and 1423 avoiding permu-
tations w ∈ S∞ when we specialize it to the empty word u = (). Moreover, we also
provide a combinatorial interpretation of the numbers cw for 1432 and 1423 avoiding
permutations w ∈ S∞:

Theorem 1.5. For 1432 and 1423 avoiding permutations w ∈ S∞ the value of cw
is the number of diagrams C 6 D(w) that cannot be written as Ĉaug for some Ĉ =
Ĉk,wk

6 D̂(w) = D̂(w)k,wk
, k ∈ Z>0.

See Section 3.3 for more details.

1.3. Extending Theorems 1.1 & 1.2. Both Theorem 1.3 and Theorem 1.5 are
byproducts of our main Theorem 1.2. It is thus most natural to ask in what gener-
ality Theorem 1.2 holds. While Theorem 1.3 is conjectured by Gao to hold for all
permutations, Theorems 1.2 and 1.5 as stated do not. Theorem 1.2 fails already for
w = 1432. However, the reason it fails leads to other possibilities: the monomials
Mw,v we used to formulate Theorem 1.2 are inspired by Theorem 1.1 and are one
of many choices we might have made. While Fink, Mészáros, and St. Dizier [6] only
constructed one monomial Mσ,π for the pair of permutations (σ, π) in Theorem 1.1,
there is a family of monomials each of which would make (1) true. We are led to
wonder whether for an appropriate choice of such monomials Theorem 1.2 could be
generalized to any permutation. We take the first step towards this goal via the fol-
lowing generalization of Theorem 1.1 showing that a family of monomials, including
Mσ,π could work:

Theorem 1.6. Fix σ ∈ Sn and let π ∈ Sn−1 be the pattern of σ with Rothe diagram
D(π) obtained by removing row k and column σk from D(σ). If K ∈ Pk,σk

(D(σ)),
then

Sσ(x1, . . . , xn)−M(x1, . . . , xn)Sπ(x1, . . . , x̂k, . . . , xn) ∈ Z>0[x1, . . . , xn],
where

M(x1, . . . , xn) =
∏

(i,j)∈K

xi.
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See Section 4 for the definition of the set of diagrams Pk,σk
(D(σ)) used in the

statement of Theorem 1.6 above and Section 5 for a discussion of how Theorem 1.6
could be used to generalize Theorem 1.2 as well as Conjecture 5.4 examining the
strength of Theorem 1.6.

Outline of this paper. Section 2 lays out the general background on Schubert
polynomials that we rely on. Section 3 contains the setup and proofs of Theorem 1.2,
1.3 and 1.5. Section 4 provides a proof of Theorem 1.6 and its generalization Theo-
rem 4.1, while Section 5 concludes with conjectures and open problems.

2. Background on Schubert polynomials
Schubert polynomials were originally defined via divided difference operators. We will
instead define them as dual characters of flagged Weyl modules for Rothe diagrams.
This section follows the exposition of [5, 6].

2.1. Definition of dual characters of flagged Weyl modules. A diagram
is a sequence D = (C1, C2, . . . , Cn) of finite subsets of [n], called the columns of D. We
interchangeably think of D as a collection of boxes (i, j) in a grid, viewing an element
i ∈ Cj as a box in row i and column j of the grid. When we draw diagrams, we read
the indices as in a matrix: i increases top-to-bottom and j increases left-to-right.

The Rothe diagram D(w) of a permutation w ∈ Sn is the diagram
D(w) = {(i, j) ∈ [n]× [n] | i < (w−1)j and j < wi}.

Note that Rothe diagrams have the northwest property: If (r, c′), (r′, c) ∈ D(w) with
r < r′ and c < c′, then (r, c) ∈ D(w).

Let G = GL(n,C) be the group of n × n invertible matrices over C and B be the
subgroup of G consisting of the n × n upper-triangular matrices. The flagged Weyl
module is a representationMD of B associated to a diagram D. The dual character
of MD has been shown in certain cases to be a Schubert polynomial [13] or a key
polynomial [22]. We will use the construction ofMD in terms of determinants given
in [18].

Denote by Y the n×n matrix with indeterminates yij in the upper-triangular posi-
tions i 6 j and zeros elsewhere. Let C[Y ] be the polynomial ring in the indeterminates
{yij}i6j . Note that B acts on C[Y ] on the right via left translation: if f(Y ) ∈ C[Y ],
then a matrix b ∈ B acts on f by f(Y ) · b = f(b−1Y ). For any R,S ⊆ [n], let Y RS be
the submatrix of Y obtained by restricting to rows R and columns S.

For R,S ⊆ [n], we say R 6 S if #R = #S and the kth least element of R does not
exceed the kth least element of S for each k. For any diagrams C = (C1, . . . , Cn) and
D = (D1, . . . , Dn), we say C 6 D if Cj 6 Dj for all j ∈ [n].

Definition 2.1. For a diagram D = (D1, . . . , Dn), the flagged Weyl module MD is
defined by

MD = SpanC


n∏
j=1

det
(
Y
Cj

Dj

) ∣∣∣∣∣∣ C 6 D
 .

MD is a B-module with the action inherited from the action of B on C[Y ].

Note that since Y is upper-triangular, the condition C 6 D is technically un-
necessary since det

(
Y
Cj

Dj

)
= 0 unless Cj 6 Dj . Conversely, if Cj 6 Dj , then

det
(
Y
Cj

Dj

)
6= 0.

For any B-module N , the character of N is defined by char(N)(x1, . . . , xn) =
tr (X : N → N), where X is the diagonal matrix diag(x1, x2, . . . , xn) with diagonal
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entries x1, . . . , xn, and X is viewed as a linear map from N to N via the B-action.
Define the dual character of N to be the character of the dual module N∗:

char∗(N)(x1, . . . , xn) = tr (X : N∗ → N∗)
= char(N)(x−1

1 , . . . , x−1
n ).

Definition 2.2. For a diagram D ⊆ [n] × [n], let χD = χD(x1, . . . , xn) be the dual
character

χD = char∗MD.

2.2. Results about dual characters of flagged Weyl modules. A special
case of dual characters of flagged Weyl modules of diagrams are Schubert polynomials:

Theorem 2.3 ([13]). For w a permutation and D(w) its Rothe diagram we have that
the Schubert polynomial Sw is

Sw = χD(w).

Theorem 2.4 (cf. [5, Theorem 7]). For any diagram D ⊆ [n] × [n], the monomials
appearing in χD are exactly 

n∏
j=1

∏
i∈Cj

xi

∣∣∣∣∣∣ C 6 D
 .

Theorem 2.5 ([6]). Let D ⊆ [n]×[n] be a diagram. Fix any diagram C(1) 6 D and set

m =
n∏
j=1

∏
i∈C(1)

j

xi.

Let C(1), . . . , C(r) be all the diagrams C such that C 6 D and
∏n
j=1

∏
i∈Cj

xi = m.
Then, the coefficient of m in χD is equal to

[m]χD = dim

SpanC


n∏
j=1

det
(
Y
C

(i)
j

Dj

) ∣∣∣∣∣∣ i ∈ [r]


 .

In particular,

[m]χD 6 #

C 6 D
∣∣∣∣∣∣
∏

(i,j)∈C

xi = m

 .

In light of the last inequality, it is natural to wonder when equality holds. This is
what Fan & Guo [4] did:

Theorem 2.6 ([4]). Given a diagram D ⊆ [n]× [n], let

xD =
∏

(i,j)∈D

xi.

Then, for a permutation w ∈ Sn,

Sw(x1, . . . , xn) =
∑

C6D(w)

xC

if and only if w avoids the patterns 1432 and 1423.

In particular, Theorem 2.6 implies:

Algebraic Combinatorics, Vol. 5 #2 (2022) 213



Karola Mészáros & Arthur Tanjaya

Corollary 2.7 ([4]). If w ∈ Sn avoids the patterns 1432 and 1423, then the coefficient
of m in Sw = χD(w) is equal to

[m]Sw = #

C 6 D(w)

∣∣∣∣∣∣
∏

(i,j)∈C

xi = m

 .

3. Proof of Theorems 1.2, 1.3 and 1.5
In this section we prove Theorems 1.2, 1.3 and 1.5. We start by giving the necessary
definitions and lemmas.

3.1. Setup for Theorems 1.2, 1.3 and 1.5.

Definition 3.1. For words u, v, we write u 6 v if u is a subword of v (and u < v if
u 6 v and u 6= v). In other words, u 6 v if there is a sequence 1 6 i1 < · · · < i|u| 6 |v|
such that u = v(i1) · · · v(i|u|). The empty word () is a pattern in all words.

Example 3.2. Let u = 792 and v = 37952. Then u 6 v, because u = v(2) v(3) v(5).

Definition 3.3. For a word v of length n, let i1, i2, . . . , in be indices such that v(i1) <
v(i2) < · · · < v(in). Then perm(v) is the permutation that sends ij 7→ j, that is,
perm(v) = (i1i2 · · · in)−1. Equivalently, π = perm(v) is the permutation in Sn such
that the relative order of π1, . . . , πn and of v1, . . . , vn are the same.

Example 3.4. Let v = 37952. Note v(5) < v(1) < v(4) < v(2) < v(3), so
(i1, i2, i3, i4, i5) = (5, 1, 4, 2, 3). Thus perm(v) = (51423)−1 = 24531. Notice that we
can obtain perm(v) from v by replacing the smallest character of v with 1, the second
smallest with 2, and so on.

Definition 3.5. Let w ∈ Sn and let v be a subword of w. We define
xw−1(v) := (xw−1(v(1)), xw−1(v(2)), . . . , xw−1(v(|v|))).

Example 3.6. Let w = 134265 and v = 3265. Then
xw−1(v) = (xw−1(3), xw−1(2), xw−1(6), xw−1(5)) = (x2, x4, x5, x6).

Notice that the resulting indices will always be in ascending order. See Figure 1 for
an illustration.

1

3

4

1

2

3

2

6

5

4

5

6

32

2

6

5

4

5

6

w vw−1(v)

Figure 1. The left diagram is the Rothe diagram of the permuta-
tion w = 134265 (the permutation w is noted in red to the left of the
diagram). The row indices are noted in blue to the left of the dia-
gram. The right diagram shows the subword v = 3265 of w = 134265
graphically: it is obtained by removing the yellow highlighted rows
and columns from the Rothe diagram of w. The indices w−1(v) shown
in blue to the left of the diagram are simply the row indices corre-
sponding to this graphical presentation of the subword v = 3265 of
w = 134265.

Algebraic Combinatorics, Vol. 5 #2 (2022) 214



Inclusion-exclusion on Schubert polynomials

Definition 3.7. Given a diagram D ⊆ [n] × [n] and sets of indices K,L ⊆ [n] with
#K = #L, let D̂ |K,L denote the diagram obtained from D by keeping only the boxes
in rows K and columns L:

D̂ |K,L= {(i, j) ∈ D | i ∈ K, j ∈ L}.

Definition 3.8. Suppose C 6 D(w) for some permutation w ∈ Sn. Then, for any
subword v 6 w, we define Ĉ |v to be the diagram obtained by keeping only the boxes in
the rows corresponding to v. That is, Ĉ |v:= Ĉ |K,L, where L = {v(1), v(2), . . . , v(|v|)}
and K = {w−1(v(1)), w−1(v(2)), . . . , w−1(v(|v|))}.

3.2. Theorem 1.2 and its proof.

Theorem 1.2. Let w ∈ Sn be a 1432 and 1423 avoiding permutation and let u be a
subword of w. Then

(5)
∑

u6v6w

(−1)|w|−|v|Mw,vSperm(v)(xw−1(v)) ∈ Z>0[x1, . . . , xn],

where
Mw,v :=

∏
(i,j)∈D(w)rD̂(w)|v

xi.

Example 3.9. Let w = 2143 and u = 43. Then

{v | u 6 v 6 w} = {2143, 143, 243, 43},

so the alternating sum in (5) becomes

(6) Mw,2143S2143(x1, x2, x3, x4)
−Mw,143S132(x2, x3, x4)−Mw,243S132(x1, x3, x4) +Mw,43S21(x3, x4)

= 1 · (x2
1 + x1x2 + x1x3)− x1 · (x2 + x3)− x1 · (x1 + x3) + x1 · (x3)

= 0,

which indeed has nonnegative coefficients. See Figure 2 for an illustration.

2

1

4

3

x1 ·Sperm(43)(x3, x4)1 ·Sperm(2143)(x1, x2, x3, x4) − − +

1

4

3

x1 ·Sperm(143)(x2, x3, x4) x1 ·Sperm(243)(x1, x3, x4)

2

4

3

1

2

3

4

2

3

4

1

3

4

4

3

3

4

Figure 2. The four diagrams in this figure correspond left to right
to the subwords {v | u 6 v 6 w} = {2143, 143, 243, 43} for w = 2143
and u = 43 as in Example 3.9. These in turn yield the Schubert
polynomials in the expression (6). The red numbers on the left of
the diagrams signify these subwords; the blue numbers are the row
numbers yielding the variables of the corresponding Schubert poly-
nomials in the expression (6). The purple boxes correspond to the
boxes of the Rothe diagram of w = 2143 that are removed in order
to obtain v; graphically these are the boxes struck by yellow if the
yellow highlighted rows and columns are extended; the row indices
of these boxes yield the monomials Mw,v.
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Example 3.10. Let w = 1342 and u = 42. Then
{v | u 6 v 6 w} = {1342, 142, 342, 42},

so the alternating sum in (5) becomes

(7) Mw,1342S1342(x1, x2, x3, x4)
−Mw,142S132(x1, x3, x4)−Mw,342S231(x2, x3, x4) +Mw,42S21(x3, x4)

= 1 · (x1x2 + x1x3 + x2x3)− x2 · (x1 + x3)− 1 · (x2x3) + x2 · (x3)
= x1x3,

which indeed has nonnegative coefficients. See Figure 3 for an illustration.

1

3

4

2

1

4

2

x2 ·Sperm(142)(x1, x3, x4)

4

2

1 ·Sperm(342)(x2, x3, x4)

3

4

2

x2 ·Sperm(42)(x3, x4)1 ·Sperm(1342)(x1, x2, x3, x4) − − +

1

2

3

4

1

3

4

2

3

4

3

4

Figure 3. The four diagrams in this figure correspond left to right
to the subwords {v | u 6 v 6 w} = {1342, 142, 342, 42} for w = 1342
and u = 42 as in Example 3.10. These in turn yield the Schubert
polynomials in the expression (7). The red numbers on the left of
the diagrams signify these subwords; the blue numbers are the row
numbers yielding the variables of the corresponding Schubert poly-
nomials in the expression (7). The purple boxes correspond to the
boxes of the Rothe diagram of w = 1342 that are removed in order
to obtain v; graphically these are the boxes struck by yellow if the
yellow highlighted rows and columns are extended; the row indices
of these boxes yield the monomials Mw,v.

To aid the proof of Theorem 1.2 we extend Corollary 2.7 to words:

Lemma 3.11. Let w ∈ Sn be a 1432 and 1423 avoiding permutation, and let v be a
subword of w. Then the coefficient of m in Sperm(v)(xw−1(v)) is equal to

#

C 6 D̂(w) |v

∣∣∣∣∣∣
∏

(i,j)∈C

xi = m and C’s boxes all lie in rows K

 ,

where K = {w−1(v(1)), w−1(v(2)), . . . , w−1(v(|v|))}.

Proof. Fix m, and let

A =

C 6 D̂(w) |v

∣∣∣∣∣∣
∏

(i,j)∈C

xi = m and C’s boxes all lie in rows K

 .

If m is divisible by some xi where i /∈ K, then the coefficient of m inSperm(v)(xw−1(v))
is 0, and no diagram C with boxes only in rows K can ever satisfy

∏
(i,j)∈C xi = m,

so |A| = 0 and we are done.
Let k1 < k2 < · · · < k|v| be the elements of K. By the previous discussion, we may

as well assume that we can write

m =
|v|∏
i=1

xαi

ki
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for some nonnegative integers αi. Define

m′ =
|v|∏
i=1

xαi
i ,

which is simply m under the reindexing xki
7→ xi. Since w is 1432 and 1423

avoiding, so are v and perm(v), thus by Corollary 2.7, the coefficient of m′ in
Sperm(v)(x1, . . . , x|v|) is equal to |B|, where

B =

C 6 D(perm(v))

∣∣∣∣∣∣
∏

(i,j)∈C

xi = m′
 .

Consider the function f : B → A given by

f(C) = {(ki, v(j)) | (i, j) ∈ C}.

Notice that the boxes of f(C) all lie in rows K, and since
∏

(i,j)∈C xi = m′, we have∏
(i,j)∈f(C) xi = m. Furthermore, from the definition of Rothe diagrams, if (i, j) ∈

D(perm(v)) then (ki, v(j)) ∈ D(w), so f(D(perm(v))) 6 D̂(w) |v. For C,C ′ ∈ B,
observe that if C 6 C ′ then f(C) 6 f(C ′), so it follows that f(C) 6 D̂(w) |v for all
C ∈ B and f is well-defined.
f is clearly injective by construction. To see that it is surjective, note that if C ∈ A,

then C 6 D̂(w) |v, so every box in C is of the form (ki, v(j)) and the diagram

C ′ = {(i, j) | (ki, v(j)) ∈ C}

is easily seen to be a member of A, with f(C ′) = C. Therefore,

[m]Sperm(v)(xw−1(v)) = [m]Sperm(v)(xk1 , xk2 , . . . , xk|v|)
= [m′]Sperm(v)(x1, x2, . . . , x|v|)
= |B|
= |A| . �

Proof of Theorem 1.2. We must show that for every monomial m,

[m]
∑

u6v6w

(−1)|w|−|v|Mw,vSperm(v)(xw−1(v)) > 0;

equivalently,

(8)
∑

u6v6w

(−1)|w|−|v|[m]Mw,vSperm(v)(xw−1(v)) > 0.

Fix m. For any subword v 6 w, let Kv := {w−1(v(1)), w−1(v(2)), . . . , w−1(v(|v|))}
(the “rows corresponding to v”). Using Lemma 3.11, we find that

[m]Mw,vSperm(v)(xw−1(v))

=
[

m
Mw,v

]
Sperm(v)(xw−1(v))

= #

C 6 D̂(w) |v

∣∣∣∣∣∣
∏

(i,j)∈C

xi = m
Mw,v

and C’s boxes all lie in rows Kv

 . �
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Consider the two families of sets

Av :=

C 6 D̂(w) |v

∣∣∣∣∣∣
∏

(i,j)∈C

xi = m
Mw,v

and C’s boxes all lie in rows Kv

 ,

Bv :=

C 6 D(w)

∣∣∣∣∣∣
∏

(i,j)∈C

xi = m, C r (Ĉ |v) = D(w) r (D̂(w) |v)

and C’s boxes all lie in rows Kw

 .

Since v 6 w, Kv ⊆ Kw, and also the boxes of D(w) r (D̂(w) |v) all lie in rows
Kw rKv. Thus, D(w) r (D̂(w) |v) is disjoint from every C ∈ Av, and so there is an
obvious injection f from Av to Bv defined by

f(C) := C t (D(w) r (D̂(w) |v)).

We claim f is surjective. Indeed, given C ∈ Bv, the diagram C ′ = C r (D(w) r
(D̂(w) |v)) is easily seen to be a member of Av, and of course f(C ′) = C.

Therefore,

(9) [m]Mw,vSperm(v)(xw−1(v)) = |Av| = |Bv| ,

and so it suffices to show that

(10)
∑

u6v6w

(−1)|w|−|v| |Bv| > 0.

Notice that, if u 6 v 6 v′ 6 w, then Bv ⊆ Bv′ , and for all u 6 v, v′ 6 w,
Bu ∩Bv = Bu∧v, where u ∧ v denotes the maximal word contained in both u and v.
Let I = {v | u 6 v 6 w and |v| = |w| − 1}. Then, using inclusion-exclusion, we find
that ∑

u6v6w

(−1)|w|−|v| |Bv| = |Bw| −
∑
v1∈I
|Bv1 |+

∑
v1,v2∈I

|Bv1 ∩Bv2 | − · · ·(11)

= |Bw| −
∣∣∣∣ ⋃
v∈I

Bv

∣∣∣∣(12)

=
∣∣∣∣Bw r

⋃
v∈I

Bv

∣∣∣∣ .(13)

This quantity is necessarily non-negative, as desired.

By setting all xi’s to 1 in Theorem 1.2 we obtain:

Theorem 1.3. Let w ∈ Sn be a 1432 and 1423 avoiding permutation. If u is a subword
of w, then ∑

u6v6w

(−1)|w|−|v|Sperm(v)(1) > 0.

We conjecture (Conjecture 5.1) that Theorem 1.3 generalizes to all permutations
w ∈ Sn.
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3.3. Gao’s conjecture 1.4, Theorem 1.5 and its proof. Gao [10] defined a
sequence of integers {cu}m>1,u∈Sm

recursively, as follows:

(14) cw := Sw(1)− 1−
∑
|u|<|w|

cupu(w),

where |u| = m if u ∈ Sm, and pu(w) is the number of occurrences of u as a pattern
in w.

Gao showed that cw = 0 whenever w(n) = n, so the definition of cw can be extended
to all w ∈ S∞. In the same paper, he conjectured the following:

Conjecture 3.12 ([10, Conjecture 3.2]). We have cw > 0 for all w ∈ S∞.

Notice that pu(w) = #{words v such that u = perm(v) and v 6 w}. Thus, we can
rewrite (14) as

(15) cw = Sw(1)−
∑
v<w

cv,

where the −1 has been absorbed into the sum as c(). Note that this perspective
explains the equivalence of Conjectures 1.4 and 3.12.

By inclusion-exclusion, (15) is equivalent to

(16) cw =
∑
v6w

(−1)|w|−|v|Sv(1).

Thus, Theorem 1.3 immediately implies:

Theorem 3.13. Conjecture 3.12 (equivalently, Conjecture 1.4) holds for 1432 and
1423 avoiding permutations w ∈ S∞.

Moreover, Theorem 1.5 below provides a combinatorial interpretation for cw when
w is 1432 and 1423 avoiding.

Definition 3.14. Given diagrams C,D ⊆ [n] × [n] and k, l ∈ [n], let Ĉk,l and D̂k,l

denote the diagrams obtained from C and D by removing any boxes in row k or
column l. When the indexes k, l are clear from the context we simply write Ĉ and D̂
in place of Ĉk,l and D̂k,l. Fix a diagram D. For each diagram Ĉ, let its augmentation
with respect to the diagram D be:

Ĉaug = Ĉ ∪ {(k, i) | (k, i) ∈ D} ∪ {(i, l) | (i, l) ∈ D} ⊆ [n]× [n].

By tracing the proof of Theorem 1.2 for the case u = (), we can obtain an in-
terpretation of the coefficient of m in

∑
v6w(−1)|w|−|v|Mw,vSv(xw−1(v)) in terms of

augmentations of diagrams Ĉ 6 D̂(w). In particular, we readily obtain:

Theorem 1.5. For 1432 and 1423 avoiding permutations w ∈ S∞ the value of cw
is the number of diagrams C 6 D(w) that cannot be written as Ĉaug for some Ĉ =
Ĉk,wk

6 D̂(w) = D̂(w)k,wk
, k ∈ Z>0.

We conclude this section by illustrating Theorem 1.5 for permutations 1342 and
12453.

Example 3.15. Computation yields c1342 = 0. We have that D(1342) = {(2, 2), (3, 2)}
and thus the diagrams C 6 D(1342) are:
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C1 C2 C3

.
Note that C1 = Ĉ1aug with respect toD(1342) with k = 3, l = 4 (or with k = 2, l = 3);
C2 = Ĉ2aug with respect to D(1342) with k = 3, l = 4; C3 = Ĉ3aug with respect to
D(1342) with k = 2, l = 3. Thus, the number of diagrams C 6 D(1342) that cannot
be written as Ĉaug for some Ĉ 6 D̂(1342) is 0 yielding c1342 = 0.

Example 3.16. Computation yields c12453 = 1. We have that D(12453) =
{(3, 3), (4, 3)} and thus the diagrams C 6 D(12453) are:

C1 C2 C3

C4 C5 C6

.
Note that C1 = Ĉ1aug with respect to D(12453) with k = 4, l = 5 (or with k =
3, l = 4); C2 = Ĉ2aug with respect to D(12453) with k = 4, l = 5; C3 = Ĉ3aug with
respect to D(12453) with k = 4, l = 5; C4 = Ĉ4aug with respect to D(12453) with
k = 3, l = 4; C5 = Ĉ5aug with respect to D(12453) with k = 3, l = 4. Note also
that C6 cannot be written as Ĉ6aug for some Ĉ6 6 ̂D(12453). Thus, the number of
diagrams C 6 D(12453) that cannot be written as Ĉaug for some Ĉ 6 D̂(1342) is 1
yielding c12453 = 1.

4. Proof of Theorem 1.6
The main result of this section is a generalization of Theorems 1.1 and 1.6:

Theorem 4.1. Fix a diagram D ⊆ [n] × [n] and let D̂ be the diagram obtained from
D by removing any boxes in row k or column l. If K ∈ Pk,l(D), then

χD(x1, . . . , xn)−M(x1, . . . , xn)χ
D̂

(x1, . . . , xk−1, 0, xk+1, . . . , xn) ∈ Z>0[x1, . . . , xn],

where
M(x1, . . . , xn) =

∏
(i,j)∈K

xi.
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Theorem 1.6 is a special case of Theorem 4.1 when D is a Rothe diagram of a
permutation and l = σk.

We now proceed to define the set of diagrams Pk,l(D) used in the statement of
Theorem 4.1 above.

Definition 4.2. Fix a diagram D ⊆ [n] × [n] and integers k, l ∈ [n]. Define
Purplek,l(D) to be the set of boxes (i, j) such that:

• there is some C 6 D such that (i, j) ∈ C, but
• there is no C 6 D such that Ĉk,l 6 D̂k,l and (i, j) ∈ Ĉk,l.

Definition 4.3. Fix a diagram D ⊆ [n] × [n] and integers k, l ∈ [n]. Define Pk,l(D)
to be the smallest set satisfying the following:

• D r D̂k,l ∈ Pk,l(D), and
• if K ∈ Pk,l(D), K ′ 6 K and K ′ ⊆ Purplek,l(D), then K ′ ∈ Pk,l(D).

Example 4.4. Let D = D(15243), k = 5 and l = 3. Then

Purplek,l(D) = {(1, 3), (2, 3), (3, 3), (4, 3)}

and

Pk,l(D) = {{(2, 3), (4, 3)}, {(1, 3), (4, 3)}, {(2, 3), (3, 3)}, {(1, 3), (3, 3)}, {(1, 3), (2, 3)}}.

As a result, the set of monomials M produced by Theorem 1.6 is

{x2x4, x1x4, x2x3, x1x3, x1x2}.

In this case, these are all the monomials M for which

χD(x1, x2, x3, x4, x5)−M(x1, x2, x3, x4, x5)χ
D̂

(x1, x2, x3, x4, 0)
∈ Z>0[x1, x2, x3, x4, x5].

See Figure 4 for an illustration.

x2x4 x1x4 x2x3 x1x3 x1x2

Figure 4. The diagram in the first row shows the Rothe
diagram of the permutation 15243. The yellow highlighted
row and column correspond to removing row indexed
k = 5 and column indexed l = 3. The boxes with pur-
ple boundary are Purplek,l(D) = {(1, 3), (2, 3), (3, 3), (4, 3)}.
The second row of the figure shows Pk,l(D) =
{{(2,3), (4,3)},{(1,3), (4,3)},{(2,3), (3,3)},{(1,3), (3,3)},{(1,3), (2,3)}}
along with the corresponding monomials below each diagram.
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Example 4.5. Let D = D(15243) and k = l = 4. Then
Purplek,l(D) = {(1, 4), (2, 4), (3, 3), (4, 3)}

and
Pk,l(D) = {{(2, 4), (4, 3)}, {(1, 4), (4, 3)}, {(2, 4), (3, 3)}, {(1, 4), (3, 3)}}.

As a result, the set of monomials M produced by Theorem 1.6 is
{x2x4, x1x4, x2x3, x1x3}.

However,
χD(x1, x2, x3, x4, x5)− (x1x2)χ

D̂
(x1, x2, x3, 0, x5) ∈ Z>0[x1, x2, x3, x4, x5],

so in this case the monomials prescribed by Theorem 1.6 are not the only monomials
that could work. See Figure 5 for an illustration.

x2x4 x1x4 x2x3 x1x3

Figure 5. The diagram in the first row shows the Rothe
diagram of the permutation 15243. The yellow highlighted
row and column correspond to removing row indexed
k = 4 and column indexed l = 4. The boxes with pur-
ple boundary are Purplek,l(D) = {(1, 4), (2, 4), (3, 3), (4, 3)}.
The second row of the figure shows Pk,l(D) =
{{(2, 4), (4, 3)}, {(1, 4), (4, 3)}, {(2, 4), (3, 3)}, {(1, 4), (3, 3)}} along
with the corresponding monomials below each diagram.

The following lemma follows immediately from the definitions:

Lemma 4.6. Let C,D ⊆ [n]× [n] be diagrams, k, l ∈ [n], and K ∈ Pk,l(D). If Ĉk,l 6
D̂k,l, then Ĉk,l ∪K 6 D and Ĉk,l ∩K = ∅.

The following lemma generalizes [6, Lemma 5.7]:

Lemma 4.7. Fix a diagram D, integers k, l ∈ [n], K ∈ Pk,l(D), and let D̂ denote D̂k,l.
Let {Ĉ(i)}i∈[m] be a set of diagrams with Ĉ(i) 6 D̂ for each i, and denote Ĉ(i) ∪K by

C(i) for i ∈ [m]. If the polynomials
{∏

j∈[n] det(Y
C

(i)
j

Dj
)
}
i∈[m]

are linearly dependent,

then so are the polynomials
{∏

j∈[n]r{l} det(Y
Ĉ

(i)
j

D̂j

)
}
i∈[m]

.

Proof. We are given that

(17)
∑
i∈[m]

ci
∏
j∈[n]

det
(
Y
C

(i)
j

Dj

)
= 0
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for some constants (ci)i∈[m] ∈ Cm not all zero. Since C(i) = Ĉ(i) ∪K for Ĉ(i) 6 D̂ we
have that C(i)

l = Kl for every i ∈ [m]. Thus, (17) can be rewritten as

(18) det(Y Kl

Dl
)

∑
i∈[m]

ci
∏

j∈[n]r{l}

det
(
Y
C

(i)
j

Dj

) = 0.

However, since det(Y Kl

Dl
) 6= 0, we conclude that

(19)
∑
i∈[m]

ci
∏

j∈[n]r{l}

det
(
Y
C

(i)
j

Dj

)
= 0.

First consider the case that the only boxes of D in row k or column l are those in
Dl. If this is the case then

(20)
∏

j∈[n]r{l}

det
(
Y
Ĉ

(i)
j

D̂j

)
=

∏
j∈[n]r{l}

det
(
Y
C

(i)
j

Dj

)
for each i ∈ [m]. Therefore,

(21)
∑
i∈[m]

ci
∏

j∈[n]r{l}

det
(
Y
Ĉ

(i)
j

D̂j

)
=
∑
i∈[m]

ci
∏

j∈[n]r{l}

det
(
Y
C

(i)
j

Dj

)
.

Combining (19) and (21) we obtain that the polynomials
{∏

j∈[n]r{l}det(Y
Ĉ

(i)
j

D̂j

)
}
i∈[m]

are linearly dependent, as desired.
Now, suppose that there are boxes ofD in row k that are not inDl. Let j1 < · · · < jp

be all indices j 6= l such that Dj = D̂j ∪ {k}. Then, for each i ∈ [m] and q ∈ [p],
C

(i)
jq

r Ĉ
(i)
jq

= Kjq . For each q ∈ [p], let kq be the only element of Kjq ; then (19)
implies that

(22)

∏
q∈[p]

ykqk

 ∑
i∈[m]

ci
∏

j∈[n]r{l}

det
(
Y
C

(i)
j

Dj

)
= 0.

However,

(23)

∏
q∈[p]

ykqk

 ∏
j∈[n]r{l}

det
(
Y
C

(i)
j

Dj

)
=

∏
j∈[n]r{l}

det
(
Y
Ĉ

(i)
j

D̂j

)
,

as is seen by Laplace expansion on the kqth row of det(Y
C

(i)
jq

Djq
), and therefore

(24)

∏
q∈[p]

ykqk

 ∑
i∈[m]

ci
∏

j∈[n]r{l}

det
(
Y
C

(i)
j

Dj

)
=
∑
i∈[m]

ci
∏

j∈[n]r{l}

det
(
Y
Ĉ

(i)
j

D̂j

)
.

Thus, (22) and (24) imply that

(25)
∑
i∈[m]

ci
∏

j∈[n]r{l}

det
(
Y
Ĉ

(i)
j

D̂j

)
= 0,

as desired. �

We are now ready to prove Theorem 4.1:
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Proof of Theorem 4.1. Let M = M(x1, . . . , xn). Suppose there is some K ∈ Pk,l(D)
such that

M(x1, . . . , xn) =
∏

(i,j)∈K

xi.

We must show that [Mm]χD > [m]χ
D̂

for each monomial m of χ
D̂

not divisible
by xk. Let Ĉ be the set of diagrams Ĉ such that Ĉ 6 D̂ and

∏
(i,j)∈Ĉ xi = m. By

Corollary 5.5,

[m]χ
D̂

= dim

SpanC


n∏
j=1

det
(
Y
Ĉj

D̂j

) ∣∣∣∣∣∣ Ĉ ∈ Ĉ

 .

Let C = {Ĉ ∪ K | Ĉ ∈ Ĉ}. By Lemma 4.6, every C ∈ C satisfies C 6 D and∏
(i,j)∈C xi = Mm, so Corollary 5.5 implies that

[Mm]χD > dim

SpanC


n∏
j=1

det
(
Y
C

(i)
j

Dj

) ∣∣∣∣∣∣ C ∈ C

 .

Note the inequality, which is because we have only a subset of the C.
Finally, Lemma 4.7 implies that

dim

SpanC


n∏
j=1

det
(
Y
C

(i)
j

Dj

) ∣∣∣∣∣∣ C ∈ C

>dim

SpanC


n∏
j=1

det
(
Y
Ĉ

(i)
j

D̂j

) ∣∣∣∣∣∣ Ĉ ∈ Ĉ

,

so [Mm]χD > [m]χ
D̂

for each monomial m of χ
D̂

not divisible by xk. �

5. Questions and Conjectures
The results of this paper naturally give rise to the following Conjectures and Ques-
tions.

5.1. Extending Theorem 1.3.

Conjecture 5.1. Let w ∈ Sn. If u is a subword of w, then∑
u6v6w

(−1)|w|−|v|Sperm(v)(1) > 0.

Theorem 1.3 confirms the above conjecture for 1432 and 1423 avoiding permuta-
tions. A special case of Conjecture 5.1 is Gao’s conjecture 1.4. Conjecture 5.1 has
been verified by computer for all permutations in Sn for n 6 8.

5.2. Extending Theorem 1.6. The monomials M(x1, . . . , xn) =
∏

(i,j)∈K xi we
constructed from diagrams K ∈ Pk,σk

(D(σ)) in Theorem 1.6 do not always charac-
terize all monomials for which

Sσ(x1, . . . , xn)−M(x1, . . . , xn)Sπ(x1, . . . , x̂k, . . . , xn) ∈ Z>0[x1, . . . , xn]
holds; recall that π ∈ Sn−1 is obtained by removing row k and column σk of D(σ).
The following example illustrates this:

Example 5.2. For the permutation σ = 1432 and its pattern π = 132 (coming from
the subword 142 of 1432) obtained by removing row k = 3 and column σk = 3
of D(σ), the set of monomials of the form

∏
(i,j)∈K xi constructed from diagrams

K ∈ P3,σ3(D(σ)) is {x1x3, x2x3}, yet the monomial M(x1, . . . , xn) = x1x2 also
yields Sσ(x1, . . . , xn) − M(x1, . . . , xn)Sπ(x1, . . . , x̂k, . . . , xn) ∈ Z>0[x1, . . . , xn]. In
contrast, for σ = 1432 and its pattern π = 132 (coming from the subword 143
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of 1432) obtained by removing row k = 4 and column σ4 = 2 of D(σ), the set
of monomials of the form

∏
(i,j)∈K xi constructed from diagrams K ∈ P4,σ4(D(σ))

is {x1x2, x1x3, x2x3} and these are all the monomials for which Sσ(x1, . . . , xn) −
M(x1, . . . , xn)Sπ(x1, . . . , x̂k, . . . , xn) ∈ Z>0[x1, . . . , xn].

Question 5.3. Given permutation σ ∈ Sn and its pattern π ∈ Sn−1 obtained by
removing row k and column σk of D(σ), characterize all monomials M(x1, . . . , xn)
for which

Sσ(x1, . . . , xn)−M(x1, . . . , xn)Sπ(x1, . . . , x̂k, . . . , xn) ∈ Z>0[x1, . . . , xn]
holds.

We conjecture that for 1432 and 1423 avoiding permutations Theorem 1.6 charac-
terizes these monomials:

Conjecture 5.4. For 1432 and 1423 avoiding permutation σ ∈ Sn and its pattern
π ∈ Sn−1 obtained by removing row k and column σk of D(σ),

Sσ(x1, . . . , xn)−M(x1, . . . , xn)Sπ(x1, . . . , x̂k, . . . , xn) ∈ Z>0[x1, . . . , xn]
if and only if M(x1, . . . , xn) =

∏
(i,j)∈K xi, where K ∈ Pk,σk

(D(σ)).

Conjecture 5.4 has been verified by computer for all permutations in Sn
for n 6 8. We note that there are permutation and pattern pairs σ ∈ Sn
and π ∈ Sn−1, where σ is not 1432 and 1423 avoiding, yet Sσ(x1, . . . , xn) −
M(x1, . . . , xn)Sπ(x1, . . . , x̂k, . . . , xn) ∈ Z>0[x1, . . . , xn] if and only ifM(x1, . . . , xn) =∏

(i,j)∈K xi, where K ∈ Pk,σk
(D(σ)). An example is σ = 1423 and any of its patterns

π obtained from D(σ) by removing row k and column σk (k ∈ [4]).

5.3. Extending Theorem 1.2. As stated, Theorem 1.2 does not hold for all per-
mutations. However, it is natural to wonder about the following extension:

Question 5.5. Let w ∈ Sn and let u be a subword of w. Using the monomials from
Theorem 1.6 (or its extension asked for in Problem 5.3) is it possible to pick suitable
monomials mw,v ∈ Z[x1, . . . , xn] to make the expression∑

u6v6w

(−1)|w|−|v|mw,vSperm(v)(xw−1(v))

belong to Z>0[x1, . . . , xn]?

Note that a positive answer to Question 5.5 would be an extension of Theorem 1.2
which would readily imply Conjecure 5.1 as well as Gao’s Conjecture 1.4.
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